

1 **Quantification of Bioaccessible and Environmentally Relevant Trace Metals in Structure Ash from**
2 **a Wildland Urban Interface Fire**

3 Carmen M. Villarruel¹, Linda A. Figueroa², James F. Ranville^{1*}

4 ¹Department of Chemistry, Colorado School of Mines, Golden, CO, 80401; cvillarruel@mines.edu (C.M.V.); jranvill@mines.edu (J.F.R.);

5 ²Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401; lfiguero@mines.edu

6 *Abstract.* Wildfires at the Wildland Urban Interface (WUI) are increasing in frequency and intensity,
7 driven by climate change and anthropogenic ignitions. Few studies have characterized the variability in
8 metal content in ash generated from burned structures in order to determine potential risk to human and
9 environmental health. Using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and
10 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) we analyzed leachable trace metal
11 concentration in soils and ash from structures burned by the Marshall Fire, a WUI fire that destroyed over
12 1000 structures in Boulder County Colorado. Acid digestion revealed that ash derived from structures
13 contained 22 times more Cu and 3 times more Pb on average than surrounding soils on a mg/kg basis.
14 Ash liberated 12 times more Ni (mg/kg) and twice as much Cr (mg/kg) as soils in a water leach. By
15 comparing the amount of acid-extractable metals to that released by water and Simulated Epithelial Lung
16 Fluid (SELF), we estimated their potential for environmental mobility and human bioaccessibility. The
17 SELF leach showed that Cu and Ni were more bioaccessible (mg leachable metal/mg acid extractable
18 metal) in ash than in soils. These results suggest that structure ash is an important source of trace metals
19 that can negatively impact the health of both humans and the environment.

20 **Keywords:** Wildfire, WUI, Simulated Epithelial Lung Fluid, ICP-MS, metal mobility

21 *Synopsis:* Wildfires at the Wildland Urban Interface burn metal containing structures, generating ash that
22 may be hazardous to humans and the environment.

23 *Introduction.* Over the past three decades, fire season in the United States has become more severe as the
24 annual number of fires and area burned increases¹⁻⁵. This increase has been largely driven by climate
25 change^{3,6-10}. The average wildfire size has increased 4-fold during the 2000's¹¹ as compared to the
26 previous 2 decades. In 2022 alone, 7.4 million acres were burned by nearly 65,000 fires^{12,13}. The increase
27 in wildfire size and frequency in the US has coincided with the expansion of the Wildland Urban
28 Interface (WUI), a region where houses and structures are interspersed among vegetation and forests¹⁴⁻¹⁶.
29 Close proximity of vegetative fuel to structures elevates the risk of fire propagation, increasing WUI
30 susceptibility to burning^{15,17,18}. As of 2021, there were approximately 50 million US homes in the WUI,
31 with an expected increase of 1 million within 3 years¹⁹. From 1990 to 2010, the WUI grew by 41% in the
32 US¹⁸, accounting for approximately 39% of all houses^{14,17} and 10% of land area¹⁵. Between 1985 and
33 2013, approximately 69% of structures destroyed in wildfires existed in the WUI¹⁷. The destruction of
34 structures at the WUI due to wildfires is a problem that is expected to increase as more people move into
35 the WUI, and climate change continues to progress, increasing wildfire activity²⁰.

36 Wildfires have a direct impact on air quality. Wildfire smoke contains volatile organic molecules, fine
37 particulate matter (PM_{2.5}, PM₁₀), ozone, aldehydes, sulfur dioxides, and other contaminants²¹⁻²⁴ which
38 have been linked to increases in overall mortality and respiratory morbidity²⁵⁻³². Hospital admissions
39 increase during wildfire activity^{31,33,34} with respiratory admissions increasing 23-34%^{28,35,36}. Repeated
40 annual exposure carries additional risk of long-term illness including elevated risk for developing lung
41 cancer or brain tumors³⁷. Wildfires also impact environmental health by destroying vegetation^{38,39},
42 altering animal behavior⁴⁰, and generating ash and atmospheric particulates. Following severe burns,
43 slopes lose the vegetation that prevents erosion⁴¹, increasing vulnerability to debris flow landslides during

44 rainstorms⁴². Erosion and wind events deposit ash onto soils^{43–45} and surface waters^{46–51}, thus
45 contaminating water sources^{52,53} and increasing sediment load⁵⁴.

46 Wildfire ash and burned soils are often enriched in trace metals^{43,55,56}. Metals can become volatilized at
47 high temperatures during combustion and then condense, subsequently adsorbing to ash surfaces during
48 cooling^{44,45}. Studies have also shown that the conditions present during combustion can induce
49 transformations in metal speciation across matrices including soils, coal, and biomass^{57–61}. These
50 alterations to metal speciation can increase the mobility and toxicity of metals^{57,58,60}, underpinning the
51 urgency for quantification in environmental systems. Trace metal concentration in ash is highly dependent
52 on the metal content^{43,56} and overall composition of the burned materials^{45,51,62,63}. For example, electronics
53 in the built environment contain metals such as Cd, Cr, Ni, Pb, and Zn in high concentrations^{64–66}. These
54 electronics require proper disposal to prevent contamination of soils and water. Currently, few studies
55 have focused on metal concentrations in ash from WUI fires^{67–70}, which often burn electronics in
56 structures.

57 The Marshall Fire, a WUI fire in Boulder County, was the most destructive fire in Colorado history. Over
58 the course of 2 days, the Marshall Fire destroyed 1084 structures, primarily residential dwellings, and
59 burned over 24 square kilometers. In contrast to wildfires, which burn mostly vegetation, structures are
60 highly concentrated sources of bulk metals, which are present in structural components such as support
61 beams (Ni and Cr in steel), plumbing (Cu and Pb), wiring (Cu), electronics (Cu, Ni, Pb, Cr), and paint
62 (Cr, Cu, Pb). Nevertheless, exactly how the presence of bulk metals in materials subjected to WUI fires
63 impact final metal concentration in ash is poorly understood. To date, there has been little research to
64 determine the composition of ash generated from burned structures, and its potential for environmentally
65 and biologically relevant metal release.

66 Rapid expansion of WUI^{18,71} and increase in wildfire activity^{12,18,72} will lead to increased quantities of
67 structure ash, and it is imperative to understand the impacts that this may have on human and
68 environmental health. Metal mobilization is of environmental concern due to the persistence, mobility,
69 bioavailability, and bioaccumulative properties of trace metals^{43,63} which can be examined through the use
70 of laboratory-based extraction procedures. The purpose of this study was to determine the identity and
71 concentration of metals in ash generated from the Marshall Fire. Specifically, we examined situationally
72 relevant matrices such as water and Simulated Epithelial Lung Fluid (SELF) to assess the metal leaching
73 potential of ash produced by structural fires. In the WUI, soil is an existing source of leachable metals and
74 PM_{2.5,10}^{73–75}. Therefore, we compared the metal concentrations and leaching behavior of ash to that of
75 native soils in order to test the hypothesis that metals are elevated in the local environment as a result of
76 ash from WUI structure fires post wildfire.

77 Materials and Methods

78 *Sampling.* The Marshall fire burned December 30-31, 2021. Ash and surficial soil samples were collected
79 3 months post fire (March 2022). Prior to sampling, 3.77 inches of new precipitation in the form of snow
80 was recorded⁷⁶. Some of this snow melted and sublimated in place, and freezing temperatures primarily
81 occurred prior to sampling, suggesting that leaching of metals prior to collection was limited. Four
82 locations were examined within the Marshall fire perimeter (approximate sampling locations shown in
83 Figure S1). At the western-most site (S1) a large number of individual samples (n = 31) were collected
84 across a residential property in order to examine the spatial variability in metal content within the burned
85 structure and the surrounding soils. Each sample was comprised of multiple collections of specific
86 material (ash or soil) from the immediate sample location. At the other sites (S2 – S4) we created single
87 composites from multiple individual locations to obtain an average composition for each entire site.

88 Workers clearing the S1 site had piled and homogenized ash in one location, which we also sampled as
89 the S1 composite. Samples were categorized as ash or soil, according to information obtained from
90 homeowners, visual inspection of the material, and the sampling location within the site. Soil samples
91 (n=8) included burned and unburned soils that were separate from the burned structure. Ash samples (n=23)
92 included ash collected from throughout the structure, burned landscape lumber, and burned material
93 that likely originally contained electronics (as per personal communication with homeowner). Samples
94 were collected by steel trowel, placed in polyethylene zipper closable bags, and dried at ambient room
95 temperature in the laboratory. A portion of each sample was sieved with a No. 10 mesh stainless steel
96 screen, and the resulting <2 mm portion was carried forward in the subsequent analysis. Dry samples
97 were stored at 4 °C until analysis. With these procedures, that are based on the USGS methodology to
98 sample metal-rich solid wastes⁷⁷, we obtained a representative average concentration, but did not
99 determine uncertainty in subsampling. Given each sample was a composite of many individual
100 collections, and the sieving process both homogenized the sample and rejected large particles, leaching
101 and analysis was performed on single subsamples.

102 *Acid Leachable Metals.* Acid recoverable metals in ash and soil samples were extracted using a modified
103 EPA method designed for solid waste materials⁷⁸⁻⁸⁰, which is expected to liberate mobile,
104 environmentally relevant metals. Approximately 200-300 mg of ash or soil were transferred to 15 ml
105 Falcon polypropylene tubes (VWR). We added 0.6 mL of nitric acid (Macron, Optima Grade), that was
106 previously diluted 50:50 with deionized water (18 MΩ·cm, Nanopure). Then 0.3 ml of hydrochloric acid
107 (Fisher Chemical, Optima Grade), diluted 50:50 with deionized water, was added. Samples were digested
108 overnight at room temperature. Subsequently, 10 ml of Nanopure water was added gravimetrically.
109 Uncapped tubes were evaporated at 83 °C until the volume was reduced to approximately 2 ml. Samples
110 were inverted to homogenize, lightly re-capped, and heated for 30 minutes to bring internal temperature
111 to approximately 95 °C. Samples were cooled and total volume was brought to 10 ml with deionized
112 water gravimetrically. Remaining solids were allowed to settle overnight. Samples were then filtered with
113 a 0.45 µm nylon filter (Agilent 25 mm), diluted with MΩ·cm water and adjusted to 2% nitric acid (Trace
114 metal grade, Fisher Chemical) for metals analysis by ICP-OES (PerkinElmer Optima 8300) and ICP-MS
115 (PerkinElmer NexION 300D). Method blanks (Nanopure) were included in the leaching procedure and all
116 results. All method blanks were below the analytical limit of detection (mean + 3 SD of replicate QA
117 blanks) for the elements analyzed.

118 *Water Leach for Environmentally Labile Metals.* A modified USGS method was used⁷⁷. 0.5 grams of
119 sample were transferred to a 15 ml Falcon tube and 10 g of 18 MΩ·cm water was added gravimetrically
120 to each tube. Samples were vortexed for 5 seconds, leached at room temperature for 24 hours, and filtered
121 with a 0.45 µm nylon filter (Agilent 25 mm). Samples were diluted with Nanopure water, adjusted to 2%
122 nitric acid (analytical grade, Fisher Chemical), and analyzed via ICP-OES (PerkinElmer Optima 8300)
123 and ICP-MS (PerkinElmer NexION 300D).

124 *Simulated Epithelial Lung Fluid (SELF) Leach.* A modified Gamble's solution developed by Boisa et al⁷⁵
125 was selected as it included the major components of epithelial lung fluid, including salts, proteins, and
126 organic acids. We excluded dipalmitoyl phosphatidyl choline (DPPC) as it has little impact on metal
127 bioaccessibility^{81,82}. We used 20 ml of SELF based on the approximate lung volume in an adult
128 human^{75,81,82}, and a 1:100 solid: SELF ratio was selected^{74,82,83}.

129 The inorganic components (SI Table 1) of SELF were dissolved in 500 ml of 18 MΩ·cm water in a 1-L
130 High-Density Polyethylene bottle. Separately, the organic components (SI Table 1) were dissolved in 500
131 ml of Nanopure water. The two solutions were combined for a total solution volume of 1L. The protein
132 and amino acid components were added as dry solids. The SELF was homogenized by shaking, and pH

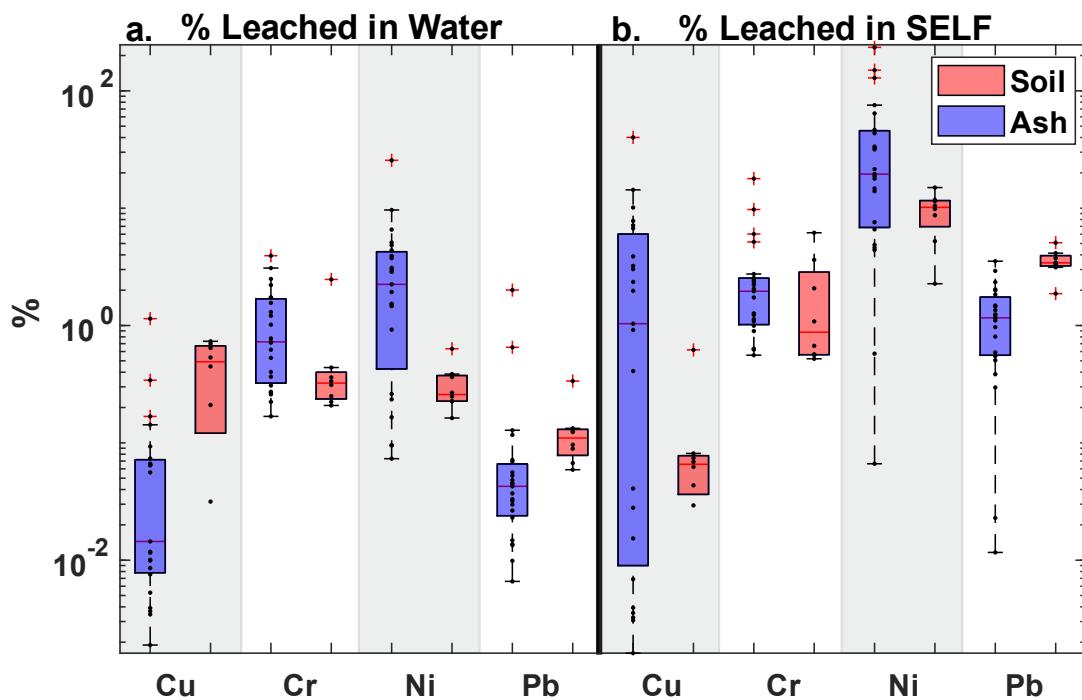
133 was adjusted to 7.4 ± 0.2 using HCl (Fisher Chemical). Sodium Chloride and Calcium Chloride, Ascorbic
134 Acid, Uric Acid, Glycine, and Cystine were obtained from Fisher Chemical. Sodium Phosphate dibasic,
135 and mucin from porcine stomach (type III) were obtained from Sigma-Aldrich. Sodium Bicarbonate, USP
136 grade, was purchased from Baker Chemicals. Sodium sulphate and albumin from bovine serum were
137 purchased from Oakwood Chemical. Glutathione was obtained from Acros Organics. Potassium chloride
138 was obtained from Mallinckrodt Chemicals, and Magnesium Chloride was purchased from Macron.

139 Approximately 200 mg of ash or soil was added to 50 ml Falcon tubes containing 20 ml of SELF.
140 Samples were capped and incubated for 24 hours at 37°C on an incubated orbital shaker (New Brunswick
141 Scientific Incubator Shaker Series I26) operated at 30 RPM to simulate the dynamic environment of the
142 lung. Although material may be trapped in the lung for longer than 24 hours, metal concentration in lung
143 fluid stabilizes at 24 hours⁸². Samples were centrifuged at $4500 \times g$ (Eppendorf centrifuge 5810) for 10
144 minutes, filtered through a $0.45 \mu\text{m}$ nylon filter (Agilent, 25 mm), diluted with water (Nanopure), and
145 analyzed for metal content via ICP-OES (PerkinElmer Optima 8300) and ICP-MS (PerkinElmer NexIon
146 300D).

147 *ICP-MS/OES Analysis.* ICP-OES (PerkinElmer Optima 8300) was utilized to screen a broad suite of
148 elements (SI table 3-5). Calibration curves were created from High Purity Standards (HPS) according to
149 the EPA 200.7 methods⁷⁹. An internal standard (Sc, SPEX) was continuously introduced during the
150 analysis to monitor instrumental drift. Corrections were $<5\text{-}10\%$ and if drift exceeded 20%, the run was
151 stopped and the instrument recalibrated. Check standards consisted of NIST 1643f, CCV nonmetals
152 (HPS), and CCV metals (HPS) and were analyzed at the start of analysis, midway through the analysis,
153 and after all samples had been analyzed.

154 Selected elements at low concentrations as determined by ICP-OES were analyzed by ICP-MS
155 (PerkinElmer NexIon 300D) due to its higher sensitivity. Standard curves were created using a 3-point
156 calibration made from dilution of a 10 $\mu\text{g}/\text{ml}$ (VWR Aristar Multi element ICP-MS Standard). The
157 isotopes used in analysis were ^{63}Cu , $^{52,53}\text{Cr}$, ^{60}Ni , and ^{208}Pb . Process blanks (2% HNO_3) were run
158 alongside samples, and all returned values were below both the instrumental Detection Limit (DL) and
159 Limit of Quantification (LOQ).

160 Elemental masses in the leachate were normalized to mass of ash or soil used and reported as mg/kg. The
161 mass of solid sample and volume of leachate were used to compute the LOQs after conversion to mass
162 concentration (mg/kg) in the initial solid (see SI Equation 1). Instrument detection limits for ICP-OES
163 and ICP-MS were calculated by running 3 to 10 blanks (2% acid) and setting the instrumental detection
164 limit at 3 times the standard deviation above the average blank reading. Following the application of the
165 instrument detection limit, a limit of quantification based on the mass of soil or ash was applied. Using
166 the instrument detection limits and the mass of solid leached, the limit of quantification (LOQ) was
167 established for each element and defined at 10 times the lowest estimate, according to equation 1 (SI
168 Table 2-4).


169 *Statistical Analysis.* Relationships between the ash and soil samples for metal content were examined
170 using MATLAB (9.11.0.1837725 (R2021b)). Sample data was non-normally distributed necessitating the
171 use of nonparametric analysis, so a 2-sided Wilcoxon Rank Sum Test was used to test the null hypothesis
172 that the two sample sets (ash and soil) were from the continuous distributions with equal medians against
173 the alternate hypotheses that they were from distinct distributions. An alpha value of 0.05 was used in all
174 statistical analysis.

175 Linear correlations among leachable metal concentrations were explored using the Pearson's Correlation
176 Coefficient (r) (Figure S4-7). A Pearson's correlation coefficient (r) of 0.75 was selected as a criterion to

177 state samples have a strong correlation. Only samples with a statistically significant correlation ($p < 0.05$)
178 are reported.

179 **Results and Discussion**

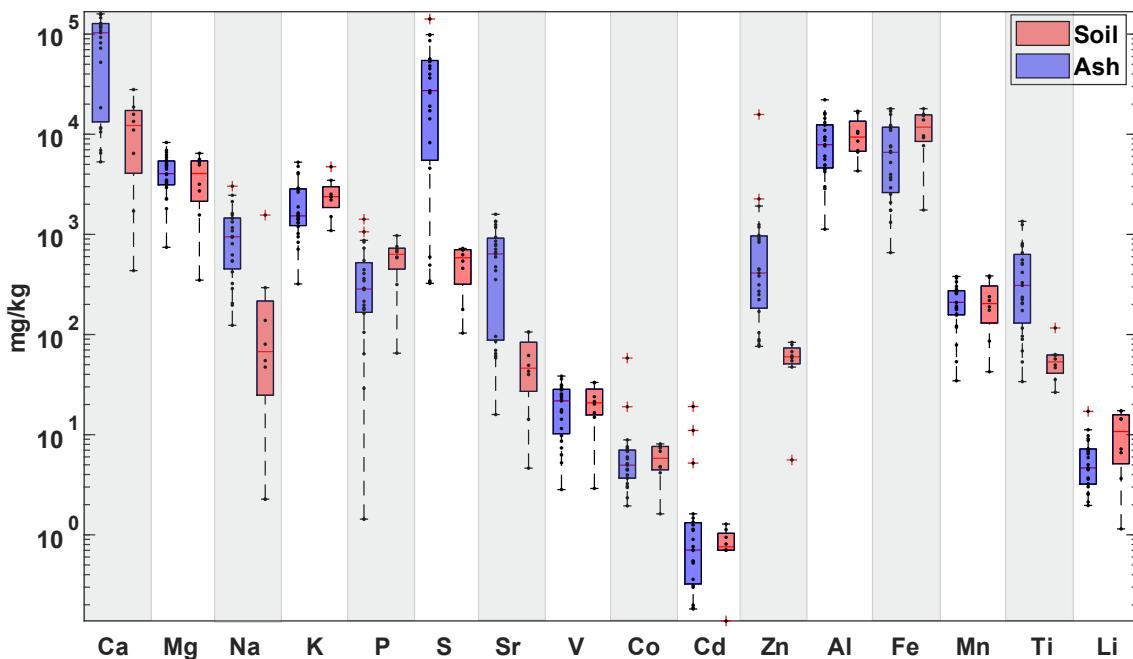
180 *Acid-Extractable Metal Concentrations*

181
182 *Figure 1. Box and whisker plot for trace metal concentrations (mg/kg) that were liberated by (a) acid and*
183 *(b) deionized water. Individual data points are marked with black dots and the outliers (samples >1.5*
184 *times the interquartile range away from the bottom or top of the box) are shown as a red "+".* The
185 *median, 25th and 75th percentiles are shown by the box. Whiskers indicate data spread, excluding*
186 *outliers. n=8 for soil samples, n=23 for ash samples.*

187 The concentrations of acid extractable trace metals (mg/kg) in ash and soil ranged over approximately 2
188 orders of magnitude (Figure 1a), with most variation most variation due to the range of acid labile Cu in
189 ash Cu in ash. Smaller variations among Pb, Cr, and Ni concentration suggest higher uniformity in total
190 metal across samples. Samples with metal concentrations below the DL (Table S-2-S4) are reported as the
191 Limit of Quantification concentration. This conservative assumption provides an upper limit in
192 concentration for the metals when present below the DL.

193 Ash samples were approximately 22 times higher in acid-leachable Cu compared to soil samples. This
194 difference was statistically significant ($p = 3.4E-4$) and suggests that Cu in the residential structure
195 contributed to the metal content of the ash. Cu concentrations in ash ranged from 19.3-4039 mg/kg with
196 an average of 678 mg/kg. Data for Cu content in ash generated from wildfires that predominantly burned
197 vegetation as reported in the literature is highly variable, with Cu concentrations ranging between 0.35-50
198 mg/kg^{56,62}, although one study found Cu concentrations of up to 15000 mg/kg in structure ash⁶⁸. Soil Cu
199 concentrations ranged from below the LOQ to a single outlier of 161 mg/kg. The average Cu

200 concentration in soils was 31 mg/kg, which is slightly elevated compared to both the 10.7-20.8 mg/kg
201 reported for Colorado soils⁸⁴ and the global crustal abundance (GCA) of 14-28 mg/kg⁸⁵.


202 Cr concentrations ranged from 1.2-17.1 mg/kg with an average of 8.8 mg/kg in ash samples and from 1.2-
203 13.8 mg/kg with an average of 9.5 mg/kg in the the soil samples. Mean Cr concentrations in both ash and
204 soil were lower than the reported Colorado abundance (20-39 mg/kg)⁸⁴ and the GCA of 35-92 mg/kg⁸⁵.
205 This is likely due to the resistance of Cr metals to simple acid dissolution. No statistically-significant
206 difference was found between the ash and soil Cr concentrations (p=0.44), suggesting that, unlike Cu, the
207 presence of this metal in the structure did not contribute significant amounts of acid leachable metal to the
208 ash as compared to the surrounding soils.

209 Despite the fact that ash samples contained two Ni outliers with high concentration, there was no
210 significant difference in average Ni concentration between the soil and ash samples (p=0.58). There was
211 more spread in the the concentrations of Ni in ash, suggesting higher variability in ash than in the native
212 soils. The concentration of Ni in ash samples was between 3.1-493 mg/kg with an average of 36 mg/kg,
213 while soil samples ranged from 1.4-13.4 mg/kg with an average of 9.6 mg/kg. Ni in structure ash has been
214 reported between approximately 0-350 mg/kg⁶⁸. The average Ni concentration in soil is close to the lower
215 end of that reported for Colorado soils (9.3-19.1 mg/kg)⁸⁴ and lower than the 19-47 mg/kg reported for the
216 GCA⁸⁵.

217 Ash samples were significantly higher in Pb than soil samples (p=0.036). Pb concentrations in ash ranged
218 between 0.4-142 mg/kg, aligning with median reported Pb concentrations of 350 mg/kg in structure ash⁶⁸.
219 Soil Pb ranged from 1.9-17 mg/kg. The average ash Pb sample was enriched nearly 3 times, at 29.1
220 mg/kg compared to the soil sample average of 9.1 mg/kg. The average Pb measured in soil is in general
221 agreement with the Colorado soil average of 5.5-21.7 mg/kg⁸⁴, and lower than the GCA of 17 mg/kg⁸⁵.

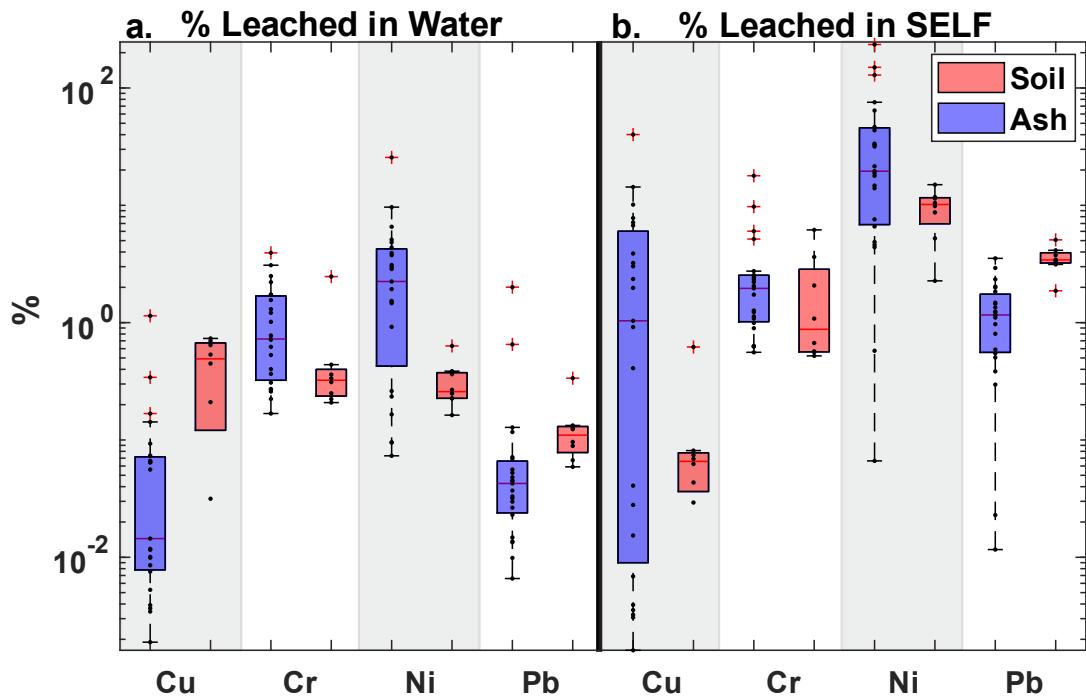
222 Generally, the ash samples that were enriched in acid-extractable metals were associated with starting
223 materials also elevated in those metals, informed by prior knowledge of the structure. This is especially
224 evident in the outliers. The highest measured Ni concentration (493 mg/kg) was sampled from the
225 location of a storage room that housed a large quantity of electronics (information provided by the
226 homeowner). Nickel is used in electronics due to its high conductivity and low corrosivity. The ash
227 sample containing the highest concentration of Pb was a composite of a house at S2 (Figure S1),
228 composed of many different burned strucure materials. No specific information was obtained as to the
229 contents of this house, however, Pb has historically been used in building materials, paints, and plumbing,
230 especially in structures built before 1978⁸⁶. Combustion of anthropogenic materials, specifically copper
231 chromate arsenic (CCA) treated woods, has been linked to Cu accumulation on ash surface via a
232 vaporization-condensation mechanism⁶⁹, which may account for some of the observed Cu enrichment as
233 CCA wood was used in construction for structures prior to 2004⁸⁷. Combustion of anthropogenic
234 materials, specifically copper chromate arsenic (CCA) treated woods, has been linked to Cu accumulation
235 on ash surface via a vaporization-condensation mechanism^{69,87}. Reported Cu and Cr values from high
236 temperature combustion of CCA treated wood range from 69-116 g kg⁻¹ and 62-180 g kg⁻¹ respectively,
237 with As, Cu, and Cr accounting for 4-35% of total ash mass^{67,69}. Lower concentrations and percent by
238 mass of Cu and Cr in this study inhibit definitive identification of CCA woods and suggests higher
239 heterogeneity of burned materials or lack of CCA treated wood in sampled structures. Indeed, none of the
240 samples were collected where CCA-treated wood was likely used (i.e. landscaping) nor did any sampled
241 materials have the appearance of burned CCA-treated wood. Some of the samples with high Cu
242 concentrations were associated with ash sampled from the basement electronic room, consistent with the
243 use of Cu in electronics. Enrichment of Pb in burned soils and ash post wildfire is highly dependent on
244 burning temperature, with lower temperatures inducing Pb accumulation and higher temperatures (>600-

245 650 °C) leading to volatilization^{43,55}. Structure fires burn at temperatures between 400-500 °C⁸⁸,
 246 suggesting that temperatures were inadequate for Pb volatilization and instead favored accumulation,
 247 which is supported by our measured concentrations. Ni and Cr form condensed species at temperatures
 248 higher than Pb or Cu⁶¹. The combustion temperature of the structure was likely not high enough to induce
 249 a vaporization-condensation mechanism for Ni and Cr, leading to retention in the ash fraction⁴³. A recent
 250 analysis of structural and vehicle ash provides evidence that enrichment of some metals (Cr, Co, Cu, Ni,
 251 Zn) is observed compared to vegetation⁶⁸. Although little work has been done to directly examine the
 252 mechanism of metal release from anthropogenic structure combustion, studies on wildfire ash and
 253 combustion of trace metal containing materials (i.e. BBQ coal⁴⁵) show trace metal enrichment behavior
 254 in ash.

255
 256 *Figure 2. Box and whisker plot showing acid leachable oxide forming metals (Al, Fe, Mn, Ti, Li), major*
 257 *cations (Ca, Mg, Na, K), and trace metals (S, Sr, V, Co, Al, Fe, Mn, Ti, Li) (mg/kg) in ash (blue) and soils*
 258 *(red). Individual data points are marked with black dots and the outliers (samples >1.5 times the*
 259 *interquartile range away from the bottom or top of the box) are shown as a red "+".* The median,
 260 *and 75th percentiles are shown by the box. Whiskers indicate data spread, excluding outliers. n=8 for soil*
 261 *samples, n=23 for ash samples.*

262 Oxide forming metals (Al, Fe, Mn, Ti) were examined in the ash and soil samples (Figure 2). Differences
 263 between the ash and soil concentrations were only found for Ti. Ash samples, with an average of 424
 264 mg/kg, have significantly higher concentrations of Ti than soil samples ($p=5.5\text{E-}4$), a trend reported in
 265 previous studies⁶⁸. Ti comprises approximately 0.2% of Colorado soils⁸⁴, however we found Ti at much
 266 lower concentrations, with an average of 57 mg/kg, possibly due to incomplete acid digestion. Although
 267 structures contain Ti in paints, stainless steel, and electronics, a source has not been definitively
 268 identified. Higher Ti concentrations in ash corresponded to structure composites. Major cations (Ca, Mg,
 269 Na, K) were also examined in the ash and soil samples. We found that ash contained significantly higher
 270 concentrations of Ca and Na than soils, which has previously been reported in wildfire ash⁴⁷. Ca and Na
 271 are major constituents of ash, especially at high combustion temperatures ($>450\text{C}$)⁸⁹. Increased Ca in ash

272 have been reported in association with hydroxides and carbonates, contributing to the basicity of ash^{90,91}.
273 The ash samples were also found to be significantly higher in S and Sr (p= 0.0036 and 0.0012,
274 respectively). The highest Sr concentrations were found in the electronics storage room samples and in
275 the structure composites. The exact sources of Sr are not clear, although increased Sr concentration have
276 been reported with increasing combustion completeness⁶⁸. Enrichment of sulfur in ash has been reported
277 in laboratory studies of burned biomass⁹².


278 Knowledge of the home site provided by the homeowners aided in identification of some materials. One
279 sample was identified as burned playground crumb rubber. The tire manufacturing process uses zinc for
280 vulcanization at concentrations of 1-2%⁹³ and Cr at 0.0097%⁹⁴. Zn comprised 1.58% and Cr at 0.0013%
281 by mass in the sample. Results suggest that during combustion, zinc behaved conservatively, while Cr
282 concentration was lower than expected based on literature values, suggesting that it may experience loss
283 during combustion or was incompletely recovered during digestion. A second sample was suspected to be
284 drywall, which is composed of 70-90% gypsum (CaSO₄) and cellulose. The exact composition of drywall
285 varies between manufacturers, however gypsum contains 29.4% Ca and 23.6% S. We found that the acid
286 leachable fractions in the suspected drywall contained 15.7% Ca and 14.2% S, a difference of 40.4-
287 60.7%, which is attributed to incomplete digestion and fillers or other components. Examination of
288 relative Ca to S concentrations found a ratio of 1.25 for gypsum and 1.11 for the sample. There may be S-
289 containing fillers in the drywall, but the bulk of the Ca and S likely comes from gypsum. Other ash
290 samples collected were considered to be mixtures of many materials, not mono-material samples.
291 Although there is generally reasonable agreement between bulk and post combustion mass percentages
292 for the examples cited, there are still many unknowns as to how combustion impacts the final metal
293 content in ash generally. More work across a diverse range of samples is necessary to determine if these
294 trends in metal behavior are significant at temperatures seen during combustion of a structure.

295 ***Trace Metals Present in Water Leach***

296 The solubility of trace metals in water provides insight into the potential for environmental metal
297 mobilization. Rainfall or snowmelt can transport metals to soils, groundwaters, surface waters, and
298 agricultural areas, creating a vector of exposure to humans and animals^{51-53,91}. Absolute metal
299 concentration (g metal/g ash or soil) informs on the total mass of metals that can potentially be mobilized
300 at a given site. This is relevant to the total environmental input, with impacts ranging from acute toxicity
301 to increased trace metal cycling and environmental recalcitrance. Higher variability in water labile metals
302 was observed in ash samples compared to soils (Figure 1b). Water leachable Cu concentrations in ash
303 samples ranged from 0.009-2.95 mg/kg, with an average of 0.44 mg/kg. Soil samples showed less
304 variation (0.016-0.133 mg/kg), with an average of 0.064 mg/kg. There was no significant difference in
305 median Cu concentrations between ash and soil (p=0.92). Ash samples leached significantly more Cr
306 compared to the soil samples (p=4.3E-4). Ash ranged from 0.17-3.93 mg/kg Cr with an average of 1.13
307 mg/kg. The soil samples were more uniform in their leaching behavior and released between 0.029-0.039
308 mg/kg Cr with an average of 0.030 mg/kg. Ash leached significantly more Ni than the soils and had a
309 higher median concentration (p=0.0041). Ni concentration in ash samples was the most variable of all
310 water leachable metals reported and ranged from 0.013-0.795 mg/kg with an average of 0.31 mg/kg. In
311 contrast, the soil sample leached between 0.009-0.035 mg/kg and with an average of 0.026 mg/kg. While
312 the acid-extractable Ni concentrations were similar between ash and soil, the greater concentration of
313 water-soluble Ni in ash as compared to soil suggests that the ash samples have higher concentration of
314 mobilizable Ni. There is evidence that the conditions during combustion can transform Ni species to
315 NiSO₄ in coal and soil, altering its solubility, bioavailability, and subsequent environmental mobility⁵⁸.
316 These changes in speciation can also increase the toxicity of Ni, creating concern for aquatic species. Ash

317 was observed by SEM (Figure S2a-b) to be porous, which may contribute to the leaching of metals due to
318 high surface area for sorption. Water leachable Pb showed no significant differences between the soil and
319 ash samples ($p=0.099$) and had higher variability within ash samples than in soils. Pb in the soil samples
320 ranged from 0.006-0.11 mg/kg with an average of 0.009 mg/kg while ash samples ranged from LOQ-
321 0.046 mg/kg with an average of 0.009 mg/kg.

322 Speciation of metals is a determining factor in their solubility⁶¹. Combustion can alter the speciation of
323 metals via oxidation⁵⁷⁻⁶⁰, altering metal mobility, toxicity, and bioavailability. Percent leached (g metal
324 leached /g acid extractable metal) was calculated (Figure 3a) to examine relative leachability of metals.
325 Although the total concentration of Cu liberated in water leach was similar between the ash and soil
326 samples (Figure 1a), ash samples leached an average of 0.10% Cu while soil samples leached 0.41% Cu.
327 On average, Pb in the ash samples leached at a similar percentage to that of the soil samples, 0.16% and
328 0.13%, despite significantly higher acid extractable Pb concentrations present in ash. The ash samples had
329 a lower proportion of weakly soluble sorbed Pb and Cu than soil samples, despite containing more total
330 Cu and Pb. The lower leachability of Cu and Pb post combustion may be due to the presence of biochar
331 derived from wood in the ash, which has been shown to limit Cu and Pb mobility^{95,96}. Ash samples
332 leached a higher percentage of Ni and Cr than soil samples. Ash leached an average of 3.62% and 1.13%
333 for Ni and Cr, respectively while soils leached 0.31% of Ni and 0.56% of Cr. Acid extractable Ni and Cr
334 content was not significantly different between the ash and soil samples, but ash samples contained a
335 higher proportion of labile metals. The elevated Cr leachability in ash compared to soils is likely due to
336 combustion mediated transformation of Cr. Cr in soils exists as Cr (III), an insoluble cation and Cr (VI), a
337 highly toxic and mobile form^{57,60}. Studies have shown that combustion can oxidize Cr (III) to Cr (VI), in
338 soils and even in CCA treated woods^{57,60,67,97,98}. Transformation of Cr (III) to Cr (VI) is highly favorable
339 at 400 °C, a temperature that burning structures easily reach^{57,60}. Wildfires can increase metal
340 mobility^{43,99}, and elevated concentrations of water leachable Ni have been reported in runoff from burned
341 areas¹⁰⁰, likely due to the increase in bioavailable Ni forms post combustion⁵⁸.

344 *Figure 3. Box and whisker plot showing percent of metals leached in a) water leach and b) SELF leach.*
 345 *Percent is based on acid leach as a total metal concentration. Soil samples are shown in red, ash samples*
 346 *are shown in blue. Exact percent for each sample are shown as black dots, outliers are shown as red*
 347 *“+”. Red line shows median, box edges show 25-75th percentile, whiskers cover 99.3 percent of data.*

348 ***Bioaccessibility of Trace Metals in Simulated Epithelial Lung Fluid (SELF) Leach***

349 The concentrations of metals extracted by SELF leach across sample locations at S1 are shown as bubble
 350 plots (Figure 4a-d), and site composites S2-4 are shown in Figure S3. The respiratory leachable
 351 concentration in ash ranged from BDL-208 mg/kg for Cu, 0.1-1.9 mg/kg Cr, BDL-7.4 mg/kg Ni, and
 352 BDL-1.7 mg/kg Pb in ash samples. For soil samples, the respiratory leachable concentration ranged from
 353 BDL-1.0 mg/kg Cu, 0.1-0.3 mg/kg Cr, BDL-1.4 mg/kg Ni, and 0.1-0.5 mg/kg Pb. These reported values
 354 are likely conservative estimate of SELF soluble metal concentrations. Studies have found that the <10
 355 μm ash fraction typically contains a higher concentration of metal than the larger material used in this
 356 study^{74,101}, and is of a size that is more likely to be resired. However, due to laboratory constraints and in
 357 order to draw comparison with the acid and water leach, the <2mm fraction was used in the SELF leach.

City of Boulder, Boulder County, Bureau of Land Management, Esri, HERE, Garmin, INCREMENT P, USGS, EPA, USDA

361 *Figure 4. Bubble plots show spatial distribution of metal concentration at samples locations at Site S-1.*
 362 *Orange circles represent concentrations in soil samples, and blue circles represent ash samples. Hallow*
 363 *circles are used to designate samples below the limit of quantification that are reported as the LOQ (See*
 364 *SI for calculations). Ni outlier plotted as a star.*

365 Ash samples were significantly higher in Cu compared to soil samples ($p=0.013$). Approximately 38% of
 366 all samples extracted with SELF were below the instrumental detection limit or the LOQ. Only one soil
 367 sample was above the LOQ. Soil and ash samples do not show significant differences in Cr concentration
 368 ($p=0.35$) and 52% of samples were below the Cr instrumental detection limit. Samples that had the
 369 highest measurable concentrations of Cr included a sample from the garage (1.92 mg/kg), where paint and
 370 other tools were stored, and the burned tire material used in a playground (1.22 mg/kg). Ni content was
 371 significantly higher in the ash samples as compared to soil samples ($p=0.036$), with only 3% of samples
 372 below the instrumental detection limit. There was also no significant difference in concentration between
 373 soil and ash samples for Pb ($p=0.33$), with approximately 10% of samples below instrumental detection
 374 limit. Inhalation bioaccessibility was also calculated as percent of acid extractable metal content (Figure
 375 3b). The percentage of metals extracted in SELF were highly variable, both between and within ash and
 376 soil samples. The Cu bioaccessibility in ash ranged from 0-40% with an average of 4.48%. In soil
 377 samples, the percent of bioaccessible Cu ranged from 0-0.62% with an average of 0.12%. There were no
 378 significant differences between the soil and ash samples with respect to the percent of Cu leached in
 379 SELF. High variability was observed in the percent of Cu leached in the ash samples, especially when
 380 compared to the soils. In ash, the percentage of Cr ranged from 0.56-17.86% with an average of 2.97%.
 381 Cr ranged from 0.52-6.17% with an average of 1.91% in soils, making Cr moderately more bioaccessible
 382 in ash samples. The percentage of bioaccessible Ni ranged from 0.07-234% with an average of 42.46% in

383 ash. There were 3 ash samples with over 100% bioaccessibility in the SELF leach. These outliers were at
384 the lower end of the concentration (between 3.1-5.8 mg/kg of acid leachable Ni), and so the high
385 percentage is attributed to increased analytical error at lower concentrations. In soils, the percent of
386 leachable Ni ranged from 2.27-14.99% with an average of 9.34%. There was no significant enrichment of
387 acid soluble Ni in the ash over soil, however, increased overall bioaccessibility was observed in the ash
388 samples compared to the soils, suggesting that Ni may be in a form that is more soluble in the SELF
389 matrix. Pb bioaccessibility in ash ranged 0.1-3.53% with an average of 1.26%. In soils, the percentage of
390 leachable Pb ranged from 1.87-5.08% with an average to 3.52%. Pb bioaccessibility was significantly
391 higher in soil samples than in the ash, suggesting that there may be a difference in the speciation of Pb
392 between the sample types. The variability in the percent leachable was high for Cu, Ni, and Pb in the
393 SELF. High variability within bioaccessibility suggests that total metal content as quantified in an acid
394 leach is not a suitable predictor for the bioaccessibility of that metal in ash. More work to determine the
395 speciation of metals, and what role this may play in prediction of bioaccessibility is needed.

396 The chemical composition of SELF impacts the solubility of metals. The organic and acid constituents in
397 SELF can chelate with some metals, causing increased solubility⁸². Glycoproteins such as albumin and
398 mucin bind with metals and can be controlling factors in bioaccessibility. However, mucin has been
399 reported to form precipitates with Pb²⁺ at neutral pH (SELF pH 7.4). This may reduce Pb solubility⁷⁵.
400 Additionally, the speciation of the metals will continue to dictate their interactions with the molecules in
401 the SELF and subsequently influence solubility. The elevated concentrations of Ni and Cu leachable in
402 SELF have implications for human health, especially for individuals who are involved in site clean-up, or
403 are exposed to ash spread by post-fire wind events. Ni and Cu are important for biologic function at low
404 concentrations, but overexposure has been linked to adverse health effects. Excess Ni causes toxicity and
405 respiratory disorders and is dependent on solubility in lung^{83,101}. The primary routes of Ni exposure in
406 humans are inhalation, ingestion, and dermal contact¹⁰² warranting the further investigation into the
407 bioaccessibility of Ni in WUI ash. Cu exposure has been linked to neurodegenerative effects and
408 oxidative stress, although excretory processes protect against acute Cu toxicity for most humans and
409 animals¹⁰³. While the authors are unaware of studies that have explored the bioaccessibility of trace
410 metals in ash derived for structure fires, studies have explored trace metals in volcanic and coal fly
411 ash^{82,83,104}. However, results varied widely between materials, and it is unlikely that these results can be
412 compared with structural ash, as ash composition and mineralogy dictate bioaccessibility^{74,82}.

413 *Correlations*

414 Correlation analysis was used to identify relationships between metals that may be influenced by
415 geogenic or anthropogenic material composition, as well as provide insight into which metals may drive
416 ash toxicity. We found a strong correlation between the acid leachable Pb and Cu ($r=0.88$) in the ash
417 samples (Figure S4a). Pb and Cu are commonly used together in electronics and wiring, which may
418 contribute to the correlation. We also found moderately strong to strong correlations between acid
419 leachable Cr-Al ($r=0.74$) and Cr-Fe ($r=0.86$) in the ash (SI 3a). Cr is added to iron in order to create
420 stronger alloys, including stainless steel, which could account for its association in the ash. Cr co-occurs
421 naturally with iron as chromite (FeCr₂O₄); however, Colorado is not known to be a significant site of this
422 mineral¹⁰⁵. Without further investigation into the speciation or form of Cr, it is not possible to determine if
423 the correlation is due to natural or anthropogenic associations. No correlations were found for the ash
424 samples in the water leach or in the SELF leach (Figure S5a, 6a), which we attributed to the heterogeneity
425 of the ash. The ash samples were derived from combustion of a wide range of materials in the structures,
426 leading to high variability in metal concentrations. There is spatial variation in metal concentration when
427 structures burn and supports that assumption that there is no common metal concentration in WUI ash.

428 In contrast to the ash, we found many strong correlations between metals in the soil samples. We found
429 strong correlations between acid leachable Cr-Ni ($r=0.82$), Cr-Al ($r=0.76$), Ni-Pb ($r=0.82$), Ni-Fe
430 ($r=0.91$), Pb-Al ($r=0.87$), Pb-Fe ($r=0.85$), and Al-Fe ($r=0.87$) (SI 3b). Correlations for soils in Colorado
431 were also calculated using data from a 2006 USGS study⁸⁴, which found a strong correlation between Cr-
432 Ni ($r=0.86$). However no strong correlations were found between the other metals reported. Although
433 correlations between metals in soils at this site differ from the USGS values, it is likely that high
434 correlations exist due to the small area sampled. Iron and aluminum are major elements in the Earth's
435 crust and co-occur in soils and minerals. The associations of Pb and Ni with Fe suggest that they may be
436 bound to iron oxides, which has been reported at other locations in Colorado¹⁰⁶. Water leachable metal
437 correlations included Cd-Cu ($r=0.86$), Cu-Pb ($r=0.82$), and Cd-Pb ($r=0.87$) (Figure S5b). It should be
438 noted that the water leachable concentrations of these metals were generally low, and so may be subject to
439 increased analytical noise associated with concentrations near detection limits. The only strong
440 correlation for the soil samples in the SELF leach was Ni-Pb ($r=0.89$) (Figure S6b). This is a similar
441 correlation as was seen for these metals in the acid leach and may indicate that minerals containing these
442 metals exhibit similar solubilities. Across all soil and ash samples, there was a strong correlation between
443 the amount of water leachable and SELF leachable Ni ($r=0.86$) (SI 8). There was a moderately strong
444 correlation ($r=0.69$) between the water and SELF leachable Cr. This suggests that the water leachable Ni
445 and Cr concentrations may provide insight into the bioaccessibility of these metals in the human lung.
446 There is also a correlation between the acid and SELF leachable Pb ($r=0.85$) and a weak ($r=0.58$)
447 correlation between acid and SELF leachable Cu.

448 *Environmental Significance.* We characterized the environmental lability and respiratory bioaccessibility
449 of metals in ash from structure fires in the WUI and found that ash is a source of trace metals to the
450 environment, and to humans. The quantities of ash generated during large scale WUI fires, such as the
451 Marshall Fire, have the potential to negatively impact the surrounding environment, agriculture,
452 communities, first responders, and residents. Metals can be mobilized via rainfall or snowmelt, thereby
453 influencing aquatic toxicity, physiochemical properties of surface water, and elevating soil metal
454 concentration^{41,43,107}. SELF has been used to determine inhalation bioaccessibility of metals in materials
455 including volcanic ash, fly ash, soils, and road dusts^{74,83,101,104,108}, however it has not previously been used
456 for WUI ash. Despite elevated metal content in WUI ash and increased solubility of certain metals
457 compared to soils, the role that combustion plays on bulk scale metals is still poorly understood.
458 Additionally, higher solubility (% leachable) in ash compared to soils may be influenced by combustion
459 driven changes in metal form^{57-60,97}. Combustion has been shown to impact metals by altering speciation
460 through redox mechanisms (Cr)^{57,60,97} as well as vaporization and condensation (Cd, Pb)^{44,58,61} in soils and
461 coal. Further work is needed to determine if this mechanism is active in a structure fire scenario, where
462 temperatures are typically recorded between 400-500 °C⁸⁸, and how these mechanisms impact bulk scale
463 metals that are present in structures. As the United States continues to face more severe wildfire seasons,
464 there is a greater need to understand wildfire impact on metal bioaccessibility and environmental toxicity,
465 especially in a WUI setting. This research provides a framework for assessing the solubility of metals in
466 ash generated from WUI fires in environmentally and biologically relevant matrices.

467 Supporting Information: Additional experimental details including sample location map, equations, SEM
468 images, and correlation matrix plots.

469 Acknowledgements

470 We would like to acknowledge the homeowners who provided us access to their properties for sampling
471 purposes. We would also like to thank Dr. John Spear, Aaron Goodman, and Zhaoxun Yang. Funding
472 provided by National Science Foundation CBET 2217526

473 References

474 (1) Higuera, P. E.; Abatzoglou, J. T.; Littell, J. S.; Morgan, P. The Changing Strength and Nature of Fire-
475 Climate Relationships in the Northern Rocky Mountains, U.S.A., 1902-2008. *PLoS One* **2015**, *10*
476 (6), 1–21. <https://doi.org/10.1371/journal.pone.0127563>.

477 (2) Schoennagel, T.; Balch, J. K.; Brenkert-Smith, H.; Dennison, P. E.; Harvey, B. J.; Krawchuk, M. A.;
478 Mietkiewicz, N.; Morgan, P.; Moritz, M. A.; Rasker, R.; Turner, M. G.; Whitlock, C. Adapt to More
479 Wildfire in Western North American Forests as Climate Changes. *Proceedings of the National
480 Academy of Sciences* **2017**, *114* (18), 4582–4590. <https://doi.org/10.1073/pnas.1617464114>.

481 (3) Keeley, J. E.; Syphard, A. D. Climate Change and Future Fire Regimes: Examples from California.
482 *Geosciences (Basel)* **2016**, *6* (3), 1–14. <https://doi.org/10.3390/geosciences6030037>.

483 (4) Abatzoglou, J. T.; Williams, A. P.; Barbero, R. Global Emergence of Anthropogenic Climate Change
484 in Fire Weather Indices. *Geophys Res Lett* **2019**, *46* (1), 326–336.
485 <https://doi.org/10.1029/2018GL080959>.

486 (5) Westerling, A. L.; Hidalgo, H. G.; Swetman, T. W. Warming and Earlier Spring Increase Western
487 U.S. Forest Wildfire Activity. *Science (1979)* **2006**, *313*, 940–944.

488 (6) Dupuy, J. Iuc; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.;
489 Madrigal, J.; Fernandes, P. Climate Change Impact on Future Wildfire Danger and Activity in
490 Southern Europe: A Review. *Ann For Sci* **2020**, *77* (2). <https://doi.org/10.1007/s13595-020-00933-5>.

492 (7) Mansoor, S.; Farooq, I.; Kachroo, M. M.; Mahmoud, A. E. D.; Fawzy, M.; Popescu, S. M.; Alyemeni,
493 M. N.; Sonne, C.; Rinklebe, J.; Ahmad, P. Elevation in Wildfire Frequencies with Respect to the
494 Climate Change. *J Environ Manage* **2022**, *301*, 113769.
495 <https://doi.org/10.1016/j.jenvman.2021.113769>.

496 (8) Abatzoglou, J. T.; Williams, A. P. Impact of Anthropogenic Climate Change on Wildfire across
497 Western US Forests. *Proc Natl Acad Sci U S A* **2016**, *113* (42), 11770–11775.
498 <https://doi.org/10.1073/pnas.1607171113>.

499 (9) Marlon, J. R.; Bartlein, P. J.; Gavin, D. G.; Long, C. J.; Anderson, R. S.; Briles, C. E.; Brown, K. J.;
500 Colombaroli, D.; Hallett, D. J.; Power, M. J.; Scharf, E. A.; Walsh, M. K. Long-Term Perspective on
501 Wildfires in the Western USA. *Proc Natl Acad Sci U S A* **2012**, *109* (9), 535–543.
502 <https://doi.org/10.1073/pnas.1112839109>.

503 (10) Clarke, H.; Nolan, R. H.; Dios, V. R. De; Bradstock, R.; Griebel, A.; Khanal, S.; Boer, M. M. Forest
504 Fire Threatens Global Carbon Sinks and Population Centres under Rising Atmospheric Water
505 Demand. *Nat Commun* **2022**, *13*, 1–10. <https://doi.org/10.1038/s41467-022-34966-3>.

506 (11) Iglesias, V.; Balch, J. K.; Travis, W. R. U.S. Fires Became Larger, More Frequent, and More
507 Widespread in the 2000s. *Sci Adv* **2022**, *8*.

508 (12) Hoover, K.; Hanson, L. A. Wildfire Statistics. *Congressional Research Service* **2021**, *2*.

509 (13) *Statistics / National Interagency Fire Center*. <https://www.nifc.gov/fire-information/statistics>.

510 (14) Radeloff, V. C.; Hammer, R. B.; Stewart, S. I.; Fried, J. S.; Holcomb, S. S.; McKeefry, J. F. THE
511 WILDLAND – URBAN INTERFACE IN THE UNITED STATES. *Ecological Applications* **2005**, *15* (3),
512 799–805.

513 (15) Hanberry, B. B. Reclassifying the Wildland – Urban Interface Using Fire Occurrences for the
514 United States. *Land (Basel)* **2020**, *9* (7).

515 (16) Haight, R. G.; Cleland, D. T.; Hammer, R. B.; Radeloff, V. C.; Rupp, T. S. Assessing Fire Risk in the
516 Wildland-Urban Interface. *J For* **2004**, *102* (7), 41–47.

517 (17) Kramer, H. A.; Mockrin, M. H.; Alexandre, P. M.; Radeloff, V. C. High Wildfire Damage in Interface
518 Communities in California. *Int J Wildland Fire* **2019**, *28* (9), 641–650.
519 <https://doi.org/10.1071/WF18108>.

520 (18) Radeloff, V. C.; Helmers, D. P.; Anu Kramer, H.; Mockrin, M. H.; Alexandre, P. M.; Bar-Massada,
521 A.; Butsic, V.; Hawbaker, T. J.; Martinuzzi, S.; Syphard, A. D.; Stewart, S. I. Rapid Growth of the US
522 Wildland-Urban Interface Raises Wildfire Risk. *Proc Natl Acad Sci U S A* **2018**, *115* (13), 3314–
523 3319. <https://doi.org/10.1073/pnas.1718850115>.

524 (19) Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The Changing Risk and Burden
525 of Wildfire in the United States. *Proc Natl Acad Sci U S A* **2021**, *118* (2), 1–6.
526 <https://doi.org/10.1073/PNAS.2011048118>.

527 (20) Clark, M. B.; Nkonya, E.; Galford, G. L. Flocking to Fire : How Climate and Natural Hazards Shape
528 Human Migration across the United States. *Frontiers in Human Dynamics* **2022**, *4*.

529 (21) Liu, J. C.; Pereira, G.; Uhl, S. A.; Bravo, M. A.; Bell, M. L. A Systematic Review of the Physical
530 Health Impacts from Non-Occupational Exposure to Wildfire Smoke. *Environ Res* **2015**, *136*, 120–
531 132. <https://doi.org/10.1016/j.envres.2014.10.015>.

532 (22) Abdo, M.; Ward, I.; O'dell, K.; Ford, B.; Pierce, J. R.; Fischer, E. V.; Crooks, J. L. Impact of Wildfire
533 Smoke on Adverse Pregnancy Outcomes in Colorado, 2007–2015. *Int J Environ Res Public Health*
534 **2019**, *16* (19). <https://doi.org/10.3390/ijerph16193720>.

535 (23) Caumo, S.; Lázaro, W. L.; Sobreira Oliveira, E.; Beringui, K.; Gioda, A.; Massone, C. G.; Carreira, R.;
536 de Freitas, D. S.; Ignacio, A. R. A.; Hacon, S. Human Risk Assessment of Ash Soil after 2020
537 Wildfires in Pantanal Biome (Brazil). *Air Qual Atmos Health* **2022**.
538 <https://doi.org/10.1007/s11869-022-01248-2>.

539 (24) Adetona, O.; Reinhardt, T. E.; Domitrovich, J.; Broyles, G.; Adetona, A. M.; Kleinman, M. T.;
540 Ottmar, R. D.; Naehler, L. P. Review of the Health Effects of Wildland Fire Smoke on Wildland
541 Firefighters and the Public. *Inhal Toxicol* **2016**, *28* (3), 95–139.
542 <https://doi.org/10.3109/08958378.2016.1145771>.

543 (25) Cascio, W. E. Wildland Fire Smoke and Human Health. *Science of the Total Environment* **2018**,
544 624, 586–595. <https://doi.org/10.1016/j.scitotenv.2017.12.086>.

545 (26) Reid, C. E.; Brauer, M.; Johnston, F. H.; Jerrett, M.; Balmes, J. R.; Elliott, C. T. Critical Review of
546 Health Impacts of Wildfire Smoke Exposure. *Environ Health Perspect* **2016**, *124* (9), 1334–1343.
547 <https://doi.org/10.1289/ehp.1409277>.

548 (27) Stowell, J. D.; Yang, C. E.; Fu, J. S.; Scovronick, N. C.; Strickland, M. J.; Liu, Y. Asthma Exacerbation
549 Due to Climate Change-Induced Wildfire Smoke in the Western US. *Environmental Research
550 Letters* **2022**, 17 (1). <https://doi.org/10.1088/1748-9326/ac4138>.

551 (28) Delfino, R. J.; Brummel, S.; Wu, J.; Stern, H.; Ostro, B.; Lipsett, M.; Winer, A.; Street, D. H.; Zhang,
552 L.; Tjoa, T.; Gillen, D. L. The Relationship of Respiratory and Cardiovascular Hospital Admissions to
553 the Southern California Wildfires of 2003. *Occup Environ Med* **2009**, 66 (3), 189–197.
554 <https://doi.org/10.1136/oem.2008.041376>.

555 (29) Nakayama Wong, L. S.; Aung, H. H.; Lamé, M. W.; Wegesser, T. C.; Wilson, D. W. Fine Particulate
556 Matter from Urban Ambient and Wildfire Sources from California's San Joaquin Valley Initiate
557 Differential Inflammatory, Oxidative Stress, and Xenobiotic Responses in Human Bronchial
558 Epithelial Cells. *Toxicology in Vitro* **2011**, 25 (8), 1895–1905.
559 <https://doi.org/10.1016/j.tiv.2011.06.001>.

560 (30) Liu, Y.; Austin, E.; Xiang, J.; Gould, T.; Larson, T.; Seto, E. Health Impact Assessment of the 2020
561 Washington State Wildfire Smoke Episode: Excess Health Burden Attributable to Increased PM_{2.5}
562 Exposures and Potential Exposure Reductions. *Geohealth* **2021**, 5 (5), 1–11.
563 <https://doi.org/10.1029/2020GH000359>.

564 (31) Morgan, G.; Sheppeard, V.; Khalaj, B.; Ayyar, A.; Lincoln, D.; Jalaludin, B.; Beard, J.; Corbett, S.;
565 Lumley, T. Effects of Bushfire Smoke on Daily Mortality and Hospital Admissions in Sydney,
566 Australia. *Epidemiology* **2010**, 21 (1), 47–55. <https://doi.org/10.1097/EDE.0b013e3181c15d5a>.

567 (32) Alman, B. L.; Pfister, G.; Hao, H.; Stowell, J.; Hu, X.; Liu, Y.; Strickland, M. J. The Association of
568 Wildfire Smoke with Respiratory and Cardiovascular Emergency Department Visits in Colorado in
569 2012: A Case Crossover Study. *Environmental Health* **2016**, 15 (1), 1–9.
570 <https://doi.org/10.1186/s12940-016-0146-8>.

571 (33) Holstius, D. M.; Reid, C. E.; Jesdale, B. M.; Morello-Frosch, R. Birth Weight Following Pregnancy
572 during the 2003 Southern California Wildfires. *Environ Health Perspect* **2012**, 120 (9), 1340–1345.
573 <https://doi.org/10.1289/ehp.1104515>.

574 (34) Lee, K.; Oh, S.; Jeong, K. S.; Ahn, Y.; Chang, S. J.; Hong, S. H.; Kang, D. R.; Kim, S.; Koh, S. Impact of
575 Wildfire Smoke Exposure on Health in Korea. *Yonsei Med J* **2022**, 63 (8), 774–782.

576 (35) Bowman, D. M. J. S.; Johnston, F. H. Wildfire Smoke, Fire Management, and Human Health.
577 *Ecohealth* **2005**, 2 (1), 76–80. <https://doi.org/10.1007/s10393-004-0149-8>.

578 (36) Requia, W. J.; Amini, H.; Mukherjee, R.; Gold, D. R.; Schwartz, J. D. Health Impacts of Wildfire-
579 Related Air Pollution in Brazil: A Nationwide Study of More than 2 Million Hospital Admissions
580 between 2008 and 2018. *Nat Commun* **2021**, 12 (1), 1–10. [https://doi.org/10.1038/s41467-021-26822-7](https://doi.org/10.1038/s41467-021-
581 26822-7).

582 (37) Korsiak, J.; Pinault, L.; Christidis, T.; Burnett, R. T.; Abrahamowicz, M.; Weichenthal, S. Long-Term
583 Exposure to Wildfires and Cancer Incidence in Canada : A Population-Based Observational Cohort
584 Study. *Lancet Planet Health* **2022**, 6 (5), e400–e409. [https://doi.org/10.1016/S2542-5196\(22\)00067-5](https://doi.org/10.1016/S2542-
585 5196(22)00067-5).

586 (38) Bloom, T. D. S.; Flower, A.; Medler, M.; DeChaine, E. G. The Compounding Consequences of
587 Wildfire and Climate Change for a High-Elevation Wildflower (*Saxifraga Austromontana*). *J
588 Biogeogr* **2018**, *45* (12), 2755–2765. <https://doi.org/10.1111/jbi.13441>.

589 (39) Seidl, R.; Spies, T. A.; Peterson, D. L.; Stephens, S. L.; Jeffrey, A. Searching for Resilience :
590 Addressing the Impacts of Changing Disturbance Regimes on Forest Ecosystem Services. *Journal
591 of Applied Ecology* **2016**, *53*, 120–129. <https://doi.org/10.1111/1365-2664.12511>.

592 (40) Blakey, R. V; Sikich, J. A.; Blumstein, D. T.; Riley, S. P. D.; Blakey, R. V; Sikich, J. A.; Blumstein, D. T.;
593 Riley, S. P. D. *Report Mountain Lions Avoid Burned Areas and Increase Risky Behavior after
594 Wildfire in a Fragmented Urban Landscape* *Li Mountain Lions Avoid Burned Areas and Increase
595 Risky Behavior after Wildfire in a Fragmented Urban Landscape*; The Authors, 2022; Vol. 32.
596 <https://doi.org/10.1016/j.cub.2022.08.082>.

597 (41) Gomez Isaza, D. F.; Cramp, R. L.; Franklin, C. E. Fire and Rain: A Systematic Review of the Impacts
598 of Wildfire and Associated Runoff on Aquatic Fauna. *Glob Chang Biol* **2022**, *28* (8), 2578–2595.
599 <https://doi.org/10.1111/gcb.16088>.

600 (42) Palmer, J. The Devastating Mudslides That Follow Forest Fires. *Nature*. 2022, pp 184–186.
601 <https://doi.org/10.1038/d41586-022-00028-3>.

602 (43) Abraham, J.; Dowling, K.; Florentine, S. The Unquantified Risk of Post-Fire Metal Concentration in
603 Soil: A Review. *Water Air Soil Pollut* **2017**, *228* (5). <https://doi.org/10.1007/s11270-017-3338-0>.

604 (44) Senior, C. L.; Bool, L. E.; Srinivasachar, S.; Pease, B. R.; Porle, K. Pilot Scale Study of Trace Element
605 Vaporization and Condensation during Combustion of a Pulverized Sub-Bituminous Coal. *Fuel
606 processing technology* **2000**, *63* (2), 149–165. [https://doi.org/10.1016/S0378-3820\(99\)00094-6](https://doi.org/10.1016/S0378-3820(99)00094-6).

607 (45) Susaya, J.; Kim, K. H.; Ahn, J. W.; Jung, M. C.; Kang, C. H. BBQ Charcoal Combustion as an
608 Important Source of Trace Metal Exposure to Humans. *J Hazard Mater* **2010**, *176* (1–3), 932–937.
609 <https://doi.org/10.1016/j.jhazmat.2009.11.129>.

610 (46) Kelly, R. L.; Bian, X.; Feakins, S. J.; Fornace, K. L.; Gunderson, T.; Hawco, N. J.; Liang, H.;
611 Niggemann, J.; Paulson, S. E.; Pinedo-Gonzalez, P.; West, A. J.; Yang, S. C.; John, S. G. Delivery of
612 Metals and Dissolved Black Carbon to the Southern California Coastal Ocean via Aerosols and
613 Floodwaters Following the 2017 Thomas Fire. *J Geophys Res Biogeosci* **2021**, *126* (3), 1–25.
614 <https://doi.org/10.1029/2020JG006117>.

615 (47) Costa, M. R.; Calvão, A. R.; Aranha, J. Linking Wildfire Effects on Soil and Water Chemistry of the
616 Marão River Watershed, Portugal, and Biomass Changes Detected from Landsat Imagery. *Applied
617 Geochemistry* **2014**, *44*, 93–102. <https://doi.org/10.1016/j.apgeochem.2013.09.009>.

618 (48) Rahman, A.; El Hayek, E.; Blake, J. M.; Bixby, R. J.; Ali, A. M.; Spilde, M.; Otieno, A. A.;
619 Miltenberger, K.; Ridgeway, C.; Artyushkova, K.; Atudorei, V.; Cerrato, J. M. Metal Reactivity in
620 Laboratory Burned Wood from a Watershed Affected by Wildfires. *Environ Sci Technol* **2018**, *52*
621 (15), 8115–8123. <https://doi.org/10.1021/acs.est.8b00530>.

622 (49) Burke, M. P.; Hogue, T. S.; Kinoshita, A. M.; Barco, J.; Wessel, C.; Stein, E. D. Pre- and Post-Fire
623 Pollutant Loads in an Urban Fringe Watershed in Southern California. *Environ Monit Assess* **2013**,
624 *185* (12), 10131–10145. <https://doi.org/10.1007/s10661-013-3318-9>.

625 (50) Emmerton, C. A.; Cooke, C. A.; Hustins, S.; Silins, U.; Emelko, M. B.; Lewis, T.; Kruk, M. K.; Taube,
626 N.; Zhu, D.; Jackson, B.; Stone, M.; Kerr, J. G.; Orwin, J. F. Severe Western Canadian Wildfire
627 Affects Water Quality Even at Large Basin Scales. *Water Res* **2020**, *183*, 116071.
628 <https://doi.org/10.1016/j.watres.2020.116071>.

629 (51) Pereira, P.; Úbeda, X. Spatial Distribution of Heavy Metals Released from Ashes after a Wildfire.
630 *Journal of Environmental Engineering and Landscape Management* **2010**, *18* (1), 13–22.
631 <https://doi.org/10.3846/jeelm.2010.02>.

632 (52) Pradhan, A.; Carvalho, F.; Abrantes, N.; Campos, I.; Keizer, J. J.; Cássio, F.; Pascoal, C. Biochemical
633 and Functional Responses of Stream Invertebrate Shredders to Post-Wildfire Contamination.
634 *Environmental Pollution* **2020**, *267*. <https://doi.org/10.1016/j.envpol.2020.115433>.

635 (53) Paul, M. J.; LeDuc, S. D.; Lassiter, M. G.; Moorhead, L. C.; Noyes, P. D.; Leibowitz, S. G. Wildfire
636 Induces Changes in Receiving Waters: A Review With Considerations for Water Quality
637 Management. *Water Resour Res* **2022**, *58* (9). <https://doi.org/10.1029/2021WR030699>.

638 (54) East, A. E.; Logan, J. B.; Dartnell, P.; Lieber-kotz, O.; Cavagnaro, D. B.; McCoy, S. W.; Lindsay, D. N.
639 Watershed Sediment Yield Following the 2018 Carr Fire , Whiskeytown National Recreation Area ,
640 Northern California. *Earth and Space Science* **2021**, *8*. <https://doi.org/10.1029/2021EA001828>.

641 (55) Baieta, R.; Vieira, A. M. D.; Vaňková, M.; Mihaljevič, M. Effects of Forest Fires on Soil Lead
642 Elemental Contents and Isotopic Ratios. *Geoderma* **2022**, *414* (February).
643 <https://doi.org/10.1016/j.geoderma.2022.115760>.

644 (56) Campos, I.; Abrantes, N.; Keizer, J. J.; Vale, C.; Pereira, P. Major and Trace Elements in Soils and
645 Ashes of Eucalypt and Pine Forest Plantations in Portugal Following a Wildfire. *Science of the
646 Total Environment* **2016**, *572*, 1363–1376. <https://doi.org/10.1016/j.scitotenv.2016.01.190>.

647 (57) Burton, E. D.; Choppala, G.; Vithana, C. L.; Karimian, N.; Hockmann, K.; Johnston, S. G.
648 Chromium(VI) Formation via Heating of Cr(III)-Fe(III)-(Oxy)Hydroxides: A Pathway for Fire-
649 Induced Soil Pollution. *Chemosphere* **2019**, *222*, 440–444.
650 <https://doi.org/10.1016/j.chemosphere.2019.01.172>.

651 (58) Shah, P.; Vladimir, S.; Nelson, P. F. X-Ray Absorption near Edge Structure Spectrometry Study of
652 Nickel and Lead Speciation in Coals and Coal Combustion Products. *Energy and Fuels* **2009**, *23* (3),
653 1518–1525. <https://doi.org/10.1021/ef800824d>.

654 (59) Zha, J.; Huang, Y.; Zhu, Z.; Yu, M.; Clough, P. T.; Yan, Y.; Dong, L.; Cheng, H. Dynamic
655 Transformations of Metals in the Burning Solid Matter during Combustion of Heavy Metal-
656 Contaminated Biomass. *ACS Sustain Chem Eng* **2021**, *9* (20), 7063–7073.
657 <https://doi.org/10.1021/acssuschemeng.1c01048>.

658 (60) Burton, E. D.; Choppala, G.; Karimian, N.; Johnston, S. G. A New Pathway for Hexavalent
659 Chromium Formation in Soil: Fire-Induced Alteration of Iron Oxides. *Environmental Pollution*
660 **2019**, 247, 618–625. <https://doi.org/10.1016/j.envpol.2019.01.094>.

661 (61) Linak, W. P.; Wendt, J. O. L. Trace Metal Transformation Mechanisms during Coal Combustion.
662 *Fuel Processing Technology* **1994**, 39 (1–3), 173–198. [https://doi.org/10.1016/0378-3820\(94\)90179-1](https://doi.org/10.1016/0378-3820(94)90179-1).

664 (62) Etiégni, L.; Campbell, A. G. Physical and Chemical Characteristics of Wood Ash. *Bioresour Technol*
665 **1991**, 37 (2), 173–178. [https://doi.org/10.1016/0960-8524\(91\)90207-Z](https://doi.org/10.1016/0960-8524(91)90207-Z).

666 (63) Abraham, J.; Dowling, K.; Florentine, S. Risk of Post-Fire Metal Mobilization into Surface Water
667 Resources: A Review. *Science of the Total Environment* **2017**, 599–600, 1740–1755.
668 <https://doi.org/10.1016/j.scitotenv.2017.05.096>.

669 (64) Olafisoye, O. B.; Adefioye, T.; Osibote, O. A. Heavy Metals Contamination of Water, Soil, and
670 Plants around an Electronic Waste Dumpsite. *Pol J Environ Stud* **2013**, 22 (5), 1431–1439.

671 (65) Karel Houessonon, M. G.; Ouendo, E. M. D.; Bouland, C.; Takyi, S. A.; Kedote, N. M.; Fayomi, B.;
672 Fobil, J. N.; Basu, N. Environmental Heavy Metal Contamination from Electronic Waste (E-Waste)
673 Recycling Activities Worldwide: A Systematic Review from 2005 to 2017. *Int J Environ Res Public
674 Health* **2021**, 18 (7). <https://doi.org/10.3390/ijerph18073517>.

675 (66) Wu, W.; Wu, P.; Yang, F.; Sun, D. ling; Zhang, D. X.; Zhou, Y. K. Assessment of Heavy Metal
676 Pollution and Human Health Risks in Urban Soils around an Electronics Manufacturing Facility.
677 *Science of the Total Environment* **2018**, 630, 53–61.
678 <https://doi.org/10.1016/j.scitotenv.2018.02.183>.

679 (67) Alam, M.; Alshehri, T.; Wang, J.; Singerling, S. A.; Alpers, C. N.; Baalousha, M. Identification and
680 Quantification of Cr, Cu, and As Incidental Nanomaterials Derived from CCA-Treated Wood in
681 Wildland-Urban Interface Fire Ashes. *J Hazard Mater* **2023**, 445 (November 2022), 130608.
682 <https://doi.org/10.1016/j.jhazmat.2022.130608>.

683 (68) Alshehri, T.; Wang, J.; Singerling, S. A.; Gigault, J.; Webster, J. P.; Matiasek, S. J.; Alpers, C. N.;
684 Baalousha, M. Wildland-Urban Interface Fire Ashes as a Major Source of Incidental
685 Nanomaterials. *J Hazard Mater* **2022**, 443, 130311.
686 <https://doi.org/10.1016/j.jhazmat.2022.130311>.

687 (69) Pedersen, A. J.; Ottosen, L. M. Elemental Analysis of Ash Residue from Combustion of CCA
688 Treated Wood Waste before and after Electrodialytic Extraction. *Chemosphere* **2006**, 65 (1), 110–
689 116. <https://doi.org/10.1016/j.chemosphere.2006.02.021>.

690 (70) Gagas, D. Characterization of Contaminants on Firefighter's Protective Equipment: A Firefighter's
691 Potential Exposure to Heavy Metals during a Structure Fire, 2015.
692 <https://manchester.idm.oclc.org/login?url=https://search.proquest.com/docview/1679469562?a=ccountid=12253%0Ahttp://man->
693 fe.hosted.exlibrisgroup.com/openurl/44MAN/44MAN_services_page?genre=dissertations+%26+
694 theses&atitle=&author=Gagas%2C+Donald&volume=&issue.
695

696 (71) Stein, S. M.; Menakis, J.; Carr, M. A.; Comas, S. J.; Stewart, S. I.; Cleveland, H.; Bramwell, L.;
697 Radeloff, V. C. *Wildfire, Wildlands, and People: Understanding and Preparing for Wildfire in the*
698 *Wildland-Urban Interface*; 2013.

699 (72) Dennison, P. E.; Brewer, S. C.; Arold, J. D.; Moritz, M. A. Large Wildfire Trends in the Western
700 United States, 1984-2011. *AGU Publications* **2014**, 2928–2933.
701 <https://doi.org/10.1002/2014GL059576>.Received.

702 (73) Kastury, F.; Smith, E.; Juhasz, A. L. A Critical Review of Approaches and Limitations of Inhalation
703 Bioavailability and Bioaccessibility of Metal(Loid)s from Ambient Particulate Matter or Dust.
704 *Science of the Total Environment* **2017**, 574, 1054–1074.
705 <https://doi.org/10.1016/j.scitotenv.2016.09.056>.

706 (74) Drahota, P.; Raus, K.; Rychlíková, E.; Rohovec, J. Bioaccessibility of As, Cu, Pb, and Zn in Mine
707 Waste, Urban Soil, and Road Dust in the Historical Mining Village of Kaňk, Czech Republic. *Environ*
708 *Geochem Health* **2018**, 40 (4), 1495–1512. <https://doi.org/10.1007/s10653-017-9999-1>.

709 (75) Boisa, N.; Elom, N.; Dean, J. R.; Deary, M. E.; Bird, G.; Entwistle, J. A. Development and
710 Application of an Inhalation Bioaccessibility Method (IBM) for Lead in the PM10 Size Fraction of
711 Soil. *Environ Int* **2014**, 70, 132–142. <https://doi.org/10.1016/j.envint.2014.05.021>.

712 (76) *Precipitation Data*. National Atmospheric Deposition Program.
713 <https://nadp.slh.wisc.edu/precipitation/> (accessed 2023-12-10).

714 (77) Hageman, P. L. *US Geological Survey Field Leach Test for Assessing Water Reactivity and Leaching*
715 *Potential of Mine Wastes, Soils, and Other Geologic and Environmental Materials*; 2007.
716 <https://pubs.er.usgs.gov/publication/tm5D3>.

717 (78) Creed, J.; Brockhoff, C.; Martin, T. D. Method 200.8 Determination of Trace Elements in Waters
718 and Wastes By Inductively Coupled Plasma-Mass Spectrometry Environmental Monitoring
719 Systems Laboratory Office of Research and Development U. *US Environmental Protection Agency*
720 **1994**, 4, 1–57.

721 (79) U.S. Environmental Protection Agency. METHOD 200.7 - Determination of Elements and Trace
722 Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emmission Spectropemtry.
723 *US Environmental Protection Agency* **1994**, EPA/600/4-, 1–58.

724 (80) EPA. Method 3050B Acid Digestion of Sediments, Sludges, and Soils. *EPA* **1996**, 18 (7), 723.

725 (81) Pelfrêne, A.; Cave, M. R.; Wragg, J.; Douay, F. In Vitro Investigations of Human Bioaccessibility
726 from Reference Materials Using Simulated Lung Fluids. *Int J Environ Res Public Health* **2017**, 14
727 (2), 1–15. <https://doi.org/10.3390/ijerph14020112>.

728 (82) Tomašek, I.; Damby, D. E.; Stewart, C.; Horwell, C. J.; Plumlee, G.; Ottley, C. J.; Delmelle, P.;
729 Morman, S.; El Yazidi, S.; Claeys, P.; Kervyn, M.; Elskens, M.; Leermakers, M. Development of a
730 Simulated Lung Fluid Leaching Method to Assess the Release of Potentially Toxic Elements from
731 Volcanic Ash. *Chemosphere* **2021**, 278. <https://doi.org/10.1016/j.chemosphere.2021.130303>.

732 (83) Barone, G.; De Giudici, G.; Gimeno, D.; Lanzafame, G.; Podda, F.; Cannas, C.; Giuffrida, A.;
733 Barchitta, M.; Agodi, A.; Mazzoleni, P. Surface Reactivity of Etna Volcanic Ash and Evaluation of

734 735 Health Risks. *Science of the Total Environment* **2021**, *761*, 143248.
<https://doi.org/10.1016/j.scitotenv.2020.143248>.

736 737 (84) Smith, B. D. B.; Ellefsen, K. J.; Kilburn, J. E.; Survey, U. S. G. Geochemical Data for Colorado Soils :
Results from the 2006 State-Scale Geochemical Survey. **2006**.

738 (85) Krauskopf, K. B.; Bird, D. K. *Introduction to Geochemistry*; McGraw-Hill: New York, 1967.

739 (86) US EPA. *Protect Your Family from Sources of Lead* / US EPA. US Environmental Protection Agency.
<https://www.epa.gov/lead/protect-your-family-sources-lead>.

740 (87) US EPA. *Chromated Arsenicals (CCA)* / US EPA. <https://www.epa.gov/ingredients-used-pesticide-products/chromated-arsenicals-cca>.

741 742 (88) Crewe, R. J.; Stec, A. A.; Walker, R. G.; Shaw, J. E. A.; Hull, T. R.; Rhodes, J.; Garcia-Sorribes, T. Experimental Results of a Residential House Fire Test on Tenability: Temperature, Smoke, and Gas Analyses. *J Forensic Sci* **2014**, *59* (1), 139–154. <https://doi.org/10.1111/1556-4029.12268>.

743 744 (89) Bodí, M. B.; Martin, D. A.; Balfour, V. N.; Santín, C.; Doerr, S. H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Wildland Fire Ash: Production, Composition and Eco-Hydro-Geomorphic Effects. *Earth Sci Rev* **2014**, *130*, 103–127. <https://doi.org/10.1016/j.earscirev.2013.12.007>.

745 746 (90) Stankov Jovanovic, V. P.; Ilic, M. D.; Markovic, M. S.; Mitic, V. D.; Nikolic Mandic, S. D.; Stojanovic, G. S. Wild Fire Impact on Copper, Zinc, Lead and Cadmium Distribution in Soil and Relation with Abundance in Selected Plants of Lamiaceae Family from Vidlic Mountain (Serbia). *Chemosphere* **2011**, *84* (11), 1584–1591. <https://doi.org/10.1016/j.chemosphere.2011.05.048>.

747 748 (91) Harper, A. R.; Santin, C.; Doerr, S. H.; Froyd, C. A.; Albini, D.; Otero, X. L.; Viñas, L.; Pérez-Fernández, B. Chemical Composition of Wildfire Ash Produced in Contrasting Ecosystems and Its Toxicity to *Daphnia Magna*. *Int J Wildland Fire* **2019**, *28* (10), 726–737.
<https://doi.org/10.1071/WF18200>.

749 750 (92) Dimitriadou, S.; Katsanou, K.; Charalabopoulos, S.; Lambrakis, N. Interpretation of the Factors Defining Groundwater Quality of the Site Subjected to The wildfire of 2007 in Ilia Prefecture, South-Western Greece. *Geosciences (Basel)* **2018**, *8* (4).
<https://doi.org/10.3390/geosciences8040108>.

751 752 (93) Rhodes, E. P.; Ren, Z.; Mays, D. C. Zinc Leaching from Tire Crumb Rubber. *Environ Sci Technol* **2012**, *46* (23), 12856–12863. <https://doi.org/10.1021/es3024379>.

753 754 (94) *Scrap Tire Management Council*. <http://www.energyjustice.net/files/tires/files/scrapchn.html>.

755 756 (95) Chen, H.; Awasthi, S. K.; Liu, T.; Duan, Y.; Zhang, Z.; Awasthi, M. K. Compost Biochar Application to Contaminated Soil Reduces the (Im)Mobilization and Phytoavailability of Lead and Copper. *Journal of Chemical Technology and Biotechnology* **2020**, *95* (2), 408–417.
<https://doi.org/10.1002/jctb.5986>.

757 758 (96) Wang, X.; Guo, Q.; Wang, X.; Jia, Y.; Chen, W.; Zhang, Q.; Yuan, J. Study on the Effects of New Developed Biochar and Sludge Composite Materials on Copper and Lead Contaminated Soil and

770 Its Remediation Mechanism. *Environ Technol Innov* **2023**, *32*, 103429.
771 <https://doi.org/10.1016/j.eti.2023.103429>.

772 (97) Lopez, A. M.; Pacheco, J. L.; Fendorf, S. Metal Toxin Threat in Wildland Fires Determined by
773 Geology and Fire Severity. *Nat Commun* **2023**, *14* (1), 8007. <https://doi.org/10.1038/s41467-023-43101-9>.

774

775 (98) Rascio, I.; Allegretta, I.; Gattullo, C. E.; Porfido, C.; Suranna, G. P.; Grisorio, R.; Spiers, K. M.;
776 Falkenberg, G.; Terzano, R. Evidence of Hexavalent Chromium Formation and Changes of Cr
777 Speciation after Laboratory-Simulated Fires of Composted Tannery Sludges Long-Term Amended
778 Agricultural Soils. *J Hazard Mater* **2022**, *436* (April), 129117.
779 <https://doi.org/10.1016/j.jhazmat.2022.129117>.

780 (99) Burke, M. P.; Hogue, T. S.; Kinoshita, A. M.; Barco, J.; Wessel, C.; Stein, E. D. Pre- and Post-Fire
781 Pollutant Loads in an Urban Fringe Watershed in Southern California. *Environ Monit Assess* **2013**,
782 *185* (12), 10131–10145. <https://doi.org/10.1007/s10661-013-3318-9>.

783 (100) Pinedo-Gonzalez, P.; Hellige, B.; West, A. J.; Sañudo-Wilhelmy, S. A. Changes in the Size
784 Partitioning of Metals in Storm Runoff Following Wildfires: Implications for the Transport of
785 Bioactive Trace Metals. *Applied Geochemistry* **2017**, *83*, 62–71.
786 <https://doi.org/10.1016/j.apgeochem.2016.07.016>.

787 (101) Drysdale, M.; Bjorklund, K. L.; Jamieson, H. E.; Weinstein, P.; Cook, A.; Watkins, R. T. Evaluating
788 the Respiratory Bioaccessibility of Nickel in Soil through the Use of a Simulated Lung Fluid.
789 *Environ Geochem Health* **2012**, *34* (2), 279–288. <https://doi.org/10.1007/s10653-011-9435-x>.

790 (102) Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M. H.; Bhattacharai, A.; Saha, B. A
791 Comprehensive Review on the Sources, Essentiality and Toxicological Profile of Nickel. *RSC Adv*
792 **2022**, *12* (15), 9139–9153. <https://doi.org/10.1039/d2ra00378c>.

793 (103) Gaetke, L. M.; Chow, C. K. Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients.
794 *Toxicology* **2003**, *189* (1–2), 147–163. [https://doi.org/10.1016/S0300-483X\(03\)00159-8](https://doi.org/10.1016/S0300-483X(03)00159-8).

795 (104) Twining, J.; McGlinn, P.; Loi, E.; Smith, K.; Gieré, R. Risk Ranking of Bioaccessible Metals from Fly
796 Ash Dissolved in Simulated Lung and Gut Fluids. *Environ Sci Technol* **2005**, *39* (19), 7749–7756.
797 <https://doi.org/10.1021/es0502369>.

798 (105) Koleli, N.; Demir, A. *Chromite*; Elsevier Inc., 2016. <https://doi.org/10.1016/B978-0-12-803837-6.00011-1>.

800 (106) Levy, D. B.; Barbarick, K. A.; Siemer, E. G.; Sommers, L. E. Distribution and Partitioning of Trace
801 Metals in Contaminated Soils near Leadville, Colorado. *J Environ Qual* **1992**, *21* (2), 185–195.
802 <https://doi.org/10.2134/jeq1992.00472425002100020006x>.

803 (107) Ré, A.; Rocha, A. T.; Campos, I.; Marques, S. M.; Keizer, J. J.; Gonçalves, F. J. M.; Pereira, J. L.;
804 Abrantes, N. Impacts of Wildfires in Aquatic Organisms: Biomarker Responses and Erythrocyte
805 Nuclear Abnormalities in *Gambusia Holbrooki* Exposed in Situ. *Environmental Science and*
806 *Pollution Research* **2021**, *28* (37), 51733–51744. <https://doi.org/10.1007/s11356-021-14377-5>.

807 (108) Twining, J.; McGlinn, P.; Loi, E.; Smith, K.; Gieré, R. Risk Ranking of Bioaccessible Metals from Fly
808 Ash Dissolved in Simulated Lung and Gut Fluids. *Environ Sci Technol* **2005**, *39* (19), 7749–7756.
809 <https://doi.org/10.1021/es0502369>.

810