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probability to exceed a certain hazard parameter value within a certain number of years). For instance, the 
probabilistic seismic hazard assessment (PSHA), first introduced by Cornell (1968), assumes a Poisson pro-
cess model and empirical attenuation relations of seismic waves with large observational uncertainties, to 
evaluate the probability of exceeding a certain level of ground shaking at a particular location (e.g., a certain 
peak ground acceleration) within a time interval of engineering relevance. This approach was then extend-
ed to probabilistic tsunami hazard assessments (PTHA) focusing on tsunamigenic earthquakes (Geist & 
Parsons, 2006; Grezio et al., 2017) and landslides (Geist & Lynett, 2014; Grilli et al., 2009; Lane et al., 2016; 
Løvholt et al., 2020). PTHA has been widely applied to understand tsunami hazards regionally and glob-
ally (Davies et al., 2018; Grezio et al., 2017; Li et al., 2016; Mori et al., 2017; Park & Cox, 2016; Williamson 
et al., 2020). Uncertainties in the tsunamigenic mechanism need to be included in PTHA methodologies. 
Geist and Dmowska  (1999) and later studies, for example, showed the important role of the slip heter-
ogeneity in tsunami hazard assessments. Sepúlveda et al.  (2019) proposed a new method to incorporate 
uncertainties in the earthquake mechanism (i.e., earthquake slip distribution and location) into a PTHA by 
means of a splitting Poisson process. Most of the existing PTHA methodologies adopt stochastic approaches 
to model the uncertain inputs as stationary random elements, ignoring any temporal evolution of haz-
ard statistics. Thus, questions remain on the capability of PTHA to incorporate non-stationary processes, 
including those related to climate change. The focus of this paper is thus to consistently incorporate the 
absolute climate-change-driven sea level rise (named SLR herein) into a PTHA.

SLR has become a pressing issue for coastal communities. Its prediction and the design of adaptation meas-
ures pose challenges for scientists, engineers, and policy makers (Portner et al., 2019; Sweeney & Beck-
er,  2020). While several SLR projections have been proposed for the present and future centuries (e.g., 
Horton et  al.,  2020), the uncertainties are significant and depend greatly on how human activities will 
impact the climate system. The quantification of SLR uncertainties and corresponding statistical properties 
(e.g., probability distributions) pose further challenges. Four scenarios known as representative concentra-
tion pathways (RCP) have been proposed to account for different evolution of greenhouse gases (Portner 
et al., 2019; Wang et al., 2016). The SLR uncertainties remain in these scenarios due to uncertainties in 
many Earth system model components, which are often handled by creating ensembles of simulations.

SLR often refers to changes of the absolute mean sea level, defined as the height with respect to an abso-
lute reference such as the International Terrestrial Reference Frame (ITRF), for example (Woodworth & 
Player, 2003). As far as coastal hazards are concerned, it is also practical to evaluate changes of relative sea 
level, defined as the sea level height with respect to a local land-based reference (e.g., a local vertical datum). 
Other long-term processes modifying the relative sea level act in combination with SLR. For instance, the 
coast may experience subsidence or uplift in tectonically active regions (e.g., Plafker & Savage, 1970). While 
co-seismic ground surface deformation during an earthquake can be reasonably well estimated after the 
fact with various models (e.g., Mansinha & Smylie, 1971; Okada, 1985), the interseismic deformation has a 
large uncertainty. Climate change can also indirectly drive coastal deformation. For instance, the melting 
of ice sheets may produce a loading reduction on the Earth’s crust, causing an uplift due to elastic rebound 
(Jiang et al., 2010; Larsen et al., 2005). Another example is land subsidence due to excessive groundwater 
and gas extraction (Chaussard et al., 2013). These additional processes can be included as corrections to the 
effective relative SLR (or sink) in a given study area. Even if SLR is relatively well constrained, its interaction 
with randomly occurring hazards (e.g., tsunamis, storm surges, meteotsunamis, and coastal storms) com-
pounds the hazards experienced at the coast. Ultimately, it will be important to address all of these hazards 
in combination. For the current study, however, the question of how PTHA results will be affected by SLR 
alone is first addressed.

Earlier studies have responded to this question by conducting PTHA with several selected and fixed sea 
level scenarios. Using this simple approach, Dall’Osso et al. (2014); Li et al. (2018) showed that tsunami haz-
ards can be significantly enhanced under certain SLR scenarios, in particular when the tsunami maximum 
tsunami elevation is comparable to SLR. As an illustration, Figure 1 shows the combined effect of randomly 
generated earthquakes, and corresponding tsunamis with SLR over a given exposure time, T, for which 
the hazard must be assessed, for example over the lifetime of a coastal project. The random occurrence of 
earthquakes ek at times Tk, produces a hazard response (e.g., expressed as inundation) Hk at a studied site. 
The properties of ek and Hk are commonly related by assuming a stationary model. However, certain coastal 
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hazards can be severely modified by SLR. Indeed, SLR might both increase inundation extent and change 
propagation depth, which in turn modifies the tsunami response. Hence, the properties of ek in combina-
tion with the SLR at the time of occurrence of the event define Hk. The lower panel of Figure 1 shows a 
sketch of different earthquake events occurring in six different epochs, Tk. While the sea level is rising due 
to climate change, earthquakes with different characteristics (and magnitudes) generate different sizes of 
tsunami waves. These tsunami waves interact with the changing water depths due to SLR, generating differ-
ent hazard responses, H(Tk). Different mean sea levels occur at different epochs and, therefore, SLR must be 
included as a non-stationary process in the PTHA.

This study aims to integrate hazards occurring at random epochs (e.g., earthquakes) with a temporally 
evolving process (e.g., SLR) within an exposure time. In section 2 we define a general non-stationary proba-
bilistic tsunami hazard assessment (nPTHA), based on a non-stationary Poisson process. In section 3 and 4, 
we apply the nPTHA in South China Sea (SCS herein), evaluating tsunamis generated in the Manila Sub-
duction Zone and SLR projections for the 21st century. Section 5 evaluate the sensitivity of the nPTHA in 
the SCS to different sources of uncertainty. Finally, section 6 discusses future prospects for this new nPTHA.

2. PTHA Based on a Non-Stationary Poisson Process (nPTHA)

In Sepúlveda et al. (2019), a PTHA method was developed incorporating uncertainties in the earthquake 
slip distribution and location. The PTHA method sorts potential earthquakes, or any tsunamigenic source, 
into sets known as ensembles Ei. Earthquakes belonging to Ei have magnitudes within a defined range and 
originate in the same fault segment, although their location within the segment can vary. The occurrences 
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Figure 1. Top: Schematic showing the random occurrence of hazard sources e (e.g., earthquakes) at six different epochs, Tk, within an exposure time T. Some 
coastal hazards, such as tsunamis, will be affected by sea level rise (SLR) modifying the mean sea level s(Tk). The coastal hazard response Hk (e.g., values of 
maximum tsunami elevation, runup, area of inundation) will result from a combination of e(Tk) and s(Tk). Bottom panel: Illustration of how the maximum 
tsunami elevation (i.e., the defined H) will be affected by the SLR at different epochs. Note the difference between tsunamis H6 and H1 is larger than the SLR 
that occurred between the two earthquakes of identical size.
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Three seismic fault segments are analyzed. Segment A is characterized as being able to produce earthquakes 
with magnitude between MW 7.5 and 9.0, segment B has the capability to produce earthquakes of magni-
tude between MW 8.0 and 8.5, while segment C has the capability to produce earthquakes of magnitude MW 
8.5. The minimum earthquake magnitudes were chosen as those capable of producing significant tsunami 
amplitudes at the six locations of interest (i.e., the tsunami elevation with 1% probability of being exceeded 
is greater than 0.1 m in Hong Kong and Kao Hsiung). The maximum earthquake magnitude corresponds to 
the greatest earthquake that would rupture the entire length of the fault segment. The earthquake rupture 
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Figure 2. (a) Map of the South China Sea (SCS) and the coastal cities of Kao Hsiung, Taiwan, and Hong Kong, China. 
The map also shows the hypothetical fault segments (segments A, B, and C) associated with the Manila Subduction 
Zone. (b) Detail of bathymetry and topography in the vicinities of Hong Kong. The maximum tsunami elevation is 
evaluated at sites #4 Offshore Hong Kong (depth 4.17 m relative to mean sea level (MSL)), #5 East Hong Kong (depth 
20.95 m MSL) and #6 West Hong Kong (in front of Kai Tak Terminal, depth 12.52 m MSL). (c) Detail of bathymetry 
and topography in the vicinities of Kao Hsiung. The maximum tsunami elevation is evaluated at sites #1 Offshore 
Kao Hsiung Port (depth 13.85 m MSL), #2 North Kao Hsiung Port (depth 8.27 m MSL) and #3 South side Kao Hsiung 
(inside port, depth 16.58 m MSL). Heights are relative to mean sea level in 2020.

 2
3

2
8

4
2

7
7

, 2
0

2
1

, 6
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ag
u

p
u

b
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

2
9

/2
0

2
1

E
F

0
0

2
0

0
7

 b
y

 U
n

iv
ersity

 O
f C

alifo
rn

ia, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

9
/0

4
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



























Earth’s Future

more frequent, in contrast, we expect a lower impact of the SLR. A nPTHA with the linear superposition 
approach may also provide a first approximation to assess the relevance of SLR.

Data Availability Statement

The tsunami propagation model of this paper used topo-bathymetry information obtained from the Gen-
eral Bathymetric Chart of the Oceans (GEBCO, available at http://www.gebco.net), SRTM topography data 
(available at http://earthexplorer.usgs.gov), the nautical chart of Kao Hsiung port (British Admiralty Chart 
2376), nautical charts of Hong Kong (available at the official site of the Hydrographic office of the Marine 
Department of Hong Kong, http://www.hydro.gov.hk), Lidar data of the Civil Engineering and Develop-
ment Department of Hong Kong (requested at http://www.hyd.gov.hk), and partial data from digital eleva-
tion models provided by the National Central University in Taiwan.
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