

The effects of extreme heat events on all-cause mortality: A case study in Ahmedabad city of India, 2002-2018

Ayushi Sharma¹, Priya Dutta², Priyanka Shah², Veena Iyer², Hao He³, Amir Sapkota⁴, Chuansi Gao⁵, Yu-Chun Wang^{*1,6}

¹ Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli 320, Taiwan

²Indian Institute of Public Health Gandhinagar (IIPHG), Public Health Foundation of India (PHFI), Near Lekwada Bus Stop, Gandhinagar, 382042, Gujarat

³Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, United States

⁴Department of Epidemiology and Biostatistics, University of Maryland, School of Public Health, College Park, MD 20742

⁵Thermal Environment Laboratory, Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering (LTH), Lund University, Sweden

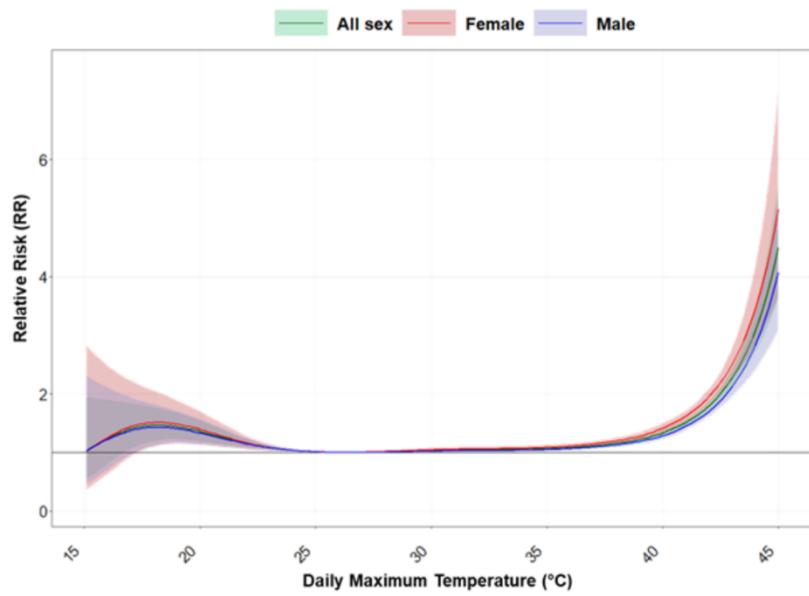
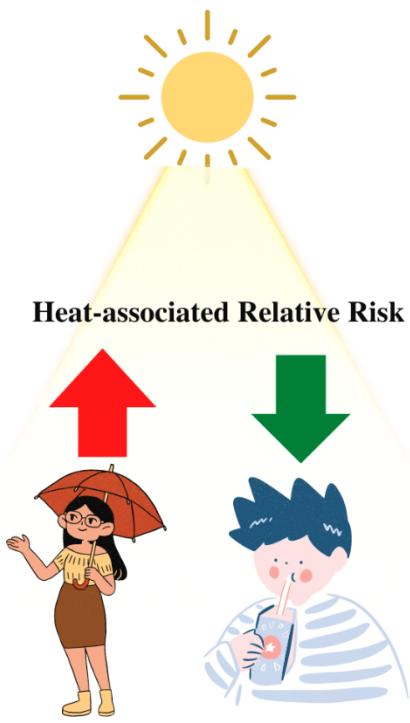
⁶Research Center for Environmental Changes, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan

Address correspondence:

*Yu-Chun Wang, Professor

Department of Environmental Engineering, College of Engineering, Chung Yuan Christian

University, 200 Chung-Pei Road, Zhongli 320, Taiwan



Email: ycwang@cycu.edu.tw; swingapple2@gmail.com

Highlights

- The exposure-response curve revealed a typical 'J' shaped, with a minimum mortality temperature (MMT) of 26°C.
- A single-day absolute T_{max} above 40°C as the cutoff threshold resulted in a 34% increase in mortality risk (RR:1.34; 95% CI: 1.29-1.39).
- Females are more vulnerable to extreme temperatures than males.
- Lag-specific effect identified mortality risk is highest during the day of exposure (lag 0), it tends to persist for longer for more intense extreme heat events (EHEs).

Graphical Abstract

Is extreme heat an indiscriminate killer?

36 **Abstract**

1 37 Background: Extreme heat event (EHE) related mortalities have been on rise in India in recent years,
2
3
4 38 yet there is a paucity of data regarding how specific thresholds impact the health risk.
5
6

7 39 Methods: We used Distributed Lag Non-Linear Model to investigate the association between extreme
8
9 40 heat events, calculated using different thresholds, and mortality risk in Ahmedabad city of India, during
10
11 41 2002-2018.
12
13

14 42 Results: We observed a typical 'J' shape exposure-response curve, with a minimum mortality
15
16 43 temperature (MMT) of 26°C for Ahmedabad. The temperature-mortality relationship showed a higher
17
18 44 risk of all-cause mortality for $T_{max} > 35^{\circ}\text{C}$ and $T_{max} < 25^{\circ}\text{C}$. EHE determined using a cut-off threshold of
19
20 45 $T_{max} \geq 40^{\circ}\text{C}$ leads to 34% increase in all-cause mortality (Relative Risk (RR): 1.34, 95% Confidence
21
22 46 Interval (95% CI): 1.29-1.39), while considerably higher mortality risk for $T_{max} \geq 45^{\circ}\text{C}$ (RR: 4.50, 95%
23
24 47 CI: 3.63-5.58). Gender-stratified analysis showed that females are at higher risk of EHE-related deaths,
25
26 48 irrespective of the intensity and highest mortality risk was identified during same day of exposure which
27
28 49 tends to persist for longer for more intense EHE.
30
31

32
33 50 Conclusion: The activation of heat action plans for Ahmedabad needs to account for the significantly
34
35 51 higher risk of mortality below the current threshold ($\sim 40^{\circ}\text{C}$) and the sustained risk for high-intensity
36
37 52 EHE.
38
39
40 53

41
42
43 54 **Keywords:** Extreme heat events (EHEs); Mortality; Exposure-Response; Minimum Mortality
44
45 55 Temperature (MMT); DLNM; Ahmedabad
46
47
48 56
49
50
51 57
52
53
54 58
55
56
57 59
58
59
60 60
61
62
63
64
65

61 **1. Introduction**

1 The most recent Intergovernmental Panel on Climate Change (IPCC) report concluded that
2 extreme heat events (EHEs) have become more frequent, intense, and long-lasting across the globe [1].
3
4 Many studies worldwide have evaluated the temperature-mortality association and identified a higher
5 mortality risk associated with extreme temperatures [2–7]. Others have reported excess heat-associated
6 mortality during the heatwave period [8–10]. For instance, the 2003 heat waves in France resulted in
7 15,000 excess mortality [11]. Similarly, the 2006 heatwaves in California caused around 16,166 excess
8 mortality during the heatwave period [10]. However, limited
9 evidence on temperature-associated health risks is available from low-and-middle-income countries
10 (LMICs).

22 Cities and urban areas in LMICs are more vulnerable to EHEs due to Urban Heat Island (UHI)
23 effects [12]. In LMICs, rapid urbanization development has converted the open areas into concrete and
24 heat-trapping roofs resulting in higher UHI effects [13]. Historical evidence suggests that the
25 population's vulnerability to EHE is considerably higher in urban areas [14]. For instance, recent studies
26 from India show that heat wave events increased all-cause mortality by up to 17% in the City of
27 Hyderabad during 2006-2015 [15] and up to 40% in Nagpur during the 2010-2014 period [7], while
28 evidence from rural areas are rarely reported. Likewise, Ahmedabad city of India where South Asia's
29 first heat action plan (HAP) was implemented also experienced heat-associated excess mortalities
30 [13,16,17].

42 However, how the impact of EHE differs across geographic regions rely on several factors, like
43 access to air conditioning, demographic compositions [14], and thermal acclimatization of the local
44 population, which can be delineated via minimum mortality temperature (MMT) [18]. However, the
45 majority of studies from the region have reported excess heat-associated mortalities [6,13,19], and there
46 is a paucity of data regarding how changes in specific thresholds used to define EHE impact the
47 observed association between heat waves and mortality in India. The lack of such location-specific data
48 has resulted in Indian Meteorological Department (IMD) establishing two absolute thresholds to define
49 heat waves for the entire nation (single-day maximum temperature above 40°C for plains and 30°C for
50 hilly regions) [20], which may not accurately capture the underlying population risk. Prior studies have
51
52
53
54
55
56
57
58
59
60
61
62
63
64

89 suggested that definitions of heatwaves may have implications for human health impacts and, thus, must
1
90 be explored locally [21].
2
3

4 91 Therefore, in this study, we have focussed on quantifying the risk of mortality with varying
5 temperature thresholds to quantify the impact of EHE on mortality in India. We have also assessed the
6 92 temperature exposure-response curve for Ahmedabad (reflecting MMT) along with threshold-specific
7 93 mortality risk. The region-specific exposure-response curve help to understand human heat exchange
8 94 ability, thermoregulation limits and adaptation to heat of the population at a local level [22].
9 95 Additionally, since various factors influence population response to heat, potential effects of gender
10 96 and time-varying (lagged) exposures were also evaluated.
11 97
12 98
13
14
15
16
17
18
19
20
21
22 99 **2. Methodology**
23
24 100 **2.1 Study area**
25
26
27 101 Ahmedabad city of India, is located on the bank of the seasonal river Sabarmati in the western
28 state of Gujarat. The city's weather is hot and dry, with T_{max} reaching above 45°C in the summers. In
29 102 recent years, the city has experienced rapid expansion and development in urban boundaries, thereby
30 103 making the environment conducive to UHI effects. In retrospect, the city of Ahmedabad is facing
31 104 frequent heat-associated deaths; a major heatwave event in May 2010 resulted in 1,344 additional deaths
32 105 [13]. The absolute T_{max} cutoffs are used to classify the heatwave events in Ahmedabad, where IMD
33 106 weather stations' single-day $T_{max} \geq 40^{\circ}\text{C}$ for plains and $\geq 30^{\circ}\text{C}$ for hilly regions are characterized as
34 107 heatwaves [23].
35
36
37
38
39
40
41
42
43
44
45 109 In response, the city's government developed a Heat Action Plan (HAP) in 2013 [24,25] to facilitate
46
47 110 heatwave awareness and adaptation strategies among the population. HAP of Ahmedabad city has aided
48
49 111 in avoiding an estimated 1,190 (95%CI 162–2,218) average annualized deaths [16]. Therefore,
50
51 112 Ahmedabad is an ideal location to outline the effects of EHEs on all-cause mortality to support existing
52
53 113 HAP in the city.
54
55
56 114 **2.2 Data sources**
57
58
59 115 We obtained daily all-cause mortality data (including accidental deaths) from the Ahmedabad
60 116 Municipal Corporation (AMC) office of the Registrar of Births and Deaths from 2002 to 2018. The
61
62
63
64
65

117 census population for the respective period was obtained from the Office of the Registrar General
118 Census, Indian Census Bureau [26]. The daily temperature records for the same period, including
119 maximum temperature (T_{\max}), minimum temperature (T_{\min}), and average temperature (T_{avg}), were
120 retrieved from ERA5 reanalysis (ECMWF Reanalysis 5th Generation) products. ERA5 provides hourly
121 estimates of climate variables, and the data cover the earth on a 30km grid and resolve the atmosphere
122 using 137 levels from the surface up to a height of 80km. Detailed information on the ERA5 reanalysis
123 product is available at <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>. In
124 addition, monthly weather station data of Ahmedabad city was also obtained from the Indian Institute
125 of Tropical Meteorology (IITM), Pune, to cross-check the accuracy of the ERA5 reanalysis product.
126 Due to the limited data availability of daily Ahmedabad meteorological records, we used the ERA5
127 reanalysis product as a substitute for the weather station.
128

128 We identified that monthly T_{\max} in the ERA5 dataset is comparable to weather station observations,
129 and gridded spatial continuity of ERA5 can have advantages over in-situ measurements for regional
130 modeling applications [27]. The study identified that ERA5 reanalysis product data could adequately
131 report daily weather recordings for Ahmedabad city; a strong R^2 coefficient (0.85) along with a low
132 RMSE (5.44) was identified between the two datasets (*Supplementary fig.1*).

133 2.3 Statistical analysis

134 Mann Kendall test (at a 95% confidence interval) was used to understand the data trend over time,
135 and the significance of the trend was estimated using the *Kendal* package in *R* software (version 3.4.0).
136 We used Distributed Lag Non-Linear Model (DLNM) to assess the temperature-associated mortality
137 risk available through the *DLNM* package of *R* software [28]. A maximum lag of 21 days was applied
138 to the daily data matrix to identify T_{\max} 's non-linear and delayed effects on mortality. The lag days on
139 the daily data matrix were selected based on the literature [29–31]. The model equation is described
140 below:

$$141 \quad \text{Log}[Y] \sim cb(T, \text{lag}) + ns(\text{date}, 7 \text{ per year}) + \text{DOW} + \text{Holiday} + \log(\text{Population})$$

142 Here, Y is the daily all-cause mortality or deaths; T is the exposure variable of T_{\max} and T_{\min} , and lag is
143 the lag days. In cross-basis (cb) matrix, basic spline (*bs*) function with seven degrees of freedom (*df*)

144 was used for daily T_{max} , with the three internal knots placed at equal intervals on the log scale. A natural
1
145 cubic spline (ns) with seven df was used to control the seasonal effects. The dummy variables of days
2
146 of the week (*DOW*) and holidays were also included in the model. Additionally, the population log was
3
147 used as an offset variable to control population effects over mortalities. Cumulative temperature-
4
148 mortality associations were then identified for lags of up to 21 days. The sensitivity analysis was
5
149 conducted to confirm the robustness of the model, and the lag range of up to 21 days was examined.
6
150 Four to seven df values were tested for temperature's long-term effects. The lowest Akaike Information
7
151 Criterion (AIC) values of models were used as the selection criteria.
8
152

2.4 Classification of Extreme Heat Events

153 We investigated how different thresholds of EHEs impact the observed relationship between T_{max}
154 and mortality in Ahmedabad city from 2002 to 2018. We included the IMD definition of single-day
155 absolute temperature above 40°C as a comparison since it is currently used to activate Ahmedabad city's
156 heat action plan. Based on the existing literature, relative temperature cut-offs of 85th to 99.5th
157 percentiles were utilized as relative thresholds. The study considered the EHEs classification based on
158 low (i.e., 85th to 95th percentiles) and high intensities (i.e., 97th to 99.5th percentiles) of T_{max} [32,33].
159 While for absolute temperature thresholds, cut-offs of 40°C, 41°C, and 45°C were considered. The
160 number of EHEs observed during 2002-2018 based on respective absolute and relative thresholds are
161 shown in **Table 1**.
162

3. Results

163 In total, 684,142 deaths were registered from 2002 to 2018 associated with all-cause mortality in
164 Ahmedabad city of India. Overall, 60% of total deaths were reported among males (**Table 2**), with an
165 overall increasing mortality trend among both gender during the study period (**Fig.1**). The results of the
166 Mann-Kendall test confirmed a significant positive mortality trend ($k\text{-tau}= 0.59$, $p\text{-value} <0.001$) in the
167 city over the years.
168

169 During the study period, the daily T_{max} in Ahmedabad city ranged from 15°C to 45°C (**Table 2**).
170 The trend of monthly T_{max} , T_{min} and T_{avg} from 2002-2018 is depicted in **Fig.2**. A steep rise in the slope
171

170 of T_{\min} was identified compared to T_{\max} and T_{avg} , which may be a result of severe UHI in the city. The
171 exposure-response curve of the all-age and all-sex population obtained using the DLNM model revealed
172 a typical 'J' shape with elevated mortality risk on both sides of the temperature distribution, compared
173 to the MMT of 26°C (**Fig.3**). MMT represents the temperature at which mortality reaches its minimum
174 value. Thus, mortality attributable to heat is represented on the right side of MMT (red-colored), while
175 cold-attributable mortality is represented to the left (blue-colored).

176 We further investigated lag and gender-specific temperature-mortality association, and a *minimum*
177 *mortality risk* temperature of 26°C was set as the centering value for exposure-response curves (**Fig.4**).
178 The temperature mortality relationship showed a higher relative risk of all-cause mortality with
179 $T_{\max} > 35^{\circ}\text{C}$, and a less pronounced effect for $T_{\max} < 25^{\circ}\text{C}$. The all-sex mortality risk varied drastically
180 between the lower temperature range of 17°C (RR: 1.40; 95% CI: 1.06-1.83) and the higher temperature
181 range of 45°C (RR: 4.50; 95% CI: 3.63-5.58). **Table 3** presents gender-stratified mortality risks for
182 relative and absolute T_{\max} thresholds to provide comparative evidence. The findings suggested that
183 mortality risk for all-age-sex-specific populations increased by 16% when using the 85th percentile
184 temperature threshold (RR: 1.16; 95% CI: 1.13-1.19). Further, the mortality risk increased to RR: 1.22
185 (95% CI: 1.18-1.26) and RR: 1.92 (95% CI: 1.83-2.01) when using the extreme temperature threshold
186 of 90th and 99.5th percentile, respectively. Likewise, using a single-day absolute T_{\max} above 40°C as the
187 cut-off threshold resulted in a 34% increase in mortality risk (RR: 1.34; 95% CI: 1.29-1.39). As
188 expected, the highest risk was observed when we used 45°C as the threshold (RR: 4.50; 95% CI: 3.63-
189 5.58).

190 Analysis stratified by gender showed higher EHE-related mortality risk among females than males
191 (**Table 3**). For example, when T_{\max} exceeded 40°C, mortality risk among males increased by 29%
192 (RR: 1.29; 95% CI: 1.33-1.35), compared to a 44% increase in risk among females (RR: 1.41; 95% CI:
193 1.33-1.50). Additionally, the mortality risk during severe heatwave events ($T_{\max} \geq 45^{\circ}\text{C}$) was
194 considerably higher among females (RR: 5.15; 95% CI: 3.68-7.21) compared to males (RR: 4.08; 95%
195 CI: 3.09-5.39). Lag-specific analysis (**Fig.5**) showed the mortality risk to be highest during the day of
196 exposure (lag 0), with the risk decreasing with increasing lag time. Significant increases in mortality

197 risks were identified up to a lag of two days at lower percentiles of T_{max} . However, higher thresholds
1
198 (relative and absolute) resulted in a more sustained lag effect. For example, 40°C as a cut-off threshold
2
199 resulted in increased mortality risk at lag0 and lag1, while using 45°C as a threshold resulted in
3
200 increased mortality risk from lag 0 through lag 7 days. A significantly increased mortality risk was also
4
201 identified after a lag of 16 days with 45°C as a threshold, which may be an effect of long-term and
5
202 continuous exposure to extreme heat days.
6
203
7
204
8
205
9
206
10
207
11
208
12
209
13
210
14
211
15
212
16
213
17
214
18
215
19
216
20
217
21
218
22
219
23
220
24
221
25
222
26
223
27
224
28
225
29
226
30
227
31
228
32
229
33
230
34
231
35
232
36
233
37
234
38
235
39
236
40
237
41
238
42
239
43
240
44
241
45
242
46
243
47
244
48
245
49
246
50
247
51
248
52
249
53
250
54
251
55
252
56
253
57
254
58
255
59
256
60
257
61
258
62
259
63
260
64
261
65

3 Discussion

204 Previous studies have extensively documented the impact of extreme heat exposure on mortality
205 and morbidity. However, several important factors are less understood, such as how the local population
206 adapts to these extreme heat exposure, how different thresholds used to define these extreme events
207 impact observed association, and whether or not the timing of exposure has an implication on observed
208 health burden. Using long historical records (2002-2018) of daily mortality data (684k deaths) recorded
209 in Ahmedabad city, we showed that higher thresholds correspond to a stronger association between
210 EHEs and mortality. More interestingly, we observed that higher thresholds resulted in more sustained
211 risk, lasting up to seven days after the exposure compared to the day observed for lower thresholds.
212 Irrespective of the thresholds used, females appeared to be at higher risk of death from exposure to
213 EHE.

214 Even though a greater risk was identified to higher intensities of EHEs, low intensities also
215 considerably increased the mortality risk among our study population. Several regional studies have
216 established a higher mortality risk during heatwave periods [6,13]. However, such studies have not
217 quantified the effect of different intensities of EHEs. Moreover, our study identified that a lower
218 temperature range (i.e., $T_{max}<17^{\circ}C$) also significantly increases all-cause mortality, which can have
219 significant implications during wintertime.

220 We also observed higher EHE-related mortality risk among women compared to men. This finding
221 is consistent with other studies of heatwave-related deaths that have reported higher risk among females
222 than males [34–37]. Similarly, a previous study focusing on Ahmedabad's May 2010 Heatwave noted
223 higher female death rates [13]. Previous studies have hypothesized that females' sweat glands are

1 activated at higher temperatures than males causing less heat exchange between the body and
2 environment, which may put women at a higher risk of heat-related mortality [38–40]. Besides, social
3 and cultural norms, including the higher burden of household activities and culturally influenced
4 dressing practices resulting in a higher exposure propensity among women, may explain some of the
5 higher risks [41].
6
7
8
9
10

11 229 While one might think heat is an indiscriminate killer, however our study confirms women are at
12 230 higher risk of heat-associated deaths. These findings demand attention particularly for women in
13 231 developing nations where poverty, social and cultural norms and gender inequity is deeply rooted. The
14 232 socio-cultural practice, as in many developing countries expect women to stay indoors for household
15 233 chores which may increase their exposure to indoor heating. To a considerable extent, cooking areas in
16 234 many Indian households are poorly ventilated [42] and women spend much of their time indoors in
17 235 cooking areas which exposes them to higher heat effects. Thus, these findings strongly suggest
18 236 policymakers in developing countries must consider gender-specific heatwave prevention plans.
19 237 Moreover, low cost household cooling strategies can be lifesaving [43].
20
21
22
23
24
25
26
27
28
29
30
31

32 238 From the lag exposure standpoint, the highest risk in Ahmedabad City was observed on the day
33 239 of exposure, consistent with what has been reported for Varanasi, India [34]. The lag-specific analysis
34 240 suggests that the impact of more intense heat exposure in Ahmedabad persists for up to seven days after
35 241 exposure. Public health preparedness and response activities need to account for these subtleties.
36
37
38
39
40
41

42 242 Even though this study addressed crucial information about temperature-associated mortality risk,
43 243 several shortcomings are noted. For instance, the study did not consider individual temperature
44 244 exposure for evaluation. Likewise, we did not estimate age-specific effects due to data limitations. The
45 245 mortality rates calculated in the study assumed that population growth remained stagnant for 10 years
46 246 and utilized census-based population data, updated once per decade, as the denominator. All-cause
47 247 mortality data that we used in this study (including accidental deaths) for heat-health analysis are
48 248 generally reliable. We did not use cause-specific mortality data because this information was not
49 249 available and for India per se, there are several potential issues with cause-specific mortality data;
50 250 firstly, reporting conventions are not uniform across the country making comparisons between different
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 251 cities difficult, and secondly, in some regions, the causes of death are not accurately reported if it is
2 252 case sensitive. In addition, some of the deaths may go unreported, resulting in an underestimation.
3
4 253 Moreover, underlying comorbidities could not be accounted for, as such information was unavailable.
5
6 254 Likewise, we did not account for other environmental exposures, including air pollution. Finally, while
7
8 255 the agreement between ERA5 data and weather stations were very good, the ERA5 data tended to
9
10 256 underestimate the maximum temperature slightly. However this did not differ between heat wave vs
11
12 257 non heat wave period, so the potential exposure misclassification is non-differential.
13
14
15

16 258 Despite these potential concerns, applying these results is crucial to fill the knowledge gap in heat
17
18 259 alert systems and policymaking. Identifying local MMT or an optimum temperature threshold can
19
20 260 intensify heatwave prevention measures. With the increasing frequency, duration and intensity of
21
22 261 extreme weather events, future heat action plans and management guidelines require consideration of
23
24 262 EHEs to minimize the societal and life losses associated with temperature rise. The findings of this
25
26 263 study can benefit local government, the health sector, and urban planners to develop effective area-
27
28 264 specific integrated risk management measures for reducing heat-associated fatalities. Moreover, the
29
30 265 health risk of various temperature intensities or EHEs can facilitate a cost-effective heatwave early
31
32 266 warning system.
33
34
35

36 267 Conclusion

37
38

39
40 268 There is an urgent need to develop local-level heat action plans and early warning systems to
41
42 269 enhance community resilience to the threats of climate change-driven extreme heat events. An in-depth
43
44 270 understanding of location-specific minimum mortality temperature and the implication of using
45
46 271 different thresholds on actual disease burden will help inform appropriate heat action plans and early
47
48 272 warning systems. Our data show that magnitude of the risk is related to the scientific threshold used to
49
50
51 273 identify extreme heat events. Likewise, higher threshold results in more sustained risk that exceeds the
52
53 274 day of exposure. Additional studies are needed to understand cause-specific death associated with high
54
55 275 vs. low-intensity extreme heat events and sustained elevated risk.
56
57

58 276 Conflict of interest

59
60
61
62
63
64
65

277 The authors declare no conflicts of interest.

1
2
3 **Acknowledgments**
4
5

6 279 We are highly grateful to the Ahmedabad Municipal Corporation (AMC) office of the Registrar of
7 Births and Deaths for sharing the all-cause mortality data of the city. We would also like to thank the
8 study funders, including the Ministry of Science and Technology (MOST) of Taiwan, National Science
9 Foundation, Swedish Research Council for Health, Working Life and Welfare and Academia Sinica.
10 281
11 282
12 283
13 The work would not have been possible without their financial support.
14
15

16
17 **Fundings**
18
19
20

21 285 This study is funded by the Taiwan Ministry of Science and Technology (MOST 108-2625-M-033-002,
22
23 286 MOST 109-2621-M-033-001-MY3, MOST 109-2625-M-033-002, and MOST 110-2625-M-033-002).
24
25 287 Grants from the National Science Foundation and Swedish Research Council for Health, Working Life
26 and Welfare (Forte) (project 2019-01552) provided further support through Belmont Forum (Award
27 288 Number (FAIN): 2025470). In addition, we are also thankful to Academia Sinica (AS-SS-111-03) for
29
30 289 their extended financial support.
31
32
33

34
35 **4 References**
36

37 292 1. Sixth Assessment Report of Intergovernmental Panel on Climate Change (IPCC)*Climate
38 293 Change 2021, The Physical Science Basis*; 2021; Vol. IPCC AR6 W;
39
40 294 2. Dimitrova, A.; Ingole, V.; Basagaña, X.; Ranzani, O.; Milà, C.; Ballester, J.; Tonne,
41 295 C. Association between ambient temperature and heat waves with mortality in South Asia:
42 296 Systematic review and meta-analysis. *Environment International* **2021**, *146*, 106170,
43 297 doi:<https://doi.org/10.1016/j.envint.2020.106170>.
44
45 298 3. Hashizume, M.; Wagatsuma, Y.; Hayashi, T.; Saha, S.K.; Streatfield, K.; Yunus, M. The effect
46 299 of temperature on mortality in rural Bangladesh—a population-based time-series study.
47 300 *International Journal of Epidemiology* **2009**, *38*, 1689–1697, doi:10.1093/ije/dyn376.
48
49 301 4. Parks, R.M.; Bennett, J.E.; Tamura-Wicks, H.; Kontis, V.; Toumi, R.; Danaei, G.; Ezzati,
50 302 M. Anomalously warm temperatures are associated with increased injury deaths. *Nature
51 303 Medicine* **2020**, *26*, 65–70, doi:10.1038/s41591-019-0721-y.
52
53 304 5. Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.;
54 305 Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient
55 306 temperature: a multicountry observational study. *The Lancet* **2015**, *386*, 369–375,
56 307 doi:[https://doi.org/10.1016/S0140-6736\(14\)62114-0](https://doi.org/10.1016/S0140-6736(14)62114-0).
57
58 308 6. Azhar, G. Indian Summer: Three Essays on Heatwave Vulnerability, Estimation and
59 309 Adaptation. *Indian Summer: Three Essays on Heatwave Vulnerability, Estimation and*

310 *Adaptation* **2019**, doi:10.7249/rgsd431.

1 311 7. Dutta, P.; Sathish, L.; Mavankar, D.; Ganguly, P.S.; Saunik, S. Extreme Heat Kills Even in
2 312 Very Hot Cities: Evidence from Nagpur, India. *The international journal of occupational and*
3 313 *environmental medicine* **2020**, *11*, 188.

4 314 8. Guo, Y.; Gasparrini, A.; Li, S.; Sera, F.; Vicedo-Cabrera, A.M.; deSousa Zanotti Stagliorio
5 315 Coelho, M.; Saldiva, P.H.N.; Lavigne, E.; Tawatsupa, B.; Punna, K. Quantifying excess
6 316 deaths related to heatwaves under climate change scenarios: A multicountry time series
7 317 modelling study. *PLoS medicine* **2018**, *15*, e1002629.

8 318 9. Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Guiheneuc-Jouyaux, C.; Clavel, J.;
9 319 Jougl, E.; Hémon, D. Excess mortality related to the August 2003 heat wave in France.
10 320 *International archives of occupational and environmental health* **2006**, *80*, 16–24,
11 321 doi:10.1007/s00420-006-0089-4.

12 322 10. Knowlton, K.; Rotkin-Ellman, M.; King, G.; Margolis, H.G.; Smith, D.; Solomon, G.; Trent,
13 323 R.; English, P. The 2006 California heat wave: impacts on hospitalizations and emergency
14 324 department visits. *Environmental health perspectives* **2009**, *117*, 61–67.

15 325 11. Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Guiheneuc-Jouyaux, C.; Clavel, J.;
16 326 Jougl, E.; Hémon, D. Excess mortality related to the August 2003 heat wave in France.
17 327 *International archives of occupational and environmental health* **2006**, *80*, 16–24,
18 328 doi:10.1007/s00420-006-0089-4.

19 329 12. Heaviside, C.; Macintyre, H.; Vardoulakis, S. The urban heat island: implications for health in
20 330 a changing environment. *Current environmental health reports* **2017**, *4*, 296–305.

21 331 13. Azhar, G.S.; Mavalankar, D.; Nori-Sarma, A.; Rajiva, A.; Dutta, P.; Jaiswal, A.; Sheffield, P.;
22 332 Knowlton, K.; Hess, J.J. Heat-Related Mortality in India: Excess All-Cause Mortality
23 333 Associated with the 2010 Ahmedabad Heat Wave. *PLOS ONE* **2014**, *9*, e91831.

24 334 14. Wang, D.; Lau, K.K.-L.; Ren, C.; Goggins, W.B.I.I.I.; Shi, Y.; Ho, H.C.; Lee, T.-C.; Lee, L.-
25 335 S.; Woo, J.; Ng, E. The impact of extremely hot weather events on all-cause mortality in a
26 336 highly urbanized and densely populated subtropical city: A 10-year time-series study (2006–
27 337 2015). *Science of The Total Environment* **2019**, *690*, 923–931,
28 338 doi:<https://doi.org/10.1016/j.scitotenv.2019.07.039>.

29 339 15. Rathi, S.K.; Sodani, P.R. Summer temperature and all-cause mortality from 2006 to 2015 for
30 340 Hyderabad, India. *African Health Sciences* **2021**, *21*, 1474–1481.

31 341 16. Hess, J.J.; Lm, S.; Knowlton, K.; Saha, S.; Dutta, P.; Ganguly, P.; Tiwari, A.; Jaiswal, A.;
32 342 Sheffield, P.; Sarkar, J. Building resilience to climate change: pilot evaluation of the impact of
33 343 India's first heat action plan on all-cause mortality. *Journal of environmental and public health*
34 344 **2018**, *2018*.

35 345 17. Wei, Y.; Tiwari, A.S.; Li, L.; Solanki, B.; Sarkar, J.; Mavalankar, D.; Schwartz, J. Assessing
36 346 mortality risk attributable to high ambient temperatures in Ahmedabad, 1987 to 2017.
37 347 *Environmental research* **2021**, *198*, 111232.

38 348 18. López-Bueno, J.A.; Díaz, J.; Follos, F.; Vellón, J.M.; Navas, M.A.; Culqui, D.; Luna, M.Y.;
39 349 Sánchez-Martínez, G.; Linares, C. Evolution of the threshold temperature definition of a heat
40 350 wave vs. evolution of the minimum mortality temperature: a case study in Spain during the
41 351 1983–2018 period. *Environmental Sciences Europe* **2021**, *33*, 101, doi:10.1186/s12302-021-
42 352 00542-7.

43 353 19. Nori-Sarma, A.; Anderson, G.B.; Rajiva, A.; ShahAzhar, G.; Gupta, P.; Pednekar, M.S.; Son,
44 354 J.-Y.; Peng, R.D.; Bell, M.L. The impact of heat waves on mortality in Northwest India.
45 355 *Environmental research* **2019**, *176*, 108546.

356 20. India Metrological Department Indian Metrological Department (IMD) 2018, 3, 1–119.

1 357 21. Robinson, P.J. On the definition of a heat wave. *Journal of Applied Meteorology and*
2 358 *Climatology* **2001**, 40, 762–775.

3 359 22. Follos, F.; Linares, C.; López-Bueno, J.A.; Navas, M.A.; Culqui, D.; Vellón, J.M.; Luna,
4 360 M.Y.; Sánchez-Martínez, G.; Díaz, J. Evolution of the minimum mortality temperature (1983–
5 361 2018): Is Spain adapting to heat? *Science of The Total Environment* **2021**, 784, 147233,
6 362 doi:<https://doi.org/10.1016/j.scitotenv.2021.147233>.

7 363 23. National Disaster Management Authority (NDMA) Heat Wave Available online:
8 364 <https://www.ndma.gov.in/Natural-Hazards/Heat-Wave> (accessed on Oct 17, 2022).

9 365 24. Dutta, P.; Golechha, M.; Mavalankar, D. Prioritising climate change and health: The current
10 366 status of heat-health in India. *Climate Change and the Health Sector* **2021**, 106–115.

11 367 25. Knowlton, K.; Kulkarni, S.P.; Azhar, G.S.; Mavalankar, D.; Jaiswal, A.; Connolly, M.; Nori-
12 368 Sarma, A.; Rajiva, A.; Dutta, P.; Deol, B.; et al. Development and Implementation of South
13 369 Asia's First Heat-Health Action Plan in Ahmedabad (Gujarat, India). *International Journal of*
14 370 *Environmental Research and Public Health* **2014**, 11.

15 371 26. Ahmedabad City Census 2011 data Available online:
16 372 <https://www.census2011.co.in/census/city/314-ahmedabad.html> (accessed on Oct 25, 2019).

17 373 27. Crossett, C.C.; Betts, A.K.; Dupigny-Giroux, L.-A.L.; Bomblies, A. Evaluation of Daily
18 374 Precipitation from the ERA5 Global Reanalysis against GHCN Observations in the
19 375 Northeastern United States. *Climate* **2020**, 8.

20 376 28. Gasparrinia, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. *Statistics in*
21 377 *Medicine* **2010**, 29, 2224–2234, doi:10.1002/sim.3940.

22 378 29. Fu, S.H.; Gasparrini, A.; Rodriguez, P.S.; Jha, P. Mortality attributable to hot and cold ambient
23 379 temperatures in India: a nationally representative case-crossover study. *PLoS medicine* **2018**,
24 380 15, e1002619.

25 381 30. Guo, Y.; Punnasiri, K.; Tong, S. Effects of temperature on mortality in Chiang Mai city,
26 382 Thailand: a time series study. *Environmental Health* **2012**, 11, 36, doi:10.1186/1476-069X-11-
27 383 36.

28 384 31. Guo, Y.; Gasparrini, A.; Armstrong, B.; Li, S.; Tawatsupa, B.; Tobias, A.; Lavigne, E.;
29 385 Coelho, M. de S.Z.S.; Leone, M.; Pan, X. Global variation in the effects of ambient
30 386 temperature on mortality: a systematic evaluation. *Epidemiology (Cambridge, Mass.)* **2014**,
31 387 25, 781.

32 388 32. Huang, C.; Cheng, J.; Phung, D.; Tawatsupa, B.; Hu, W.; Xu, Z. Mortality burden attributable
33 389 to heatwaves in Thailand: A systematic assessment incorporating evidence-based lag structure.
34 390 *Environment International* **2018**, 121, 41–50, doi:<https://doi.org/10.1016/j.envint.2018.08.058>.

35 391 33. Xu, Z.; FitzGerald, G.; Guo, Y.; Jalaludin, B.; Tong, S. Impact of heatwave on mortality under
36 392 different heatwave definitions: A systematic review and meta-analysis. *Environment*
37 393 *International* **2016**, 89–90, 193–203, doi:<https://doi.org/10.1016/j.envint.2016.02.007>.

38 394 34. Singh, N.; Mhawish, A.; Ghosh, S.; Banerjee, T.; Mall, R.K. Attributing mortality from
39 395 temperature extremes: A time series analysis in Varanasi, India. *Science of the Total*
40 396 *Environment* **2019**, 665, 453–464.

41 397 35. Lung, S.-C.C.; Yeh, J.-C.J.; Hwang, J.-S. Selecting Thresholds of Heat-Warning Systems with
42 398 Substantial Enhancement of Essential Population Health Outcomes for Facilitating
43 399 Implementation. *International journal of environmental research and public health* **2021**, 18,
44 400 9506.

401 36. Faye, M.; Dème, A.; Diongue, A.K.; Diouf, I. Impact of different heat wave definitions on
402 daily mortality in Bandafassi, Senegal. *PLoS one* **2021**, *16*, e0249199.

403 37. Tong, S.; FitzGerald, G.; Wang, X.-Y.; Aitken, P.; Tippett, V.; Chen, D.; Wang, X.; Guo,
404 Y. Exploration of the health risk-based definition for heatwave: A multi-city study.
405 *Environmental research* **2015**, *142*, 696–702.

406 38. Kuchcik, M. Mortality and thermal environment (UTCI) in Poland-long-term, multi-city study.
407 *International journal of biometeorology* **2021**, *65*, 1529–1541, doi:10.1007/s00484-020-
408 01995-w.

409 39. Hajat, S.; Kovats, R.S.; Lachowycz, K. Heat-related and cold-related deaths in England and
410 Wales: who is at risk? *Occupational and environmental medicine* **2007**, *64*, 93–100.

411 40. Rey, G.; Fouillet, A.; Bessemoulin, P.; Frayssinet, P.; Dufour, A.; Jouglé, E.; Hémon, D. Heat
412 exposure and socio-economic vulnerability as synergistic factors in heat-wave-related
413 mortality. *European journal of epidemiology* **2009**, *24*, 495–502.

414 41. McGregor, G.R.; Bessmoulin, P.; Ebi, K.; Menne, B. *Heatwaves and health: guidance on*
415 *warning-system development.*; WMOP, 2015; ISBN 9263111421.

416 42. Padhi, B.K.; Padhy, P.K. Domestic fuels, indoor air pollution, and children's health: the case of
417 rural India. *Annals of the New York Academy of Sciences* **2008**, *1140*, 209–217.

418 43. Sharma, A.; Andhikaputra, G.; Wang, Y.-C. Heatwaves in South Asia: Characterization,
419 Consequences on Human Health, and Adaptation Strategies. *Atmosphere* **2022**, *13*.

List of Figures

The effects of extreme heat events on all-cause mortality: A case study in Ahmedabad city of India, 2002-2018

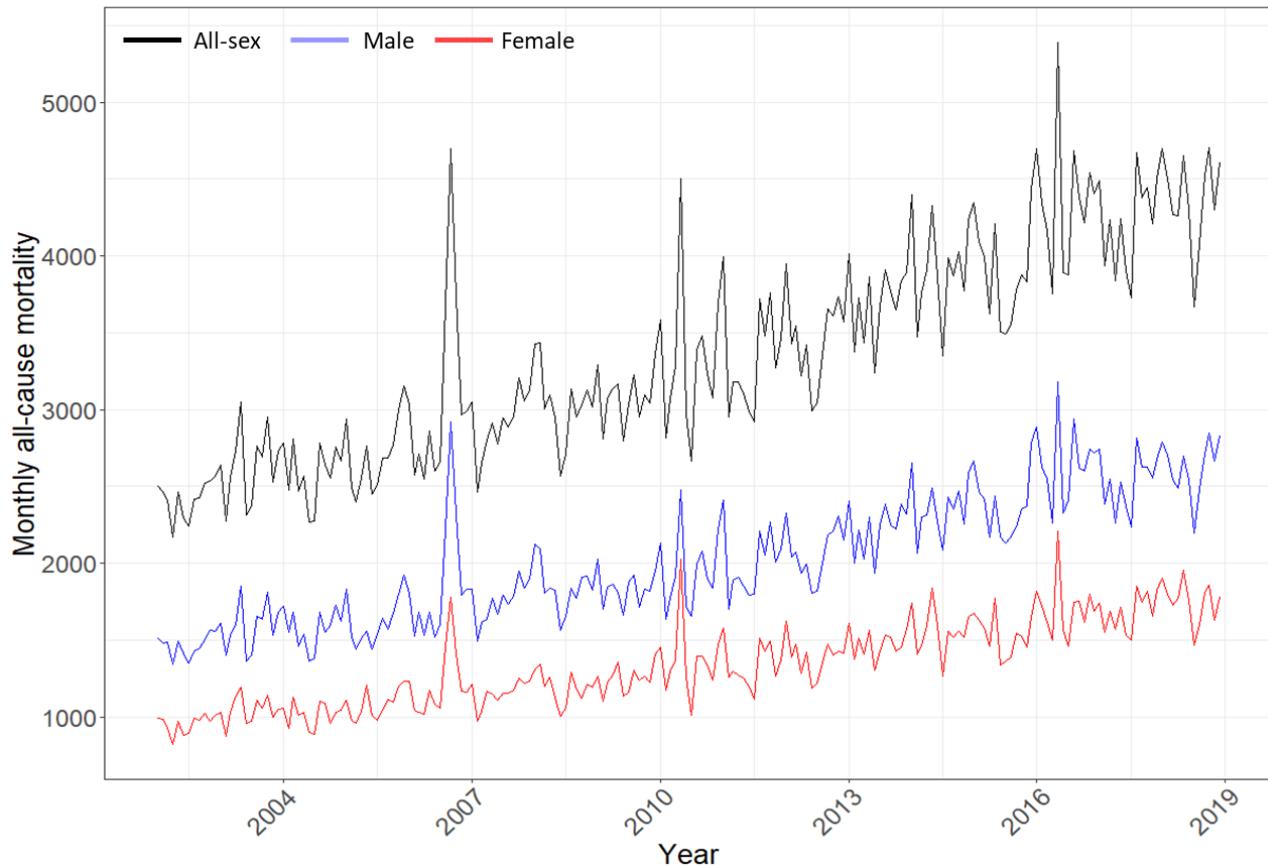


Fig.1 Trend of monthly gender-stratified all-cause mortality from 2002-2018 in Ahmedabad, India

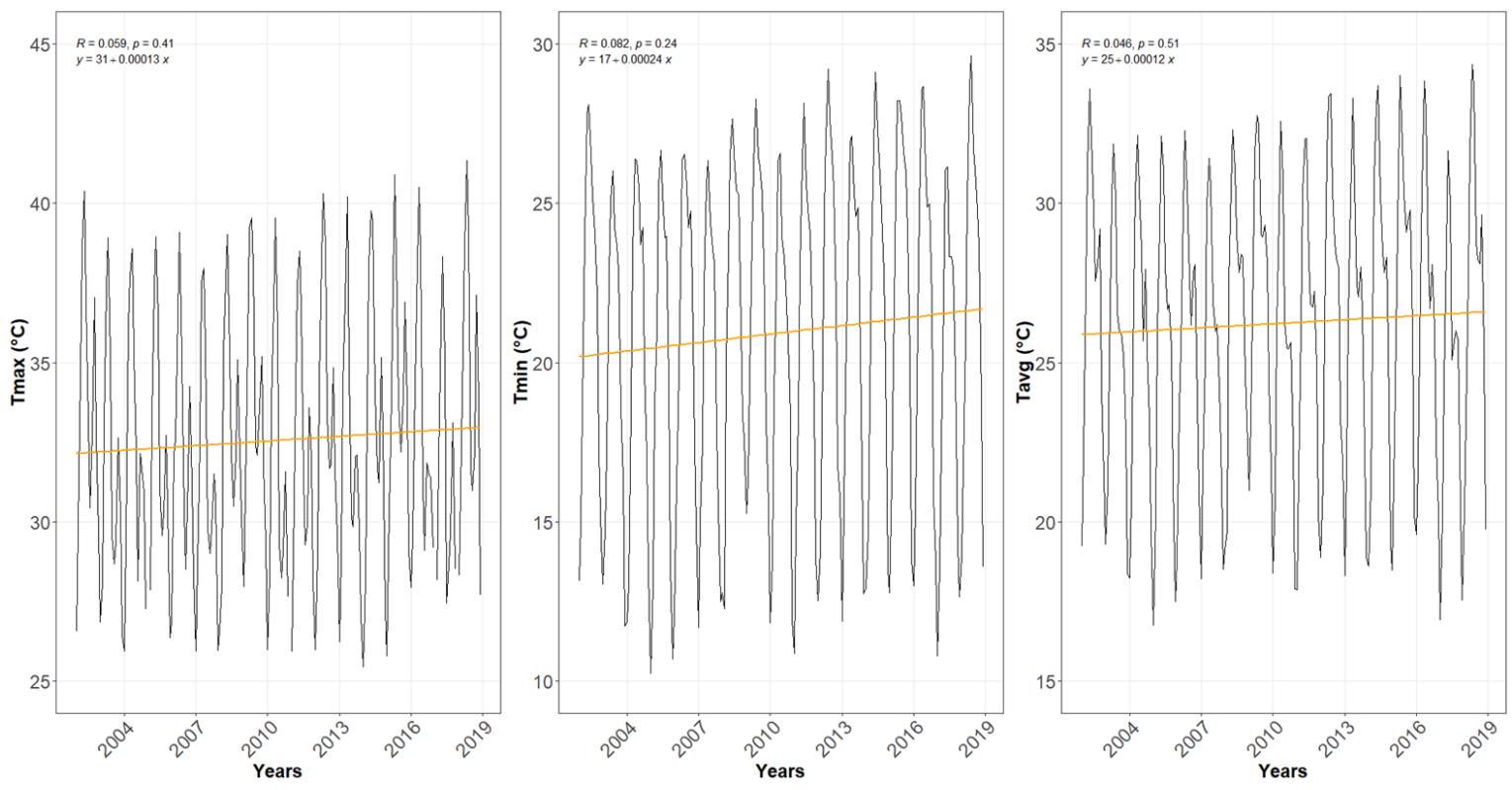


Fig.2 Trends of average monthly (a) Maximum Temperature (T_{\max}) (b) Minimum Temperature (T_{\min}) (c) Average Temperature (T_{avg}) in Ahmedabad, India, from 2002-2018

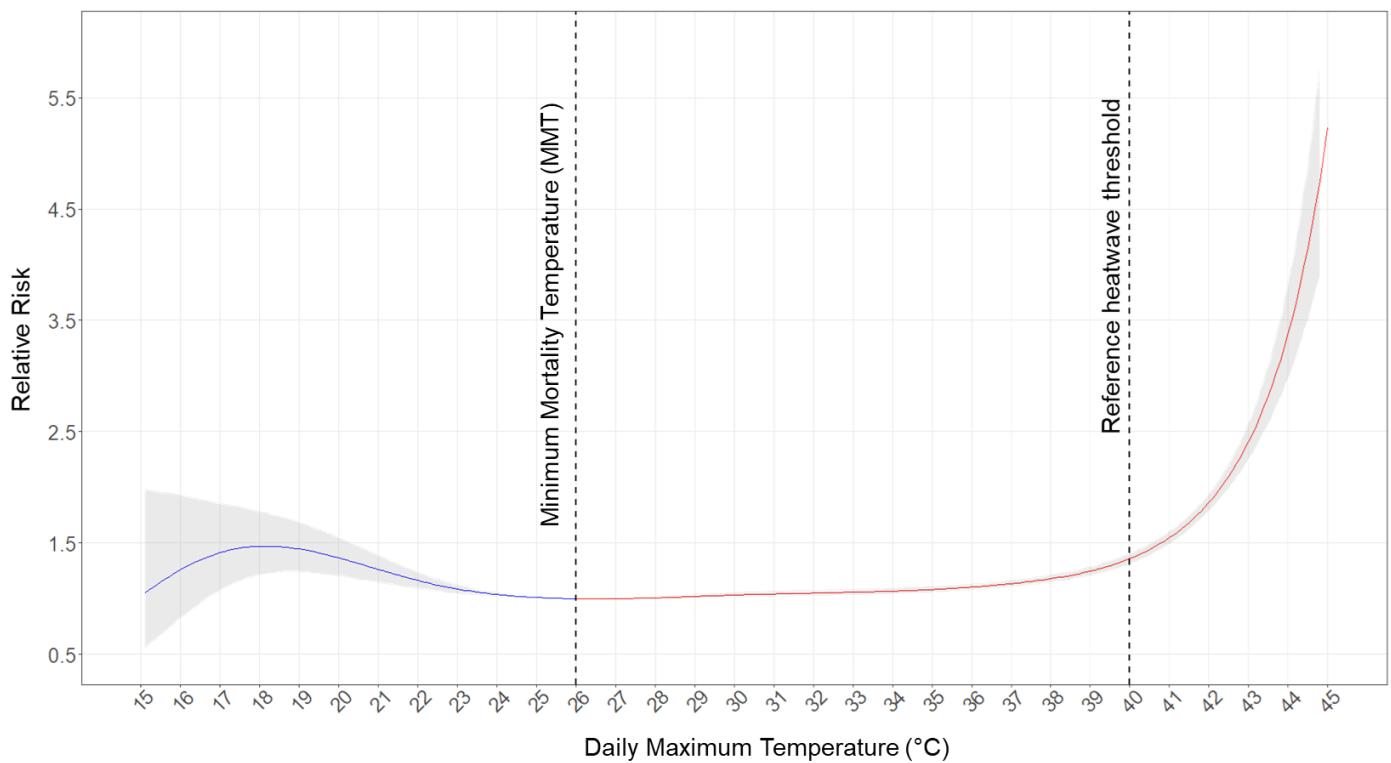


Fig.3 Temperature–mortality relationship for lag 0–21 days from 2002–2018. Dotted vertical line shows the minimum mortality temperature (MMT) and reference heatwave threshold for Ahmedabad.

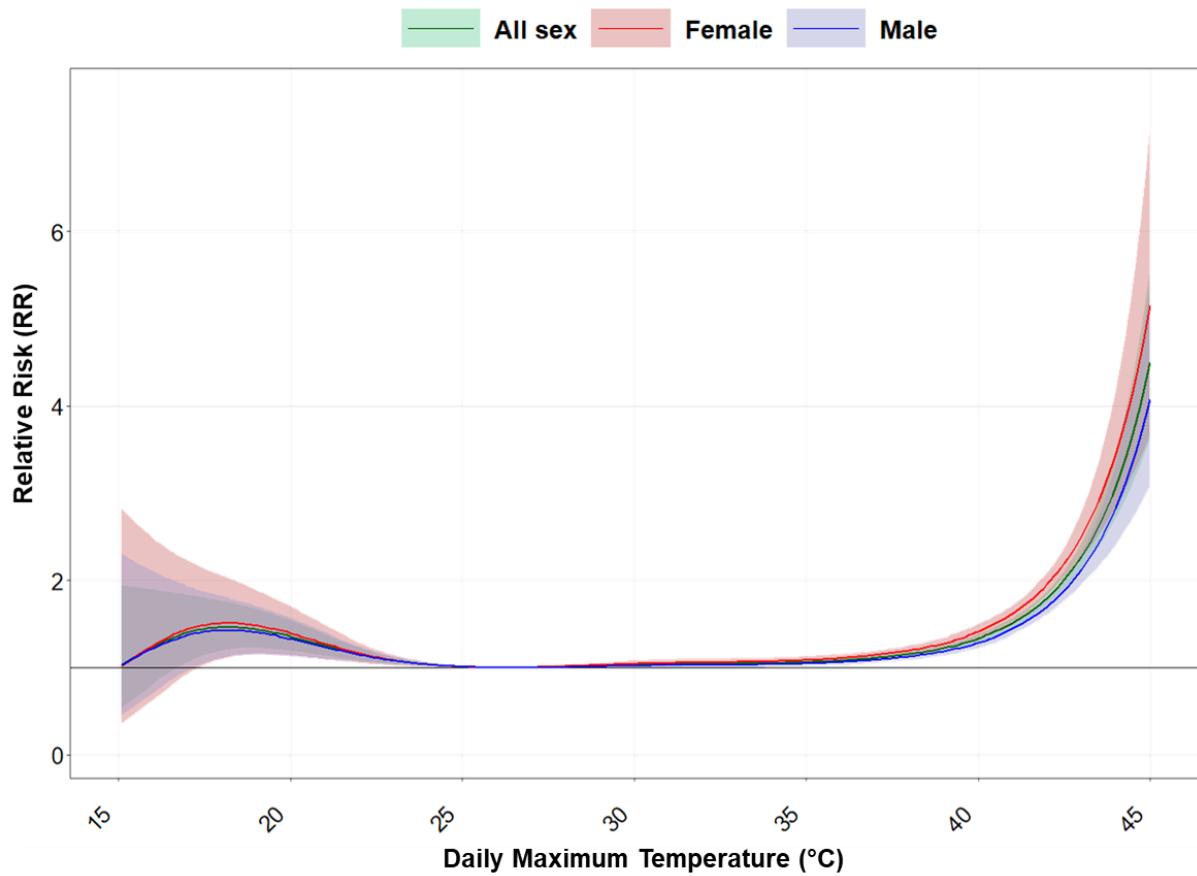


Fig. 4 Exposure-response relationship between T_{\max} and all-cause mortality by gender (with 95% empirical confidence interval, shaded) over a lag of 21 days in Ahmedabad from 2002-2018.

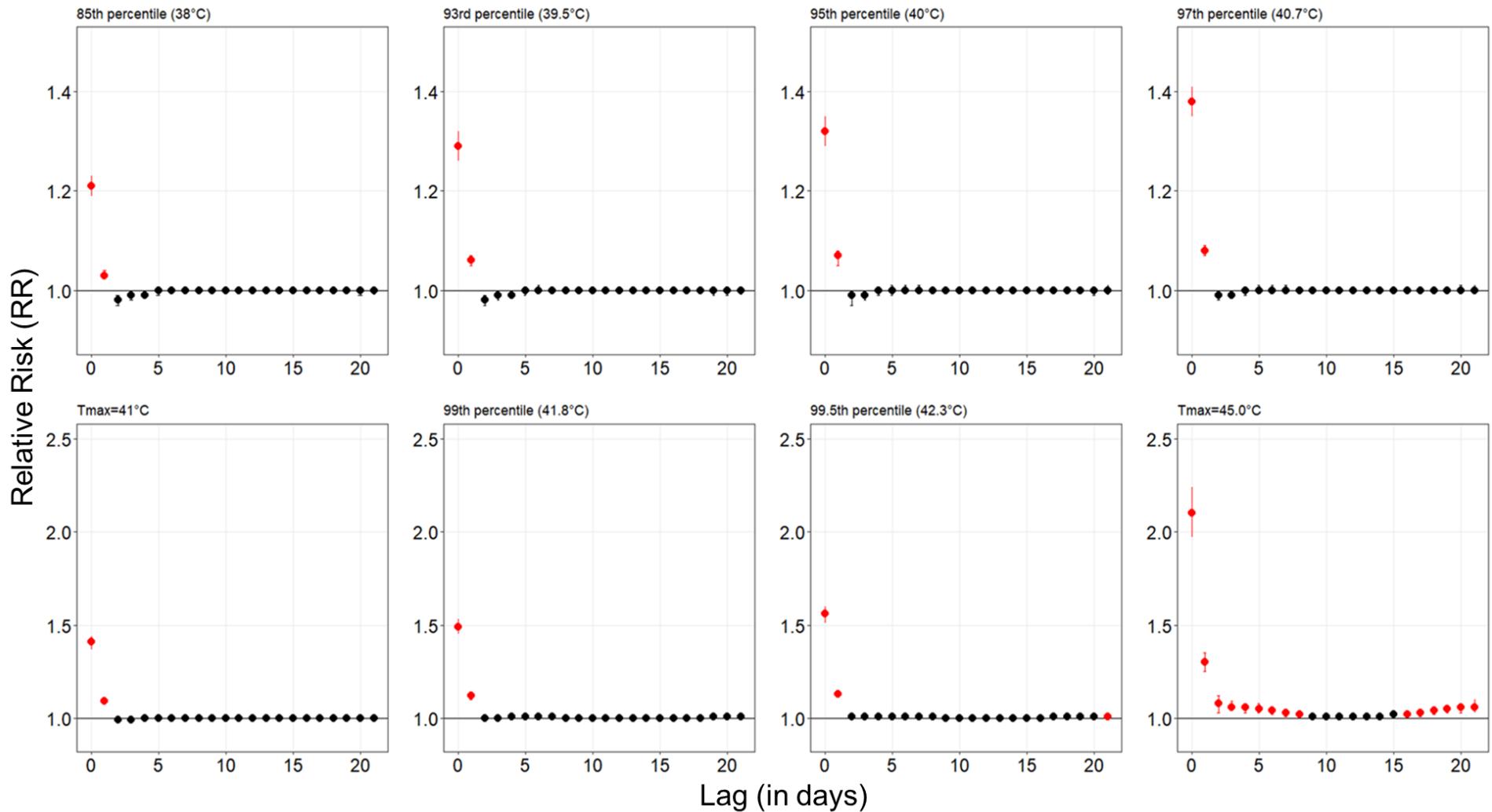


Fig. 5 Lag-specific effect on the relative risk (RR) (at 95% CI) of all-cause mortality at different temperature thresholds in Ahmedabad from 2002-2018 [Red colored error bars represent significant positive RR, while the black represents non-significant RR]

List of Tables

The effects of extreme heat events on all-cause mortality: A case study in Ahmedabad city of India, 2002-2018

Table 1- Threshold based classification of different extreme heat events in Ahmedabad city of, India, from 2002 to 2018

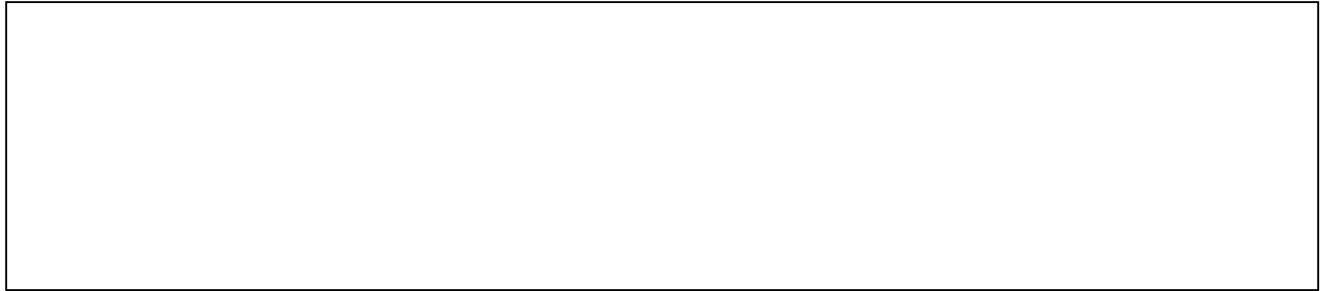
EHEs threshold	EHEs intensity	EHEs definition	No. of days
Absolute		$T_{max} \geq 40^{\circ}C$	322
		$T_{max} \geq 41^{\circ}C$	164
		$T_{max} \geq 45^{\circ}C$	2
Relative	Low	$T_{max} \geq P85$	952
		$T_{max} \geq P90$	652
		$T_{max} \geq P93$	449
	High	$T_{max} \geq P95$	322
		$T_{max} \geq P97$	198
		$T_{max} \geq P99$	77
		$T_{max} \geq P99.5$	33

Note: P85 to P99.5 represent the 85th to 99.5th percentile values

Table 2- Daily number of all-cause mortality and weather variables from 2002-2018 in Ahmedabad, India

	Total Deaths (%)	Average daily deaths/100,000	Mean	Min	P50	P95	Max
Total deaths	684,142 (100)	2.19	111	49	107	156	315
Male deaths	411,749 (60)	1.32	67	25	64	96	176
Female deaths	272,349 (40)	0.87	44	13	43	64	141
Weather Variables							
T_{\max} (°C)	-	-	32	15	32	40	45
T_{\min} (°C)	-	-	21	6	23	28	32
T_{avg} (°C)	-	-	26	13	27	33	37

Note: P50 and P95 represent the 50th and 95th percentile values


Table 3- Relative risk (at 95% CI) of all-cause mortality at different temperature thresholds in Ahmedabad, India, from 2002-2018

Temperature thresholds	All-sex RR (95% CI)	Male RR (95% CI)	Female RR (95% CI)
T _{max} =40°C	1.34 (1.29, 1.39)	1.29 (1.33, 1.35)	1.41 (1.33, 1.50)
T _{max} =41°C	1.51 (1.46, 1.57)	1.45 (1.38, 1.52)	1.62 (1.53, 1.72)
T _{max} =45°C	4.50 (3.63, 5.58)	4.08 (3.09, 5.39)	5.15 (3.68, 7.21)
P85 (38.0°C)	1.16 (1.13, 1.19)	1.13 (1.09, 1.17)	1.20 (1.15, 1.26)
P90 (38.9°C)	1.22 (1.18, 1.26)	1.18 (1.14, 1.23)	1.27 (1.21, 1.34)
P93 (39.5°C)	1.28 (1.23, 1.32)	1.23 (1.18, 1.29)	1.34 (1.27, 1.42)
P95 (40.0°C)	1.34 (1.29, 1.39)	1.29 (1.33, 1.35)	1.41 (1.33, 1.50)
P97 (40.7°C)	1.45 (1.40, 1.51)	1.39 (1.33, 1.46)	1.55 (1.46, 1.64)
P99 (41.8°C)	1.73 (1.67, 1.80)	1.64 (1.56, 1.73)	1.88 (1.76, 2.00)
P99.5 (42.3°C)	1.92 (1.83, 2.01)	1.81 (1.70, 1.92)	2.09 (1.95, 2.25)

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

A large, empty rectangular box with a thin black border, occupying the lower half of the page. It is intended for authors to provide any necessary declarations of interests or conflicts of interest.

1 **CRediT author statement**

2 Ayushi Sharma and Yu-Chun Wang: Conceptualization; Priya Dutta, Priyanka Shah, Hao He and Veena
3 Iyer: Data curation; Yu-Chun Wang, Amir Sapkota, and Chuansi Gao: Funding acquisition; Ayushi
4 Sharma: Formal analysis; Ayushi Sharma and Yu-Chun Wang: Writing - Original Draft; Ayushi
5 Sharma, Priya Dutta, Priyanka Shah, Veena Iyer, Hao He, Amir Sapkota, Chuansi Gao, Yu-Chun Wang:
6 Writing – Review & Editing

7 All authors read and approved the final version of the manuscript.