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Abstract We face a new era in the assessment of multiple natural hazards whose statistics are
becoming alarmingly non-stationary due to ubiquitous long-term changes in climate. One particular case
is tsunami hazard affected by climate-change-driven sea level rise (SLR). A traditional tsunami hazard
assessment approach where SLR is omitted or included as a constant sea-level offset in a probabilistic
calculation may misrepresent the impacts of climate-change. In this paper, a general method called
non-stationary probabilistic tsunami hazard assessment (nPTHA), is developed to include the long-

term time-varying changes in mean sea level. The nPTHA is based on a non-stationary Poisson process
model, which takes advantage of the independence of arrivals within non-overlapping time-intervals

to specify a temporally varying hazard mean recurrence rate, affected by SLR. The nPTHA is applied to
the South China Sea (SCS) for tsunamis generated by earthquakes in the Manila Subduction Zone. The
method provides unique and comprehensive results for inundation hazard, combining tsunami and SLR
at a specific location over a given exposure time. The results show that in the SCS, SLR has a significant
impact when its amplitude is comparable to that of tsunamis with moderate probability of exceedance.
The SLR and its associated uncertainty produce an impact on nPTHA results comparable to that caused by
the uncertainty in the earthquake recurrence model. These findings are site-specific and must be analyzed
for different regions. The proposed methodology, however, is sufficiently general to include other non-
stationary phenomena and can be exploited for other hazards affected by SLR.

Plain Language Summary Assessing natural hazards that are made worse by climate change
cannot use previous methods that assume that the average behavior is a good representation of the hazard.
Here we show the effect of climate-change-driven sea level rise (SLR) on tsunami hazard, where the
continuously increasing SLR cannot be represented by an average value. Higher sea levels produce several
changes in the tsunami behavior, including an increase in the maximum tsunami water level and in the
speed the tsunami propagates. We introduce a new method which incorporates the long-term time-varying
changes in mean sea level. The method can be applied to other coastal hazards, such as storm surge and
waves. The new method is applied to port cities in the South China Sea (SCS) for tsunamis generated

by earthquakes in the Manila Subduction Zone. We determine the probability of flooding urban areas
within 50 and 100 years. The hazard in SCS is significantly impacted by SLR when it rises by an amount
comparable to the tsunami height for a tsunami with moderate likelihood. The effect is comparable to

that caused by the estimated uncertainty in recurrence interval of the causative earthquake. These results,
though, are site-specific.

1. Introduction

A common approach to evaluate the impact of natural hazards is the probabilistic hazard assessment,
in which all magnitudes of possible events are considered, including extreme scenarios, each with a giv-
en probability of occurrence, and are integrated into a single measure of the hazard probability (e.g., the
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probability to exceed a certain hazard parameter value within a certain number of years). For instance, the
probabilistic seismic hazard assessment (PSHA), first introduced by Cornell (1968), assumes a Poisson pro-
cess model and empirical attenuation relations of seismic waves with large observational uncertainties, to
evaluate the probability of exceeding a certain level of ground shaking at a particular location (e.g., a certain
peak ground acceleration) within a time interval of engineering relevance. This approach was then extend-
ed to probabilistic tsunami hazard assessments (PTHA) focusing on tsunamigenic earthquakes (Geist &
Parsons, 2006; Grezio et al., 2017) and landslides (Geist & Lynett, 2014; Grilli et al., 2009; Lane et al., 2016;
Levholt et al., 2020). PTHA has been widely applied to understand tsunami hazards regionally and glob-
ally (Davies et al., 2018; Grezio et al., 2017; Li et al., 2016; Mori et al., 2017; Park & Cox, 2016; Williamson
et al., 2020). Uncertainties in the tsunamigenic mechanism need to be included in PTHA methodologies.
Geist and Dmowska (1999) and later studies, for example, showed the important role of the slip heter-
ogeneity in tsunami hazard assessments. Sepulveda et al. (2019) proposed a new method to incorporate
uncertainties in the earthquake mechanism (i.e., earthquake slip distribution and location) into a PTHA by
means of a splitting Poisson process. Most of the existing PTHA methodologies adopt stochastic approaches
to model the uncertain inputs as stationary random elements, ignoring any temporal evolution of haz-
ard statistics. Thus, questions remain on the capability of PTHA to incorporate non-stationary processes,
including those related to climate change. The focus of this paper is thus to consistently incorporate the
absolute climate-change-driven sea level rise (named SLR herein) into a PTHA.

SLR has become a pressing issue for coastal communities. Its prediction and the design of adaptation meas-
ures pose challenges for scientists, engineers, and policy makers (Portner et al., 2019; Sweeney & Beck-
er, 2020). While several SLR projections have been proposed for the present and future centuries (e.g.,
Horton et al., 2020), the uncertainties are significant and depend greatly on how human activities will
impact the climate system. The quantification of SLR uncertainties and corresponding statistical properties
(e.g., probability distributions) pose further challenges. Four scenarios known as representative concentra-
tion pathways (RCP) have been proposed to account for different evolution of greenhouse gases (Portner
et al., 2019; Wang et al., 2016). The SLR uncertainties remain in these scenarios due to uncertainties in
many Earth system model components, which are often handled by creating ensembles of simulations.

SLR often refers to changes of the absolute mean sea level, defined as the height with respect to an abso-
lute reference such as the International Terrestrial Reference Frame (ITRF), for example (Woodworth &
Player, 2003). As far as coastal hazards are concerned, it is also practical to evaluate changes of relative sea
level, defined as the sea level height with respect to a local land-based reference (e.g., a local vertical datum).
Other long-term processes modifying the relative sea level act in combination with SLR. For instance, the
coast may experience subsidence or uplift in tectonically active regions (e.g., Plafker & Savage, 1970). While
co-seismic ground surface deformation during an earthquake can be reasonably well estimated after the
fact with various models (e.g., Mansinha & Smylie, 1971; Okada, 1985), the interseismic deformation has a
large uncertainty. Climate change can also indirectly drive coastal deformation. For instance, the melting
of ice sheets may produce a loading reduction on the Earth’s crust, causing an uplift due to elastic rebound
(Jiang et al., 2010; Larsen et al., 2005). Another example is land subsidence due to excessive groundwater
and gas extraction (Chaussard et al., 2013). These additional processes can be included as corrections to the
effective relative SLR (or sink) in a given study area. Even if SLR is relatively well constrained, its interaction
with randomly occurring hazards (e.g., tsunamis, storm surges, meteotsunamis, and coastal storms) com-
pounds the hazards experienced at the coast. Ultimately, it will be important to address all of these hazards
in combination. For the current study, however, the question of how PTHA results will be affected by SLR
alone is first addressed.

Earlier studies have responded to this question by conducting PTHA with several selected and fixed sea
level scenarios. Using this simple approach, Dall’Osso et al. (2014); Li et al. (2018) showed that tsunami haz-
ards can be significantly enhanced under certain SLR scenarios, in particular when the tsunami maximum
tsunami elevation is comparable to SLR. As an illustration, Figure 1 shows the combined effect of randomly
generated earthquakes, and corresponding tsunamis with SLR over a given exposure time, T, for which
the hazard must be assessed, for example over the lifetime of a coastal project. The random occurrence of
earthquakes e, at times T}, produces a hazard response (e.g., expressed as inundation) H, at a studied site.
The properties of e, and Hy are commonly related by assuming a stationary model. However, certain coastal
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Figure 1. Top: Schematic showing the random occurrence of hazard sources e (e.g., earthquakes) at six different epochs, T}, within an exposure time T. Some
coastal hazards, such as tsunamis, will be affected by sea level rise (SLR) modifying the mean sea level s(T}). The coastal hazard response H (e.g., values of
maximum tsunami elevation, runup, area of inundation) will result from a combination of e(T}) and s(T). Bottom panel: Illustration of how the maximum
tsunami elevation (i.e., the defined H) will be affected by the SLR at different epochs. Note the difference between tsunamis Hs and H; is larger than the SLR
that occurred between the two earthquakes of identical size.

hazards can be severely modified by SLR. Indeed, SLR might both increase inundation extent and change
propagation depth, which in turn modifies the tsunami response. Hence, the properties of e, in combina-
tion with the SLR at the time of occurrence of the event define Hy. The lower panel of Figure 1 shows a
sketch of different earthquake events occurring in six different epochs, Tj. While the sea level is rising due
to climate change, earthquakes with different characteristics (and magnitudes) generate different sizes of
tsunami waves. These tsunami waves interact with the changing water depths due to SLR, generating differ-
ent hazard responses, H(T}). Different mean sea levels occur at different epochs and, therefore, SLR must be
included as a non-stationary process in the PTHA.

This study aims to integrate hazards occurring at random epochs (e.g., earthquakes) with a temporally
evolving process (e.g., SLR) within an exposure time. In section 2 we define a general non-stationary proba-
bilistic tsunami hazard assessment (nPTHA), based on a non-stationary Poisson process. In section 3 and 4,
we apply the nPTHA in South China Sea (SCS herein), evaluating tsunamis generated in the Manila Sub-
duction Zone and SLR projections for the 21* century. Section 5 evaluate the sensitivity of the nPTHA in
the SCS to different sources of uncertainty. Finally, section 6 discusses future prospects for this new nPTHA.

2. PTHA Based on a Non-Stationary Poisson Process (nPTHA)

In Sepulveda et al. (2019), a PTHA method was developed incorporating uncertainties in the earthquake
slip distribution and location. The PTHA method sorts potential earthquakes, or any tsunamigenic source,
into sets known as ensembles E;. Earthquakes belonging to E; have magnitudes within a defined range and
originate in the same fault segment, although their location within the segment can vary. The occurrences
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of earthquakes in E; in the time interval (0, T) follow a homogeneous Poisson process N, (T') with average
recurrence rate g, > 0. The average recurrence rate is expressed in number of events per unit of time. The
earthquakes belonging to E; are independent and identically distributed random variables. Thus, Ng, (T) is a
random number of earthquakes in (0, T) with random arrival times T;, Ta,..., Ty £ (T Several earthquake en-
sembles, which pose a tsunami hazard in the study region, are included in the PTHA and they are assumed
to be independent of each other. The measures of tsunami response can be defined, for example, as the
maximum tsunami elevation, the maximum current speed, the maximum flow depth, inundation extent,
etc. and they are denoted by H'. Thus, Hl , H; HNE, () correspond to tsunami responses caused by the
Ng, (T) earthquakes. The responses H* are assumed to be independent and identically distributed random
variables. Tsunami responses exceeding a certain value h, are described by a new homogeneous Poisson pro-
cess Ny with recurrence rate 4, = Az P(H * > h.|E,), where P(H > h,|E;) is the probability that H' exceeds
h. given that an earthquake of ensemble E; occurred. N, is referred to a thinned version of N E (also known
as the splitting of Poisson process or Raikov’s Theorem (Raikov, 1938)). When including all the pertinent
earthquake ensembles, the overall probability of not exceeding h, within the time interval (0, T) is given by,

-AE; * h\E; e
P(NhL,(T) = 0) =Tle £, PO >he EDT e AT @

i

The average recurrence rate for exceeding h. is stationary and equal to,

As(h) = Z2g P(H" > h|E). )

The reciprocal of the average recurrence rate (i.e., 1/4s (h.)) is called the mean return period and is mean-
ingful when the average recurrence rate does not change in time. Indeed, Sepulveda et al. (2019) expressed
PTHA results using mean return periods.

Let s(¢) be the temporal evolution (i.e., the vertical change) of the mean sea level. As the mean sea level
varies with time, the probability of exceeding k. for a certain earthquake ensemble will vary and, therefore,
so will Ay.. Thus, 4,(f) should be a function of time, that is, for higher sea levels more events exceeding h,
are expected. The tsunami responses are now affected by s(t) and denoted by H. Thus, H;, H, ,...,H, NE; (T)
correspond to the tsunami responses caused by the Ny, (T') earthquakes and when the mean sea level is s,,
825w, SNg, (). Consider a partition of (0, T) into m non-overlapped sub-intervals At, sufficiently small such
that the probability of having two or more tsunamis exceeding h. in At is nearly zero. Therefore, the prob-
ability of having a tsunami event exceeding h. during an interval (¢, t, + At) with t, = kAt, k =1, ..., m, is
Ag, P(H > h |E;s(t) At =1~ ¢4 B PH > helBysC )»A[, where P(H > h.|E, s(t;)) is the probability that H ex-
ceeds h, given that an earthquake of ensemble E; occurred when the sea level was s(t). The probability that
earthquakes E; do not create tsunamis exceeding k. in (0, T) can be viewed as a sequence of m independent
Bernoulli trials with probability of success p;, = ol T el Eins ik ))Al). Thus, the probability that k. is not
exceeded is p; - p -...-.pm- By also incorporating different ensembles of earthquakes, the expression yields,

M —Ag; P(H>ho\E; s(tg )A
PN, (T = 0) = [T [T "5ttt 3

i k=1

where i denotes the ensemble and k denotes the sub-intervals of the partition of (0, T). We hypothesize
that possible temporal changes in 4, occur over time scales much longer than the SLR evolution. Thus, we
assume that 4, does not change in time and s(¢) is the only non-stationary process. This assumption can be
further relaxed by incorporating temporal changes in 4. However, this is not done in the present study. By
replacing At with dt—0, Equation 3 yields,

X2, 1§ P(H>helE; s(r)ds

P(th T) = O) —e i — g N T @)
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Equation 4 is referred to as a non-stationary Poisson process with average recurrence rate,

Iy (h,T) = X 2y, %Jg P(H > h, | E,s(t))dt. (5)

The non-stationary Poisson process has been used in previous studies to describe the random occurrence of
other types of non-stationary natural hazards (e.g., Araya & Der Kiureghian, 1988) and constitutes the main
model of the nPTHA of this study. The expression for the non-exceedance probability based on the non-sta-
tionary Poisson process (i.e., Equation 4) is similar to that of the probability based on the stationary Poisson
process (i.e., Equation 1). The only difference between both expressions are the recurrence rates. The calcu-
lation of the nPTHA is therefore reduced to calculating the integral in Equation 5. Here, two approaches to
calculate P(H > h|E,, s(t)) are proposed and a numerical method is developed to solve Equation 5.

2.1. Surrogate Model

The exceedance curves, P(H > h|E;, s(t)), will change with SLR (and time). Thus, the exceedance curves
built for traditional PTHA (e.g., Figure 10 in Sepulveda et al., 2019) are not valid for this situation. The
computation of P(H > h.lE;, s(t)) for continuous or very closely spaced intervals of time, t, is not feasible.
For example, for a single case in Sepulveda et al. (2019) (i.e., without SLR), a total of 640 h (27 days) were
needed to compute the exceedance curves on a conventional computer (2.6 Ghz Intel quad-core i7 processor
computer). We propose to determine P(H > h.|E;, s(t)) at a small number of defined epochs, called colloca-
tion epochs. This approach is called a surrogate model.

We generate n different sets of exceedance curves, P(H > h|E;, s(t))), with a given sea level offset relative to
the current mean sea level, s(t)),j = 1, .., n, where ¢; are the collocation epochs. The introduction of this offset
in mean sea level is straightforward in most tsunami propagation models. In COMCOT (Wang, 2009), for
instance, an offset can be specified to the mean sea level in the input information. In this study, we divide
the total sea level offset at the exposure time T, s(T), into n equal increments, and thus,

§ =[500),8(T) / n,25(T) / n,..... s(T)] = [59551, 850038, ] (6)

While the equidistant s is a valid set, the optimal one commonly depends on P(H > h.|E;, s(t)), s(¢) and the
selected surrogate model. The set of exceedance curves with s(0) is the same as that of the PTHA without
SLR.

In the surrogate model, the estimation of P(H > h.|E;, s(t)) results from an interpolation of the exceedance
curves P(H > hlE;, s(ti-1)) and P(H > h |E;, s(t;)), where t;_; < t < t;. To build the curve P(H > h.|E;, s(t)), we
interpolate for k. in terms of a fixed value of probability. With this interpolation, we avoid spurious results
where the collocation curves reach probability of one (the maximum). The surrogate model is sufficiently
general to calculate the exceedance curves of other hazard measures, such as current speeds, flow depths
and inundation. The accuracy of the surrogate model depends on the number of collocation epochs, n, and
should be examined and determined for each specific problem.

2.2. Linear Approximation for Maximum Tsunami Elevation

A simpler approach can be adopted to estimate P(H > h.|E;, s(t)) if two conditions are fulfilled. First, this
PTHA analyzes the maximum tsunami elevation or any other measure related to the surface elevation.
Second, the maximum tsunami elevation relative to the mean sea level at the time of the earthquake (i.e.,
the level including SLR) is independent of the value of s(t). Consequently, SLR can be simply linearly super-
imposed on the maximum tsunami elevation resulting from a tsunami simulation without SLR, as an offset.
The exceedance probability curves, P(H > h.|E;), built for h.in a PTHA without SLR can be easily modified
by adding s(t) to h. and preserving the probability values (i.e., shifting the maximum tsunami elevation in
the exceedance probability curves). With this approach we do not need to carry out additional simulations
beyond those for the conventional PTHA. The validity of the linear superposition assumption, though,
needs to be examined for every case study. A few tsunami simulations using the greatest earthquakes, for
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example, may provide insights into the relevance of non-linear interactions. This approach is not used in
this paper but it may be useful for other case studies, for example when assessing tsunamis at offshore
locations.

2.3. Numerical Integration of [} P(H > h, | E,,s(1))dt

After using either the surrogate model or the linear superposition approach, [ P(H > h, | E;,s(0)dt
in Equation 5 can be computed using a trapezoidal quadrature, which uses the calculat-
ed P(H > h.E; s(t). For instance, we select a temporally equidistant set with q + 1 elements,

@ =[s(0),s(T / q),s2T / q),.....s(T)] = [so,sl,sz,....,sq],

(7

7 ; ! P(H > h | E,s
Ay (h.,T) ZZAEL[W ( e | E q)}
i 'q

+ Y P(H>h | E.s,)+
k=2

where q is the number of temporal sub-intervals for the trapezoidal quadrature. The accuracy of the es-
timated A, (h,,T) depends on the width of the trapezoids and the estimator of P(H > h.IE;, s(t)). For the
example case in section 3, we tested different values of q and the integral converges for g = 20.

2.4. nPTHA Results

The usual practice of reporting hazard in terms of average recurrence rate or return period (e.g., 100 or
1,000 years (Santiago-Fandifio et al., 2014; Sepulveda et al., 2019) may be inadequate for nPTHA because
the average recurrence rate changes depending on the exposure time T (i.e., recurrence rates are not sta-
tionary). Another useful and intuitive measure to describe the hazards is P(N n (1) = 0) in Equation 4 and
the exceedance probability,

P(th T) > 0) =1- P(Nhf (T) = 0) —1- e*ZN(hC,T)T’ ®

which gives the probability of exceeding a hazard threshold value at least one time within T (i.e., the com-
plement of P(N 0 (T) = 0)). The mean return period of the PTHA also presents issues for stationary prob-
lems (Serinaldi, 2015). For instance, a hazard with average return period of 1,000 years sounds very un-
likely. However, the probability that such an event will occur at least one time in a human lifetime (i.e.,
T ~ 100 years) is 1 — e7'%"%° = 9,5%, which is perceived as a significant likelihood. Return periods of 2,500
and 10,000 years also correspond to significant probabilities for T = 100 years (1 — e '**% = 3,92% and
1 — 101000 — 1 009, respectively). Hence, the nPTHA results of the present study are expressed in terms
of probabilities of exceedance within the exposure time 7.

For sake of clarity, Figure S1 of the supporting information presents a diagram summarizing the method
of this section.

3. nPTHA Illustration in the SCS

In this section we conduct a nPTHA for sites in Hong Kong, China, and Kao Hsiung, Taiwan, for tsunamis
generated by earthquakes in the Manila Subduction Zone, incorporating SLR. The six locations that are
studied are shown in Figure 2.

3.1. Earthquake Characteristics

In this nPTHA case, we include three sources of uncertainty for each earthquake. We incorporate uncer-
tainties in the earthquake slip and location within the fault segment, as well as the uncertainty in the earth-
quake recurrence rate. These uncertainties are the same as those described in Sepulveda et al. (2019) and
they are presented again for convenience.
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Figure 2. (a) Map of the South China Sea (SCS) and the coastal cities of Kao Hsiung, Taiwan, and Hong Kong, China.
The map also shows the hypothetical fault segments (segments A, B, and C) associated with the Manila Subduction
Zone. (b) Detail of bathymetry and topography in the vicinities of Hong Kong. The maximum tsunami elevation is
evaluated at sites #4 Offshore Hong Kong (depth 4.17 m relative to mean sea level (MSL)), #5 East Hong Kong (depth
20.95 m MSL) and #6 West Hong Kong (in front of Kai Tak Terminal, depth 12.52 m MSL). (c) Detail of bathymetry
and topography in the vicinities of Kao Hsiung. The maximum tsunami elevation is evaluated at sites #1 Offshore

Kao Hsiung Port (depth 13.85 m MSL), #2 North Kao Hsiung Port (depth 8.27 m MSL) and #3 South side Kao Hsiung
(inside port, depth 16.58 m MSL). Heights are relative to mean sea level in 2020.

Three seismic fault segments are analyzed. Segment A is characterized as being able to produce earthquakes
with magnitude between My, 7.5 and 9.0, segment B has the capability to produce earthquakes of magni-
tude between My, 8.0 and 8.5, while segment C has the capability to produce earthquakes of magnitude My
8.5. The minimum earthquake magnitudes were chosen as those capable of producing significant tsunami
amplitudes at the six locations of interest (i.e., the tsunami elevation with 1% probability of being exceeded
is greater than 0.1 m in Hong Kong and Kao Hsiung). The maximum earthquake magnitude corresponds to
the greatest earthquake that would rupture the entire length of the fault segment. The earthquake rupture
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Figure 3. Empirical G-R curves of the four earthquake recurrence models used in this study. N represents the number of events greater than a certain
magnitude per year. Black lines: Recurrence model 1. Blue lines: Recurrence model 2. Empirical recurrences are obtained from the NEIC catalog between 1974
and 2017 and use the seismogenic region limits defined in Figure S5. Green lines: recurrence model 3, using slip deficit rates of Hsu et al. (2012). Red lines:
recurrence model 4, using slip deficit rates of Hsu et al. (2016). These models were elaborated in Septlveda et al. (2019).

area is estimated using the scaling laws of Blaser et al. (2010). The earthquake location and slip distribution
are modeled as random elements using a random vector and a random field, respectively. The location is
specified to be a uniformly distributed vector within each fault segment. The slip distribution is specified
with a Von Karman covariance function and a Log-normal marginal distribution. We further specify the
slip as a static displacement, pointing updip (pure thrust earthquakes). The slip correlation lengths and var-
iance are estimated from the scaling laws of Raghukanth and Sangeetha (2016). The mean slip is selected to
produce the target earthquake magnitude. Example of slip distributions for different target magnitudes are
shown in Figures S2 and S3 of the supplemental material. Septilveda et al. (2019) showed that slip samples
generated with a specific set of probability properties (and fixed target earthquake magnitude) have mag-
nitudes slightly different from the target. Figure S4 of the supplemental material shows the distribution
of the deviation from the target magnitude. The variability is about 0.25 magnitude units. This deviation
guides the choice for discretizing the range of earthquake magnitudes. Hence, we specify target magnitudes
of My, of 9.0, 8.75, 8.5, 8.25, 8.0, 7.75, 7.5 for segment A, target magnitudes for My, of 8.5, 8.25, and 8.0 for
segment B and My, of 8.5 for segment C. This yields 11 fault segment - magnitude bins, or ensembles, which
are specified as E}, E,, ......E;;.

Sepulveda et al. (2019) described four alternative earthquake recurrence models for the three segments of
the Manila Subduction Zone. The study aimed to account for the epistemic uncertainties of the earthquake
recurrence models, which can be significant in this subduction zone. The recurrence models rely on the
Gutenberg Richter recurrence law (named G-R law herein), with the form N(My,) = 10°"Mw \where NWMy)
is the average number of earthquakes equal or greater than M,y per year, and a and b are regionally deter-
mined parameters. Two earthquake recurrence models are derived from the earthquake catalog of the USGS
National Earthquake Information Center between 1974 and 2017. The historical data contains earthquakes
up to My, 7.3, the largest of which occurred in December 1999. They are used to estimate the recurrence of
greater earthquakes, by means of the G-R law. Two seismogenic region sizes are used to estimate the a and b
parameters for Model 1 and Model 2, which are shown in Figure S5 of the supplemental material. Two other
models were derived from interseismic geodetic slip deficit rates (Hsu et al., 2012, 2016) (models 3 and 4).
The G-R laws of the four recurrence models are shown in Figure 3. We also present the a and b parameters
in Table S1 of the supporting information. In this section, we use the earthquake recurrence model 1 to
determine the recurrence interval for a specific fault segment and magnitude bin (i.e., ensemble) Ag,. Other
earthquake recurrence models are analyzed in later sections. The recurrence models proposed by Septlveda
et al. (2019) use a simple functional form without considering a maximum earthquake magnitude. More
sophisticated tapered G-R laws may provide a better representation of the recurrence. Furthermore, more
than one interpretation for the Manila Subduction Zone segmentation may exist. The scarcity of geodetic
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and seismic data limit the complexity of the fault source and recurrence model that can be employed.
However, the differences of the four recurrence models are a reasonable attempt to account for epistemic
uncertainty of the Manila Subduction Zone seismicity.

3.2. SLR Models

SLR is predicted globally based on the RCP climate scenarios, in which human activities impact global
warming differently (Moss et al., 2010; Portner et al., 2019). Thus, the differences in RCP models reflect the
uncertainty in human behavior rather than epistemic uncertainties of the climate models. Using the cli-
mate scenarios RCP2.6, RCP4.5 and RCP6 and RCP8.5, where RCP2.6 and RCP8.5 correspond to the lowest
and highest estimated impacts, respectively, Wang et al. (2016) predicted the future SLR in the area of Ma-
cau, China, at the western side of the SCS for 2020, 2060, and 2100. Because the spatial variations are small
within the SCS, as compared to the global variability (e.g., see Figure 5 of Wang et al. (2016) and Dibarboure
et al. (2008)), we assume the estimated SLR values are representative of the entire SCS, and applicable to
Kao Hsiung and Hong Kong. We use the predictions for 2020, 2060, and 2100 in Wang et al. (2016) to fit a
quadratic curve to the sea level as a function of time,

s(t) = ar + B, 9

where o and 8 are calibration parameters. When 3 > 0, the SLR has a constant acceleration. The parameters
a and f are presented in Table 1 for each RCP while the sea level projections are shown in Figure 11a. Wang
et al. (2016) concluded that the SLR in SCS is ~23% larger than the global mean SLR, which is attributed to
the large local thermal expansion and wind setup (i.e., wind piling up water) in the region. Hence, the SLR
studied here represents a relatively large SLR case.

3.3. nPTHA for Maximum Tsunami Elevation

We determine the functions P(H > h.|E;, s(t)), where h, is the maximum tsunami elevation at Kao Hsiung
and Hong Kong (see Figures 2b and 2c). The maximum tsunami elevation is defined here as the maximum
vertical distance from the still water level (without SLR) to the water surface during a tsunami. The curves
P(H > hE,, s(t)) are built for fixed sea levels, s(t;). For each ensemble of earthquakes, we generate 200
earthquake samples with different slip distributions and locations within the fault segment. These samples
are selected using a Stochastic Reduced Order Model (SROM) (Sepulveda et al., 2017) which optimizes the
accuracy of the P(H > h.lE,, s(t)) estimates. The SROM model requires the simulation of tsunamis gener-
ated by the earthquake samples. We employ the tsunami model COMCOT (Wang, 2009) solving for the
non-linear shallow water equations with an explicit staggered leap-frog finite difference scheme. The model
incorporates a moving boundary scheme and bottom friction using Manning’s formula (with Manning co-
efficient 0.03 m'%/s). The use of COMCOT and the SROM make possible to capture the non-linear aspects
of the tsunami wave propagation and the non-linear interactions with SLR. Wave non-linearity is expected
to be relevant at the six locations (as well as in the inundation maps presented in the next section) because
water depths are comparable to tsunami wave amplitudes. The simulated tsunami propagation, though, ig-
nores fine scale phenomena caused by topo-bathymetry scales below the grid and data resolution (i.e., scales
shorter than 45 m) and dissipation due to wave breaking. We use the same tsunami model configuration of
Septlveda et al. (2019) consisting of nine nested grids with resolutions up to ~45 m at the six sites, where
topo-bathymetry data is interpolated. The nine grids are presented in Figure S7 of the supplemental mate-
rial. We further assume that the inter-seismic deformation is in balance with the co-seismic deformation
over the earthquake cycle (Reid, 1911). This means that any co-seismic deformation during an earthquake
will be transient and the topo-bathymetry recovers its original geometry, same as that considered as input
in this study. Although there is usually some accumulated tectonic net uplift or subsidence (i.e., sculpting
the local topography), it is usually much smaller than the large elastic displacement on the fault during the
earthquake that is transient and mostly recovered over the earthquake cycle. For this reason, we think this
is a reasonable assumption for the purpose of our simulations. The computed P(H > h.|E;, s(t;)) curves are
employed using the method of section 2.1 to estimate hazard curves at any value of s(¢).
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Figure 4. Examples of tsunami exceedance curves, P(H > h|E}, s), generated by ensemble E; which are defined as the set of My, 9.0 earthquakes in Segment
A of the Manila Subduction Zone. The three black curves (thick, thin, and dashed) correspond to collocation epochs where curves are explicitly calculated
using fixed values of s. The cyan and orange curves correspond to estimates for s = 0.8 m using a surrogate model with n = 1 (using collocations at s = 0 and

s =1.125 m) and with n = 2 (using collocations at s = 0, s = 0.5625 m, and s = 1.125 m), respectively. The red curves correspond to the estimation for s = 0.8 m

using the linear superposition approach.

For reference, in Figure 4 we show a comparison of P(H > h.|E;, s = 0.8 m) estimated with the surrogate
model of section 2.1, different number of collocation epochs and for tsunamis generated by earthquakes
with magnitude My 9.0 in segment A. The value of s = 0.8 m is arbitrarily chosen to represent a high value
of s between collocation epochs. The cyan curves correspond to n = 1 (using collocation epochs correspond-
ing tos = 0 and s = 1.125 m) and the orange curves correspond to n = 2 (using collocation epochs with s = 0,
s = 0.5625, and s = 1.125 m). The surrogate models with n = 1 and n = 2 yield nearly identical results for
this case. This comparison shows that a surrogate model with n = 2 achieves an acceptable accuracy. The
value of n needs to be verified for each E; and nPTHA case study. The red curves in Figure 4 also represent
P(H > h|E;, 0.8 m) estimated with the linear superposition approach of section 2.2. The greatest differences
with respect to the surrogate models are found at the locations of Hong Kong and a sheltered location in
Kao Hsiung (location #3). We hypothesize the larger differences at these locations are due to the inaccuracy
of the linear superposition approach due to a greater contribution of non-linear interactions between the
tsunami propagation and the SLR. In the results herein we adopt the surrogate model with n = 2. For the
trapezoidal quadrature of Equation 7 we use ¢ = 20. The mean sea level to which s(t) is added for future
epochs is defined as the mean sea level in 2020.

Figure 5 shows the average tsunami exceedance recurrence rate, }TN( he Ty for given elevations k. and for ex-
posure times, T, of 50 years (dashed curves) and 100 years (continuous curves). The SLR model corresponds
to RCP8.5 (see Table 1), which constitutes the most pessimistic of the emission scenarios analyzed in this
study. Average tsunami exceedance recurrence rate curves change for different values of T, as expected. For
comparison, we also plot the results of Sepulveda et al. (2019) (i.e., PTHA without SLR) as dotted curves.
For small values of maximum tsunami elevation, all curves approach the same recurrence rate, which is
given by the earthquake recurrence (i.e., all values of P(H > h.|E;, 5)) yield 1). The decrease of /TN(hC,T) at
higher tsunami elevations is different depending on whether SLR is included and what T is analyzed. We

use }TN( .1 to calculate the exceedance probability curves, P(N n (1) > ()), which are presented in Figure 6
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Figure 5. Average tsunami exceedance recurrence rate using a sea level rise (SLR) model based on representative concentration pathways (RCP)8.5. The dotted
line corresponds to the solution of Sepulveda et al. (2019) for earthquake recurrence model 1, without SLR. The dashed and continuous curves correspond to
non-stationary probabilistic tsunami hazard assessment (nPTHA) results with SLR and with exposure times T of 50 and 100 years, respectively.

for exposure times T = 50 and T = 100 years. For reference, we plot the probabilities obtained with a PTHA
without SLR as dashed lines. Small values of maximum tsunami elevation are more likely to be exceeded
within the exposure time. Figure 6b shows the relative difference of the nPTHAs with respect to the results

P(th (T) > O)SLR - P(th (T) > 0)

P(th > O)NUSLR

of a PTHA without SLR, expressed as the dimensionless ratio NoSLR )

A relevant finding from the comparisons between the nPTHA and PTHA is that SLR affects the maximum
tsunami elevation hazard to a different degree depending on the values of h.. We identify three intervals
of h. in ZN(hC,T) and P(N p. (1) > 0) curves with different behavior, which are described as follows. The
first interval corresponds to small values of h. where all curves overlap regardless of the value of s. Within

this interval, ZN(hC,T) and P(N 0 (1) > 0) curves yield a constant value. In Figure 6b this interval is present
at approximately h. < 0.2 m at the six locations, where differences between the nPTHA and the PTHA
without SLR are small. The second interval corresponds to values of h. greater than a threshold, in which
SLR is significantly smaller than the maximum tsunami elevation. Within this interval, the nPTHAs and
the PTHA without SLR produce similar estimates because the SLR impact is negligible. In Figure 6b this
interval is present for h. > 2 m at the six locations (i.e., s(100 years) is about half of h.). The third and final
interval is bounded by the first and second interval and is associated with the greatest differences among the

nPTHAs and the PTHA without SLR. In this interval, the ZN(,%J-) and P(N ne (1) > O) curves on a logarith-

dP(N,, (T) > 0)
dh,

c c

dj,
N (ke T) ) and . In this interval

mic scale have a relatively faster decay in terms of 4| i.e.,

the expected SLR and the maximum tsunami amplitude are comparable. In this case, there is a significant
increase in P(N p. (1) > O), compared to that of the PTHA without SLR. For T = 100 years, the increases for
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Figure 6. (a) Probability of exceedance of maximum tsunami elevation, P(N n (T) > 0), incorporating sea level rise (SLR) (solid curves) for exposure times T
of 50 (red) and 100 (black) years. The dashed line of same color show the probabilistic tsunami hazard assessment (PTHA) solutions without SLR. (b) Relative
difference between the P(N, (T) > O) of the non-stationary probabilistic tsunami hazard assessment (nPTHA) with SLR to a PTHA without SLR, expressed as

a dimensionless ratio.

the PTHA with SLR are as great as 8 times in Kao Hsiung and 5 times in Hong Kong. This result may be very
different for nPTHA studies in different seismogenic regions. For nPTHA studies in nearshore locations of
Japan and Chile, for example, we hypothesize that the fast decay of P( N, (T) > O) will occur for maximum
tsunami elevations which are significantly higher than SLR because tsunamis and earthquakes are bigger
and more frequent. Hence, we expect the relative differences between the PTHA and the nPTHA would be
smaller in those cases.
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4. Inundation Hazard in the SCS

The tsunami inundation hazard can also be analyzed using the surrogate model of section 2.1. Using Equa-
tion 8, the probability that the maximum tsunami elevation exceeds the topography height, Z, is expressed
as,

P(N),_,(T) > 0) =1~ ¢ M=z (10)

and using Equation 5 the average recurrence rate is expressed as,

In(h, = Z.T) = X 2y, %Ig P(H > Z | E,s(t))dt 11)

The computation of P(H > ZI|E;, s(t)) at the collocation points s; (e.g., S, 1, and s, in the example case) is sim-
ply generated by identifying flooded and non-flooded areas in the tsunami simulations. Once P(H > ZIE,, s;)
are generated, the surrogate model and the trapezoidal quadrature are applied.

Figure 7 shows the average recurrence rate of the PTHA without SLR (panels a), the nPTHA with SLR and
T = 50 years (panels b), and the nPTHA with SLR and T = 100 years (panels c). We use the SLR model from
RCP8.5 and the earthquake recurrence model 1. Inundation is shown for Kao Hsiung (left) and Hong Kong
(right). SLR produces a stronger impact in Hong Kong. For the case of Kao Hsiung, clearer effects are seen
for T = 100 years at the southern end of the port.

Results for P(N he=2(T) > 0) are calculated for T equal to 50 and 100 years. For comparison, the results of
the PTHA without SLR are also calculated. Figures 8 and 9 show such results for Kao Hsiung and Hong
Kong, respectively. For Hong Kong, we focus on areas with significant probability of inundation. The inun-
dation probability is higher for T = 100, as expected. Again, the impact of SLR is milder for T = 50 years.
For T = 100 years, conversely, the inundation probability of the nPTHA can be more than twice than that
of the PTHA without SLR in some locations.

5. Sensitivity Analyses and Further Discussion

This section evaluates the relative contribution of SLR to tsunami hazard assessments compared to com-
mon sources of uncertainty. Septlveda et al. (2019) concluded that the earthquake recurrence model was
the dominant source of uncertainty in the PTHA of SCS for earthquakes generated in the Manila Subduc-
tion Zone. Here we compare the impacts of the earthquake recurrence uncertainty on the PTHA to the
effects of the SLR. The SLR projections also contain significant uncertainty which shall be further analyzed
in this section. The uncertainties in the earthquake recurrence model are estimated based on using different
methods commonly adopted in PTHA studies to account for epistemic uncertainties, but they are subject to
the information available on seismicity rates and subduction rates. Given that the information available is
limited, the true uncertainty may be higher. In other seismogenic regions where more or less comprehen-
sive information is available to constrain recurrence rates, the sensitivity analysis may be different as well
as the specific conclusions that can be drawn.

5.1. Sensitivity to Earthquake Model

The sensitivity of nPTHA results to the earthquake recurrence model will show whether the SLR is a rele-
vant process impacting the nPTHA as compared to the dominant PTHA source of uncertainty for the study
case. We produce three additional sets of nPTHA results using the earthquake recurrence models 2, 3 and
4, shown in Figure 3 and Table S1 of the supplemental material. The exposure time T = 100 years and the
SLR model corresponding to RCP8.5 are employed.

Figure 10a shows P(N n (1) > O) for the four earthquake recurrence models. As a reference, we plot the
estimates of the PTHA using earthquake recurrence model 1 and neglecting SLR (dotted black curve).
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Figure 7. Average recurrence rates of inundation using: (a) a probabilistic tsunami hazard assessment (PTHA) without sea level rise (SLR), (b) a non-
stationary probabilistic tsunami hazard assessment (nPTHA) with exposure time of 50 years, and (c) a nPTHA with exposure time of 100 years. The recurrence
rates are presented in a logarithmic scale to show the spatial variability within the assessed regions. The red contour represents the 5 meter topography height.

Figure 10b shows the relative differences of all the nPTHA curves with respect to the PTHA using recur-
rence model 1 and neglecting SLR. The largest effects of SLR and earthquake recurrence model uncertainty
on P(th T) > 0) are comparable. The values of P(N p. (D) > ()) for earthquake recurrence model 4 with
SLR are higher by as much as 15 and 10 times in Kao Hsiung and Hong Kong, respectively, as compared to
the PTHA using earthquake recurrence model 1 without SLR. Because the nPTHA using earthquake recur-
rence model 1 with SLR is associated to an increase of P(N (1) > O) of 8 times in Kao Hsinug and 5 times
in Hong Kong, as compared to the PTHA without SLR (see section 3.2), the most conservative earthquake
recurrence model 4 increases P(N n. (1) > O) to about twice of that of the nPTHA with earthquake recur-
rence model 1. While the impact of the earthquake recurrence model seems to be somewhat smaller than
the largest impact of SLR (i.e., for h. comparable to s(T)), the former extends to larger values of k., where the
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Figure 8. Probability of inundation within the exposure time T, P(N >z (T) > 0), for the non-stationary probabilistic tsunami hazard assessment (nPTHA)
with sea level rise (SLR) (lower row) and a probabilistic tsunami hazard assessment (PTHA) without SLR (top row) in Kao Hsiung for: (a) T = 50 and (b)
T = 100 years. The green contour represents the 5 meter topography height. Probabilities larger than 10~ are presented.

impact of SLR is smaller (i.e., where h, is larger than s(T)). We conclude that the SLR produces an impact
comparable to that of the earthquake recurrence model uncertainty on this nPTHA.

5.2. Sensitivity to SLR

The impacts of the less extreme pathways RCP2.6, RCP4.5, and RCP6.0 on the nPTHA are analyzed here.
The earthquake recurrence model 1 and T = 100 years are employed. The alternative SLR projections cor-
responding to each RCP pathway are presented in Table 1 and shown in Figure 11a. Figure 11b presents
the nPTHA results for P(N 5 (T) > O). All alternative RCP scenarios produce a significant impact compared
to the PTHA without SLR. Figure 11c shows the relative differences of the RCP scenarios with respect to
the PTHA without SLR. All maximum relative differences occur where h,. is comparable to s(T). Thus, the
maximum differences in P(N n (1) > O) are slightly shifted to smaller or larger h, values depending on the
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Figure 9. Probability of inundation within the exposure time T, P(N he>z(T) > 0), for the non-stationary probabilistic tsunami hazard assessment (nPTHA)
with sea level rise (SLR) (lower row) and a PTHA without SLR (top row) in Hong Kong for: (a) T = 50 and (b) T = 100 years. The green contour represents the
5 meter topography height. Probabilities larger than 10™* are presented.

RCP scenario. Lower RCP scenarios produce a smaller enhancement of P(NhE T) > 0) as compared to the
PTHA without SLR but they are still significant.

While we have evaluated the differences between the RCP scenarios, further uncertainties are present in
the determination of the SLR. Such uncertainties are epistemic (i.e., due to the imperfect knowledge of
the atmosphere-ocean system evolution) and difficult to quantify. Seroussi et al. (2020), for instance, il-
lustrated the large differences between ice melting models and their contributions to SLR, from different
research groups and using the same RCP scenario. As research progresses, the RCP scenarios are revised
periodically in the IPCC Assessment Reports (e.g., Portner et al., 2019). Wang et al. (2016) analyzed the dif-
ferences among RCP8.5 SLR predictions from 24 different models elaborated by different research groups.
The reported minimum and maximum values bound the gray shaded region in Figure 11a. The difference
among the models can be interpreted as a proxy of the epistemic uncertainty of the SLR prediction. We use
such minimum and maximum values to determine new values of P(th T) > O) in Figure 11b. The nP-
THA using the maximum RCP8.5 SLR predictions has significant differences as compared to that using the
mean SLR prediction (black curve). For h. = 1 m in location 2, for instance, the increase of P(N n. (D) > 0)
with respect to a PTHA without SLR is ~8 and ~10 times for the mean and maximum RCP8.5 scenarios,
respectively. The lowest RCP8.5 prediction is comparable to the mean SLR predictions of RCP4.5. Hence,
the impact of the RCP8.5 epistemic uncertainty is comparable to that of the RCP pathways variability.
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Figure 10. (a) Sensitivity analysis of non-stationary probabilistic tsunami hazard assessment (nPTHA) results P(N 1. (T) > 0) for exposure time T = 100 years
and different earthquake recurrence models. The black, blue, green, and red curves correspond to the earthquake recurrence models 1, 2, 3, and 4, respectively,
whose G-R parameters are presented in Table S1 of the supporting Information. For reference, we include P(N w (1) > 0) corresponding to the PTHA without

sea level rise (SLR) and using earthquake recurrence model 1 (dotted black lines). (b) Relative difference of the nPTHA results compared to the PTHA without
SLR and using earthquake recurrence model 1 (dotted black curve in panel a), expressed as a dimensionless ratio.

5.3. Further Sources of Uncertainty and Discussion

Further investigation is needed to assess the accuracy of the earthquake recurrence models and the SLR
projections. Additionally, other sources of uncertainty in nPTHA will require further investigation. Tides,
for instance, contribute variations of amplitudes of ~1 m in Hong Kong and less than 1 m in Kao Hsiung
during spring tides. Communities are often well adapted to the bounded and predicted tides. Therefore, tides
alone do not constitute a hazard. However, they may exacerbate the impact of tsunami waves propagating
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Table 1 over a higher sea level (i.e., similar effect as SLR). Tides may be simply
o and B for the Quadratic Curve Fit in Equation 9 and Associated With the  included as an offset of the mean sea levels in nPTHAs. For example, the
SLR Models of Wang et al. (2016) nPTHA can adopt a mean sea level (as in the nPTHA above) or the aver- 1
Model o (cm/yr) B(cm/yr?) — age of high tides. A more sophisticated nPTHA can also include tides as

a spatio-temporal random variable as the tsunami propagates. The intro-

RCP26 0-5300 0 duction of tides as a random variable may be relevant, for example, in ar-
HEIES Ll 0.00219 a5 where interactions between tides and tsunamis are highly nonlinear.
RCP6.0 0.4375 0.00344  Winckler et al. (2017), for example, showed that tsunami-induced maxi-
RCP8.5 0.5000 0.00625  mum elevations and current speeds are severely modified depending on
The resulting evolution of the sea level rise (SLR), s, in years is presented the epoch of highly energetic tides (i.e., tide ranges >5 m and tidal cur-
in Figure 11. rents >5 m/s). The tides shall be included in the scope of a future study.

GLLLEHEMEREING B D AN OCU e E R Bathymetry may also constitute a relevant source of uncertainty in nP-

THA. Recently, Sepulveda et al. (2020) showed that altimetry-predicted

bathymetry uncertainties impact the prediction of tsunami trailing waves
in shallow areas. Furthermore, Kulp and Strauss (2019) showed that uncertainties of the commonly used
SRTM coastal topography model can have a great impact on the prediction of relative SLR because their
magnitudes are comparable. In deep waters, however, the uncertainty of bathymetry plays a minor role im-
pacting tsunami responses (Sepulveda et al., 2020). Indeed, Salaree and Okal (2020) showed that accurate
tsunami simulations can be achieved by only analyzing the larger scale features (~1,000 km) of bathymetry
in deep areas. Some other long term coastal changes may also create large impacts. The natural topo-ba-
thymetry as well as modifications produced by human activities evolve over time. Kao Hsiung port, for
instance, is experiencing a significant expansion of industrial activity and infrastructure. Thus, the topo-ba-
thymetry model constructed in Sepulveda et al. (2019) and used in the present study may be out-of-date
in a few years. This and other long term changes, therefore, suggest that nPTHA are recommended to be
updated regularly during a project design and operation.

6. Conclusions

The new nPTHA is based on a non-stationary Poisson process so that probabilistic tsunami hazards can be
combined with secular effects such as SLR. Two approaches are proposed to conduct the nPTHA: (a) a sur-
rogate model and (b) a linear superposition, which estimate probability of exceedance curves for different
ensembles of earthquakes. We employed approach (a) to conduct a nPTHA at nearshore locations in the
SCS, where non-linear SLR-tsunami interactions are expected to be relevant. The nPTHA method presented
here may be extended to additional applications. For example, it can be used to assess the SLR impact in
landslide tsunami hazard assessments, storm surge and flooding.

The results in the SCS demonstrate that SLR significantly impacts tsunami assessments for exposure times,
T, as short as 50 years. The effect of the SLR is only significant when h,, defined as the maximum tsu-
nami elevation, is comparable to SLR within the exposure time and the probability of exceedance curve,
P(N 0 (T) > 0), presents a significant decay in terms of h,.

‘We compared the impact of SLR on the nPTHA with epistemic uncertainties in the earthquake recurrence
models and SLR projection. The epistemic uncertainties are investigated with the use of alternative models.
Given the limited nature of the information available in the seismicity catalog and for subduction rates in
this region, the true uncertainties may be larger. Sensitivity analyses of the nPTHA in Hong Kong and Kao
Hsiung demonstrate that the SLR produces an impact comparable to the earthquake recurrence model
uncertainty modifying P(N n (D) > 0). The latter is identified as a major source of uncertainty in a previous
PTHA study (Sepulveda et al., 2019). The uncertainty in the SLR projections are explored in this study by
varying the RCP scenarios. The chosen RCP scenarios and their estimated epistemic uncertainties can also
significantly modify P(th T) > 0). The relative importance of the SLR versus nPTHA uncertainties is

[N 10J A1eIqI uruQ K3[IAL UO (SUONIPUOD-PUER-SULIA)/W0d" K[Im" KIeIqraut[uo//:sdiy) SUonIpuo) pue swia ], ayl 22§ ‘[$207/+0/6¢] uo Keiqry auruQ Ka[ip\ ‘eruiojie) JO Asearun £q 0020049 120T/6T01 01/10p/wod Kafim' A

site-specific and must be analyzed for every nPTHA.

The final question is whether SLR should be included in all probabilistic tsunami hazard assessments.
It is evident in the present study that the contribution of SLR is relevant in Hong Kong and Kao Hsiung.
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Figure 11. (a) Mean sea level rise (SLR) projections from climate model runs using representative concentration pathways (RCP)8.5 (black), RCP6.0 (red),
RCP4.5 (blue) and RCP2.8 (cyan) (same of Table 1). The gray shaded region represents the variability of SLR in the South China Sea (SCS) from RCP8.5 as
simulated from different models (Wang et al., 2016). (b) Sensitivity of P(N 4. (T) > 0) to the RCP scenarios. The curves are associated with T = 100 years and
earthquake recurrence model 1. The dashed black curves represent P(N he T) > 0) of the probabilistic tsunami hazard assessments (PTHA) without SLR. (c)
Relative differences of the non-stationary probabilistic tsunami hazard assessment (nPTHA) results compared to the P(N w (1) > O) of the PTHA without SLR
expressed as a dimensionless ratio.

However, the relevance of the SLR in nPTHA might be different in different regions. A simple comparison
between the P( N e T) > 0) curve of a PTHA without SLR-with &, defined as the maximum tsunami eleva-
tion - and the expected SLR within T may provide preliminary insights into whether a nPTHA is necessary.
If the sea level at time T, s(T), and a maximum tsunami elevation of interest are similar, then the impact
of SLR is expected to be relevant. In regions where tsunami waves are expected to be higher than s(T) and
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more frequent, in contrast, we expect a lower impact of the SLR. A nPTHA with the linear superposition
approach may also provide a first approximation to assess the relevance of SLR.
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