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Abstract

In this paper, we consider the problem of private estimation of U statistics. U statistics are widely
used estimators that naturally arise in a broad class of problems, from nonparametric signed rank
tests to subgraph counts in random networks. They are simply averages of an appropriate kernel
applied to all subsets of a given size (also known as the degree) of sample size n. However,
despite the recent outpouring of interest in private mean estimation, private algorithms for more
general U statistics have received little attention. We propose a framework where, for a broad
class of U statistics, one can use existing tools in private mean estimation to obtain confidence
intervals where the private error does not overwhelm the irreducible error resulting from the
variance of the U statistics. However, in specific cases that arise when the U statistics degenerate
or have vanishing moments, the private error may be of a larger order than the non-private error.
To remedy this, we propose a new thresholding-based approach that uses Hajek projections to
re-weight different subsets. As we show, this leads to more accurate inference in certain settings.

Keywords: U statistics, private estimation, mean estimation, degenerate kernel, sparse graphs,
smoothed sensitivity

1. Introduction

U statistics are a well-established class of estimators that can be expressed as averages of func-
tions of the form h(X1,..., X}), where h is a possibly vector-valued kernel and {X;}" ; are
i.i.d. draws from some underlying distribution. U statistics arise in many areas of statistics and
machine learning, encompassing diverse estimators such as the sample mean and variance; the
Mann-Whitney and Wilcoxon signed rank test statistics; Kendall’s tau; the number of subgraphs
in a random graph (Gilbert, 1961); the number of collisions in a stream of discrete data points; and
applications to ranking and clustering (Clémencon et al., 2008; Clémengon, 2014).

Despite being a natural generalization of the sample mean, little work has been done on pri-
vate estimation of U statistics. In comparison, private mean estimation has attracted a great deal
of interest (Karwa and Vadhan, 2017; Kamath et al., 2019a; Cai et al., 2021; Kamath et al., 2019b;
Biswas et al., 2020; Kamath et al., 2020). The few papers we are aware of are Ghazi et al. (2020)
and Bell et al. (2020), but both of these papers focus on the setting of local differential privacy (Ka-
siviswanathan et al., 2011), whereas we are interested in privacy guarantees under the more basic
central model. Moreover, much existing work focuses on discrete data, and relies on simple central
differential privacy mechanisms (such as the Global Sensitivity mechanism (Dwork et al., 2006))
that are optimal in such settings.

In this paper, we ask the following questions:

1. Can we apply existing off-the-shelf tools for private mean estimation to privately estimate
general U statistics?
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2. What are specific cases where methods more aligned with the structure of a U statistic
provide more accurate estimators?

Our proposed algorithms differ depending on certain properties of the underlying U statistics. A
non-degenerate U statistics is one which, suitably scaled, converges to a limiting Gaussian distri-
bution with variance O(k/+/n); such a result is commonly used in hypothesis testing (Hoeffding,
1948; Arcones and Gine, 1993; Hoeffding, 1963). However, there are also cases of degener-
ate U statistics, where the limiting distribution is chi-squared and the variance of the statistic is
O(k?/n?). Another interesting type of U statistics arises in subgraph counts in random geometric
graphs (Gilbert, 1961) when the probability of an edge being present tends to zero with n. In these
cases, the kernel has mean and variance that also tends to 0, and one needs to be careful about the
possibility of creating a private estimator that simply adds Laplace noise with some large scale.

We show that for general non-degenerate U statistics with sub-Gaussian kernels, an extension
of the Coinpress algorithm (Biswas et al., 2020)—where we apply the algorithm on the kernel
evaluated on different subsets of data—works suitably for private estimation. We provide accuracy
bounds for two methods for aggregating data, the first being the vanilla version which averages
over all subsets of size n, and the second being a faster, subsampled version which is less compu-
tationally expensive. Despite having a suboptimal dependence on the degree k, we show that these
methods add Laplace noise that is of a smaller order than the main term in the confidence interval
arising from the variance of the U statistic.

For degenerate kernels, although the natural variant of the Coinpress algorithm would im-
mediately yield confidence intervals of length O(1/n) rather than O(1/4/n), the Laplace error
would overpower the non-private part of the deviation. The same phenomenon happens for sparse
graph applications. For these “atypical” situations, we present an interesting alternative algorithm,
which uses the Hajek projections of U statistics to “decide” which data points are problematic,
and then assigns corresponding weights to different subsets of the data. This method, inspired by
work of Ullman and Sealfon (2019), provides confidence intervals where the Laplace error does
not occlude the non-private part. However, this procedure is more computationally expensive and
our current analysis requires the kernel to be bounded.

Our takeaway message is that, in many cases, one can indeed obtain a computationally efficient
private U statistic using adaptations of existing private mean estimation algorithms. However, in
special scenarios, one may need to design more sophisticated methods to adapt to the smaller
variance. The remainder of our paper is organized as follows: Section 2 reviews background on
U statistics and fundamental concepts in differential privacy. Section 3 presents the framework of
our main private U statistic estimation algorithm and corresponding theory, which is then applied
to various settings. Section 4 presents the alternative algorithm based on Hajek projections. We
provide a short discussion of applications in Section 5. Section 6 concludes the paper.

2. Background and problem setup

We begin with some notation. Let k£ and n be positive integers with £ < n. Let D be an unknown
probability distribution over X', and let & : X* — R be a known function. Let A be the distribution
of h(X1, Xa,...,Xg), where X1,..., X ~ D are i.i.d. We use [n] to denote {1,...,n}. We
will be interested in providing a differentially private confidence interval around the parameter
0 = E[h(X,...,Xk)], which is the mean of # (Halmos, 1946). The classical minimum variance
unbiased estimator is the U statistic (Hoeffding, 1948). Let Z,, ;, be the set of all £-element subsets
of [n]. Forany S € T, k, we also use Xg to denote X, ;,, where S = {iy,...,i;}. Define as
1, the set of all (Z) unordered subsets of size k from [n]. The U statistic U, is then defined as

k {7;17---7ik}61n,k
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The function h is known as the kernel and k is the degree of U,,. Note that U statistics can also be
vector-valued. As a first step, we consider scalar U statistics in this paper. We also define variance
of conditional means, which will be used to express the expansion of the variance of U,,:

Cc := Var (E[h(Xl, N ,Xk)‘Xl =T1y... ,XC = 1‘0]) . (2)
We have the following inequality from Lee (1990); Serfling (1980):

GG
i

, fori < 7. (3)

We write proj(X;, ¢, r) to denote the scalar X; projected to the interval (¢,7). For unbounded
kernels, we will consider sub-Gaussian(K(},) kernels, where we write X ~ sub-Gaussian(o?) if
Elexp(AX)] < exp(A\202/2) for all A € R. For bounded kernels, we will use inequalities for sub-
exponential variables. We write X ~ sub-exponential(c2, b) when E[exp(AX)] < exp(c?)\?/2)
for all |A| < 1/b. Note thatif |h(X1, ..., Xx)| < balmost surely, then H is sub-exponential((,b).
This distinction helps in dealing with sparse graphs, where (;, — 0.

Lemma A.1 in Appendix A.4 provides useful bounds on Var(U,, ), while Lemma A.2 provides
Hoeffding and Bernstein type bounds for U statistics.

2.1. Classes of U statistics

Classical U statistics typically have small or fixed values of k. However, important estimators
that appear in the context of subsampling (Politis et al., 2012) or Breiman’s random forest al-
gorithm (Song et al., 2019; Peng et al., 2019) have k = o(n). These are sometimes referred to
as infinite-order U statistics (Frees, 1989; Minsker, 2023)). While it is then natural to write the
expectation # and conditional variances {(.} as indexed by n, we do not do this for simplicity.

n-dependent kernel: U statistics also frequently appear in the analysis of random geometric
graphs (Gilbert, 1961). The difference between this setting and the examples above is that in the
sparse setting, the conditional variances {(.} also vanish with n. (See Section 5.1.)

Degenerate U statistics: A U statistic is degenerate of order { < k if (; = 0 for all i €
[¢ — 1] and ¢; > 0. Degenerate U statistics often arise in hypothesis testing, including Cramer-
Von Mises and Pearson tests of goodness of fit (Gregory, 1977; Anderson and Darling, 1952),
(Shorack and Wellner, 2009, Chapter 5). They also appear in tests for model misspecification
in econometrics (Li and Fan, 2020; Linton and Gozalo, 2014). For more examples, see de Wet
(1987); Weber (1981); Ho and Shieh (2006).

2.2. Differential privacy

In this work, we focus on the cryptographically-motivated notion of differential privacy (Dwork
et al., 2006), which has emerged as the gold standard in private data analysis. The main idea is that
the participation of a single person should not make a difference to the probability of any outcome:

Definition 1 A (randomized) mechanism M that takes as input a dataset D and has outputs in
a range space S is said to satisfy e-differential privacy if for any pair of datasets D and D’ that
differ in the value of a single element, and for any subset S C S of the range space S, we have
Pr(M(D) e S) <e‘Pr(M(D') € S).

Sensitivity. The most common way to ensure that a mechanism satisfies differential privacy is
through the Global Sensitivity Method (Dwork et al., 2006). Suppose we are trying to calculate a
differentially private approximation to a function f; this method first computes its global sensitiv-
ity, which is the worst-case change in the function f(D) when D and D’ differ in a single value
GS(f) = maxp pr | pap/|=1 |f(D)— f(D')|. The mechanism outputs M (D) = f(D)—i—%(f)Z,
where Z is a Laplace random variable. A similar definition for a specific dataset D is the local
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sensitivity: LS(f, D) = maxp: papr=1 |f(D) — f(D')|. Unfortunately, adding noise propor-
tional to the local sensitivity does not ensure differential privacy in general: variation in the noise
magnitude itself could potentially leak private information.

Instead, Nissim et al. (2007) proposed an elegant way of computing the smoothed sensitivity,
a smooth upper bound on the local sensitivity of a function f at a point D such that adding propor-
tionate noise ensures differential privacy. A function S.S(D) is said to be an e-smooth upper bound
on the local sensitivity of f if (i) SS(D) > LS(f, D) for all D, and (ii) SS(D) < eSS (D’) for
all [IDAD’| = 1. Roughly speaking, the first condition ensures that enough noise is added, and
the second condition ensures that the noise does not itself leak information about the data. The
Smoothed Sensitivity Method outputs M (D) = f(D) + 25D) . 7 where Z is a Student’s t-

€

distribution with 3 degrees of freedom (Nissim et al., 2007; Bun and Steinke, 2019).

Private Mean Estimation. A fundamental task in private statistical inference is private mean
estimation based on a set of i.i.d. observations. The most obvious way to do this is via the global
sensitivity method; however, this means that the standard deviation of the noise scales with R, the
range of the values. In the fairly realistic case where the range might be large while the typical
value is small, this leads to highly noisy estimation. To remedy this effect, a body of work (Karwa
and Vadhan, 2017; Kamath et al., 2019a; Cai et al., 2021; Kamath et al., 2019b) has looked into
how to design better private mean estimators for (sub)-Gaussian vectors. Our work will build
on one such method, known as CoinPress (Biswas et al., 2020). The main idea is to iteratively
refine an estimate for the parameters, until one obtains a private range that contains most of the
values; noise is then added proportional to this range. Observe that some dependence on range is
inevitable, especially for estimation with pure differential privacy (Chaudhuri and Hsu, 2012).

3. Main results

Our goal is to provide a private estimator for an unknown, estimable parameter §. We begin by
discussing a (non-private) estimator that estimates ¢ by an average of independent quantities:

Definition 2 (Naive estimator) Lerm =n/kandZ; == {{(j —1)k+1,...,(j —1)k+Ek}} for
all j € [m). Define Fuuyive = {11, ..., Lm}, which we call the “naive” family. Estimate 0 using
Onaive = nilk ;L:kl h(X(j—l)k—i-L oo 7X(j—l)k+k)'

Remark 3 Most private mean estimation algorithms (Karwa and Vadhan, 2017; Kamath et al.,
2019b,a; Biswas et al., 2020) applied to our setting will essentially provide a confidence interval

of width O (, / Var (émive) + k@/ne) =0 (\/kg‘k/n + k@/ne) since Var (énaive) =

kCi/n, where (y, is defined in Eq 2. Note that this is larger than the dominant term k(1 /n of
Var(U,,) (see Lemma A.1) and Eq 3. This stems from the fact that the naive estimator is a sub-
optimal estimator of 0. The optimal estimator is the U statistic defined in Eq 1.

In Algorithms 1 and 2, we present a general extension of the Coinpress algorithm (Biswas et al.,
2020) for estimating #, which will then be used to obtain a private estimate with the non-private
term matching Var(U,,). Originally, this algorithm was used for private mean and covariance esti-
mation of i.i.d. (sub)-Gaussian data. We also provide an sketch of the idea behind the algorithm.
Consider the set {Yj}je[(z)} = {h(Xs) : S € T, 1.}, where m = (}}); let us call this pseudo-
data. We want to apply the Coinpress algorithm on the pseudo-data by treating them as inde-
pendent data. While this assumption is not true, the pseudo-data are only weakly related in the
following sense: if a single data point X is changed, the only pseudo-data that potentially change

are h(Xg) for S € IT%; the fraction of such pseudo-data is (Zj) /(%) = k/n. This fact, along

with sufficiently strong concentration of the Y;’s and their mean % > Y; around 6, allows us

j€[m]
to recover / Var(U,) in the non-private part of the length of the confidence interval.
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Algorithm 1 U-StatMean (n kb XY i F = {T0e o T}, Ry, Q, Qavg>
1 a+ 0.99, t + log (R/Qa®) ., [lo,r0] + [~ R, R]
2. forj=1,...,mdo
3 Yo, ‘1—1]' Y ser, M(Xs)
4: end for

5: fori=1,2,...,tdo

6

7

8

9

{Y%,j}je[m}v [li, ’I”i] — U—StatOneStep (n, k‘, {Yz;l,j}, f, [ll'fl, 7"1;1], E/Qt, Oé/t, Q, Qan)
: end for
: {thJrl,j}jG[m]v [Zt+1a 7"t+1] < U_StatOHeStep (n7 ka {Y;ﬁ,]}v f) [lta rt}a 6/27 «, Q7 Qavg)
: return (L +7e41)/2

Algorithm 2 U-StatOneStep (n, k, {Y;}ie[m] S (L), €L 8, Q, Qavg)

11 Yj <= proji_q, rq, (¥;) forall 1 < j < m.

: A «=dep, i (F) (r =1 +2Qp)

AR %Z;”ZIYj%—W,whereWwLap(é)

) [2 (@57 Bogg) 2+ (05 + Sioe )]
return {Yj}je[m], [l,7]

W N

A

More generally, this idea allows us to extend the algorithm to {Y}} jelm) such that (i) each Y}
is a linear combination of the h(Xg) with E [Y}] = 0, (ii) the Y} are weakly dependent, and (iii)
all Y;’s and % > j€lm] Y; have sufficiently strong concentration around 6.
Setup. Let m = m,, ; be a positive integer and let F = F,, ;, = {Z1,Z», ..., Ly, } be a family of
non-empty subsets of Z,, 5., not necessarily distinct. For each i € [n], let
~ |{j€[m]:385 €Tjsuchthati € S}
m

fi “4)

be the fraction of indices j such that i is contained in some subset of Z;. Let dep,, , (F) :=
maX;e[, fi- For each j € [m], let Y} := ﬁzs@ h(Xg). Clearly, E[Y;] = 6. Moreover,
dep,, 1 (F) is an upper bound on the fraction of Y; that change if any single X is changed. To al-

low for small noise addition to ensure privacy, it will be desirable to choose F such that dep,, ;. (F)
is small. For 3 € (0,1], let Qg = Qp knp 7(B) and szg = Q::i,h,l),}'(ﬂ) be defined such that

1 ¢ v
IP’(sup Yje|>Q@><B,andP EZYJ-—G >Q5g < p. (5)
J€[m] =1

We will refer to () 3 and Q%Vg as B-confidence bounds for sup ¢, [Y; — 0] and ‘% > jeim Y — 9‘.
Finally, let size (F) = 3¢ 1 Z5]-

Proposition 4 Letn,m, and k be positive integers with k < n, and let o = 0.01. Leth : X* — R
be a symmetric' function and let D be an unknown distribution over X with E [h(Dk)] = 0.
Moreover, let R > 0 be a known bound on |0|. Let F = {Z;};c|m) be a family of non-empty
subsets of I,, .. For any X1,...,X,, € X, letY; = ﬁ ZSte h(Xg) forall j € [m]. Let Q and
Q8, respectively, be known confidence bounds on supjc(,, |Y; — 0| and B> jemm) Y5 — 0 as
defined in Eq 5. Then, for all ¢ > 0, Algorithm I with input (n, kyho{ Xi}iem), Fs Ry €, Q, Q“Vg)
returns 0~n such that, with probability at least %,

1. That is, the output does not change on permuting the inputs.
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Var(Xjem Yi)  dep,, 1 (F) Qa
VN

N————

private error

16, — 6] <O : (6)

non—private error

as long as dep,, ;. (F) <

and QZV/‘S; < Qo witht := log (%) Also, Algorithm 1 is

Qac
10tQq ¢ logt/a

e-differentially private and runs in time O (m log ﬁ + k- size (f)) .

Remark 5 The proposition assumes that the concentration bounds ) and Q®$ are known, de-
spite the mean 6 being unknown. If these bounds are not known, we may first need to (privately)
compute Qu, and Q% %, and then use those privately computed bounds in the algorithm. We will
see how to estimate these parameters for various families F of indices used in Algorithm 1.

Boosting the error probability: Proposition 4 achieves a constant success probability of %. If we
modify the algorithm parameters as is so that the error probability is at most «, we will incur a
1/+/a multiplicative factor in the non-private error. This stems from an application of Chebyshev’s
inequality to bound |% Z;"Zl Yy,; — 0|. Depending on the specific family F, we may be able to
provide a better concentration bound for % Z;n:1 Yo,; in Eq A.23. Instead, we complement the
result of Proposition 4 with a median-of-means wrapper that allows for an improved dependence
on o with only a log é multiplicative blowup in the sample complexity to achieve the same error.

Lemma 6 Leta > 0andletd := 12log é Perform d independent runs of Algorithm 1 to obtain
e-differentially private estimates {Hn,i}l-e[d] of 0, and let "¢ be the median of these values. Then,

éﬁed is e-differentially private, and with probability at least 1 — q,

~ m d F)Q,
01;:&179‘ =0 Var iZ}/] +M . @)
m — €

3.1. Main proposition applied to various families F

In this section, we operate under the following assumption.

Setting. Let X = {X;}c[, be i.i.d. draws from D. Assume the distribution of h(X1, ..., Xj)
is K-sub-Gaussian with unknown mean 6 € (—R, R) and unknown variance (; € (Omin, Omax)s
for known parameters K, R, 0in, and omax.

We now apply Proposition 4 (specifically, the form obtained in Lemma 6) to different JF to obtain
private estimates of 6, with statistical and computational tradeoffs depending on the family F.
As Remark 5 suggests, we will also need to privately estimate concentration bounds on the Y;’s
and their average. Naturally, this requires a private estimate of the variance (. We provide the
variance and mean estimation guarantees from Biswas et al. (2020) for variance estimation here,
where we have translated the mean estimation guarantee to fit our setting.

Lemma 7 There exists an algorithm PrivateVariance (X, 0min, Omax, €, &) which is e-differentially
private and runs in time O(n log 2¢), such that with probability at least 1 —c, the output (}, of the

Imax

algorithm satisfies (i, < G < 2(y, as long as n = Q(% log é) Moreover, this algorithm

runs in time O(n log Znex),

Omin

Lemma 8 Consider the naive estimator in Definition 2 corresponding to the following family of
subsets of I, j;: let m = n/k and I; := {{(j — Dk +1,...,(j — 1)k + k}} forall j € [m].
Let Fuaive = {Z1, . .., L }. There exist e-differentially privately computable confidence bounds Q)
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and Q%8 such that Algorithm 1 with input (n, ky by { Xi}ien)> Fraives Ry €, a, Q, Q“vg) returns an
estimate Ogive of the mean 0 such that with probability at least 1 — O («),

1R o (WG 1Y
VaVl n ne o'

’énaive - 0’ S

as long asn = Q (% <logR + log %) log é) The estimate Onaive is 2e-differentially private

. . . _ )~ n R
and the algorithm runs in time n = () (n + log Ck\/f)'

Remark 9 As discussed in Remark 3 above, this is a sub-optimal estimator, because the first term
of the deviation in a non-private estimator is O(+/Var(Uy,)). Indeed, using Lemma A.1 we can see
that the variance of a non-degenerate U statistics is k*C1 /n + O(k*Cy/n?), which is smaller than
the non-private part of the deviation provided in Corollary 8, due to (3).

We now apply this algorithm to different estimators. We first introduce a more computationally
intensive estimator, which simply uses each k-tuple from Z,, ..

Definition 10 (All-tuples family) Ler m = (Z) and let Foy = {I1,...,I,} be the m distinct
singleton subsets of T,, .. Call this family the “all-tuples” family.

Lemma 11 Let F,y be the “all-tuples” family in Definition 10. Then, there exist e-differentially
private confidence bounds Q) and Q8 such that Algorithm 1 with F = F,y returns an estimate
O of the mean 0 such that, with probability at least 1 — O («),

_ N 3/2
|0 — 0] < O (( Var(U,,) + kKC’“) log 1) 2
ne (6%

as long as n = <% <logR + log ‘;’Zn—“l‘:) log é) The estimate O,y is 2¢-differentially private
and runs in time O <(k‘ + log C%) (Z))

Remark 12 While Lemma 11 recovers the correct first term of the deviation, the private error term
is a 'k factor worse. Moreover, for the private error to be a smaller order, one requires k> /n =
o(1), so this only works for k = o(y/n). Note, however, that existing concentration (Hoeffding,
1948; Arcones and Gine, 1993) or convergence in probability (Vaart, 1998; Minsker, 2023) results
only require k = o(n) (see Lemmas A.1 and A.2 in the Appendix).

Given computational considerations, we now focus on subsampled U statistics. Previous work
has shown how to use random subsampling to obtain computationally efficient, yet statistically
accurate, approximations of U statistics (Janson, 1984; Politis et al., 2012; Chen and Kato, 2019),
where the sum is replaced with m (with or without replacement) random samples from Z,, .

Definition 13 (Subsampled Estimator) Draw m i.i.d. samples S1, . . ., §m from the uniform dis-
tribution over the elements of L,, j, and let Fy, := {S1, ..., Sy }. Define 0 = % Z;”Zl h(Xs;).

Note that unlike the other families of subsets of Z,, ;, the family F is randomized. Recall from
our discussion before Proposition 4 that we want each of the A (X, gj)’s as well as éss, to have good
concentration around ¢, and we also want dep,,  (Fss) to be small. The former concentrations
hold in the same way it holds in the “all-tuples” case, and the latter holds with high probability.

2. The dependence on log 1/« is O ((log 1/ a)”l), where £ is the degeneracy order of the U statistic.

7
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Lemma 14 Let M = M, . o be some parameter, and let F; be the subsampling family as in
Definition 13, with m := M. Then there exist e-differentially privately computable confidence
bounds @ and Q8 such that Algorithm 1 with input (n, ky by { XiYicn), Fsss By €, a,Q,Q“Vg)
returns an estimate Oy such that, with probability at least 1 — O (o),

n ~ 3/2 K
0 — 0] <O ( Var(U,,) + \/?’w W) 7
M ne

as long as M = Q(%loNg 7e), M = poly(n,log é) andn = % 1~ogR+ log ‘Zn—";:) log é)
Moreover, the estimator Oy is 2e-differentially private and runs in time O (M (k: + log %))

Remark 15 The condition M = poly(n,log 1/« is needed to ensure that the exponent of log é
that the error blows up by due to the median-of-means argument is a constant. In particular,

suppose M = (#;2 + 7 log %) Then, the second term in the bound of Lemma 14 can be

absorbed into the third term and we recover the same bound as the all-tuples estimator but with
an O(n3) computational overhead instead of an O(n"*) overhead as in the “all-tuples” case.

4. Private estimation for atypical U statistics

We have shown that for typical non-degenerate U statistics, standard private mean estimation
ideas can be applied to estimate 6 privately. However, in this section, we will focus on some
“atypical” U statistics that are also relevant to applications. For this section, we will assume that
|1h]leo < C < co. We will first present a general algorithm for private U statistic estimation and
provide its utility and privacy guarantees. We will then show that this type of analysis can be used
to obtain finer deviations in the case of degenerate and non-degenerate U statistics.

4.1. Concentration of Hajek projections

In this section, we assume the U statistic is degenerate, i.e., (; = 0. We also assume that the

kernel h has absolutely bounded range: suph — inf h < C' for some known C' > 0. Let 27(:3@

denote the subset of Z,, , where every element contains 7. Consider the projection izl (X;) =
ﬁ > sez® h(Xs). We show that the i, (X;)’s are concentrated around the conditional mean:
k—1 n,k

Lemma 16 Let S; € I, be a set containing i. Define o2 = Var (h(Xg,)|X; = z;). With
probability at least 1 — (3, conditioned on X; = x;, we have forall 1 < i <mn,

4kK 2 4k 2
—log —nai + — log —nC’. (8)

h(X:) — E[h(Xs,)| Xi = 2] B7 T3 58

<

4.2. Algorithm for atypical U statistics

We design an algorithm that builds upon ideas in (Ullman and Sealfon, 2019) and exploits the
concentration of the Hdjek projections i, (X;) in the case of degenerate U statistics. Let £ be a
parameter to be defined later; this parameter will be set so that with high probability, we have

‘ﬁl(Xi) - 9‘ < ¢, as in Lemma 16. For any n-tuple X = (X1, Xo, ..., X},), let
1 - 1 .
Un(X) = @) > WXs),  X) = >, h(Xs) Vi€ n], )
k) SeL, i (’f—l) SET!

and let £x be the smallest positive integer ¢ such that at most ¢ indices ¢ € [n] satisfy the condition
X (X;) — Un(X)‘ > &+ @r=1C%. ch an integer always exists because ¢ = n works. Define

n—1

Good(X) := {z :

PE(X) - Un(X)] < €+ M‘} (10)

n—1
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and Bad(X) := [n] \ Good(X). For each S € Z, 1, define
g (Xs) == h(Xs)1 (S € Good(X)) + Uy, (X)1 (S Z Good(X)) .

Finally, define ﬁn(X) and f]f((Xi) similar to Eq 9 but replacing the function h with a g.

Algorithm 3 PrivateMeanHajek <n, k, h, {Xi}ie[Qn] ,Cie,a = 0.999)

1: (; «PrivateVariance (n, k,h, {Xi}ie[n+1,2n] ,CLe, oz)

2: £+ 2 <2\/4’ff(\/§7k+ gfiC) logl%”
0 X {Xitigpy 5 Un(X) < ZSeIn’k h(XS)/(Z)
cfori=1,2,...,ndo
WX < Yger  M(Xs)/ (1)
i SET! . k—1
: end for

: Let &x be the smallest positive integer such that at most &£x indices ¢ satisfy
X (X0) = Un(X)| > ¢ + BDCE

8: Good(X) « {z : (ﬁ{((xi) - Un(X)‘ <e+ %} :Bad(X) « [n] \ Good(X)
9: for S € In,k do

10: g(Xs) < h(Xg)L (S C Good(X)) + Un(X)1 (S € Good(X))

11: end for

12: S(X) = maxo<ren (4k (Ex +£) /n) (26 + (1Tk (€x + ) C/ (n — 1))) e~

13 Ua(X)  Yser, , 9(Xs)/ (7)

14: return U, (X) + S(X)/e- Z, where Z < t3

The idea of Algorithm 3 is as follows: If all 2X(X;) are within ¢ of the mean U, (X), then
Bad(X) = @ and U,(X) = U,(X). Otherwise, for any i € Bad(X), the quantities h(Xg)
are replaced with the empirical mean U, (X) of the entire set, for any i € S. As we will show,
this averaging-out of the bad indices allows for a bound on the local sensitivity of U, in terms of
&x = |Bad(X)[, which can be viewed as an indicator of how well-concentrated the data are. We
will show that £x = 1 with high probability, which allows for a good utility guarantee.

Theorem 17 Algorithm 3 is 2e-differentially private. Moreover, if (1 = 0 and |h|o < C, then
with probability at least 0.99, we have

. k32K (14 1/e) logn /o, k2 (1+ 1/6)210gnc> |

n3/25 n26

AX) -0 =0 ( var(Uy,)

Proof The computation of (; and ¢ is e-differentially private. By Lemma A.5, it suffices to
consider a fixed <~ . and show that the rest of the algorithm is e-differentially private. Consider two
adjacent datasets X = (X1, Xo,...,X,) and X' = (X[, X}, ..., X)) differing only in the index
i*, that is, X/ = X for all i # i*. Let B := Bad(X) UBad(X') U {i*}, and let b := | B|. Then,

<Z> (0n(X) = 0u(X)) = > (¥(X0) =¥ (X5)) + 32 3 (6%(Xs) - g™ (x%))

SCBe €B SeTi |
k
=YY a1 (dFs) M (xY). an
a=2 SeIn,k|SﬁB|:a

The first term in the above equation counts all subsets that are contained in Good(X)NGood(X')\
{i*}. The second term now sums over all subsets with an element in B. However, this leads to
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overcounting every subset with a elements in common with B exactly a — 1 times. The third term

corrects for this overcounting akin to an inclusion-exclusion type argument. We will now bound
each of the three terms separately

The first term in Eq 11 is 0; indeed, if S C B¢ then ¢*(Xg) = h¥(Xs)
g (X ). Next, note that

= X (X%) =
1 kC
Un(X) = Un(X))| = |[7r D (M(Xs) = M(X§))| < —. (12)
(&) SeTi, "
Next, for any i # i*,
. X 1 , k—1)C
X)) =y Y (i) —hxy)| < EERC )
(k*1 SeTi NI, e

Before we bound the other two terms, we make the following crucial claim (proof in Appendix)
Lemma 18 [{x —&x/| < 1.

For any index i € [n] if i ¢ Good(X), then §(X;) = Un(X); and if i € Good(X), then
7X(X

g (Xi) = o= y S r¥(X5)1 (S C Good(X)) + &) > Un(X)1 (S & Good(X))
(k 1/ ies (k 1/ ies
— BE(X) + (1) S (Ua(X) = h(Xs)) 1(S Z Good(X)
k—1/ ieS

which implies [§%(X;) — Un(X)| < €+ M . Here, we used

(i) = (%) e

n—k+1

Either way, }gf(xl) — Un(X)| <&+ %, 5o

/ 4k - 3)C 4k — 3)Céxr
n—1 n—1
§2€+8kfx+5ka

n—1

(14)
Using Eq 14, the second term can be bounded as

o (X0) — a1 (X))

>3 (- o) < (212
iEBSEI;,k i€B

n—1 8kéx + bk
< 2 —=——C| (2 2 15
(121) (e ) e, as)
where we used the fact that b < éx + &xr + 1 < 26x + 2

. Finally,
z iﬁiwza(a_l) (7% (Xs) — ¥ (x8)) | < ;5?}@‘”(2) (:72)
B ()< - (-5) < oo

10
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where we used the identities Z’;:O (Z) (Z:g) = (}) and SOk a0 @ ( V(™ 2) = 2 (™). Combining
Egs 11, 15, 16, and the fact that the first term in Eq 11 is zero,

n n—1

which implies that LSy (X) < % (25 + 17k£x C) .Let g(€,&x,n) == % (25 I 17k£x C)
note that it is strictly increasing in x. Deﬁne

5(C) = max e g€, &x + 0,m). (17)

Lemma 19 S(G) is an e-smooth upper bound on LS¢(G). Moreover,
k(&x +1/€) (€ + Ch(éx + 1/6)/n>>

n

S(G):O<

By Lemma 19, it is clear that the term S(X) added in to UQ (X) in Algorithm 3 is exactly the
smoothed sensitivity defined in Eq 17. Therefore, the output U, (X) + S(X)/e - Z, where Z is
sampled from a Student’s ¢-distribution with three degrees of freedom, is e-differentially private.

Utlllty Flrst by Chebyshev’s inequality, we have with probability at least 1 —« that |U,,(X) — 0] <
7o\ /var(Uy,). Second, with probability at least 1 — « the estimate (. of the variance of h sat-

1sﬁes G < Ck < 2. First note that since Var(h(Xy,...,X;|X;)) = ¢ = 0, we have
E[h(X1,..., Xp)|Xi] = E[R(X1,..., Xk)] = 0.

Next, note that af are IID subexponential random variables with subexponential norm at most
K (,, because by Jensen’s inequality, E [exp (t0?)] < E [exp (t (h(Xs) — 9)2)} . Conditioned

on this event, and using Lem 16, with probability at least 1 — « all ﬁ{( (X;) satisty
- |4k K 4k 12n
‘h{((X,) - 9’ < (2 n Ck + C) T < g

Moreover, each of the projections sz(Xi) is within £/2 of the true mean 6 with probability
at least 1 — a. If so, then each of the projections is also within & of the empirical mean of

the projections. This means Good(X) = [n] and {&x = 1. Also, since all indices are good,
9(Xg) = h(XS) for all S and U,(X) = U, (X). Finally, with probability at least 1 — «, the Z
satisfies Z < fvar(tg) \/a. Therefore,

AX) = 6] < [T(X) = Un(X)| +Un(X) = 6] + |S(X) /e - Z]
k32K (14 1/e) logn /o, k2(1+1/6)210gnc> as)

n3/2¢ n2e

=0 ( var(Uy,) +

conditioned on all the aforementioned events, which occur with probability 0.99. |
5. Applications

We now discuss several applications illustrating the usefulness of our algorithmic framework.

5.1. Sparse graph statistics

Consider a geometric random graph as in (Gilbert, 1961). Here, each edge is of the form ¢g(.X;, X;) :=
1(|X; — X2 < 72), where X; € R%. Assume for concreteness that X; is uniformly distributed
in the d-dimensional unit sphere B;(1). If we apply Algorithm 1 with @, = 1, (since ¥; < 1 a.s.),
there will be no clipping and the algorithm will simply return the mean of the Y;’s with suitable
Laplace noise added. Take, for example, the all tuples estimator. The Laplace noise parameter

11
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will be O(k/n). For non-degenerate kernels, this may suffice since the main non-private element
of the deviation 6 — 6 is O(+/k?Cj/n). The catch is that for sparse graphs with 7, — 0, we also
have (, — 0 with n.

Chapter 2 of (Gilbert, 1961) states that as long as the expected subgraph count for a sub-
graph with k vertices is nk(rn)d(k_l) — o0, and nré — 0, one has normal convergence of
subgraph counts. Consider a concrete example with triangle counts with £ = 3 and d = 2. Then
h(Xi, X, Xi) = 9(Xi, X;)9(X;, X1)9(Xg, X¢). Furthermore, Eg(X;, X;) o r2, since this is
the probability measure in a ball of radius r,, in R?, and Eh(X;, X;, Xj) 74, since this is the
probability that ¢, j, and j, k are close.

Hence, the expected triangle count is O(n3r2), which tends to infinity if 7, > n~3/%. The
limiting variance of this U statistic will be O({3/n), where (3 = O(Eg(X;, X;, Xg)) = O(r}).
Thus, the variance is O(r2 /n), which may be smaller than the private error O(1/n?¢?) when the
expected count is going to infinity.

This is why we will apply Algorithm 3 in this setting. Recall the definition of the Hajek pro-
jection from Eq 8. Since ¢; > 0, Lemma 16 shows that ﬁl (X;) concentrates around its conditional
mean. Recall that o7 := Var(h(Xg)|X;) < E[h(Xs)|X;]. Using Lemma 16, with probability at

least 1 — %, conditioned on X;, we have |k, (X;) — 0] < \/E [h(X)[X:](1 + 1/471—’“, /log %") +
43% log %" +0.
Let & := {k points are within distance r,, of z}. We have E[h(Xs)|X;] = P(&1|X; = ),

which can be bounded by cdrg(kfl) 1(X; € Bg(1+47y)). Hence, with probability at least 1 —23,

we have |, (X;) — 0 = O < Cfi?"g(k_l) + 3£ log 2;) . Using this deviation bound with a similar

argument as in Eq 18, we have |A(X)—0| = O < Var(U,,) + % ( pdE=1) i)) . Recall that
Var(U,) = O((rp)“*=VEk/n) (using Eq 3). Hence, in situations like this, where all conditional
expectations are small, we can obtain confidence intervals of length O(1/n?).

5.2. Statistial inference on random graphs

More generally, Biau and Bleakley (2006) consider a random graph as an i.i.d. sequence of random
vectors { (X", X7, Y;7) }., taking values in X' x X' x {—1,1}, where the pairs (X', X7, Y}") and
(X7, X', Y})) are independent for {7, 5} N {k,1} = (). For a reconstruction rule g : X x X —
{—1, 1}, we can define the reconstruction risk R, (g) = ﬁ da<izi<n H9(XT, XT) # Y1}
Note that this is a U statistic when ¢ is a deterministic rule. In a typical statistical inference
procedure, we might wish to minimize R,, over a candidate set of reconstruction rules, or test a
hypothesis that ¢ = gg. The methods we have described in this paper would allow us to estimate

R, (g) privately, to a certain level of accuracy.

5.3. Goodness-of-fit testing

The Cramer-Von Mises statistic for testing the hypothesis that the cumulative distribution function
of a random variable is equal to a function Fj is given by

S0 [ <o) - Ru@) (U, < 0} - Fo(o) dFi(a),

i=1 j=1

Under the null hypothesis Hy : X ~ Fy, the distribution of the Cramer Von-Mises statistic is a de-
generate U statistic (Vaart, 1998). Thus, our techniques presented in Section 4.2 provide a method

for private goodness-of-fit testing based on the Cramer-Von Mises statistic. We note that private
goodness-of-fit testing has so far mostly been studied in the setting of discrete data (Gaboardi
et al., 2016; Acharya et al., 2018; Aliakbarpour et al., 2019). For continuous distributions, we are

12
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only aware of work that analyzes the LDP framework (Dubois et al., 2019; Lam-Weil et al., 2022;
Butucea et al., 2023), which is therefore not directly comparable to our proposed approach.

6. Discussion

In this paper, we have shown that for a broad class of standard U statistics, one can use existing
private mean estimation tools to obtain error bounds where the error injected to preserve privacy
does not occlude the irreducible error resulting from the variance of the nonprivate estimator.
However, in atypical cases, where the U statistics has variance O(1/n?) as opposed to O(1/n), the
private error may overwhelm the true variance. We have proposed a new algorithm that uses Hajek
projections to reweight different subsets of data appearing in a U statistic. This respects sensitivity
requirements, while not differing too much from the original estimator. We have discussed a
variety of applications in sparse random geometric graphs and goodness-of-fit testing.
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Appendix A.1. Auxiliary results
Lemma A.1 Suppose k < n/2.
(i) If (1 > 0, we have

2 2
Var(U,) = ©51 4 0 <§kk> . (A.19)
n n
(ii) If (1 = 0 but (2 > 0, we have
B k2 (k —1)%¢ k3

Proof This result follows directly from a calculation appearing in the proof of Theorem 3.1
in Minsker (2023). Consider the kernels /(Y. h(® ... h(*) of degrees 1,2, ...,k respectively
corresponding to the Hoeffding decomposition of the U statistic based on kernel h, and define

62 := var(h\9))

J

for all j € [k]. Well-known properties of the Hoeffding decomposition gives

SO 5]2- < Sk for all j. Moreover,

()

For part (i), we write

K20
Var(Uy,) = ~— + Z
j=2

n (’;) n = (’]‘) n = \n
K2 K2 B\ k%G 2k?
JH R (B PG
n n n n n
whereas for part (ii), we write
2 k
G RE-120 G _RPe-1% &0
Var(U,,) = I < Avia
kK2(k — 1)2C, RN RAk—1)2G 2K3¢
< S — = .
- 2n(n-—1) +ij§:;<n> 2n(n —1) s
[ |
Lemma A.2 (Hoeffding, 1963)
(i) If H is sub-Gaussian with variance proxy o2, then for all t > 0, we have
[2)¢2
P(|U, — 6] >t) <2exp | ——2& . (A.21)
202
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(ii) If H is almost surely bounded in (—C, C), then for all t > 0, we have

|42

Proof Without loss of generality, let @ = 0. For any permutation o of [n], let

/%]
1
KT ; M Xoki-1)41)s Xoth(i-1)42), - > Ko (hi))

By symmetry, U, = £, 3°_V,. For any s > 0,

PU,>t)=P (eSU” > eSt) < e 'R [eSU”] =e SR

exp (;1 Z Vn>

< 'R = ¢ 'E [exp(sVig)]

1
1 Z exp(sVy)

— ¢ S'E [exp (Lnjkjh(Xl’ . ,X@)] e

The first inequality used Markov’s inequality, the second inequality used Jensen’s inequality, the
third equality is true by symmetry, and the last equality used independence of the |n/k]| sum-
mands. |

Appendix A.2. Proofs of Proposition 4 and 8

Proof [Proof of Proposition 4] We will prove privacy and accuracy guarantees separately.

Privacy. Algorithm 1 makes ¢ + 1 calls to Algorithm 2; let A;, W;, and Z; be the values
taken by A, W, and Z in the ith call to Algorithm 2, for 1 < i < t+ 1. Let 8 := 0.01/t.
It can be shown inductively that the interval lengths r; — [; and the values A; do not depend
on the dataset. Forany 1 < ¢ < t,Y;; = projli—I*QﬁyTi—lyQB (Yiqy) forall 1 < 5 < m.
Suppose we change X, to X for some index w. For any 1 < i < ¢ + 1, conditioned on
the values of Zy for 1 < 4’ < i, at most an dep,, ;, (F) fraction of {Y; j};cpm depend on w
(this is true by the definition of dep,, ;. (F)). Since Yi; = proj;,_, _q, . 4+q, (Yi-1,;) has range
ri—1 —li—1+2Q 3, the sensitivity of % Z;n:l Y; j is atmost dep,, j (F) (ri-1 —li—1+2Qp) = A;.
Therefore, for all 1 < i < ¢, the output Z; (and therefore the interval [l;, 7;]), conditioned on Z;
for 1 < i’ < i, is €/2t-differentially private. Similarly, the output (l;y1 + r441)/2 = Zii1,
conditioned on {Z; };c|, is €/2-differentially private. By Basic Composition (see Lemma A.5),
Algorithm 1 is e-differentially private.

Utility. First, we show that if Algorithm 2 is invoked with 6 € [[, r], it returns an interval [I’, /]
such that § € [I’, /] with probability at least 1 — 3/3. Consider running a variant of Algorithm 1
with the projection step omitted in every call of Algorithm 2. Then, with probability at least 1 — 3,
we have| - 3"V — 0| < Qaﬁvg, and with probability at least 1 — /3, we have |W| < % log %
Therefore, with probability at least 1 — 23, we have

A 1
avg
Finally, bringing back the projection step does not project any of the m values Y; with probability
at least 3. Therefore, § € [I', r’] with probability at least 1 — 3/3.
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Next, we claim that if » — [ > 10Q, then 7/ — I’ < (r — 1) /2. Indeed, as long as

Qac . ¢ Qo€
< v7 <L
depy, . (F) < 10tQuyilogt/a ~ " \10log1/5’ 2Qslog1/8)

and Q%Vg < Qq, We have

2d F)log1 4d F log 1
A epn,k( /) 0og //8 (T—l) + <2Q'Evg+ epn,k( ),Q,B 0g /6)
€ €
-1 —1
<+ (200 +Qa) €

Consider the for loop in Algorithm 1, which invokes Algorithm 2 ¢ times. By a union bound,
with probability at least 1 — 3¢5 = 0.97, we have 6 € [l;, r;] and none of the projection operations
in Algorithm operate on any element outside their projection intervals. Moreover, our parameter
choices ensure that the length r; — [; of the interval [I;, 7] is at most 10Q),,. Condition on all these
events. Finally, consider lines 8 and 9 of Algorithm 1. The algorithm returns the midpoint of the
interval [l; 41, 744+1], which is the Z;11 in the final call of Algorithm 2. By Chebyshev’s inequality,

1 & 1 &
EZYOJ — 6] <10, | Var (mZY()j) (A.23)
i=1

=1

with probability at least 0.99, and with probability at least 0.99, none of the Y;’s are truncated in
the projection step in the final call of Algorithm 2. Finally, with probability at least 0.99, we have

d F) Qq
Wi =0 (2 o (4Pus (D)0 1)

€

The conclusion follows from a union bound over all events. [ |

Proof [Proof of Corollary 8] First, suppose the variance (j is known. For any index i € [n],
there is exactly one index j € [m] such that ¢ belongs to (the only set) S € Z;. Therefore,
dep,, 1, (Fnaive) = % Next, by the assumption that h(Xg) is K -subgaussian,

2
P(|h(Xs) — 0] > y) < 2exp <—2[y(<k> .

Hence, with probability 1 — a/m,

|Yi — 0] < V2K log(2m/ ). (A24)

By a union bound, we get a valid bound Q. = /2K log(2n/ka). Moreover, since the Y;’s are
Y; is K-subgaussian with variance % Therefore,

1 my?
Pl |— Y; — 0] > <2 —
(5 23) <200 (55)

This gives us a bound of Q%8 = /%"g(?m), It remains to verify the conditions of Proposi-
tion 4.

independent, = j€im]

oy
oy

Qac

ko e Kk € log(2n/ka)
n = 10tQ4 ¢ log(t/a) n — 10tlog(t/a) \/ log(2nt/ka)’
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and

Q8 < Qu | RGLBI) o )

log(2t/«)

>k
e log(2n/ka)’

which are both true because n = (% log é) Therefore, with probability at least 1 — O («),

A 1 A k 1
Onaive — 0’ <0 <\/aVar(0naive) + E\/QKQc log(2n/ka)log a>

To fix the issue of (; being unknown, note that we can instead use any privately computed upper
bound on ;. We will use half the data to estimate (; and the other half to estimate 6, both
differentially privately.

To estimate (j, we split [n] into n/k independent sets S1, ..., S, of size k, and compute
h(Xs,) for each i. These give us 7 IID data with variance ¢}, € (amm, Omax)- By Lemma 7 and the
assumption on n, we can get an e-differentially private estimate C i of (; such that with probability
atleast 1 — «, (; < Ck < 2(j. The argument now goes through by using Ck instead of (j, for the
bounds on Q, and Q&'®.

|

Appendix A.3. Proof of Lemma 14

In order to prove this, we will need the following results.
Lemma A.3 We have Var {éss] = (1= 1) Var(U,) + L.

Proof Clearly, E[éss} = 0.We compute both terms of the following decomposition of the variance
of fss separately; recall that X = {X; };c[):

Var (éss) = Var (E [9|XD +E [Var (égx)} .

Now,
Var( [HSS\XD Var | E | — Z h(Xs,)| X| | = Var(Uy,),
Jj€lm]
and
1 m
E[Var(e )} —E | Var m;h(ij) X || = —E[Var (h(Xs)|X)]
2
1 1
=—EK o) h(XS)2 n h(XS>
R W,
= L (G 87) — (var(y) + 92)) = SV
Adding the two equalities yields the result. |
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Lemma A4 Let a > 0, and let M = Q(7 log ;%) for a sufficiently large universal constant.
Then dep,, \, (Fis) < % with probability at least 1 — cv.

Proof Let Z; be the number of sampled subsets of which ¢ is an element. Observe that Z; is
Binom(M, k/n), with mean i = Mk/n. By a Chernoff bound, for any 6 > 0 and any i € [n],

0 I
P(Zi=z(1+d)p) < (W) (A.25)

By a union bound,

4k e3 H Mk
(s> ) = (s ) <0 () 2w (28).

which is at most « by our choice of M. Let G, be the event that dep,, (Fss) < %. [ |

Proof [Proof of Lemma 19] Clearly, S(G) > g(§,&x,n) > LS¢(G), and for any two adjacent G
and G’,

S(G') = max e “g(¢ &x + 6,n) < max e”“g(£,&x + L+ 1,n)
LET KEZZO

= max e “"Vg(¢, éx +0+1,n) <€ [max e g€ &x + L+ 1,n) =eS(G).

This shows that S is an e-smooth upper bound on the local sensitivity of f. As for the upper bound,
for any ¢ > 0, we have

ol ) = D (5 L)
_ 4k (€X6*6€/2 + 66*65/2) (256—55/2 N 17k (§X€766/2 + gefd/Q) C)
n —
< AU (e 1RO ).
n n—1

Proof [Proof of Lemma 14] By the given sample complexity bound on n and using Lemma 7, we
can obtain an e-differentially private estimate fk of the variance of (; such that with probability
atleast 1 — a, (i < Ek < 2(. Assume now that (; is known; it will be apparent that using the
privately estimated (j, instead of (j, in the proof does not affect the final error guarantee. Note also
that conditioned on any family Fg of subsets of Z,, ;, the run of Algorithm 1 is e-differentially
private. Since the randomness of Fg is independent of the data, the algorithm (along with the
private variance estimation) is still 2¢-differentially private.

Let Qo = /2K (klog (42). Then, for any S € T,, ; the probability that [h(Xg) — 0] < Qq
is at most 2 (ﬁ)k < 52%. By a union bound over all (3) sets S, |n(Xg) — 6] < Qq for all
S € 1, with probability at least 1 — % Call this event &£; conditioned on this event, éss = éss.
As for Q%' :

s — 6] > t)
P(Ga)

P (|éss —g > t|ga) < P<
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Now, E[933|X1, ... Xy] = U,. Moreover, for any t > 0,

P (|éss —g > t) <P (|éss U > t/2) +P(|U, — 0] > 1/2)
2

<Ex,  x,P <|éss —Uyn| > t/2| Xy, .. 'aXn) + 2exp <_81<:KC2
k

> (A.26)

For the first term in Eq A.26, note that conditioned on the data X1, ..., X,,, the Y; are independent
draws from the uniform distribution over the (}}) values {h(Xg)}sez, . have mean U,,, and the
|Y; — 0| are bounded by maxgez, , [h(Xs) — 0| < Qq. Therefore, Y; — U, is sub-Gaussian(Q?2).
Therefore,

N Mt2

M2 o
<2 - - A27
= 2exb < 16K§kklog(4n/a)) s (A.27)

> \e} + P(£°)

Combining Eqs A.26 and A.27, we get

- M2 nt?
P(l0s—0>t) <2 - 242 —— | < a,
(' | ) xp ( 16K§kklog(2n/a)> +a/2t2exp < 8kK§,§> “

for
Kk 8n
log

min (M,n) ° a

Que =1

Thus, from Lemmas 6, A.3, and Eq A.26, with probability at least 1 — O («),

. . 1§ Kok
\955—9\§0< Var(Un)—F\/E—F\/ n2k62 )

A.3.1. Proof of Lemma 16

Proof [Proof of Lemma 16] First, conditioned on X, the projection ﬁl (X;) can be viewed as a U
statistic on the other n — 1 data. By Bernstein’s inequality for U statistics (see Eq A.22), for all
t > 0, we have

A i)
b (X0) ~ B [A(X5)| X 2 1) < 20x0 | o5t | (A.28)

P
202 +2Ct/3

Setting t = 04/ % log %” + % log %” in Eq A.28,

- —nt?/k —nt? —3nt B
P(lh (X)) -6 >t) < R ) ind 1 T o P
(‘hl( i) 9‘ = t> = oxp (203 +2(Jt/3) = &P <mm{4img’ 4kC }) S on A2

Applying a union bound on the events in Eq A.29 over all i € [n] yields the result. |
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Proof of Lemma 6 Proof The output égled is e-differentially private by Parallel Composition
(see Lemma A.6). For each ¢ € [d], let Z; be a Bernoulli random variable which is 0 iff it satisfies
Eq 6. By the guarantee on ém-, Z; has mean p < i. Note that the median of these d estimates
satisfies Eq 6 if more than 5 of the estimates satisfy the equation, that is, if Zie[d} Z; < %. Since

increasing p can only decrease this probability, assume p = i. By a Chernoft bound,

P Zzizg =P ZZiZQEZZi §exp(—;~pd):a.
i€[d]

i€[d] i€[d]

Proof of Lemma 11 Proof By the given sample complexity bound on n and using Lemma 7,
we can obtain an e-differentially private estimate (j, of the variance of (;, such that with probability
atleast 1 — «,

G < Gk <26k

Assume now that (j, is known; it is easily seen that using the privately estimated (), instead of
(), in the proof does not affect the rest of the argument and the error guarantee (up to constants).
For any ¢ € [n], there are exactly (Zj) sets S € I, 1, such that i € S. Following the notation

from Eqs 4 and the definition of dep (), fi = (Z:i)/(’;) = Eforalli € [n], so dep,, ;. (Fan) = k.

Moreover, for each S € Z,, 1, P (|h(Xg) — 0] > y) < 2exp (%) . Letting

Qs = \/QKCkklog (2;) < \/2ng log <§ <Z>>

we see that each Y; is within ()5 of 6 with probability at least (2—). A union bound implies that this
k

choice of Qs is valid. For the concentration of the average, % > jem] Y;, which is simply the U
statistic U,,, we will use the Hoeffding bound on U statistics (cf. Lemma A.2)

P(éZY,;—H Zy) §2exp<—W>.

2Ky,
Qavg — 2K (kklog % )
0 n

To apply Proposition 4, we verify if the conditions in Proposition 4 hold.

k < Qe _ € log2n/a - n> 10kt log(t/cv) loant/oz7
n ~ 10tQ, ¢ log(t/a)  10tlog(t/a) | log2nt/a - € log2n/«a

and

Thus, we can define

2K (klog & log 2t
ZRGkklog o fokeiklog (ﬁ) = n> %gg //a,
[0 n/o

Q5* < Qu =

which are both true. Therefore, with probability at least 1 — O («), we have

(O — 0] < O <\/1&\/W+ :E\/QKCkk‘log (?)) .
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Proof [Proof of Lemma 18] By symmetry, it suffices to show {x/ < £x + 1. So, if an index 7 # ¢*
is in Good(X), then using Eqs 10, 12, and 13, we get

W (X]) = Un(X))

< | () = W) |+ [ (6) = Ua(X)] + [Un(X) = U(X)

(2k —1)C(¢x +1)
n—1

<&+

il

7

the bad indices in G and the index ¢*. Therefore, {x/ < éx + 1. |

which leaves at most 14+-£x potential indices i for which |2 X (X!)—U,(X')| > ¢ —1—%:

Appendix A.4. Composition Theorems for Differential Privacy

Lemma A.5 (Basic Composition) Let X and R be non-empty sets. If A1, Ao, ..., A : X" - R
are each e-differentially private algorithms, then the mechanism A : X,, — R defined as

AXq, o0 X)) = (A1 (X, X)) o A (X, -0, X))
is ke-differentially private.

Lemma A.6 (Parallel Composition) Let X and R be non-empty sets. If A1, As, ..., Ay : X" —
R are each e-differentially private algorithms, then the mechanism A : X*" — RF defined as

AX1, o X)) = (AL (X, X)) Ao (Xt Xon) s oo A (X myn 15 -+ Xin))

is e-differentially private.
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