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Quantification of Bioaccessible and Environmentally Relevant Trace Metals in Structure Ash from
a Wildland Urban Interface Fire
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Abstract. Wildfires at the Wildland Urban Interface (WUI) are increasing in frequency and intensity,
driven by climate change and anthropogenic ignitions. Few studies have characterized the variability in
metal content in ash generated from burned structures in order to determine potential risk to human and
environmental health. Using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) we analyzed leachable trace metal
concentration in soils and ash from structures burned by the Marshall Fire, a WUI fire that destroyed over
1000 structures in Boulder County Colorado. Acid digestion revealed that ash derived from structures
contained 22 times more Cu and 3 times more Pb on average than surrounding soils on a mg/kg basis.
Ash liberated 12 times more Ni (mg/kg) and twice as much Cr (mg/kg) as soils in a water leach. By
comparing the amount of acid-extractable metals to that released by water and Simulated Epithelial Lung
Fluid (SELF), we estimated their potential for environmental mobility and human bioaccessibility. The
SELF leach showed that Cu and Ni were more bioaccessible (mg leachable metal/mg acid extractable
metal) in ash than in soils. These results suggest that structure ash is an important source of trace metals
that can negatively impact the health of both humans and the environment.

Keywords: Wildfire, WUI, Simulated Epithelial Lung Fluid, ICP-MS, metal mobility

Synopsis: Wildfires at the Wildland Urban Interface burn metal containing structures, generating ash that
may be hazardous to humans and the environment.

Introduction. Over the past three decades, fire season in the United States has become more severe as the
annual number of fires and area burned increases'™. This increase has been largely driven by climate
change*® 10, The average wildfire size has increased 4-fold during the 2000°s'" as compared to the
previous 2 decades. In 2022 alone, 7.4 million acres were burned by nearly 65,000 fires'>!3. The increase
in wildfire size and frequency in the US has coincided with the expansion of the Wildland Urban
Interface (WUI), a region where houses and structures are interspersed among vegetation and forests
Close proximity of vegetative fuel to structures elevates the risk of fire propagation, increasing WUI
susceptibility to burning'>!"!8 As of 2021, there were approximately 50 million US homes in the WUI,
with an expected increase of 1 million within 3 years'. From 1990 to 2010, the WUI grew by 41% in the
US!8, accounting for approximately 39% of all houses'*!” and 10% of land area'>. Between 1985 and
2013, approximately 69% of structures destroyed in wildfires existed in the WUI'". The destruction of
structures at the WUI due to wildfires is a problem that is expected to increase as more people move into
the WUI, and climate change continues to progress, increasing wildfire activity®’.

14-16

Wildfires have a direct impact on air quality. Wildfire smoke contains volatile organic molecules, fine
particulate matter (PMas, PM), ozone, aldehydes, sulfur dioxides, and other contaminants?'~2* which
have been linked to increases in overall mortality and respiratory morbidity®* 2. Hospital admissions
increase during wildfire activity®'**>** with respiratory admissions increasing 23-34%%3>3¢_ Repeated
annual exposure carries additional risk of long-term illness including elevated risk for developing lung
cancer or brain tumors®’. Wildfires also impact environmental health by destroying vegetation®*,
altering animal behavior*’, and generating ash and atmospheric particulates. Following severe burns,
slopes lose the vegetation that prevents erosion*!, increasing vulnerability to debris flow landslides during
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rainstorms*?. Erosion and wind events deposit ash onto soils**** and surface waters**-!, thus

contaminating water sources*>>* and increasing sediment load>.

Wildfire ash and burned soils are often enriched in trace metals**>>%, Metals can become volatilized at
high temperatures during combustion and then condense, subsequently adsorbing to ash surfaces during
cooling**. Studies have also shown that the conditions present during combustion can induce
transformations in metal speciation across matrices including soils, coal, and biomass®’-®!. These
alterations to metal speciation can increase the mobility and toxicity of metals®”*%°, underpinning the
urgency for quantification in environmental systems. Trace metal concentration in ash is highly dependent
on the metal content***® and overall composition of the burned materials*>!263, For example, electronics
in the built environment contain metals such as Cd, Cr, Ni, Pb, and Zn in high concentrations® . These
electronics require proper disposal to prevent contamination of soils and water. Currently, few studies
have focused on metal concentrations in ash from WUI fires®’-”°, which often burn electronics in
structures.

The Marshall Fire, a WUI fire in Boulder County, was the most destructive fire in Colorado history. Over
the course of 2 days, the Marshall Fire destroyed 1084 structures, primarily residential dwellings, and
burned over 24 square kilometers. In contrast to wildfires, which burn mostly vegetation, structures are
highly concentrated sources of bulk metals, which are present in structural components such as support
beams (Ni and Cr in steel), plumbing (Cu and Pb), wiring (Cu), electronics (Cu, Ni, Pb, Cr), and paint
(Cr, Cu, Pb). Nevertheless, exactly how the presence of bulk metals in materials subjected to WUI fires
impact final metal concentration in ash is poorly understood. To date, there has been little research to
determine the composition of ash generated from burned structures, and its potential for environmentally
and biologically relevant metal release.

Rapid expansion of WUI'®"! and increase in wildfire activity'>!®7? will lead to increased quantities of
structure ash, and it is imperative to understand the impacts that this may have on human and
environmental health. Metal mobilization is of environmental concern due to the persistence, mobility,
bioavailability, and bioaccumulative properties of trace metals**** which can be examined through the use
of laboratory-based extraction procedures. The purpose of this study was to determine the identity and
concentration of metals in ash generated from the Marshall Fire. Specifically, we examined situationally
relevant matrices such as water and Simulated Epithelial Lung Fluid (SELF) to assess the metal leaching
potential of ash produced by structural fires. In the WUI, soil is an existing source of leachable metals and
PM, 510> 7. Therefore, we compared the metal concentrations and leaching behavior of ash to that of
native soils in order to test the hypothesis that metals are elevated in the local environment as a result of
ash from WUI structure fires post wildfire.

Materials and Methods

Sampling. The Marshall fire burned December 30-31, 2021. Ash and surficial soil samples were collected
3 months post fire (March 2022). Prior to sampling, 3.77 inches of new precipitation in the form of snow
was recorded’®. Some of this snow melted and sublimated in place, and freezing temperatures primarily
occurred prior to sampling, suggesting that leaching of metals prior to collection was limited. Four
locations were examined within the Marshall fire perimeter (approximate sampling locations shown in
Figure S1). At the western-most site (S1) a large number of individual samples (n = 31) were collected
across a residential property in order to examine the spatial variability in metal content within the burned
structure and the surrounding soils. Each sample was comprised of multiple collections of specific
material (ash or soil) from the immediate sample location. At the other sites (S2 — S4) we created single
composites from multiple individual locations to obtain an average composition for each entire site.
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Workers clearing the S1 site had piled and homogenized ash in one location, which we also sampled as
the S1 composite. Samples were categorized as ash or soil, according to information obtained from
homeowners, visual inspection of the material, and the sampling location within the site. Soil samples
(n=8) included burned and unburned soils that were separate from the burned structure. Ash samples (n=
23) included ash collected from throughout the structure, burned landscape lumber, and burned material
that likely origninally contained electronics (as per personal communication with homeowner). Samples
were collected by steel trowel, placed in polyethylene zipper closable bags, and dried at ambient room
temperature in the laboratory. A portion of each sample was sieved with a No. 10 mesh stainless steel
screen, and the resulting <2 mm portion was carried forward in the subsequent analysis. Dry samples
were stored at 4 °C until analysis. With these procedures, that are based on the USGS methodology to
sample metal-rich solid wastes”’, we obtained a representative average concentration, but did not
determine uncertainty in subsampling. Given each sample was a composite of many individual
collections, and the sieving process both homogenized the sample and rejected large particles, leaching
and analysis was performed on single subsamples.

Acid Leachable Metals. Acid recoverable metals in ash and soil samples were extracted using a modified
EPA method designed for solid waste materials’®®, which is expected to liberate mobile,
environmentally relevant metals. Approximately 200-300 mg of ash or soil were transferred to 15 ml
Falcon polypropylene tubes (VWR). We added 0.6 mL of nitric acid (Macron, Optima Grade), that was
previously diluted 50:50 with deionized water (18 MQ-cm, Nanopure). Then 0.3 ml of hydrochloric acid
(Fisher Chemical, Optima Grade), diluted 50:50 with deionized water, was added. Samples were digested
overnight at room temperature. Subsequently, 10 ml of Nanopure water was added gravimetrically.
Uncapped tubes were evaporated at 83 °C until the volume was reduced to approximately 2 ml. Samples
were inverted to homogenize, lightly re-capped, and heated for 30 minutes to bring internal temperature
to approximately 95 °C. Samples were cooled and total volume was brought to 10 ml with deionized
water gravimetrically. Remaining solids were allowed to settle overnight. Samples were then filtered with
a 0.45 um nylon filter (Agilent 25 mm), diluted with MQ-cm water and adjusted to 2% nitric acid (Trace
metal grade, Fisher Chemical) for metals analysis by ICP-OES (PerkinElmer Optima 8300) and ICP-MS
(PerkinElmer NexIon 300D). Method blanks (Nanopure) were included in the leaching procedure and all
results. All method blanks were below the analytical limit of detection (mean + 3 SD of replicate QA
blanks) for the elements analyzed.

Water Leach for Environmentally Labile Metals. A modified USGS method was used”’. 0.5 grams of
sample were transferred to a 15 ml Falcon tube and 10 g of 18 MQ-cm water was added gravimetrically
to each tube. Samples were vortexed for 5 seconds, leached at room temperature for 24 hours, and filtered
with a 0.45 pm nylon filter (Agilent 25 mm). Samples were diluted with Nanopure water, adjusted to 2%
nitric acid (analytical grade, Fisher Chemical), and analyzed via ICP-OES (PerkinElmer Optima 8300)
and ICP-MS (PerkinElmer Nexlon 300D).

Simulated Epithelial Lung Fluid (SELF) Leach. A modified Gamble’s solution developed by Boisa et al”
was selected as it included the major components of epithelial lung fluid, including salts, proteins, and
organic acids. We excluded dipalmitoyl phosphatidyl choline (DPPC) as it has little impact on metal
bioaccessability®*2, We used 20 ml of SELF based on the approximate lung volume in an adult
human’>#!#2 and a 1:100 solid: SELF ratio was selected’%>%3.

The inorganic components (SI Table 1) of SELF were dissolved in 500 ml of 18 MQ-cm water ina 1-L
High-Density Polyethylene bottle. Separately, the organic components (SI Table 1) were dissolved in 500
ml of Nanopure water. The two solutions were combined for a total solution volume of 1L. The protein
and amino acid components were added as dry solids. The SELF was homogenized by shaking, and pH
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was adjusted to 7.4 £0.2 using HCI (Fisher Chemical). Sodium Chloride and Calcium Chloride, Ascorbic
Acid, Uric Acid, Glycine, and Cystine were obtained from Fisher Chemical. Sodium Phosphate dibasic,
and mucin from porcine stomach (type III) were obtained from Sigma-Aldrich. Sodium Bicarbonate, USP
grade, was purchased from Baker Chemicals. Sodium sulphate and albumin from bovine serum were
purchased from Oakwood Chemical. Glutathione was obtained from Acros Organics. Potassium chloride
was obtained from Mallinckrodt Chemicals, and Magnesium Chloride was purchased from Macron.

Approximately 200 mg of ash or soil was added to 50 ml Falcon tubes containing 20 ml of SELF.
Samples were capped and incubated for 24 hours at 37 °C on an incubated orbital shaker (New Brunswick
Scientific Incubator Shaker Series 126) operated at 30 RPM to simulate the dynamic environment of the
lung. Although material may be trapped in the lung for longer than 24 hours, metal concentration in lung
fluid stabilizes at 24 hours®?. Samples were centrifuged at 4500 x g (Eppendorf centrifuge 5810) for 10
minutes, filtered through a 0.45 pm nylon filter (Agilent, 25 mm), diluted with water (Nanopure), and
analyzed for metal content via ICP-OES (PerkinElmer Optima 8300) and ICP-MS (PerkinElmer Nexlon
300D).

ICP-MS/OES Analysis. ICP-OES (PerkinElmer Optima 8300) was utilized to screen a broad suite of
elements (SI table 3-5). Calibration curves were created from High Purity Standards (HPS) according to
the EPA 200.7 methods™. An internal standard (Sc, SPEX) was continuously introduced during the
analysis to monitor instrumental drift. Corrections were <5-10% and if drift exceeded 20%, the run was
stopped and the instrument recalibrated. Check standards consisted of NIST 1643f, CCV nonmetals
(HPS), and CCV metals (HPS) and were analyzed at the start of analysis, midway through the analysis,
and after all samples had been analyzed.

Selected elements at low concentrations as determined by ICP-OES were analyzed by ICP-MS
(PerkinElmer Nexlon 300D) due to its higher sensitivity. Standard curves were created using a 3-point
calibration made from dilution of a 10 pg/ml (VWR Aristar Multi element ICP-MS Standard). The
isotopes used in analysis were *Cu, 3>**Cr, **Ni, and 2%Pb. Process blanks (2% HNO3) were run
alongside samples, and all returned values were below both the instrumental Detection Limit (DL) and
Limit of Quantification (LOQ).

Elemental masses in the leachate were normalized to mass of ash or soil used and reported as mg/kg. The
mass of solid sample and volume of leachate were used to compute the LOQs after conversion to mass
concentration (mg/kg) in the initial solid (see SI Equation 1). Instrument detection limits for ICP-OES
and ICP-MS were calculated by running 3 to 10 blanks (2% acid) and setting the instrumental detection
limit at 3 times the standard deviation above the average blank reading. Following the application of the
instrument detection limit, a limit of quantification based on the mass of soil or ash was applied. Using
the instrument detection limits and the mass of solid leached, the limit of quantification (LOQ) was
established for each element and defined at 10 times the lowest estimate, according to equation 1 (SI
Table 2-4).

Statistical Analysis. Relationships between the ash and soil samples for metal content were examined
using MATLAB (9.11.0.1837725 (R2021b)). Sample data was non-normally distributed necessitating the
use of nonparametric analysis, so a 2-sided Wilcoxon Rank Sum Test was used to test the null hypothesis
that the two sample sets (ash and soil) were from the continuous distributions with equal medians against
the alternate hypotheses that they were from distinct distributions. An alpha value of 0.05 was used in all
statistical analysis.

Linear correlations among leachable metal concentrations were explored using the Pearson’s Correlation
Coefficient (1) (Figure S4-7). A Pearson’s correlation coefficient (r) of 0.75 was selected as a criterion to
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state samples have a strong correlation. Only samples with a statistically significant correlation (p< 0.05)
are reported.

Results and Discussion
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Figure 1. Box and whisker plot for trace metal concentrations (mg/kg) that were liberated by (a) acid and
(b) deionized water. Individual data points are marked with black dots and the outliers (samples >1.5
times the interquartile range away from the bottom or top of the box) are shown as a red "+". The
median, 25th and 75th percentiles are shown by the box. Whiskers indicate data spread, excluding
outliers. n=8 for soil samples, n=23 for ash samples.

The concentrations of acid extractable trace metals (mg/kg) in ash and soil ranged over approximately 2
orders of magnitude (Figure 1a), with most variation most variation due to the range of acid labile Cu in
ash Cu in ash. Smaller variations among Pb, Cr, and Ni concentration suggest higher uniformity in total
metal across samples. Samples with metal concentrations below the DL (Table S-2-S4) are reported as the
Limit of Quantification concentration. This conservative assumption provides an upper limit in
concentration for the metals when present below the DL.

Ash samples were approximately 22 times higher in acid-leachable Cu compared to soil samples. This
difference was statisically significant (p= 3.4E-4) and suggests that Cu in the residential structure
contributed to the metal content of the ash. Cu concentrations in ash ranged from 19.3-4039 mg/kg with
an average of 678 mg/kg. Data for Cu content in ash generated from wildfires that predominantly burned
vegetation as reported in the literature is highly variable, with Cu concentrations ranging between 0.35-50
mg/kg®*2, although one study found Cu concentrations of up to 15000 mg/kg in structure ash®®. Soil Cu
concentrations ranged from below the LOQ to a single outlier of 161 mg/kg. The average Cu
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concentration in soils was 31 mg/kg, which is slightly elevated compared to both the 10.7-20.8 mg/kg
reported for Colorado soils® and the global crustal abundance (GCA) of 14-28 mg/kg®.

Cr concentrations ranged from 1.2-17.1 mg/kg with an average of 8.8 mg/kg in ash samples and from 1.2-
13.8 mg/kg with an average of 9.5 mg/kg in the the soil samples. Mean Cr concentrations in both ash and
soil were lower than the reported Colorado abundance (20-39 mg/kg)®* and the GCA of 35-92 mg/kg®.
This is likely due to the resitance of Cr metals to simple acid dissolution. No statistically-significant
difference was found between the ash and soil Cr concentations (p=0.44), suggesting that, unlike Cu, the
presence of this metal in the structure did not contribute significant amounts of acid leachable metal to the
ash as compared to the surrounding soils.

Despite the fact that ash samples contained two Ni outliers with high concentration, there was no
significant difference in average Ni concentration between the soil and ash samples (p=0.58). There was
more spread in the the concentrations of Ni in ash, suggesting higher variability in ash than in the native
soils. The concentration of Ni in ash samples was between 3.1-493 mg/kg with an average of 36 mg/kg,
while soil samples ranged from 1.4-13.4 mg/kg with an average of 9.6 mg/kg. Ni in structure ash has been
reported between approximately 0-350 mg/kg®®. The average Ni concentration in soil is close to the lower
end of that reported for Colorado soils (9.3-19.1 mg/kg)** and lower than the 19-47 mg/kg reported for the
GCA¥®.

Ash samples were significantly higher in Pb than soil samples (p=0.036). Pb concentrations in ash ranged
between 0.4-142 mg/kg, aligning with median reported Pb concentrations of 350 mg/kg in structure ash®.
Soil Pb ranged from 1.9-17 mg/kg. The average ash Pb sample was enriched nearly 3 times, at 29.1
mg/kg compared to the soil sample average of 9.1 mg/kg. The average Pb measured in soil is in general
agreement with the Colorado soil average of 5.5-21.7 mg/kg®, and lower than the GCA of 17 mg/kg®.

Generally, the ash samples that were enriched in acid-extractable metals were associated with starting
materials also elevated in those metals, informed by prior knowledge of the structure. This is especially
evident in the outliers. The highest measured Ni concentration (493 mg/kg) was sampled from the
location of a storage room that housed a large quantity of electronics (information provided by the
homeowner). Nickel is used in electronics due to its high conductivity and low corrosivity. The ash
sample containing the highest concentration of Pb was a composite of a house at S2 (Figure S1),
composed of many different burned strucure materials. No specific information was obtained as to the
contents of this house, however, Pb has historically been used in building materials, paints, and plumbing,
especially in structures built before 1978%. Combustion of anthropogenic materials, specifically copper
chromate arsenic (CCA) treated woods, has been linked to Cu accumulation on ash surface via a
vaporization-condensation mechanism®, which may account for some of the observed Cu enrichment as
CCA wood was used in construction for structures prior to 2004*”. Combustion of anthropogenic
materials, specifically copper chromate arsenic (CCA) treated woods, has been linked to Cu accumulation
on ash surface via a vaporization-condensation mechanism®-¥’. Reported Cu and Cr values from high
temperature combustion of CCA treated wood range from 69-116 g kg™ and 62-180 g kg! respectively,
with As, Cu, and Cr accounting for 4-35% of total ash mass®”®. Lower concentrations and percent by
mass of Cu and Cr in this study inhibit definitive identification of CCA woods and suggests higher
heterogeneity of burned materials or lack of CCA treated wood in sampled structures. Indeed, none of the
samples were collected where CCA-treated wood was likely used (i.e. landscaping) nor did any sampled
materials have the appearance of burned CCA-treated wood. Some of the samples with high Cu
concentrations were associated with ash sampled from the basement electronic room, consistent with the
use of Cu in electronics. Enrichment of Pb in burned soils and ash post wildfire is highly dependent on
burning temperature, with lower temperatures inducing Pb accumulation and higher temperatures (>600-
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650 °C) leading to volatilization*»3. Structure fires burn at temperatures between 400-500 °C?¢,
suggesting that temperatures were inadequate for Pb volatilization and instead favored accumulation,
which is supported by our measured concentrations. Ni and Cr form condensed species at temperatures
higher than Pb or Cu®'. The combustion temperature of the structure was likely not high enough to induce
a vaporization-condensation mechanism for Ni and Cr, leading to retention in the ash fraction®’. A recent
analysis of structural and vehicle ash provides evidence that enrichment of some metals (Cr, Co, Cu, Ni,
Zn) is observed compared to vegetation®®. Although little work has been done to directly examine the
mechanism of metal release from anthropogenic structure combustion, studies on wildfire ash and
combustion of trace metal containing materials (i.e. BBQ coal **) show trace metal enrichment behavior
in ash.
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Figure 2. Box and whisker plot showing acid leachable oxide forming metals (Al, Fe, Mn, Ti, Li), major
cations (Ca, Mg, Na, K), and trace metals (S, Sr, V, Co, Al, Fe, Mn, Ti, Li) (mg/kg) in ash (blue) and soils
(red). Individual data points are marked with black dots and the outliers (samples >1.5 times the
interquartile range away from the bottom or top of the box) are shown as a red "+". The median, 25th
and 75th percentiles are shown by the box. Whiskers indicate data spread, excluding outliers. n=38 for soil
samples, n=23 for ash samples.

Oxide forming metals (Al, Fe, Mn, Ti) were examined in the ash and soil samples (Figure 2). Differences
between the ash and soil concentrations were only found for Ti. Ash samples, with an average of 424
mg/kg, have significantly higher concentrations of Ti than soil samples (p=5.5E-4), a trend reported in
previous studies®®. Ti comprises approximately 0.2% of Colorado soils®, however we found Ti at much
lower concentrations, with an average of 57 mg/kg, possibly due to incomplete acid digestion. Although
structures contain Ti in paints, stainless steel, and electronics, a source has not been definitively
identified. Higher Ti concentrations in ash corresponded to structure composites. Major cations (Ca, Mg,
Na, K) were also examined in the ash and soil samples. We found that ash contained significantly higher
concentrations of Ca and Na than soils, which has previously been reported in wildfire ash*’. Ca and Na
are major constituents of ash, especially at high combustion temperatures (>450C)*. Increased Ca in ash
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have been reported in association with hydroxides and carbonates, contributing to the basicity of ash’*°!.

The ash samples were also found to be significantly higher in S and Sr (p= 0.0036 and 0.0012,
respectively). The highest Sr concentrations were found in the electronics storage room samples and in
the structure composites. The exact sources of Sr are not clear, although increased Sr concentration have
been reported with increasing combustion completeness®®. Enrichment of sulfur in ash has been reported
in laboratory studies of burned biomass®?.

Knowledge of the home site provided by the homeowners aided in identification of some materials. One
sample was identified as burned playground crumb rubber. The tire manufacturing process uses zinc for
vulcanization at concentrations of 1-2% and Cr at 0.0097%°*. Zn comprised 1.58% and Cr at 0.0013%
by mass in the sample. Results suggest that during combustion, zinc behaved conservatively, while Cr
concentration was lower than expected based on literature values, suggesting that it may experience loss
during combustion or was incompletely recovered during digestion. A second sample was suspected to be
drywall, which is composed of 70-90% gypsum (CaSO4) and cellulose. The exact composition of drywall
varies between manufacturers, however gypsum contains 29.4% Ca and 23.6% S. We found that the acid
leachable fractions in the suspected drywall contained 15.7% Ca and 14.2% S, a difference of 40.4-
60.7%, which is attributed to incomplete digestion and fillers or other components. Examination of
relative Ca to S concentrations found a ratio of 1.25 for gypsum and 1.11 for the sample. There may be S-
containing fillers in the drywall, but the bulk of the Ca and S likely comes from gypsum. Other ash
samples collected were considered to be mixtures of many materials, not mono-material samples.
Although there is generally reasonable agreement between bulk and post combustion mass percentages
for the examples cited, there are still many unknowns as to how combustion impacts the final metal
content in ash generally. More work across a diverse range of samples is necessary to determine if these
trends in metal behavior are significant at temperatures seen during combustion of a structure.

Trace Metals Present in Water Leach

The solubility of trace metals in water provides insight into the potential for environmental metal
mobilization. Rainfall or snowmelt can transport metals to soils, groundwaters, surface waters, and
agricultural areas, creating a vector of exposure to humans and animals®'53!, Absolute metal
concentration (g metal/g ash or soil) informs on the total mass of metals that can potentially be mobilized
at a given site. This is relevant to the total environmental input, with impacts ranging from acute toxicity
to increased trace metal cycling and environmental recalcitrance. Higher variability in water labile metals
was observed in ash samples compared to soils (Figure 1b). Water leachable Cu concentrations in ash
samples ranged from 0.009-2.95 mg/kg, with an average of 0.44 mg/kg. Soil samples showed less
variation (0.016-0.133 mg/kg), with an average of 0.064 mg/kg. There was no significant difference in
median Cu concentrations between ash and soil (p=0.92). Ash samples leached significantly more Cr
compared to the soil samples (p=4.3E-4). Ash ranged from 0.17-3.93 mg/kg Cr with an average of 1.13
mg/kg. The soil samples were more uniform in their leaching behavior and released between 0.029-0.039
mg/kg Cr with an average of 0.030 mg/kg. Ash leached significantly more Ni than the soils and had a
higher median concentration (p=0.0041). Ni concentration in ash samples was the most variable of all
water leachable metals reported and ranged from 0.013-0.795 mg/kg with an average of 0.31 mg/kg. In
contrast, the soil sample leached between 0.009-0.035 mg/kg and with an average of 0.026 mg/kg. While
the acid-extractable Ni concentrations were similar between ash and soil, the greater concentration of
water-soluble Ni in ash as compared to soil suggests that the ash samples have higher concentration of
mobilizable Ni. There is evidence that the conditions during combustion can transform Ni species to
NiSOsin coal and soil, altering its solubility, bioavailability, and subsequent environmental mobility>®.
These changes in speciation can also increase the toxicity of Ni, creating concern for aquatic species. Ash
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was observed by SEM (Figure S2a-b) to be porous, which may contribute to the leaching of metals due to
high surface area for sorption. Water leachable Pb showed no significant differences between the soil and
ash samples (p=0.099) and had higher variability within ash samples than in soils. Pb in the soil samples
ranged from 0.006-0.11 mg/kg with an average of 0.009 mg/kg while ash samples ranged from LOQ-
0.046 mg/kg with an average of 0.009 mg/kg.

Speciation of metals is a determining factor in their solubility®'. Combustion can alter the speciation of
metals via oxidation®’-%, altering metal mobility, toxicity, and bioavailability. Percent leached (g metal
leached /g acid extractable metal) was calculated (Figure 3a) to examine relative leachability of metals.
Although the total concentration of Cu liberated in water leach was similar between the ash and soil
samples (Figure 1a), ash samples leached an average of 0.10% Cu while soil samples leached 0.41% Cu.
On average, Pb in the ash samples leached at a similar percentage to that of the soil samples, 0.16% and
0.13%, despite significantly higher acid extractable Pb concentrations present in ash. The ash samples had
a lower proportion of weakly soluble sorbed Pb and Cu than soil samples, despite containing more total
Cu and Pb. The lower leachability of Cu and Pb post combustion may be due to the presence of biochar
derived from wood in the ash, which has been shown to limit Cu and Pb mobility®>*°. Ash samples
leached a higher percentage of Ni and Cr than soil samples. Ash leached an average of 3.62% and 1.13%
for Ni and Cr, respectively while soils leached 0.31% of Ni and 0.56% of Cr. Acid extractable Ni and Cr
content was not significantly different between the ash and soil samples, but ash samples contained a
higher proportion of labile metals. The elevated Cr leachability in ash compared to soils is likely due to
combustion mediated transformation of Cr. Cr in soils exists as Cr (III), an insoluble cation and Cr (VI), a
highly toxic and mobile form>”%°. Studies have shown that combustion can oxidize Cr (1) to Cr (VI), in
soils and even in CCA treated woods®"¢%¢7-9798 Transformation of Cr (III) to Cr (VI) is highly favorable
at 400 °C, a temperature that burning structures easily reach>”-%°. Wildfires can increase metal
mobility**°, and elevated concentrations of water leachable Ni have been reported in runoff from burned
areas'”, likely due to the increase in bioavailable Ni forms post combustion®®,
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Figure 3. Box and whisker plot showing percent of metals leached in a) water leach and b) SELF leach.
Percent is based on acid leach as a total metal concentration. Soil samples are shown in red, ash samples
are shown in blue. Exact percent for each sample are shown as black dots, outliers are shown as red
“+”. Red line shows median, box edges show 25-75" percentile, whiskers cover 99.3 percent of data.

Bioaccessibility of Trace Metals in Simulated Epithelial Lung Fluid (SELF) Leach

The concentrations of metals extracted by SELF leach across sample locations at S1 are shown as bubble
plots (Figure 4a-d), and site composites S2-4 are shown in Figure S3. The respiratory leachable
concentration in ash ranged from BDL-208 mg/kg for Cu, 0.1-1.9 mg/kg Cr, BDL-7.4 mg/kg Ni, and
BDL-1.7 mg/kg Pb in ash samples. For soil samples, the respiratory leachable concentration ranged from
BDL-1.0 mg/kg Cu, 0.1-0.3 mg/kg Cr, BDL-1.4 mg/kg Ni, and 0.1-0.5 mg/kg Pb. These reported values
are likely conservative estimate of SELF soluble metal concentrations. Studies have found that the <10
um ash fraction typically contains a higher concentration of metal than the larger material used in this
study’!%! and is of a size that is more likely to be respired. However, due to laboratory constraints and in
order to draw comparison with the acid and water leach, the <2mm fraction was used in the SELF leach.
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Figure 4. Bubble plots show spatial distribution of metal concentration at samples locations at Site S-1.
Orange circles represent concentrations in soil samples, and blue circles represent ash samples. Hallow
circles are used to designate samples below the limit of quantification that are reported as the LOQ (See
S1 for calculations). Ni outlier plotted as a star.

Ash samples were significantly higher in Cu compared to soil samples (p=0.013). Approximately 38% of
all samples extracted with SELF were below the instrumental detection limit or the LOQ. Only one soil
sample was above the LOQ. Soil and ash samples do not show significant differences in Cr concentration
(p=0.35) and 52% of samples were below the Cr instrumental detection limit. Samples that had the
highest measurable concentrations of Cr included a sample from the garage (1.92 mg/kg), where paint and
other tools were stored, and the burned tire material used in a playground (1.22 mg/kg). Ni content was
significantly higher in the ash samples as compared to soil samples (p=0.036), with only 3% of samples
below the instrumental detection limit. There was also no significant difference in concentration between
soil and ash samples for Pb (p=0.33), with approximately 10% of samples below instrumental detection
limit. Inhalation bioaccessibility was also calculated as percent of acid extractable metal content (Figure
3b). The percentage of metals extracted in SELF were highly variable, both between and within ash and
soil samples. The Cu bioaccessibility in ash ranged from 0-40% with an average of 4.48%. In soil
samples, the percent of bioaccessible Cu ranged from 0-0.62% with an average of 0.12%. There were no
significant differences between the soil and ash samples with respect to the percent of Cu leached in
SELF. High variability was observed in the percent of Cu leached in the ash samples, especially when
compared to the soils. In ash, the percentage of Cr ranged from 0.56-17.86% with an average of 2.97%.
Cr ranged from 0.52-6.17% with an average of 1.91% in soils, making Cr moderately more bioaccessible
in ash samples. The percentage of bioaccessible Ni ranged from 0.07-234% with an average of 42.46% in
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ash. There were 3 ash samples with over 100% bioaccessibility in the SELF leach. These outliers were at
the lower end of the concentration (between 3.1-5.8 mg/kg of acid leachable Ni), and so the high
percentage is attributed to increased analytical error at lower concentrations. In soils, the percent of
leachable Ni ranged from 2.27-14.99% with an average of 9.34%. There was no significant enrichment of
acid soluble Ni in the ash over soil, however, increased overall bioaccessibility was observed in the ash
samples compared to the soils, suggesting that Ni may be in a form that is more soluble in the SELF
matrix. Pb bioaccessibility in ash ranged 0.1-3.53% with an average of 1.26%. In soils, the percentage of
leachable Pb ranged from 1.87-5.08% with an average to 3.52%. Pb bioaccessibility was significantly
higher in soil samples than in the ash, suggesting that there may be a difference in the speciation of Pb
between the sample types. The variability in the percent leachable was high for Cu, Ni, and Pb in the
SELF. High variability within bioaccessibility suggests that total metal content as quantified in an acid
leach is not a suitable predictor for the bioaccessibility of that metal in ash. More work to determine the
speciation of metals, and what role this may play in prediction of bioaccessibility is needed.

The chemical composition of SELF impacts the solubility of metals. The organic and acid constituents in
SELF can chelate with some metals, causing increased solubility®?. Glycoproteins such as albumin and
mucin bind with metals and can be controlling factors in bioaccessibility. However, mucin has been
reported to form precipitates with Pb** at neutral pH (SELF pH 7.4). This may reduce Pb solubility”.
Additionally, the speciation of the metals will continue to dictate their interactions with the molecules in
the SELF and subsequently influence solubility. The elevated concentrations of Ni and Cu leachable in
SELF have implications for human health, especially for individuals who are involved in site clean-up, or
are exposed to ash spread by post-fire wind events. Ni and Cu are important for biologic function at low
concentrations, but overexposure has been linked to adverse health effects. Excess Ni causes toxicity and
respiratory disorders and is dependent on solubility in lung®!°!. The primary routes of Ni exposure in
humans are inhalation, ingestion, and dermal contact'®? warranting the further investigation into the
bioaccessibility of Ni in WUI ash. Cu exposure has been linked to neurodegenerative effects and
oxidative stress, although excretory processes protect against acute Cu toxicity for most humans and
animals'®. While the authors are unaware of studies that have explored the bioaccessibility of trace
metals in ash derived for structure fires, studies have explored trace metals in volcanic and coal fly
ash®283:1% However, results varied widely between materials, and it is unlikely that these results can be
compared with structural ash, as ash composition and mineralogy dictate bioaccessibilty’*.

Correlations

Correlation analysis was used to identify relationships between metals that may be influenced by
geogenic or anthropogenic material composition, as well as provide insight into which metals may drive
ash toxicity. We found a strong correlation between the acid leachable Pb and Cu (r=0.88) in the ash
samples (Figure S4a). Pb and Cu are commonly used together in electronics and wiring, which may
contribute to the correlation. We also found moderately strong to strong correlations between acid
leachable Cr-Al (r=0.74) and Cr-Fe (r=0.86) in the ash (SI 3a). Cr is added to iron in order to create
stronger alloys, including stainless steel, which could account for its association in the ash. Cr co-occurs
naturally with iron as chromite (FeCr,04); however, Colorado is not known to be a significant site of this
mineral'®. Without further investigation into the speciation or form of Cr, it is not possible to determine if
the correlation is due to natural or anthropogenic associations. No correlations were found for the ash
samples in the water leach or in the SELF leach (Figure S5a, 6a), which we attributed to the heterogeneity
of the ash. The ash samples were derived from combustion of a wide range of materials in the structures,
leading to high variability in metal concentrations. There is spatial variation in metal concentration when
structures burn and supports that assumption that there is no common metal concentration in WUI ash.



428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

467
468

469

470
471
472

In contrast to the ash, we found many strong correlations between metals in the soil samples. We found
strong correlations between acid leachable Cr-Ni (r=0.82), Cr-Al (r=0.76), Ni-Pb (r= 0.82), Ni-Fe
(r=0.91), Pb-Al (r=0.87), Pb-Fe (r=0.85), and Al-Fe (r=0.87) (SI 3b). Correlations for soils in Colorado
were also calculated using data from a 2006 USGS study *,which found a strong correlation between Cr-
Ni (r=0.86). However no strong correlations were found between the other metals reported. Although
correlations between metals in soils at this site differ from the USGS values, it is likely that high
correlations exist due to the small area sampled. [ron and aluminum are major elements in the Earth’s
crust and co-occur in soils and minerals. The associations of Pb and Ni with Fe suggest that they may be
bound to iron oxides, which has been reported at other locations in Colorado!'%. Water leachable metal
correlations included Cd-Cu (r=0.86), Cu-Pb (r=0.82), and Cd-Pb (r=0.87) (Figure S5b). It should be
noted that the water leachable concentrations of these metals were generally low, and so may be subject to
increased analytical noise associated with concentrations near detection limits. The only strong
correlation for the soil samples in the SELF leach was Ni-Pb (r=0.89) (Figure S6b). This is a similar
correlation as was seen for these metals in the acid leach and may indicate that minerals containing these
metals exhibit similar solubilities. Across all soil and ash samples, there was a strong correlation between
the amount of water leachable and SELF leachable Ni (r=0.86) (SI 8). There was a moderately strong
correlation (r=0.69) between the water and SELF leachable Cr. This suggests that the water leachable Ni
and Cr concentrations may provide insight into the bioaccessibility of these metals in the human lung.
There is also a correlation between the acid and SELF leachable Pb (r=0.85) and a weak (r=0.58)
correlation between acid and SELF leachable Cu.

Environmental Significance. We characterized the environmental lability and respiratory bioaccessibility
of metals in ash from structure fires in the WUI and found that ash is a source of trace metals to the
environment, and to humans. The quantities of ash generated during large scale WUI fires, such as the
Marshall Fire, have the potential to negatively impact the surrounding environment, agriculture,
communities, first responders, and residents. Metals can be mobilized via rainfall or snowmelt, thereby
influencing aquatic toxicity, physiochemical properties of surface water, and elevating soil metal
concentration*'**197, SELF has been used to determine inhalation bioaccessibility of metals in materials
including volcanic ash, fly ash, soils, and road dusts’##101:104108 "however it has not previously been used
for WUI ash. Despite elevated metal content in WUI ash and increased solubility of certain metals
compared to soils, the role that combustion plays on bulk scale metals is still poorly understood.
Additionally, higher solubility (% leachable) in ash compared to soils may be influenced by combustion
driven changes in metal form®" %7, Combustion has been shown to impact metals by altering speciation
through redox mechanisms (Cr)*"*7 as well as vaporization and condensation (Cd, Pb)****¢! in soils and
coal. Further work is needed to determine if this mechanism is active in a structure fire scenario, where
temperatures are typically recorded between 400-500 °C38, and how these mechanisms impact bulk scale
metals that are present in structures. As the United States continues to face more severe wildfire seasons,
there is a greater need to understand wildfire impact on metal bioaccessibility and environmental toxicity,
especially in a WUI setting. This research provides a framework for assessing the solubility of metals in
ash generated from WUI fires in environmentally and biologically relevant matrices.

Supporting Information: Additional experimental details including sample location map, equations, SEM
images, and correlation matrix plots.
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