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ABSTRACT ARTICLE HISTORY

This study proposes a trip- and area-based tradable credit scheme [TCS) for ~ Received 27 December 2021
congestion management in the context of the moming commute problern  Accepted 24 May 2022
using a trip-based Macroscopic Fundamental Diagram model with het- KEYWORDS
erogenous travelers. In our proposed TCS, the regulator distributes credits ¢ e i based
to all travelers and designs a time-varying and trip-based credit tariff. Cred- 1, 1oscopic fundamental
its are traded between travelers and the regulator via a credit market at diagram; demand

the price determined by credit demand and supply interactions. The TCS management; day-to-day
is incorporated into a day-to-day modeling framework to examine travel-  dynamics

ers' learning process, network state evolution, and credit market properties.

The conditions for existence of an equilibrium solution and uniqueness of

the equilibrium credit price are established analytically. Simulation results

validate the analytical properties, demonstrate that the proposed TCS yields

identical social welfare as the congestion pricing while maintaining revenue

neutrality, and show the superiority of a trip-based TCS to (trip agnostic)

area-based TCS.

1. Introduction

Road traffic externalities are a serious problem that affect urban transportation networks worldwide
and their severity continues to increase, imposing significant costs on the traveller, environment, econ-
omy, and society. Efforts to alleviate these externalities have been explored from both supply and
demand perspectives. Since traditional solutions on the supply side such as building additional infras-
tructure are known to sometimes be counterproductive (Johnston, Lund, and Craig 1995), demand
management solutions, from the widely used price instruments to the emerging, but less explored
guantity control instruments have received significant attention.

Since the profound work by Pigou (1920), congestion pricing (CP) has received a great deal of focus
over the past century in both theory and practice due to the potential gains in social welfare (Lind-
sey 2006). Nevertheless, road pricing often receives political and social resistance as it is perceived as
a tax (de Palma and Lindsey 2020). For this reason, researchers have been exploring alternative and
more appealing demand management solutions such as the tradable credit scheme (TCS) in recent
years (Fan and Jiang 2013; Grant-Muller and Xu 2014; Dogterom, Ettema, and Dijst 2017). A typical TCS
system has the following features (Fan and Jiang 2013): (1) a total quota of credits available for the
area of interest is prespecified; (2) a regulator provides an initial endowment of credits to all poten-
tial travellers; (3) the credits can be bought and sold in a market that is monitored by the regulator
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at a price determined by demand and supply interactions; (4) in order to travel, travellers need to
spend a certain number of credits (i.e. tariff) to access the urban transportation system. The credits,
also termed permits in this study, could vary with the type and attributes of the specific mobility alter-
native used; (5) enforcement is necessary to ensure the permits are being consumed or traded validly.
Consequently, the TCS is revenue-neutral and more equitable than congestion pricing (in the absence
of revenue refunding), features that may help address the issue of public acceptance (Verhoef,
Nijkamp, and Rietveld 1997; Wu et al. 2012; Palma et al. 2018).

Within the context of congestion pricing, distance-based and travel time-based tariffs are likely
to bring improvements in overall efficiency (welfare) relative to cordon- and zonal-based tariffs since
they better internalize congestion externalities by charging for the actual distance travelled on the net-
work (or time spent in congestion). Existing literature suggests that these improvements in efficiency
can be significant at the network level (Lentzakis et al. 2020). From the standpoint of implementa-
tion, the development of ICT and smartphones has provided an effective means of operationalizing a
TCS (see Azevedo et al. 2018 for a smartphone-based travel incentive system with all the functionality
required by a TCS). Implementing distance- and time-based credit tariffs would arguably not present
any additional challenges over link or cordon-based tariff mechanisms within a smartphone-based TCS
system.

This paper proposes an area-based TCS with time- and distance-based credit tariffs and incorpo-
rates this TCS into a day-to-day modelling framework to investigate the properties of the equilibrium
solutions and the performance of the TCS. The day-to-day modelling framework uses a trip-based
Macroscopic Fundamental Diagram (MFD) model on the supply side. The framewaork is then applied
to the (departure-time choice) moming commute problem and used to evaluate social welfare, net-
work and traveller-specific perfoarmance changes. More specifically, the contributions of this paper are
three-fold:

(1) We study the morning commute problem under a TCS with heterogeneous users (in terms of both
the valuation of travel time/schedule delay, preferred arrival time and choice sets) using a day-to-
day dynamic assignment framework (reflecting day-to-day behaviour), which yields insights into
the evolution of market prices and flows. This is contrast with the large body of existing literature
(with the exception of Ye and Yang 2013), which solve for an internally consistent system state or
equilibrium.

(2) With regard to the design of the TCS, we consider distance and time varying credit tariffs, which
have not been considered before. We make use of the trip-based MFD model (which allows for
heterogeneous trip-lengths) to effectively model the impacts of the distance-based and travel
time-based credit tariffs within the TCS on network efficiency and social welfare. Further, our
experiments yield insights into the differences between these schemes relative to traditional zonal
schemes and between different TCS tariff profiles.

(3} Analytically, we demonstrate solution existence and the unigueness of the credit market price
under the assumption that the travel time is a continuous function of departure flows, considering
heterogeneous travellers.

The rest of this paper is organized as follows. Section 2 reviews relevant literature. Section 3 presents
the modelling assumptions, traffic flow model, day-to-day dynamic model, and credit price evolution
model. Section 4 discusses the properties of the dynamic systemn, i.e. the existence of the equilib-
rium solution and the uniqueness of the credit price at equilibrium state. Section 5 introduces the
simulation-based optimization framework to optimize the parameters associated with the tariff pro-
file function. Mext, numerical simulation results are discussed in Section 6. Finally, Section 7 concludes
this study, discusses the limitations and points out future research directions.



TRANSPORTMETRICA B: TRANSPORT DYMAMICS @ 3

2. Literature review

In this section, we review existing literature in three-related directions: tradable credit schemes,
Macroscopic Fundamental diagram (MFD) models, and simulation-based optimization.

Tradable credit schemes have been studied in several contexts including the management of
network congestion using static equilibrium models (involving both route and mode choice) and
day-to-day dynamic madels, and the management of peak-period congestion for the marning com-
mute using bottleneck models (invelving departure time choices). A large body of literature exists
on the modelling of the TCS considering a static equilibrium in terms of the traffic flow pattern and
credit market price. For example, Yang and Wang (2011) established the conditions under which for
a given link-specific credit charge scheme (i.e. a credit tariff vector), the user-equilibrium link flow
pattern and the credit price are unique. Wang et al. (2012) extended this model to consider hetero-
geneity. In the context of bottleneck models, Xiao, Qian, and Zhang (2013) showed that the optimal
time-varying charge of credits at a bottleneck always exists under the assumption that late arrival is
prehibited. Nie (2015) proposed a new type TCS, which does notinvolve the initial distribution of cred-
its but rewards travellers departing during the designated off-peak time window. The results indicate
that a charging to rewarding ratio of 1 provides efficiency gains. Extensions of this scheme were pro-
posed in Nie and Yin (2013) and Xiao, Huang, and Liu (2015), which consider transit as an alternative
mode with homogeneous and heterogeneous travelers, respectively. More recently, Bao, Verhoef, and
Koster (2019) showed that the equilibrium credit price and departure rate of the bottleneck model
with a TCS is not unigue although uniqueness is guaranteed using an alternative congestion model
developed by Chu (1995).

In addition, the application of TCS to parking management has been investigated. Zhang, Yang,
and Huang (2011) proposed parking permit allocation policies and a free trading scheme to improve
network perfarmance under limited parking space. Liu et al. (2014) further considered expirable park-
ing permits and showed that the efficiency loss of a non-ideal scheme is bounded. Wang, Wang, and
Zhang (2020) utilized the parking permit scheme to eliminate parking competition, which cannot be
addressed by a pure parking pricing scheme. Xiac, Liu, and Huang (2021) studied the equilibrium
state and system-optimal distributions of parking permits in a many-to-one multi-modal network with
parking space constraint. Bac and Ng (2022) empirically tested the parking permit scheme through a
lab-in-the-field experiment where participants’ willingness to pay, willingness to accept compensation
and willingness to give up cars are collected and analyzed by questionnaires. The results suggested
thatrespondents show a strong interest in the tradable parking permit scheme and that such a scheme
is effective in encouraging pro-environmental behaviour like reducing car ownership.

Multiperiod TCS schemes and the comparative performance of tradable credits and conges-
tion pricing have also been studied. Miralinaghi and Peeta (2016) developed a multi-period TCS
and showed that penalizing credit transfers across periods reduces credit price volatility. de Palma
et al. (2018) compared a standard TCS with congestion pricing and showed that the TCS is equiv-
alent to congestion pricing under fully adaptive tolls, but cutperforms it under non-adaptive tolls
typically when the congestion function is relatively steep compared to the demand function. Seshadri,
de Palma, and Ben-Akiva (202 1) reached similar conclusions on the comparative performance between
TCS and congestion pricing using a more complex within-day dynamic model (departure time context)
that explicitly modelled selling behaviour in the market. Further, they found that the performance of
the TCS is relatively robust to irrational selling behaviour in the market, although it can result in welfare
losses.

In contrast, relatively few studies investigate the dynamics of the credit price. A notable exception
is Ye and Yang (2013), who employed a day-to-day learning model within a route choice setting to
examine the dynamic evolution process of traffic flow and credit price under a TCS. Along similar lines,
Guo, Huang, and Yang (2019) proposed a framework containing a pericd-to-period adjusted credit
distribution and charge, and a day-to-day price adjustment and demonstrated analytically that such a
TCS ensures convergence to the system optimum.
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Towards a practice-ready TCS, Chen et al. (2020) modelled the detailed and joint individual decision
making (namely, the buying, selling and departure time choices) together with the regulator’s opera-
tions in a microscopic time-based simulation framework. Field experiments on TCS are sparse. Brands
et al. (2020) empirically tested the market of a TCS through a lab-in-the-field experiment where partici-
pants make virtual travel choices and real transactions in a tradable parking permits setting. The results
showed that the designed market achieved credit prices within a desired range, and the observed
buying and selling was in accordance with a theoretical market equilibrium. Ultimately, and in the
absence of empirical evidence, these few existing contributions paint to known state-of-the-art day-
to-day learning frameworks for capturing demand-supply interactions (see also Cantarella, Velona,
and Watling 2015; Guo et al. 2018; Yildiimoglu and Ramezani 2020). These frameworks are often
extremnely helpful in ensuring desirable equilibrium properties in disaggregate modelling frameworks
of demand-supply interactions, as it is for the TCS schemes at stake in this paper. Yet, on the demand
side, both detailed market interactions and day-to-day learning processes are still to be explored by
researchers, whereas on the supply side, general and toy networks with link-based credit charging
have been used in most studies (e.g. Bao, Gaoa, and Xu 2016; Zhu et al. 2015; Xiao et al. 2019), thus
also limiting the design towards practice-ready TCS (Lessan and Fu 2019). In this paper, we examine the
TCS for the morning commute problem under a single reservoir network using the Macroscopic Funda-
mental Diagram (MFD) (Daganzo 2007; Gercliminis and Daganzo 2007) and investigate corresponding
properties.

Recent MFD applications, such as Fosgerau and Small {2013), Amirgholy and Gaec (2017), guanti-
fied potential benefits in terms of congestion reduction under guantity control and pricing schemes
by keeping the accumulation no greater than the flow-maximizing value. The individual attributes
such as heterogeneous trip lengths were considered in Arnott (2013), Fosgerau (2015), Daganzo and
Lehe (2015), Lamotte and Gereliminis (2016), where a reformulation of the computation for trip length
is developed, hereafter referred to as the trip-based MFD. There are three advantages of the trip-
based MFD maodel: (1) Compared to the traditional MFD model (or accumulation-based MFD model,
see Leclercq et al. 2015), where the predicted outflow increases instantanecusly when there is a sharp
increase in the inflow, trip-based MFD model accounts for a reaction time to the sudden change
in demand and computes the outflow only considering travellers who have completed their trips,
providing more reliable results (Mariotte, Leclercg, and Laval 2017); (2) Trip-based MFD models can
accommodate a more realistic heterogeneity of individual travellers in terms of trip length, desired
arrival time, and schedule delay penalties (Lamotte and Geroliminis 2018); and (3) Trip-based MFD
models allow for testing distance-based TCS schemes, bringing additional degrees of freedom to the
scheme's design process towards faimess and efficiency (Daganzo and Lehe 2015).

Moreover, a proper design of the credit charging scheme is required to make the TCS effective
for demand management. The system optimal credit scheme is usually derived through a closed-
form objective when dealing with a static traffic equilibrium model {e.g.Yang and Wang 2011; Wang
et al. 2012; de Palma et al. 2018 for link-specific credit tolls, and Xiao, Qian, and Zhang (2013}, Bao,
Verhoef, and Koster (2019), Miralinaghi et al. (2019) for time-varying credit tolls). However, it is more
complex to obtain the charging scheme that minimizes system cost for simulation-based day-to-day
dynamic models. Though several studies have examined the problem of computing the link-specific
congestion pricing toll to reach a desired equilibrium (Han et al. 2017; Liu and Gereliminis 2017), or
to minimize the system cost (Tan, Yang, and Guo 2015), it remains challenging to determine optimal
time-varying charging schemes. To address these challenges, in this paper, we adopt the approach
of Liu, Jiang, and Azevedo (2021) who use a Gaussian (mixture) function to parameterize the time-
varying road pricing scheme so as to facilitate the use of derivative-free optimization methods, such
as evolution algorithms, pattern search, and Bayesian aptimization.

Furthermore, we summarize some work studying the TCS for demand management in Table 1 in
terms of supply model, demand/behaviour model, credit price, tariff scheme, solution properties, and
tariff optimization.
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Table 1. Comparisons of present study with existing TCS-related research.

Demand/ Solution Tariff
Study Supply model behaviour model Credit price Tariff scheme properties optimization
Yang and 5 GN Fixed and elastic; Constant and Link specific Flow; credit Analytical
Wamng (2011) hemogeneous trav- unigque price optimality
eller; route choice
(deterministic)
Wang 5 GN Fixed and elastic; Constant and Link specific E&LE: flow, Analytical
etal (2012) discrete heterg- unigque credit price optimality

gemeous value of
time; route choice
{deterministic)

Wuetal (2012) 5 GN Elastic; heterogeneous  Constant Mode and link  Sclutionofa  Derivative-free
income; mode specific variational algorithms
and route choices inequality
(mested-logit model) problem

Yiao, Qian,and M Fixed; homogeneous  Constant Time-varying E: flow, credit  Analytical

Zhang {2013} traveller; departure continuous price optimality
time choice toll
[deterministic)
Nie and ] Fixed and elastic; Constant Step tolls with — E: flow, credit  Analytical
Yin {2013} homogeneous trav- mode-specific price optimality
eller; departure time rewsards
and mode choice
(deterministic)
Shirmohammadi 5 GN; fixed and Fixed and uncertain;  Under certainty:  Length based; EELL: flow, Analytical
etal (2013) uncertain homogeneous trav- Constant and cordon based;  credit price optimality
capacity eller: route choice undgue; Under  link specific under umder
[deterministic) uncertainty: uncertainty  certainty
volatile

Ye and 5 GN Fixed; homogeneous  Day-to-day Link specific EELL: flow, Not considered

Yang (2013) traveller; route dynamic credit price
chaice (logit model)

Mie (2015) ] Fixed; homogeneous  Constant Step tolls with  E: flow, credit — Analytical
traveller; departure rewsards price optimality
time choice
(deterministic)

¥iao, Huang, and M Fixed; heterogeneous  Constant Step tolls with — E: flow, credit  Analytical

Liw (2015) value of time and mode-specific price optimality
schedule delay; rewards
departure time
and mode choice
{deterministic)

Bao, Gaoa, and 5 GN Elastic; heterogeneous  Constant Link specific EELE: flow Nonlinear

Xu (2016} travellers’ framing optimizatien
and labelling of
credits; route choice
(deterministic)

Zhuetal (2015) 5 GN Fixed and elastic; Constant Link specific E&LE: flow, Analytical
continuous credit price optimality
heterogenecus
value of time;
route choice
{deterministic)

Miralinaghi and  5; GN Elastic; homoge- Period-to-pericd  Link specific EELE: flow, Analytical

Pesta (2016) neous traveller; dynamic credit price optimality
route choice
{deterministic)
Akamatsu and  Metwork Fixed and elastic; Link specific Link specific Existence Analytical
Wada (2017) based on heterogeneous and time and time conditions optimality
bottleneck value of tima; dependent dependent conditions
miodel departure time
and route choice
{deterministic and
dynamic)

({continued).
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Table 1. Continued.

Demand/ Solution Tariff

Study Supply model behaviour model Credit price Tariff scheme properties optimization

Palma 5;single 0-D  Daily fixed; heteroge-  Constant and Route and EELY: flow and  Nonlinear

etal (2018) network necus value of time;  unigue scenario price for optimizatien
mode and route specific adaptive toll
chaice (logit model)

Yizoetal (2019) 5 GN Fixed; homoge- Constant and Link specific E&LE: flow, Analytical
neous traveller; umigue with negative credit price optimality
route choice values
(deterministic)

Guo, Huang, and  5; GN Elastic; homoge- Day to day Link specific Convergence to Period-to-

Yang (2019) neous traveller; dynamic and period- the system period
route choice to-period optimum adjusted
(deterministic) adjusted
Bao, Verhoef, and M Fixed; homogeneous  Constant Time-varying E: flow, credit  Analytical
Koster (2019) traveller; departure continuous price optimality
time choice tedl
(deterministic)
Miralinaghi M Fixed; heterogeneous  Constant and Time dependent  E&L: flow, Analytical
etal, (2019) value of time, unigue and value of credit price optimality
schedule delay and time specific
preferred arrival
timve; departure
time choice
[deterministic)

This study Moming Fixed; heterogeneous  Day to day Distance based  E&L: credit Bayesian
Coamimute value of time, dynarmic and time- price optimization
problem schedule delay, varying
based preferred arrival continuous
trip-based time and trip length; toll
MFD departure time

chaice (logit model)

Maore: 5, static congestion with density function; GM, general netwark; M, moming commute problem based on bottleneck model;
E&A, existence and uniqueness,

3. Methodology

We consider a morning commute problem where a fixed demand of N travellers (indexed by i) wish
to travel during the morning peak. Assume that the day is discretized into time intervals, t = T, with
a size of At. Note that our modelling framework uses both discrete time (on both the demand and
supply sides) and continuous time (on the supply side), which will be elaborated on in subsequent
sections. Traveller i is assumed to have a trip length Lj, and a desired arrival time T, which is used to
compute an individual-specific set of feasible departure time intervals, or a departure time window,
denoted by TW; — T.The collection of disaggregate departure-time decisions of travellers serves asan
input to a trip-based MFD supply model, yielding network performance or individual trip-travel times.
Thus, in place of the standard bottleneck model, supply is modelled through area-based networks asa
reservoir (Daganzo 2007), with the assumption that traffic congestion is spatially uniformly distributed
within the network (Daganzo 2007). The key advantage of the trip-based MFD model is that it can
accommodate heterogeneity of travellers in terms of trip length.

Travellers are assumed to choose their departure time intervals based on the travel time, sched-
ule delay (the difference between the actual arrival time and desired arrival time), and monetary
cost, along the lines of the classic Vickrey model (Vickrey 1969). More specifically, the departure-time
choices of travellers are modelled using a logit mixture model, which is described in Section 3.2,
Demand-supply interactions are treated using a day-to-day modelling framework (Cantarella and
Cascetta 1995), where perceived travel times and schedule delay of travellers evolve from day to
day through a learning process. The convergence properties of this day-to-day dynamic model are
described in Section 4.



TRANSPORTMETRICA B: TRANSPORT DYMAMICS @ 7

Finally, within the proposed tradable credit scheme, which is used to manage peak-period con-
gestion and achieve peak spreading, the regulator distributes a specified number of credits to each
traveller. Travelling in a time interval t will incur a credit charge which depends on a time-interval
specific credit tariff denoted by g(t), and either the trip length L; or travel time T;, depending on the
scheme in place. The TCS is described in detail in section 3.3.

3.1. Supply model

Algorithm 1 Event-based simulation of the trip-based MFD

Step 1. Initialization: Input rjdeP. TF, L, speed-MFD function V(n) and number of travellers N; setn =0,
event counter j = 0, tj = 0; calculate the initially estimated arrival time for all travellers Vi, 1...N by
Li/V(0).
Step 2. Construct the event list by appending the departure and arrival in the order of time, with a
length of 2N.
Step 3. Calculate the experienced travel time;
While Event list is not empty:

setj = j+ 1,1 as the time of the next event

letlj = Lj — Vim) - {f§ — tj—1), ¥i

if the next closest event is a traveller i’ departure:

n = n 4 1, update the credit account balance of traveller /

else:

n = n — 1, compute the experienced travel time of travelleri’, T; (Ig

end if

Remove this event from the event list

Update the current average travelling speed Vin)

Update the estimated arrival time for travellers currently in the network by Equation (1) considering
a constant spead Vin)

Sort the event list in the order of time
End while

2p,

A single-reservoir network (Daganzo 2007; Geroliminis and Daganzo 2007) is considered in this study,
where all trips originate and end within this network. The idea is to describe the aggregate vehicular
accumulation, the number of operating vehicles, at the ' neighbourhood’ level with a well-defined rela-
tionship between the reservoir outflow and the aggregate accumulation. We assume that the travel
demand is not excessively large so as to trigger a gridlock. This assumption ensures that the gridlock
is never reached and a non-zero flow stable equilibrium can be achieved.

Furthermore, we resort to the trip-based MFD as in Arnott (2013), Fosgerau (2015), Daganze and
Lehe (2015), Lamotte and Geroliminis (2018), whose general properties are further investigated in Mar-
iotte, Leclercg, and Laval (2017). The general principle of the trip-based MFD is that the trip length of
traveller i is computed as the integral of the speed from the entering time I}jeP to the exiting time
l‘f'Ep + TJ{rf'E P}, which is written as follows,

ALE s
L= LED Vinit)) dt (1)

Without loss of generality, notation :?Ep is used instead of r?jp in Equation (1), and f represents contin-
uous time. The assumption that V(n(f))) is for all travellers in the network and only changes with an
event (departure or arrival} facilitates the use of event-based simulation for analysing network proper-
ties (Mariotte, Leclercq, and Laval 2017; Yildirimoglu and Ramezani 2020). In this paper we adopt the
simulation process described in Algorithm 3.1.
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3.2. Behaviour model

A logit mixture model (Ben-Akiva, McFadden, and Train 2019) with a money-metric utility is used to
characterize the departure time choice of travellers, wherein the utility for a traveller i departing in a
time interval t = TW; on day d is given by:

Uia(t) = Gg(t) + (2)

where ¢; is an identically and independently distributed error term; and C; (1) is the systematic disu-
tility (defined in equation (4)) for traveller i departing in time interval t on day d. The probability of
choosing departure time interval t can be calculated according to the logit model as follows:

expiji - Gglt))
Y serm exp( - Cg(s))

where = 015 the scale parameter, reflecting the variance of the unobserved portion of utility, with
choices being random for scale parameter equal to zero and deterministic as its value approaches infin-
ity (Ben-Akiva and Lerman 1985). Let & 4(t) denote the perceived disutility associated with the time
components (travel time, schedule delay early, schedule delay late) for traveller i on day d departing
in time interval t; the systematic disutility G (1) is defined as:

Prig(Cig(th) = (3}

Cial(t) = Ea(t) —pg-ai(t) - L -w (4}

where the credit payment of traveller i is the product of credit price pg. credit tariff g(t), trip length
Lj and w is a factor for scaling down the magnitude of trip length to avoid unrealistically large pay-
ments. In principle, one could add the market value of the daily credit endowment to the expression
in Equation (4) so that the utility directly captures the net monetary gain or loss from credit transac-
tions. However, in the absence of non-linear income effects, this amounts to adding a constant term
ta the utility of every alternative, and thus, does not affect the choice and can be omitted. Note also
that although in the description of the model and its properties that follows, we will refer solely to the
distance-based tariff scheme, in the experiments section, we also examine the travel-time based and
area-based schemes.

As noted previously, within the day-to-day modelling framework, travellers update their perception
of the time components for day d + 1,41 (t), at the end of each day d. We assume that the perception
of the time components for day d + 1, €; 441 (f), is updated using a combination of the perceived & 4(t)
on day d (historical knowledge) and the experienced (chosen alternatives) and estimated (unchosen
alternatives) travel time, schedule delays on day d, ¢;4(t). as follows:

G () = e - Eg(t) + (1 — ) - gig(t) (5}

where 0 = w = 1 is a learning parameter, which represents the relative weight given to historical
experience versus current experience,

The experienced (or estimated) money-metric disutility associated with time components for
traveller i on day d departing in time interval t is given by:

Gialt) = —b; - Tig(t) — & - SDE; - (T — t — T;a(t))
—(1—8)-SDL; - (t+ Tig(th — T (6)

where & is the value of time for traveller i, T; 4(t) is the travel time for traveller i on day d departing in
time interval t, and &; is a binary variable that equals 1 if traveller i arrives early and 0 otherwise. 5DE; and
50L; are the schedule delay early and schedule delay late parameters for traveller i, respectively, which
are defined as the difference between the desired arrival time T and actual arrival time t + Tj4(t).
Note that in expressions that combine a time interval and continuous time, the interval is taken to be
its mid paint.
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MNate that using Algorithm 3.1, only the travel time for the chosen departure time can be measured
by a particular traveller i. In order to estimate the travel time for all other unchosen departure time
intervals in the choice set TW;, we use the concept of fictional travellers who are assumed to choose
these departure time intervals without influencing the accumulation of the network (Lamotte and
Geroliminis 2015).

The choice set of feasible departure time intervals or departure time window TW; is individual-
specific and defined as TW] = {rfgp — r,tf,?" —(r—1... ..r}j‘,’" + 1}, where t is a parameter and rf,f',"’
represents the initial departure time interval on day 0, which is computed from the preferred arrival
time T} and the perceived travel time on day 0. Thus, the departure time window TW; consists of 27

time intervals centred around the preferred departure time on day 0, t?,;"p,

MNaote also that research has shown that travellers’ access to information affects perceived costs and
convergence of the day to day model. For example, Liu et al. (2017), Liu and 5zeto (2020) showed that
the predicted travel cost affect system convergence and reduce variations in system performance over
days. Along similar lines, Zhu et al. (2019) demonstrated that the combination of historical knowledge
and experienced information yields higher levels of convergence.

3.3. Tradable credit scheme

The TCS explored in this paper extends the design proposed in Bao, Verhoef, and Koster (2019), Brands
et al. {2020), Chen et al. (2020) to consider trip length-based and travel time-based tariff schemes, and
has the following features: (1) The regulator will give out the same amount of credits to every traveller
on each day, (2) The credits expire at the end of the day (in other words they are valid only for a sin-
gle day), (3) All travellers are assumed to trade directly with the regulator so that travellers who are
short of credits can buy enough credits to pay the tariff, and travellers who have excess credits can sell
them. Mote that such a design helps minimize transaction costs associated with information acqui-
sition, negotiation, etc. that are present in markets with peer-to-peer trading and auctions (Brands
et al. 2020), (4) The tariff profile (i.e. the time-varying tariff in credits per trip length or travel time unit)
is designed by the regulator in advance and is invariant across the entire day-to-day process.

It should be pointed out that the proposed TCS scheme is not identical to a congestion pricing sys-
tem in which toll revenues are equally redistributed to all users (often termed revenue refunding or
revenue recycling schemes). The key difference between the two is that the TCS scheme invalves a
market which allows for trading of credits resulting in an endogenous credit price. This market mech-
anism lends the TCS scheme additional flexibility that has been shown to yield both efficiency and
equity gains (see Seshadri, de Palma, and Ben-Akiva 2021; Palma et al. 2018) in the presence of demand
and supply uncertainty, even when credit allocation rates are fixed (across days or time periods).

The buying and selling behaviour of individuals in the market is not explicitly modelled in this study,
in contrast with Chen et al. (2020). Here, for each day, after selecting a departure time interval, a trav-
eller will have to pay a credit tariff according to the tariff profile function git) and her/his trip-length or
travel time. If the traveller is short of credits, she/he can anly buy the credits needed for the payment
directly from the regulator; otherwise, she/he will sell extra credits to the regulator at the market price.
We assume a credit balance of 0 at the end of the day (note that since credits expire at the end of the
day, no user will leave credits unused) and we do not make an explicit assumption on the number of
trades. This assumption is commonly adopted in the literature (Yang and Wang 2011; Wu et al. 2012;
Brands et al. 2020). It is expected that complex and strategic buying and selling behaviours will affect
credit price evolution (Dogterom, Ettema, and Dijst 2017; Chen et al. 2020) through both the credit
value perception and effective demand and supply of credits. A common way to avoid the specu-
lation is to set a specific validity peried; then no one can benefit from credit stocking and banking
behaviours {de Palma and Lindsey 2020). In this study, the validity period is set as one day. Note that
while the end-of-day ‘traveller-to-regulator’ trading is beneficial in reducing transaction costs (associ-
ated with finding a buyer/seller in a market, etc.), its main disadvantage is that the budget neutrality
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of credits is not guaranteed in the short-term (Brands et al. 2020). A possible solution could be setting
acap for the supply of credits from the regulator. Nevertheless, as we demonstrate through numerical
experiments, the proposed price adjustment mechanism in Section 3.3.1 ensures market clearance of
credits at equilibrium, and hence, budget neutrality will be guaranteed eventually. Our design of the
system is motivated by the need to minimize transaction costs, which can affect efficiency of the TCS
(see Brands et al. 2020; Nie 2012 for a detailed discussion).

3.3.1. Credit price evolution

As credits are bought and sold in a market, the price is determined endogenously by credit demand-
supply interactions (Yang and Wang 2017; Ye and Yang 2013). Specifically, the supply of credits is
predetermined by the regulator while the demand or consumption of credits is governed by the credit
tariff profile, credit price and the traffic flow generated from the executed travel plans (departure times
choices) of all the agents. The difference between the supply and demand determines the credit price,
i.e. the market price should increase when demand exceeds supply, and reduce when supply exceeds
demand, which in turn influences the departure time choices of agents.

We assume that the credit price on day d 4 1 is based on the previous day's credit price py and
the expected excess credit consumption £, defined as the difference between the expected credit
consumption and the total endowment of credits in a given day. The endowment [; 4 is assumed to be
the same for all travellers and constant acrass days, hence, we denote it by [ hereafter, dropping the
subscripts i and d. Thus,

Za= E E Pri(Ci(t | pg)) - git) - Li-w—1-N @)
i teTW;
Pdy1 = Pd + QPa. Zy) @

where the change of price is represented by function Q.

Function Qip, Z) needs to satisfy the following assumptions to guarantee a non-negative price p:
(1 ¥p = 0, Q(p, ) is strictly increasing with 2 € E; (2) If p = 0, Q(0, Z) is strictly increasing with Z = 0;
(3 Qip,0) =0, ¥p = 0; A0, Z) =0, ¥Z < 0. Then, we have

Qp2)=0e=p-Z=0, p=0,Z2=0 (9)

4. Solution analysis

This section builds on the work of Ye and Yang (2013}, who showed that the equilibrium of market price
and flow dynamics under a TCS in a route choice context is unique and stable. Note that due to the lack
of a closed-form expression for the trip-based MFD model, it is not straightforward to prove that the
travel cost vector £ is monotone with respect to the departure flows, especially with heterogeneaus
travellers. Without this property, establishing uniqueness of the eguililbrium analytically is difficult. For
the same reason, we do not have an analytical form of the corresponding Jacobian matrix of the travel
cost £4, which is required for proving convergence. Hence, we only discuss existence of the equilibrium
and uniqueness of the credit price. Nevertheless, our numerical experiments indicate that the day to
day dynamical system converges to the same equilibrium flow pattern for different initial conditions.

4.1. Selutions to the day-to-day model

As defined in Cantarella and Cascetta (1995), Watling (1996, a dynamic day-to-day model could be
either a deterministic process (DP) or a stochastic process (SP) of evolution towards, respectively, a
stochastic equilibrium and stationary probability distribution. In a DP, the fraction of users departing
in a particular interval is assumed to be equal to its expected value, i.e. the choice probability, and
hence, departure flows are treated as deterministic. Thus, in a DP, knowledge of the entire history of
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the system completely describes the current system state. This is in contrast with an 5P, where flows
are treated as random variables (we refer the reader to Cantarella and Cascetta 1995; Watling 1996 for
a more detailed discussion). Thus, implicitly, in the DP, demand is modelled as a continuous variable
(also adopted in Mariotte, Leclercq, and Laval 2017; Lamotte and Geroliminis 2018). We adopt the DP
assumption, and thus, the number of travellers departing in time interval t on day d is assumed to be
equal to the sum of choice probabilities of interval ¢ across individuals.

When the proposed day-to-day model reaches equilibrium, the total number of consumed credits
should not exceed the total number of endowed credits, which is given as:

lim %" % PR(Gi(0) - gt} -Li-w=1-N (10)
=D oW,

As the credit tariff profile within the peak hour period is predetermined and constant across days,
when the departure time windows for all travellers are fixed, it allows for the calculation of the theo-
retical minimum consumption of credits for all travellers. In this case, the credit consumption in the
dynamic system will adapt to the credit endowment, as long as the feasibility condition that the credit
endowment is not smaller than the minimum demand is satisfied.

4.2. Existence of the equilibrium and uniqueness of the price

For the proposed day-to-day dynamic system, at an equilibrium &.(t), ¥i € {1,2,.... N}, t € TW}, the
vector of perceived travel costs of all travellers € is equal to the vector of the experienced travel cost of
all travellers c; (Cantarella and Cascetta 1995). This implies that when the system evelves to ¢, (f), ¥i €
{1, 2,.... N}, t = TW,;, it will remain at this state for all subsequent days. By definition, for all travellers
ie(1,2,...,N}, the equilibrium or fixed-point condition for this system is:

{E,-,*m =@ Galt)+ (1 — @) - Gult), ¥t TW 0
Pe = Pu+ QP Zi)
which is equivalent to
Cislt) = giait), WteTW,
(12)
Qipy. Z,) =10

We now intreduce the following two theorems for the existence of an equilibrium and the uniqueness
of the price.

Theorem 4.1 (Existence of the equilibrium): Ifthe travel demand is not excessively large so as to trigger
a gridiock Lamotte and Geraliminis (2016), Miralinaghi et al. (2019), and if

N = Imin - N £ Jim_ ngv PritCi(tlp)) - g(t) - Li - w,
I TEIW,

then there exists an equilibrium solution (€. ps). ¥i € {1,2,..., N}, t € TW; of the proposed dynamic
system, if the cost function ¢;(t) is a continuous function of departure flows.

Proof: The proof is detailed in A. It is directly inspired by a proof of Ye and Yang (2013). ]

Theorem 4.2 (Uniqueness of the price): Assume the minimum credit endowment condition is satisfied,
ifthe total credit demand, 3 ; 3,y Pri(Gi(2] p1)) - g(t) - Li - w, is strictly decreasing with credit price, i.e.

(1 —p2) (Z Y PGt p)) gty -Li-w =" Y Pr(Gi(tp2)) - gt) - L - w) =0 (13)

i weTW i teTW,

then the equilibrium price is unigue.
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Proof: The proof is detailed in A. |

Remark 4.1: Notes on the conditions for inequality (13) to hold:

(1) There are at least two departure times with different credit charges. This condition holds as the
credit tariff is time-varying.

i2) According to equation (3), for each traveller i, the probability of choosing departure time t,
Pri(Ciit)), takes the logit form, thus the following conditions are satisfied foralli € {1,2,... N}

0 O -0 Ve TW,

(i) nimi{,tﬁ%ﬂ <0 ¥ #£heTW,

(i) G EEAEL =0 Vi € TWi, tp € TW), i #]
(v) () EGn) — PUCBD vy, e TW,

(W) VI3 pomw, PrIG(E)) =1

Condition (i} states that the partial derivative of Pry(Git)) with regard to Git) is positive, which
means that the probability of choosing departure time interval t becomes higher if the Ci(t) increases
(perceived cost decreases). Condition (i) means that for traveller i the probability of choosing a depar-
ture time interval 1 becomes lower if for another time interval t, Gifz) increases (perceived cost of
t; decreases). Condition (iii) states that the decision making of traveller i depends only on his/her own
perceived utility. In addition, it is trivial to derive that 25D — 41 . Pr(Citt)) - PrCita)), b1 # b
then condition iv) holds. Finally, the probabilities of all alternatives should sum up to 1, as shown in
condition v).

(3] Let Jpy s be the Jacobian matrix of Pri(-) with respect to Cy(t) = (Gi(t'), t' & TWi). It can be shown
that Jp; is positive semidefinite as condition (2) is satisfied and the systematic utility is a non-increasing
function of the corresponding perceived cost (see details in Cantarella and Cascetta 1995; Ye and
Yang 2013). Accordingly, we have g - Jpy; - g’ = 0, where g = (L; - w - g(t'), t' € TW)). The equality
holds if and only if condition (1) is not satisfied. Thus, the following inequality holds:

(p1 — p2)(Pri(Ciit| p1))g" — Pri(Ciit | p2))g")

= (g —pz) E PrCitt | prdy - @ity - Li-w— E Pri(Cilt | pz)y - gty - Lj - w
reTW, T,

=0 (14)

Then, we can derive inequality (13) by summing over the population.
Inequality {13} can also be interpreted in the following manner. Under the logit form choice prob-
ability function, when the credit price goes up, the departure time interval that is associated with a

relatively higher tariff is less likely to be chosen and the credit consumption will decrease.
Then, it is reasonable to propose the following hypothesis:

Hypothesis 4.1: p. isdecreasing with lin interval (lmin, luel, where lnin is defined in Section 4.7, and lye
is the average credit consumption for equilibrium pattern without TCS. Besides, p, = 0when | = k.

A similar hypothesis is analytically proved in Ye and Yang (2013), where the TCS is applied to a route
choice problem using a link-based network congestion model. We will instead validate this hypothesis
by simulations in Section 6.

5. Simulation-based optimization framework

Practically, the DP is solved using simulation. This is necessary because of the heterogeneity in trip
lengths, which makes it difficult to derive travel times as a function of aggregate flows (Watling 1996;
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Lamotte and Geroliminis 2018). In the simulations, we assume that the error terms for a given indi-
vidual are perfectly correlated across days (this implies that the error term in its entirety captures a
persistent agent effect). In this case, for a given draw of the error terms (which are identical across
days) for the population of travellers, one can think of an equilibrium system state since once travel
times converge, the choices of a given individual remain stable across days. Average flows and perfar-
mance measures across multiple simulation replications (draws of the error terms for the population of
travellers) are used to approximate the solution of the DP. The average flows (and performance mea-
sures) are thus associated with an error of estimation, which can be made arbitrarily low with a suitably
large number of replications (Watling 1996).

The social welfare per capita W at the eguilibrium state is used to measure the performance of
scenarios with and without TCS. First, in the no tariff case (or NTE, the scenario without TCS), the
social welfare per capita Wyne is the average consumer surplus (CS) per traveller, i.e.the average of
observed travel utilities U ﬂ(tg;p], including travel time cost, schedule delay penalty and the random
component, which is written as

s 1
Wite = = = ﬁzumufﬁpj

i=1

N
1o
=5 Z;[q,d{tﬁ;"} +eiltg)] (15)

where d is the day when the system reaches an equilibrium.

For the TCS scenario, the social welfare is computed as the average of the C5, the travellers’ rev-
enue (TR) from unused credits, the regulator revenue (RR) from credit tariff collection, the regulator
cost (RC) from buying unused credits, and the value of the used credits from travel endowment (TE).

Let :p,-ld(rf;“) represent the number of credits sold by traveller i on day d, ‘.fﬂ,dif?;ﬂi denote the num-
ber of credits bought by traveller i on day d, and gfd{rgﬂwj denate the number of credits used to
travel by traveller i on day d from the endowment. Note that qﬁf,df.*:jjp ) = Dwhen traveller i uses fewer
credits than the endowment, i.e. gfd(r?;p] < [, and qb,-rd{rfgpj = 0 when g;-'-:d(t? “Py = 1, while llﬁ"jrdl::rfjp]
takes a contrary relationship. Thus, we can compute the above social welfare components: TR =

N, dep _ N dep _ N dep _ N dep
EJ':I 'ql"u:f{fr"d V- P RR = EJ':'I Wrn{fw b P RC = E,i:] *ﬁ’rﬁ”,rd }+ P TE = Eﬁ:] ﬂﬁd{fm ) pg. In
addition, the paid credits by traveller i can be considered as the sum of two companents, the cred-
its from endowment and credits bought from the regulator, e git) - L;-w = q&r,-ﬂ{rf’jp} + gid{rf'jp}.
Based on the considerations above, the social welfare per capita Wics is calculated as follows,

Wics = CS + TR+ RR — RC + TH

N

:

=% Y a5y — pa - gtleP) - Li - w+ (t25P)]
i=1

N N
1
ey [Z Bty -pa+ Y Vialtfg?) - pa

i=1 i=1

N N
=3 G5y pa+ Y gLt 'Pd]
i=1

=1

N
Y Eia(tls?) + ets?)] (16)

i=1

1
N
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MNote that the TCS welfare measure is equivalent to the NTE case and equals the combination of travel
time cost and schedule delay penalty plus the random utility component.

Cr simulation captures the system model presented in Section 3 including detailed traveller and
regulator states in the single-reservoir network under the designed market conditions.! A simulation-
based optimization problem is then formulated to determine the optimal credit tariff scheme which
leads to the maximum social welfare Wrcs. Note that gradient-based algorithms will be computa-
tionally expensive for our optimization problem because they involve numerical computation of
derivatives for an objective that has no closed form and is the outcome of a complex simulation. Fur-
thermore, the simulation framewark can be a time-consuming process when the number of scenarios
is large.

Based on the considerations above, the Bayesian optimization (BO) approach is adopted, which
can approximate well the mapping from the input credit tariff profile to the cutput simulation-based
objective function using few evaluations. In our context, the input consists of parameters of the credit
tariff profile, which is parameterized by a Gaussian function, containing three parameters: mean, vari-
ance and amplitude. A pair of the input and output is defined as a sample. A BO framework essentially
consists of two main steps (Frazier 2018): (1) update a Bayesian statistical model that approximates
a complex map from the input {i.e. the credit tariff profile parameters) to the output (i.e. the social
welfare Wrcs); (2) determine the next input by optimizing an acquisition function. The first step uses a
Gaussian Process (GP) to approximate the joint distribution of social welfare and tariff profile parame-
ters and updates the GP with new samples generated by the second step. BO is shown to be effective
in optimizing time-varying road pricing mechanisms (parameterized by Gaussian mixture functions)
in Liu, Jiang, and Azevedo (2021). Further, as the results in Section & show, it performs well for the
problem at hand.

6. Numerical experiments

This section begins by introducing the simulation settings. Next, we present the results of (1) the
day-to-day model properties and convergence (Section 6.2) under a given credit tariff profile; (2) the
comparison between the optimized TCS against the NTE (Section 6.3); (3) the comparison between
the optimized TCS and time-of-day pricing (or CP) (Section 6.4); and finally (4) the comparison among
alternative types of credit tariff profiles and credit schemes (Section 6.5).

6.1. Experiment settings

The settings are presented in Table 2.

The experiments consider a single-reservoir network with a capacity of 4500 travellers, with the
speed function adopted from Lamotte and Geroliminis (2018) and other parameters (trip length, time
window parameters and time interval) used in Yildirimoglu and Ramezani (2020). The MFD is also
characterized by the critical value of the accumulation, denoted by ny, that can be computed accord-
ing to the adopted speed function and network capacity Njgm as Ng = Njam,/3. In the experiments,
WE assUme Njgm = 4500, and hence, ng = 1500 travellers, Two demand scenarios, moderate con-
gestion [Ny = 3700 travellers) and high congestion (N; = 4500 travellers), are considered, where Ny
makes the accumulation at no tariff equilibrium just exceed the critical value of the accumulation ng,
and N; is the largest possible value that will not trigger gridlock. The profiles of the accumulation in
the two scenarios are shown in Section 6.2. The initial departure time r,?,;'fp is generated from a trun-

cated Gaussian distribution (note that hereafter rﬂfp refers to a specific departure time rather than an

interval). The desired arrival time T7' is then computed as r,ﬁ',:‘ip + Lj/vs for all travellers, which is also nor-
mally distributed. Additionally, heterogeneous travellers are captured by drawing their trip lengths
from a truncated Gaussian distribution and schedule delay penalties from a lognormal distribution,
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Parameters (unit)

Specification

Credit endowment (credit)
Demand (traveller)

Initial departure time {min)

Trip length (m)

Trip length scale factor

Schedule delay penalty (DKE/min)

Value of time (DKK/min)
Time window parameter
Time interval {min)
Network capacity (vehicle)
Free flow speed (m/s)
Speed function (m/s)
Learning parameter
Function Q{p, Z)

Tariff profile function

I=5

Ny = 3700, N; = 4500
tfa? = AC(80,18), 5" e (20,150]

L; = 4600 + N0, (0.2 = 4600)%), L, = 0

w=2wx10""

SDE; ~ Lognormal({—1.9,0.2%) « 4

500 = SDE x ¢!

& = SDE; = e

T =30

Ar=1

ﬂm:-‘ﬁfm

v =978

Vi) = v(1 — ﬁﬁ

=09

Qip, Iy = kZ, ifp = 0; Q{p,?z,'l = max{0, kZ),ifp = 0, where k = 2 = 107"

git|AEa)=Axe =g

respectively. The mean value of the generated value of time is 1 (DKK/min) (Fesgerau, Hjorth, and Lyk-
Jensen 2007) and the standard deviation is 0.2 (DKK/min). The schedule delay penalties are assumed
to vary proportionally to the value of time and satisfy the widely used trip timing preferences relation-
ship, i.e. 5DE; = & < 5DL; (Vickrey 1969). In both demand scenarios, the same distributions are used
while all other parameters are constant (see Table 2). To set up a time-varying credit charging scheme,
the tariff function is assumed to take the form of a (positive) Gaussian function, which is controlled
by three parameters, mean £, variance o and amplitude A. Without loss of generality, the method
described below can be extended to a Gaussian mixture function to allow for asymmetric and more
flexible tariff profiles (Liu, Jiang, and Azevedo 2021). Moreover, alternative step tariff and triangular
tariff profiles are also tested under the proposed framework in Section 6.5.1. Finally, several additional
points are noteworthy:

+ in the simulations, the excess credit consumption Z; is computed using the cbserved credit con-
sumptionondayd: Z; = 3 ; gftf;p Ve Lj - w — I+ N; the expected credit consumption expression in
Equation (7) allows for a theoretical analysis of model properties;

« for realistic behaviour we show the results under a feasible time window TW, 4 that changes from
day-to-day based on the updated perceived travel times. TW; is still centred around the pre-
ferred arrival time, but lagged by the traveller's perceived travel time for day d, Le: TWig = T —
Taaltiy ) —t-ALTF - T, _,{q?ﬁE]} —(x = 1) At LT = T (6g7)) + 7 - At). The simu-
lations under a fixed time window TW; also confirmed convergence properties of the day-to-day
dynamic model and unigqueness of the credit price.

# the properties demonstrated in Section 6.2 are for a single draw of the choice model error terms.
Thus, an error of estimation can be computed for each performance measure from multiple simu-
lations with different draws of the error terms for the population. Given the size of the population,
our results indicated that this error of estimation is small for all performance measures of interest,
and hence, for computational reasons we report results of a single draw.

6.2, Day-to-day evolution process

6.2.1. Day-to-day process without TCS

In this subsection, we first focus on examining the equilibrium properties of the day-to-day dynamic
model without the TCS in both the moderate congestion and high congestion scenarios. Theoretically,
when the day-to-day evolution reaches an equilibrium, the vector of the perceived travel cost of all
travellers, €4, should be equal to the vector of the experienced travel cost of all travellers, ¢g. Thus,
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the inconsistency between €3 and ¢y is used as a measure of convergence towards the equilibrium.
Specifically, the L1 norm of the difference between them divided by the number of travellers N, i.e.
| €5 — €q 1 /N, is computed to represent the inconsistency. Further, a normalized version of this gap
is given by || (€g — €g/€4 [|1 »100%.

Figure 1(a) presents the convergence of the perceived travel cost of all travellers €. It is found
that the inconsistency becomes stable and close to 0 after 80 days, with a gap around 0.05%, imply-
ing that the day-to-day evolution reaches an equilibrium state. Mote that, as travellers do not have
perceived cost and use a predetermined departure time on day 0, the inconsistency in the per-
ceived travel times is computed only from day 1.2 Figure 1(b) illustrates the evolution process of
the average consumer surplus (C5) per capita across days, and Figure 1(c) shows the evolution pro-
cess of the social welfare per capita. These two plots are identical since the social welfare equals
the consumer surplus in the neo tariff case. Figure 1(d) plots the evolution process of the average
travel time cost across days. Figure 1(e) demonstrates the departure rates for every 5-minute inter-
val on different days, and Figure 1(f) depicts the states of accumulation on different days, where the
accumulation on day 85 overlaps with that of day 99. This also indicates that an equilibrium state
is reached. In these two plots, the curves of day 0 represent the initial generated state specified in
Section 6.1,

We also investigate convergence properties in the moderate congestion scenario although the
plots are omitted here. The results demonstrate that with the same learning parameter @ = 0.9, the
perceived generalized cost reaches a stable state. In comparison, we observe a higher consumer sur-
plus, higher social welfare and lower travel time cost at the equilibrium state due to less congestion. In
addition, there is a lower peak of departure rates compared to the high congestion scenario, and the
peak accumulation at the equilibrium state is also lower than the one in Figure 1{f) but higher than the
critical value ngr.

6.2.2. Day-to-day evolution with TCS

In this subsection, we present the convergence and equilibrium properties mentioned in Section 4.2
of the day-to-day dynamic model with the TCS for the moderate and high congestion scenarios. It is
worth noting that the equilibrium states of the base cases are used as the starting states (i.e. day 0) of
the TCS cases for both demand scenarios. The parameters of the tariff profile function are arbitrarily
set to satisfy the condition in Theorem 4.1: 4 = 11, & = 1Band & = B0.
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Figure 1. The evolution process in the high congestion scenario without TCS.
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According to Figure 2(a—d), it can be seen that the day-to-day evolution under a given TCS con-
verges to an acceptable degree, where the system reaches an equilibrium after 60 days, with a gap of
0.04%. Note that the social welfare Wycs in Figure 2{(c) is smaller than that in the no tariff case. This is
because the credit tariff scheme is not optimal but arbitrarily specified, shown as the gray dashed line
in Figure 2(f). The results in Figure 2(e,f) also support this observation that the peak departure rate and
accumulation are not reduced compared to day 0. In addition, Figure 2{g) displays the evolution of
the credit price, which goes up from 0 (DKK) to the equilibrium price 1.7 {DKK). This process is consis-
tent with the evalution of the credit transactions shown in Figure 2{h). Initially, the number of bought
credits (i.e. the credit demand) is much higher than the number of sold credits (i.e. the credit supply),
implying that the market is short of credits and travellers need to buy extra credits from the regulator.
Thus, the credit price increases. After perceiving a high travel cost due to the relatively expensive credit
payment, travellers adjust their departure time to avoid being charged excessively, leading to a smaller
credit demand and consequently slower credit price increment. Finally, at the equilibrium state, the
credit supply nearly is equal to the credit demand and the comesponding credit price becomes stable.
Figure 2(i} illustrates the evolution process of the average credit payment, which is the value of the
used credits (or the tariff payment). Note that this tariff payment is exactly the difference between the
consumer surplus and the social welfare, as derived in Equation (16).

When applying the same tariff profile to the moderate congestion scenario, a similar pattern is
observed, the detailed plots are once again omitted here.

Mext, we examine the unigueness of the credit price by setting different initial prices and price
adjustment parameter k for the high congestion scenario. Similar patterns, not presented here, are
observed in these tests for the moderate congestion scenario. Letk = {1 x 1075,2 » 1075,4 = 1075}
we then examine the influence of the price adjustment parameter on the price evolution. The results
are shown in Figure 3{a). It can be observed that when k becomes larger, the credit market shows a

greater reaction to the difference between the credit demand and supply, leading to a higher peak
value and rapider change in price.
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Figure 2. The evolution process in the high congestion scenario with TCS.
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Figure 3. The evolution of oredit price with (a) different price adjustment parameters and (b) different inftial prices; {c) The
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In addition, Figure 3{b) presents the credit price evolution with different initial pricespp =0, 1, 2, 3
(DKK). It appears that though the evolution processes are different and start from different initial
values, the credit price eventually converges to the same level,

Moreover, we validate Hypothesis 4.1 by varying the credit endowment.? Under the given credit
tariff profile, the minimum possible endowment fyi, = 1.61 and fyc = 7.01. Note the credit endow-
ment is identical among all the travellers and keeps constant across days. Let [ = {3,4,...,7, 8}, the
results are demonstrated in Figure 3(c). It is clear that the credit price monotonically decreases with |
and reaches 0 when [ exceeds lyg = 7.01.

6.3. Bayesian optimization results

In this subsection, we present the performance of the TCS under an optimized tariff profile obtained
from the developed BO method for both demand scenarios.

The domains of the tariff profile function parameters are set as A < [2, 20] (unit: credit/meter), £
[30,90] and & = [10, 70]. The initial samples are generated via the Latin Hypercube Sampling (LHS)
(McKay, Beckman, and Conover 2000) consisting of 30 points. For each sample input paint, we run the
day-to-day simulation and compute the travel time cost and schedule delay cost using the average
value of the last 10 days after the equilibrium. The social welfare per capita can therefore be calculated
using Equation (16). Figure 4 shows the evolution process for the high congestion scenario with an
optimized tariff profile, the parameters of which are A = 48, £ = 67.3 and o = 33.5. It can be seen
that the system becomes stable after 80 days, and converges to a credit price of 3.05 (DKK), Compared
to the no tariff case, the departure rate curve is flattened, and the peak accumulation is reduced from
1867 to 1053 ( traveller], which overall, leads to an improvement in the social welfare, raising from
—29.8 (DKK) per capita to —23.8 (DKK) by 6.0 (DKK). We cbserve from Figure 4{e f) that more travellers
are departing later under the optimized tariff profile compared to the no tariff case, in order to avoid
high credit tariffs. However, due to the highly reduced travel time, there are 70.8% travellers amriving at
their destinations earlier than their desired arrival time under the optimized tariff profile, while 67.7%
in the no tariff case.

Similar patterns are also observed in the moderate congestion scenario, although the plots are
omitted here. The daily average values of measurement variables for the last 10 days after the equi-
librium for the no tariff case, moderate congestion and high congestion scenario are listed in Table 3,
where the second to eighth columns are the daily average monetary travel time cost, schedule delay
cost, random utility, consumer surplus, social welfare per capita, tariff payment and credit price, respec-
tively. The ‘mean’ and "std.dev’ rows in Table 3 represent the mean values and standard deviation
across the last 10 days after the equilibrium for each scenario, respectively. It can be seen that, in the
moderate congestion scenario, the travel time cost per capita is reduced from 26.7 (DKK) to 20.9 (DKK)
by 21.8%, while the schedule delay cost is increased from 3.3 (DKK) to 6.2 (DKK) by 90.5%, and overall
social welfare per capita is improved by 3.2 (DKK). In the high congestion scenario, the average travel
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Figure 4. The evclution process in the high congestion scenario with optimized TCS.
Table 3. Comparisons among no tariff case, optimized TC5 and CF
Linit Travel Schedule Random Consumer Social Tariff Credit price
(DK cap) time cost delay utility surplus welfare payment (DEK)
Mo tariff case (N1}
Mean —26.7 —3.3 5.5 —24.5 -5 - -
Std. dev. 0.020 0.00:4 0004 oon3 003 - -
Optimized TCS (N1)
Mean 0.9 —6.2 5.8 —34.0 =213 128 26
Std. dev. 0.005 0.005 0.001 0oo2 0001 0.003 0001
Optimized CP (NT)
Mean —208 —6.3 58 —34.2 -3 129 -
Std, dew. 0.001 0.001 0.001 0.002 0.002 0.002 -
Mo tariff case (N2}
Mean -310 —4.7 59 —298 —HMa - -
St dew. 0.080 0.050 0.010 0120 0120 - -
Optimized TCS (N2)
Mean -5 —83 6.0 —39.1 238 153 EA |
Std. dev. 0.005 0.006 0.001 0003 0001 0004 0001
Optimized CP (N2)
Mean -4 —a.4 5.9 —39.2 —-218 154 -
Std. dev. 0.004 0.006 0.001 0003 0002 0.005 -

time cost is reduced by 30.7%, the schedule delay cost is increased by 76.5%, and the social welfare
per capita is improved by 6.0 (DKK). As expected, when congestion is more severe, the improvement
in terms of social welfare by imposing the optimized TCS is higher.

6.4. Comparison with time of day pricing

Under the time of day pricing, travellers’ behaviour is simulated based on the same travel behaviour
model described in Section 3.2, The time of day pricing also uses a distance-based tariff, which is paid
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Figure 5. The evolution process in the moderate (left) and high (right) congestion scenarios with optimized tariff profiles.

at the beginning of the trip. The only difference is that the tariff is setin DKK instead of credits. Thus, the
experienced (or estimated) travel cost cﬂ;{rj far traveller i on day d departing at time t can be written
as cr'c,dp'[ﬂ' = —f - Tiglt) — & - SDE; - (T7 —t — Tig(t)) — (1 — &) - SDL - (t + Tig(t) — Tfk], and Cﬁ{ﬂ =
Eﬁ';{rj — g®(t) - 1; - w, where g“F (£} is the tariff in dollars at time .

Similar to Section 5, we define the social welfare Wp of congestion pricing, which consists of
consumer surplus and regulator revenue, as Wep = lCS + RRl = g Ef"':, [E;rd(t:j?] + f]{f?;p]].

The domains of the tariff profile function parameter A are the same as before. The BO is used to opti-
mize the tariff profile, utilizing the LHS sampling method to generate initial points. Figure 5(a—c) show
the evolution process in the moderate congestion scenario with optimized tariff profile, the parame-
tersof whichare A = 11.2, & = 71.5 and & = 32.6. It can be seen from the results presented in Figure
5and Table 3, the time of day pricing reaches an equilibrium of social welfare and flow pattern close to
that of TCS case, with a higher tariff rate. Figure 5(d-f) present the evolution process of high conges-
tion scenario, with tariff profile parameters A = 14.8, £ = 67.3 and & = 33.5. Combined with Figure 4

and Table 3, we conclude that by optimizing the tariff profiles, TCS and CP have the same performance
in terms of social welfare and flow pattern at equilibrium.
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Figure 6. Accumulation for the optimized step tariff and T-toll profiles.

Table 4, Comparisens among the optimized Gaussian tadff, T-toll and step tariff TCS.

Unit: Trawel Schedule Random Consumer Social Tariff Credit price

(DK cap) time cost delay utility surplus welfare payment [DEE)

Mo tariff case (N1}
Mean -7 —33 55 —245 —M5 - -
Srd, dev. 0.020 0.004 0.004 0.013 0013 - -
Optimized Gaussian tariff (N1}
Mean —20.9 —62 58 —34.0 —-213 128 16
Std. dew. 0.005 0.005 0.001 0,002 0.001 0.003 0,001
Optimized T-toll (N1)
Mean —20.6 —bb 58 —335 —21.4 121 14
Std. dew. 0.001 0.001 0.000 0,001 0.001 0.001 0,000
Optimized step tariff (N1}
Mean —2121 —5.2 5.4 —31.8 -4 1000 20
St dev. om7 000G 0.002 0015 0010 000G 0.0o1

6.5. Comparison of alternative credit tariff mechanisms

6.5.1. Comparison between different credit tariff profiles

Since the performance of the TCS ultimately depends on the choice of the tariff profile functional form,
we compare the performance of the above Gaussian profile with two alternatives: a step tariff and a tri-
angular tariff (T-toll) profile. Both are inspired by Zheng, Rérat, and Geroliminis (2016) and Daganzo and
Lehe (2015), respectively, with the caveat that the comparison is limited to the scenario of N = 3700
and the symmetric profile assumption is made as before. For the step tariff, there are six parameters
including tariff charges of five steps and a position parameter indicating the center of the symmaetric
tariff profile. For the T-toll and similarly to the Gaussian case, there are three parameters including the
height, length of the base and, again, a position parameter.

Under both the step tariff and T-toll, we observe a similar convergence pattern. Therefore, only the
accumulations are shown in Figure 6. Table 4 summarizes the detailed information of all the perfor-
mance measures considered. We relied on 200 Bayesian Optimization iterations for the step-tariff case
since there are six parameters to optimize while the smaller number of parameters for the two other
cases relied on 40 iterations only. It was found that Gaussian tariff and T-toll have a similar performance
in terms of welfare. Interestingly, the C5 and time-related performance measures show differences
between the Gaussian and the T-toll, with a lower travel time, higher schedule delay and lower credit
value flow in the latter. Such credit market differences may justify a careful look into efficient mar-
ket design under more realistic market-related behaviours and equity aspects in TCS-related policy
decisions.

Nevertheless, both Gaussian and T-Toll outperformed the step tariff. This gap could naturally be
reduced with a higher number of steps in the step tariff functional form.
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Figure 7. The accumulations under different optimized tariff profiles.

6.5.2. Comparison among trip-length, travel-time based and standard area-based credit tariff
mechanisms

One could formulate a credit tariff as a function of travel time instead of trip length, allowing a direct
accounting of the contribution to congestion. Here, we consider a travel time-based tariff and com-
pare it with the already presented trip length-based tariff. We simply change the term pg - git) - Lj - w
in Equation (4) to py - g(t) - Tig(t) - w', where w’ = 0.08 and the other parameters are kept the same.
Note that for the trip length-based tariff, the unit of g(f} was (Credit/meter) while for the new travel
time-based tariff, the unit of git) is (Credit/minute). In addition, we also tested the (trip agnostic) stan-
dard area-based (zonal) mechanism for both scenarios, wherein the unit of g(t) is (Credit]. Figure 7
presents the accumulations for the different demand scenarios considered (N; = 3700 and N; =
4500) for the optimized two types credit tariff mechanisms. The detailed performance measures are
summarized in Table 5.

It can be seen that the three types of tariff converge to an acceptable degree. In both demand sce-
narios, the peak accumulation and departure rate with the travel time-based tariff are close to the ones
with trip length-based tariff. There is a slightly better welfare perfoarmance for the travel time-based
tariff only under the high congestion scenario, thanks to small benefits in schedule delay. Indeed, the
travel time-based tariff may reflect the contribution to the congestion more directly. Note that, even
with a fixed trip length, when a traveller considers changing departure time, the associated credit tariff
payment will also change. Here, the direct contribution to congestion is taken care of by the optimized
fixed tariff rate and the credit market. Yet, from the traveller's perspective, when a traveller’s evaluates
departure times, the trip length-based tariff allows for a clear information on credit payment while the
travel time needed for the user's travel time-based tariff estimation is uncertain in practice. This falls
under information provision and perception modelling research which, while related, is outside of the
scope of this manuscript. In addition, both trip-based TCS show the superiority compared to standard
(trip agnostic) area-based TCS.
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Table 5. Comparisons among the optimized trip length-based TCS, optimized travel time-based TCS and optimized standard area-
based TCS.

Unit: Trawel Schedule Random Consumer Social Tariff Credit price
(KK cap) time cost delay utility surplus welfare payment (KK}
Mo tariff case (N1}
Mean —26.7 —3.3 5.5 —24.5 -5 - -
Std, dew. 0.020 0.004 0,004 0,013 0.013 - -
Optimized standard area-based TCS (N1}
Mean —21.2 —5.8 6.0 —46.6 —230 245 49
S, dew. 0.mo 0.007 0.001 0.039 0.004 0.040 0.010
Optimized trip length-based TCS (N1)
Mean —209 —6.2 58 —34.0 -3 128 26
Std, dew. 0.005 0.005 0.001 0.002 0.001 0.003 0.001
Optimized traval time-based TCS (V1)
Mean —225 —50 59 —321 216 10.4 21
St dew. 0.010 0.009 0.001 0.001 0.005 0.006 0,001
Mo tariff case (N2}
Mean —-31.0 —4.7 59 —298 -8 -
St dew. 0.080 0.050 0.010 0120 0120 -
Optimized standard area-based TCS (N2}
Mean =241 —7.2 6.3 —38.8 —25.0 138 28
Std, dew. 0.005 0.002 0.001 0.005 0,003 0.002 0.000
Optimized trip length-based TCS (N2)
Mean —215 —83 6.0 —39.1 —218 153 3a
Std, dew. 0.005 0,008 0.001 0.003 0.001 0.004 0.001
Optimized travel time-based TCS (N2)
Mean —219 -7 59 —38.0 —237 14.3 29
Stdd, dev. 0.003 0.001 0.001 0.005 0,003 0,002 0.001

7. Conclusions

This paper proposes a tradable credit scheme (TCS) to manage urban transport network congestion
considering the day-to-day evolution of traffic flow. The properties of the TCS were examined via both
analytical and simulation approaches. The properties were analysed in the light of recent generic TCS
formulations, namely Bao, Verhoef, and Koster (2019), Brands et al. (2020), applied to the case of area-
based road traffic control, and extended for heterogeneous trip lengths, i.e. a distance-based tariff
instead of access-based tariff. The TCS here at stake relies on a daily fixed credit price, a time-of-day
varying tariff charging (or credit tariff), a morning commute control policy and heterogeneous decision
makers (in terms of choice preferences, trip length, and preferred arrival times). Meanwhile, a network
simulation model is developed to capture the day-to-day evolution of traffic flow. The model is built
upon the trip-based MFD (Arnott 201 3; Daganzo and Lehe 2015) and its efficient implementation pro-
posed in Lamotte and Geroliminis (2016) which allowed us to study fundamental properties of the
TCS. Finally we integrate this overall simulation model that combines the TCS and network simula-
tion model with a Bayesian optimization framewaork for determining the optimal credit tariff charging
scheme that maximizes the total social welfare.

Analytically, this paper presents conditions for existence of the market and network equilibrium,
and the uniqueness of the credit market price. In contrast, establishing the unigueness of departure
flows and convergence of the day-to-day model is challenging due to the absence of a closed-
form expression for travel times from the trip-based MFD model. Consequently, one has to resort
to numerical experiments under a wide range of demand and supply inputs to examine equilibrium
and convergence properties (e.g. Arnott 2013; Lamotte and Geroliminis 2015; Mariotte, Leclercq, and
Laval 2017), or apply more tractable congestion models for which unigueness can be established (Yang
and Wang 2017; Ye and Yang 2013). Numerically, the experiments demonstrate convergence of the
day-to-day model, and examine network performance and welfare for three comparative polices: a
no-control case, time-of-day pricing and the proposed TCS.
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MNaote that the MFD maodel has its limitations. Specifically, for a single reservoir network with endoge-
nous traffic, if the demand (or departure rate) is excessively large, the system will decay towards a
gridlock {Daganzo 2007). This issue has been discussed in the literature. For example, Mahmassani,
Saberi, and Zockaie (20132) showed that when a sufficient proportion of drivers are adaptive and the
drivers do not switch routes when time improvement is below a predetermined threshold, the grid-
lock eventually recovers. Nevertheless, this problem requires more investigation and we defer it to
future research. Therefore, only two demand scenarios, a moderate congestion and a high conges-
tion scenarios, are examined in this study. The numerical results showed convergence of the credit
price and demonstrated stable network patterns, verifying the analytical properties of price unigue-
ness and its inverse proportionality with the endowment. Motably, the proposed TCS improves the
social welfare compared to the no-contral case and demonstrates the expected theoretical equiva-
lence with time-of-day pricing. The framework proposed also allowed for a comparison of different
credit charging mechanisms. While testing different functional forms for the credit tariff profile, the
optimized Gaussian-shaped tariff had a similar performance (in terms of welfare) to the triangular tar-
iff; both outperformed a simple step tariff. Moreaver, the results suggest that a travel time-based credit
tariff mechanism outperforms a trip length-based tariff mechanism in terms of reducing the schedule
delay and enhancing the social welfare in congested scenarios. Yet, while both mechanisms would
have to rely on advanced technology for possible implementation, the trip length-based tariff scheme
may have advantages in terms of behavioural uncertainty during the traveller decision making pro-
cess. The results also show the superiority of a trip-based TCS compared to traditional (trip agnostic)
area-based (zonal) TCS.

The above developments and findings contribute to the increasing body of knowledge on mobility-
related TCS, both in terms of insights into the properties of area-based TCS as well as key modelling
and implementation frameworks for the design of future TCS.

Avenues for extension of the proposed framework include the consideration of day-to-day vari-
ability in demand and supply, and the design of individual- and group- specific credit allocation
schemes that can guarantee Pareto improvement (Seilabi et al. 2020). In the path for increased know!-
edge on the feasibility of TCS, the design of TCS markets that accommodate detailed and individual
market interactions along with different buying and selling strategies should also be analyzed. The
buying and selling behaviours are not considered in this study, while they are required for inves-
tigating potential market operation models for practical implementation of the TCS, both from a
theoretical (Dogterom, Ettema, and Dijst 2017; Chen et al. 2020) and empirical viewpoint (Brands
et al. 2020). In this study we also assumed that the credit endowment and credit price are constant
within a day. Nevertheless, it is acknowledged that adaptive credit charging, sporadic endowment
and guantity control interventions by the regulator and real-time / within-day credit price adjust-
ment may bring the TCS closer to efficient operations, especially under the non-recurrent conditions
of a real transportation system. Yet, detailed simulation and behavioural experiments approaches
may again be required to overcome the common simplifying assumptions employed for analyti-
cal tractability. Nonetheless, the aforementioned findings of this paper bring insights into possible
modelling technigues to include in the design and real-time operations of practice ready area-wide
TCS. Finally, the consideration of additional and combined choice dimensions in future TCS effi-
ciency analysis (such as mode, route, departure time and trip cancellation) is currently lacking in
the current literature (Akamatsu and Wada 2017), yet it is in much need for bringing TCS closer to
practice.

MNotes

1. The open-source code for the simulation is available at httpss/github.com/RM-Liu/MFD_TCS

2. The sharp change from day 0 to day 1 is due to setting the initial perceived travel time on day 0 as free flow travel
time, which differs greatly from the realized one. For the remaining scenarios, the equilibrium travel-times of this base
case are used in the initial perceived conditions.

3. For this experiment, we keep the time window TW, fixed across days to enable the computation of lyg.
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Appendices
Appendix 1. Proof of Theorem 1
This proof begins with

Lemma A.1: ¢ and p solve
Qip,7)=0 (AT}
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iffp=[p+p-Z1+ (AZ)
where g is a constant larger than 0.
Sufficiency: from (2), Equation (A1) holds iff
p-£=0, p=0, =0 (A3}
If ¢; and p satisfy (A2), then either
p=0 F=0 o p=0 /=0 [Ad)
holds. Obviously, (A4) satisfies (AZ).
Mecessity: if ; and p satisfy (A2), then either
p=10, o= 0,
or (A5}
prf=0 Z=0

holds. And as (AS) satisfies (A3), then (A1) halds. Therefore, Lemma A1 holds.
By Lemma A.1, the equilibrium condition [12) is equivalent to

ci(t) = qit), vt e TW)
(AB)

p=lp+pe I

Then, we introduce the fixed point theorem from Khamsi and Kirk (2011}
Theorem A.2: Let 02 be a bounded closed convex subset of B™ and let g : 22 — 12 be continuous. Then g has a fived point.

According to Lamotte and Geroliminis (2018), let f() = _ﬂ; Vin(s))ds, which associates to a time f the distance travelled
by a traveller from the origin of time to , let y = f{t) denote a particular distance travelled and let V be the speed function
inthe ¥ space: Vix) = Vin(f~1{x1)). Then the travel time Tj(t, L;) that associates to an departure time t and a trip length
L has an explicit expression:

Oy
Tiit, Ljy = f —_—
o i Vis)

Since there is no gridlock, we have the speed V is always higher than a minimal speed strictly positive, and f is continuous,
Tiit, Lj) 1s continuouws. Then, assuming a non-positive and continuous travel cost ¢i(-) and &;(-) also for the flow domain,
€i(-) is represented in the domain of the latter for our fixed point salution.

Let t=n,....tml', where 1 c [rﬁﬁ"’ —T- AL rf§°+ - Atl, 86 = [E1in),....cmitm)]". Then there exists y =
¥, - .., ¥ym)" =0, such that y = £it) < 0. Therefore, a compact and convex set can be defined as 2z = [y, 0] = --- =
[¥m, 0], then for all € & C¢. Denote Zy = 3 ) 3 PRlGltE)) - g(t) - Li- w — 1- N, then

ds, vteTW

Jim Zate.p) = fim > 3 PriCiltle)) - g(0) - Li- w

I 1=TW;
—I-N
=ilmn—NN <0, ¥Yeeck (A7)
Forsome £ = 92, if
Zep) =0, ¥p=0 (AB)

then [p + pZ(€ p)]y = p,¥p = 0. Letus define 27 as the setof € = £ satisfying condition [AB] and define ﬂ;_' = Q\G3.
Then there exists ¢ < ﬂ;, such that £(c. p) = 0 for some p = 0. According to (A7) and (AB), there exists o = 0, such that
ZIEp) =0, ¥p = p= [p+ pZ(E.p)ly = p.¥p = p.letp™ = maxg.plp + pZ(€ pily. then¥p € [0,p7L[p + pZic. p)ls =
pt.Therefore Vp = 12, e [0, max; o+ ptland € € 2 [p+ pZ (€. 0]y & 2.

Based on the analysis above, {2 ;< £2p is compact and comves. Since travel cost ¢} and [-] are continuous, (AS) has at
least one fixed point by Theorem A2, implying there exists an equilibrium sclution of the proposed dynamic system.
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Appendix 2. Proof of Theorem 2
Assume there are two equilibrium credit prices py and py, then by (7) and (9), for k = 1, 2, we have

P [E > Prf[f.l{l‘lpﬂ}-9“]-h-w—i-hl‘j| —0, m=0,

I 1=TW)

3N PGt lp) - git) Li-w—1-N=0
[

Thus,

(P —p2) (Z 3 PriGirlp) - gin - Li- w

I teTW;

=3 % PriGitipa)) - gin - L - w)

i reTW

=m [!-H—E 3 Prr{Ca{TIPz}}-Q{t}-h-wj|

I t=TW;

+ P2 [I- N=3" 3 PriGitipy)-gin -y -w]

[ =L
=0

By (13), the equality in {A10) helds if and only if py = pa. Hence, the equilibrium credit price is unigque.

(AS)

(A1)



	1. Introduction
	2. Literature review
	3. Methodology
	3.1. Supply model
	3.2. Behaviour model
	3.3. Tradable credit scheme
	3.3.1. Credit price evolution


	4. Solution analysis
	4.1. Solutions to the day-to-day model
	4.2. Existence of the equilibrium and uniqueness of the price

	5. Simulation-based optimization framework
	6. Numerical experiments
	6.1. Experiment settings
	6.2. Day-to-day evolution process
	6.2.1. Day-to-day process without TCS
	6.2.2. Day-to-day evolution with TCS

	6.3. Bayesian optimization results
	6.4. Comparison with time of day pricing
	6.5. Comparison of alternative credit tariff mechanisms
	6.5.1. Comparison between different credit tariff profiles
	6.5.2. Comparison among trip-length, travel-time based and standard area-based credit tariff mechanisms


	7. Conclusions
	Notes
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


