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The exposure-response curve revealed a typical ' shaped, with a minimum mortality
temperature (MMT) of 26°C.

A single-day absolute Tmax above 40°C as the cutoff threshold resulted in a 34% increase in
mortality risk (RR:1.34; 95% CI: 1.29-1.39).

Females are more vulnerable to extreme temperatures than males.

Lag-specific effect identified mortality risk is highest during the day of exposure (lag 0), it

tends to persist for longer for more intense extreme heat events (EHEs).
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Abstract

Background: Extreme heat event (EHE) related mortalities have been on rise in India in recent years,

yet there is a paucity of data regarding how specific thresholds impact the health risk.

Methods: We used Distributed Lag Non-Linear Model to investigate the association between extreme
heat events, calculated using different thresholds, and mortality risk in Ahmedabad city of India, during

2002-2018.

Results: We observed a typical J' shape exposure-response curve, with a minimum mortality
temperature (MMT) of 26°C for Ahmedabad. The temperature-mortality relationship showed a higher
risk of all-cause mortality for Tma>35°C and Tmax<25°C. EHE determined using a cut-off threshold of
Tmax > 40°C leads to 34% increase in all-cause mortality (Relative Risk (RR):1.34, 95% Confidence
Interval (95% CI): 1.29-1.39), while considerably higher mortality risk for Tma> 45°C (RR: 4.50, 95%
CI: 3.63-5.58). Gender-stratified analysis showed that females are at higher risk of EHE-related deaths,
irrespective of the intensity and highest mortality risk was identified during same day of exposure which

tends to persist for longer for more intense EHE.

Conclusion: The activation of heat action plans for Ahmedabad needs to account for the significantly
higher risk of mortality below the current threshold (~40°C) and the sustained risk for high-intensity

EHE.

Keywords: Extreme heat events (EHEs); Mortality; Exposure-Response; Minimum Mortality

Temperature (MMT); DLNM; Ahmedabad
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1. Introduction

The most recent Intergovernmental Panel on Climate Change (IPCC) report concluded that
extreme heat events (EHEs) have become more frequent, intense, and long-lasting across the globe [1].
Many studies worldwide have evaluated the temperature-mortality association and identified a higher
mortality risk associated with extreme temperatures [2—7]. Others have reported excess heat-associated
mortality during the heatwave period [8—10]. For instance, the 2003 heat waves in France resulted in
15,000 excess mortality [11]. Similarly, the 2006 heatwaves in California caused around 16,166 excess
emergency department visits and 1,182 excess hospitalizations across the state [10]. However, limited
evidence on temperature-associated health risks is available from low-and-middle-income countries
(LMICs).

Cities and urban areas in LMICs are more vulnerable to EHEs due to Urban Heat Island (UHI)
effects [12]. In LMICs, rapid urbanization development has converted the open areas into concrete and
heat-trapping roofs resulting in higher UHI effects [13]. Historical evidence suggests that the
population's vulnerability to EHE is considerably higher in urban areas [14]. For instance, recent studies
from India show that heat wave events increased all-cause mortality by up to 17% in the City of
Hyderabad during 2006-2015 [15] and up to 40% in Nagpur during the 2010-2014 period [7], while
evidence from rural areas are rarely reported. Likewise, Ahmedabad city of India where South Asia's
first heat action plan (HAP) was implemented also experienced heat-associated excess mortalities
[13,16,17].

However, how the impact of EHE differs across geographic regions rely on several factors, like
access to air conditioning, demographic compositions [14], and thermal acclimatization of the local
population, which can be delineated via minimum mortality temperature (MMT) [18]. However, the
majority of studies from the region have reported excess heat-associated mortalities [6,13,19], and there
is a paucity of data regarding how changes in specific thresholds used to define EHE impact the
observed association between heat waves and mortality in India. The lack of such location-specific data
has resulted in Indian Meteorological Department (IMD) establishing two absolute thresholds to define
heat waves for the entire nation (single-day maximum temperature above 40°C for plains and 30°C for

hilly regions) [20], which may not accurately capture the underlying population risk. Prior studies have

3



O J o U bW

OO OO UTTUIUTUTUTUTUTUTUTOTE B DB DB DD DSDNWWWWWWWWWWNNNMNNNMNNNNNNR R PR PR RRP R R
O WNRPOWVWOJdANT D WNRPRPOW®O-TAUBRWNROWOWO®-JdNUD™WNRFROWOW-JOUDWNR OW®W--I0 U D WN R O W

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

suggested that definitions of heatwaves may have implications for human health impacts and, thus, must
be explored locally [21].

Therefore, in this study, we have focussed on quantifying the risk of mortality with varying
temperature thresholds to quantify the impact of EHE on mortality in India. We have also assessed the
temperature exposure-response curve for Ahmedabad (reflecting MMT) along with threshold-specific
mortality risk. The region-specific exposure-response curve help to understand human heat exchange
ability, thermoregulation limits and adaptation to heat of the population at a local level [22].
Additionally, since various factors influence population response to heat, potential effects of gender

and time-varying (lagged) exposures were also evaluated.

2. Methodology
2.1 Study area

Ahmedabad city of India, is located on the bank of the seasonal river Sabarmati in the western
state of Gujarat. The city's weather is hot and dry, with Tmax reaching above 45°C in the summers. In
recent years, the city has experienced rapid expansion and development in urban boundaries, thereby
making the environment conducive to UHI effects. In retrospect, the city of Ahmedabad is facing
frequent heat-associated deaths; a major heatwave event in May 2010 resulted in 1,344 additional deaths
[13]. The absolute Tmax cutoffs are used to classify the heatwave events in Ahmedabad, where IMD
weather stations' single-day Tmax > 40°C for plains and > 30°C for hilly regions are characterized as
heatwaves [23].

In response, the city's government developed a Heat Action Plan (HAP) in 2013 [24,25] to facilitate
heatwave awareness and adaptation strategies among the population. HAP of Ahmedabad city has aided
in avoiding an estimated 1,190 (95%CI 162-2,218) average annualized deaths [16]. Therefore,
Ahmedabad is an ideal location to outline the effects of EHEs on all-cause mortality to support existing
HAP in the city.

2.2 Data sources

We obtained daily all-cause mortality data (including accidental deaths) from the Ahmedabad

Municipal Corporation (AMC) office of the Registrar of Births and Deaths from 2002 to 2018. The

4
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census population for the respective period was obtained from the Office of the Registrar General
Census, Indian Census Bureau [26]. The daily temperature records for the same period, including
maximum temperature (Tmax), minimum temperature (Tmin), and average temperature (Tavg), Were
retrieved from ERAS reanalysis (ECMWF Reanalysis 5th Generation) products. ERAS provides hourly
estimates of climate variables, and the data cover the earth on a 30km grid and resolve the atmosphere
using 137 levels from the surface up to a height of 80km. Detailed information on the ERAS reanalysis

product is available at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/eraS. In

addition, monthly weather station data of Ahmedabad city was also obtained from the Indian Institute
of Tropical Meteorology (IITM), Pune, to cross-check the accuracy of the ERAS reanalysis product.
Due to the limited data availability of daily Ahmedabad meteorological records, we used the ERAS
reanalysis product as a substitute for the weather station.

We identified that monthly Tmax in the ERAS dataset is comparable to weather station observations,
and gridded spatial continuity of ERAS can have advantages over in-situ measurements for regional
modeling applications [27]. The study identified that ERAS reanalysis product data could adequately
report daily weather recordings for Ahmedabad city; a strong R? coefficient (0.85) along with a low
RMSE (5.44) was identified between the two datasets (Supplementary fig.1).

2.3 Statistical analysis

Mann Kendall test (at a 95% confidence interval) was used to understand the data trend over time,
and the significance of the trend was estimated using the Kendal package in R software (version 3.4.0).
We used Distributed Lag Non-Linear Model (DLNM) to assess the temperature-associated mortality
risk available through the DLNM package of R software [28]. A maximum lag of 21 days was applied
to the daily data matrix to identify Tmax's non-linear and delayed effects on mortality. The lag days on
the daily data matrix were selected based on the literature [29-31]. The model equation is described

below:

Log[Y]~cb(T,lag) + ns(date,7 per year) + DOW + Holiday + log(Population)
Here, Y is the daily all-cause mortality or deaths; T is the exposure variable of Tmax and Tmin, and lag is

the lag days. In cross-basis (cb) matrix, basic spline (bs) function with seven degrees of freedom (df)


https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/tropical-meteorology
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was used for daily Tmax, with the three internal knots placed at equal intervals on the log scale. A natural
cubic spline (ns) with seven df was used to control the seasonal effects. The dummy variables of days
of the week (DOW) and holidays were also included in the model. Additionally, the population log was
used as an offset variable to control population effects over mortalities. Cumulative temperature-
mortality associations were then identified for lags of up to 21 days. The sensitivity analysis was
conducted to confirm the robustness of the model, and the lag range of up to 21 days was examined.
Four to seven df values were tested for temperature's long-term effects. The lowest Akaike Information

Criterion (AIC) values of models were used as the selection criteria.
2.4 Classification of Extreme Heat Events

We investigated how different thresholds of EHEs impact the observed relationship between Tmax
and mortality in Ahmedabad city from 2002 to 2018. We included the IMD definition of single-day
absolute temperature above 40°C as a comparison since it is currently used to activate Ahmedabad city's
heat action plan. Based on the existing literature, relative temperature cut-offs of 85™ to 99.5%
percentiles were utilized as relative thresholds. The study considered the EHEs classification based on
low (i.e., 85" to 95" percentiles) and high intensities (i.e., 97" to 99.5" percentiles) of Trmax [32,33].
While for absolute temperature thresholds, cut-offs of 40°C, 41°C, and 45°C were considered. The
number of EHEs observed during 2002-2018 based on respective absolute and relative thresholds are

shown in Table 1.
3. Results

In total, 684,142 deaths were registered from 2002 to 2018 associated with all-cause mortality in
Ahmedabad city of India. Overall, 60% of total deaths were reported among males (7able 2), with an
overall increasing mortality trend among both gender during the study period (Fig.1). The results of the
Mann-Kendall test confirmed a significant positive mortality trend (k-tau= 0.59, p-value <0.001) in the

city over the years.

During the study period, the daily Tmax in Ahmedabad city ranged from 15°C to 45°C (Table 2).

The trend of monthly Tmax, Tmin and Tave from 2002-2018 is depicted in Fig.2. A steep rise in the slope
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of Tmin was identified compared to Tmax and Tave, Which may be a result of severe UHI in the city. The
exposure-response curve of the all-age and all-sex population obtained using the DLNM model revealed
a typical J' shape with elevated mortality risk on both sides of the temperature distribution, compared
to the MMT of 26°C (Fig.3). MMT represents the temperature at which mortality reaches its minimum
value. Thus, mortality attributable to heat is represented on the right side of MMT (red-colored), while

cold-attributable mortality is represented to the left (blue-colored).

We further investigated lag and gender-specific temperature-mortality association, and a minimum
mortality risk temperature of 26°C was set as the centering value for exposure-response curves (Fig.4).
The temperature mortality relationship showed a higher relative risk of all-cause mortality with
Tmax>35°C, and a less pronounced effect for Tnax<25°C. The all-sex mortality risk varied drastically
between the lower temperature range of 17°C (RR: 1.40; 95% CI: 1.06-1.83) and the higher temperature
range of 45°C (RR:4.50; 95% CI: 3.63-5.58). Table 3 presents gender-stratified mortality risks for
relative and absolute Tmax thresholds to provide comparative evidence. The findings suggested that
mortality risk for all-age-sex-specific populations increased by 16% when using the 85™ percentile
temperature threshold (RR:1.16; 95% CI: 1.13-1.19). Further, the mortality risk increased to RR:1.22
(95% CI: 1.18-1.26) and RR:1.92 (95% CI: 1.83-2.01) when using the extreme temperature threshold
of 90" and 99.5" percentile, respectively. Likewise, using a single-day absolute Tmax above 40°C as the
cut-off threshold resulted in a 34% increase in mortality risk (RR:1.34; 95% CI: 1.29-1.39). As
expected, the highest risk was observed when we used 45°C as the threshold (RR:4.50; 95% CI: 3.63-

5.58).

Analysis stratified by gender showed higher EHE-related mortality risk among females than males
(Table 3). For example, when Tmax exceeded 40°C, mortality risk among males increased by 29%
(RR:1.29; 95% CI: 1.33-1.35), compared to a 44% increase in risk among females (RR:1.41; 95% CI:
1.33-1.50). Additionally, the mortality risk during severe heatwave events (Tmax = 45°C) was
considerably higher among females (RR: 5.15; 95% CI: 3.68-7.21) compared to males (RR:4.08; 95%
CI: 3.09-5.39). Lag-specific analysis (Fig.5) showed the mortality risk to be highest during the day of

exposure (lag 0), with the risk decreasing with increasing lag time. Significant increases in mortality
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risks were identified up to a lag of two days at lower percentiles of Tmax. However, higher thresholds
(relative and absolute) resulted in a more sustained lag effect. For example, 40°C as a cut-off threshold
resulted in increased mortality risk at lag0 and lagl, while using 45°C as a threshold resulted in
increased mortality risk from lag 0 through lag 7 days. A significantly increased mortality risk was also
identified after a lag of 16 days with 45°C as a threshold, which may be an effect of long-term and
continuous exposure to extreme heat days.

3 Discussion

Previous studies have extensively documented the impact of extreme heat exposure on mortality
and morbidity. However, several important factors are less understood, such as how the local population
adapts to these extreme heat exposure, how different thresholds used to define these extreme events
impact observed association, and whether or not the timing of exposure has an implication on observed
health burden. Using long historical records (2002-2018) of daily mortality data (684k deaths) recorded
in Ahmedabad city, we showed that higher thresholds correspond to a stronger association between
EHEs and mortality. More interestingly, we observed that higher thresholds resulted in more sustained
risk, lasting up to seven days after the exposure compared to the day observed for lower thresholds.
Irrespective of the thresholds used, females appeared to be at higher risk of death from exposure to

EHE.

Even though a greater risk was identified to higher intensities of EHEs, low intensities also
considerably increased the mortality risk among our study population. Several regional studies have
established a higher mortality risk during heatwave periods [6,13]. However, such studies have not
quantified the effect of different intensities of EHEs. Moreover, our study identified that a lower
temperature range (i.e., Tmax<17°C) also significantly increases all-cause mortality, which can have

significant implications during wintertime.

We also observed higher EHE-related mortality risk among women compared to men. This finding
is consistent with other studies of heatwave-related deaths that have reported higher risk among females
than males [34-37]. Similarly, a previous study focusing on Ahmedabad's May 2010 Heatwave noted

higher female death rates [13]. Previous studies have hypothesized that females' sweat glands are
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activated at higher temperatures than males causing less heat exchange between the body and
environment, which may put women at a higher risk of heat-related mortality [38—40]. Besides, social
and cultural norms, including the higher burden of household activities and culturally influenced
dressing practices resulting in a higher exposure propensity among women, may explain some of the

higher risks [41].

While one might think heat is an indiscriminate killer, however our study confirms women are at
higher risk of heat-associated deaths. These findings demand attention particularly for women in
developing nations where poverty, social and cultural norms and gender inequity is deeply rooted. The
socio-cultural practice, as in many developing countries expect women to stay indoors for household
chores which may increase their exposure to indoor heating. To a considerable extent, cooking areas in
many Indian households are poorly ventilated [42] and women spend much of their time indoors in
cooking areas which exposes them to higher heat effects. Thus, these findings strongly suggest
policymakers in developing countries must consider gender-specific heatwave prevention plans.

Moreover, low cost household cooling strategies can be lifesaving [43].

From the lag exposure standpoint, the highest risk in Ahmedabad City was observed on the day
of exposure, consistent with what has been reported for Varanasi, India [34]. The lag-specific analysis
suggests that the impact of more intense heat exposure in Ahmedabad persists for up to seven days after

exposure. Public health preparedness and response activities need to account for these subtleties.

Even though this study addressed crucial information about temperature-associated mortality risk,
several shortcomings are noted. For instance, the study did not consider individual temperature
exposure for evaluation. Likewise, we did not estimate age-specific effects due to data limitations. The
mortality rates calculated in the study assumed that population growth remained stagnant for 10 years
and utilized census-based population data, updated once per decade, as the denominator. All-cause
mortality data that we used in this study (including accidental deaths) for heat-health analysis are
generally reliable. We did not use cause-specific mortality data because this information was not
available and for India per se, there are several potential issues with cause-specific mortality data;
firstly, reporting conventions are not uniform across the country making comparisons between different

9



O J o U bW

OO OO UTTUIUTUTUTUTUTUTUTOTE B DB DB DD DSDNWWWWWWWWWWNNNMNNNMNNNNNNR R PR PR RRP R R
O WNRPOWVWOJdANT D WNRPRPOW®O-TAUBRWNROWOWO®-JdNUD™WNRFROWOW-JOUDWNR OW®W--I0 U D WN R O W

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

cities difficult, and secondly, in some regions, the causes of death are not accurately reported if it is
case sensitive. In addition, some of the deaths may go unreported, resulting in an underestimation.
Moreover, underlying comorbidities could not be accounted for, as such information was unavailable.
Likewise, we did not account for other environmental exposures, including air pollution. Finally, while
the agreement between ERAS data and weather stations were very good, the ERAS data teneded to
underestimate the maximum temperature slightly. However this did not differ between heat wave vs

non heat wave period, so the potential exposure misclassification is non-differential.

Despite these potential concerns, applying these results is crucial to fill the knowledge gap in heat
alert systems and policymaking. Identifying local MMT or an optimum temperature threshold can
intensify heatwave prevention measures. With the increasing frequency, duration and intensity of
extreme weather events, future heat action plans and management guidelines require consideration of
EHEs to minimize the societal and life losses associated with temperature rise. The findings of this
study can benefit local government, the health sector, and urban planners to develop effective area-
specific integrated risk management measures for reducing heat-associated fatalities. Moreover, the
health risk of various temperature intensities or EHEs can facilitate a cost-effective heatwave early

warning system.

Conclusion

There is an urgent need to develop local-level heat action plans and early warning systems to
enhance community resilience to the threats of climate change-driven extreme heat events. An in-depth
understanding of location-specific minimum mortality temperature and the implication of using
different thresholds on actual disease burden will help inform appropriate heat action plans and early
warning systems. Our data show that magnitude of the risk is related to the scientific threshold used to
identify extreme heat events. Likewise, higher threshold results in more sustained risk that exceeds the
day of exposure. Additional studies are needed to understand cause-specific death associated with high

vs. low-intensity extreme heat events and sustained elevated risk.
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Table 1- Threshold based classification of different extreme heat events in Ahmedabad city of,

India, from 2002 to 2018

EHEs threshold EHE:s intensity EHEs definition No. of days
Tinax> 40°C 322
Absolute Tinax> 41°C 164
Tinax> 45°C 2
Low Tinax> P85 952
Tinax> P90 652
. Tinax> P93 449
Relative T, > P95 30
ngh TmaxZ P97 198
TmaxZ P99 77
Tinax> P99.5 33

Note: P85 to P99.5 represent the 85% to 99.5" percentile values
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Table 2- Daily number of all-cause mortality and weather variables from 2002-2018 in

Ahmedabad, India

Total Average daily

Deaths (%)  deaths/100,000 Mean Min P50 P95 Max
Total deaths 684,142 (100) 2.19 111 49 107 156 315
Male deaths 411,749 (60) 1.32 67 25 64 96 176
Female deaths 272,349 (40) 0.87 44 13 43 64 141

Weather Variables

Tinax (°C) - - 32 15 32 40 45
Tnin (°C) - - 21 6 23 28 32
Tavg (°C) - - 26 13 27 33 37

Note: P50 and P95 represent the 50" and 95' percentile values



Table 3- Relative risk (at 95% CI) of all-cause mortality at different temperature thresholds in

Ahmedabad, India, from 2002-2018

Temperature thresholds

All-sex
RR (95% CI)

Male
RR (95% CI)

Female
RR (95% CI)

Trnax=40°C
Trmax=41°C
Tonax=45°C
P85 (38.0°C)
P90 (38.9°C)
P93 (39.5°C)
P95 (40.0°C)
P97 (40.7°C)
P99 (41.8°C)
P99.5 (42.3°C)

1.34(1.29, 1.39)
1.51 (1.46, 1.57)
4.50 (3.63, 5.58)
1.16 (1.13, 1.19)
1.22 (1.18, 1.26)
1.28 (1.23, 1.32)
1.34(1.29, 1.39)
1.45 (1.40, 1.51)
1.73 (1.67, 1.80)
1.92 (1.83, 2.01)

1.29 (1.33, 1.35)
1.45 (1.38, 1.52)
4.08 (3.09, 5.39)
1.13 (1.09, 1.17)
1.18 (1.14, 1.23)
1.23 (1.18, 1.29)
1.29 (1.33, 1.35)
1.39 (1.33, 1.46)
1.64 (1.56, 1.73)
1.81 (1.70, 1.92)

1.41 (1.33, 1.50)
1.62 (1.53, 1.72)
5.15 (3.68,7.21)
1.20 (1.15, 1.26)
1.27 (1.21, 1.34)
1.34 (127, 1.42)
1.41 (1.33, 1.50)
1.55 (1.46, 1.64)
1.88 (1.76, 2.00)
2.09 (1.95, 2.25)
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