
Generalized Matching Distance: Tumor Phylogeny Comparison
Beyond the Infinite Sites Assumption

Quoc Nguyen

nguyenq2@carleton.edu

Carleton College

Northfield, MN, USA

Layla Oesper

loesper@carleton.edu

Carleton College

Northfield, MN, USA

ABSTRACT
As the field of tumor phylogenomics matures, numerous methods

have been developed to infer tumor phylogenies from many types

of sequencing data. The tumor phylogenies being inferred have

transitioned from abiding strictly to the Infinite Sites Assumption

(ISA), which says that mutations are gained once and never lost,

to more relaxed and more biologically accurate models such as

Camin-Sokal or 𝑘-Dollo models which allow mutations to be either

gained or lost multiple times, respectively. As the tumor phyloge-

nies being inferred have become more attuned to the underlying

biology of cancer, methods of comparing, or computing distances,

between these phylogenies have not yet caught up. In order to

address this discrepancy, we propose the Generalized Matching

Distance (GMD) Problem which allows for ISA distance measures

to be applied to non-ISA phylogenies after a particular type of

transformation. We provide a simple, but effective solution for ex-

actly solving the GMD Problem which is often efficient enough for

many tumor phylogenies. We also provide a heuristic approach to

solving the GMD Problem for instances where our exact solution

is not appropriate. In our simulated experiments, we show that

by using our approach to solve the GMD Problem we can effec-

tively use ISA tumor distance measures to compare phylogenies

with parallel mutations (those that are gained multiple times). Ad-

ditionally, we show that our heuristic approach works well on a

subset of phylogenies under the Camin-Sokal and 𝑘-Dollo models.

Finally, we apply our method for solving the GMD to three tumor

phylogenies generated from a colorectal cancer patient. The data

for our experiments and the code for using GMD is available at:

https://bitbucket.org/oesperlab/gmd/src/master/
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1 INTRODUCTION
The clonal theory of cancer [21] describes how tumors grow as the

result of an evolutionary process. As descendants of the original

founder cell acquire new somatic mutations, the resulting cell pop-

ulations may proliferate even more quickly, leading to a tumor that

is a heterogeneous collection of different cell populations. There

has been a strong interest in the computational cancer research

community to design computational methods that are able to re-

construct the evolutionary history of an individual’s cancer as a

particular type of rooted tree [3]. The vertices in this tree represent

distinct populations of cells, with unique complements of somatic

mutations, that exist or existed at some point during the tumor’s

evolution. The edges in the tree represent ancestral relationships

between those cell populations. Being able to accurately identify

such a tree has potential implications for both improving a general

understanding of how tumors evolve and how a particular patient

might be best treated [2, 20, 22].

In recent years there have been many new methods developed

to infer the tree encoding a tumor’s evolution from various types

of sequencing data. See [11, 25, 28] for good reviews of such ap-

proaches and the challenges they face. As the number of methods

for inferring a tumor’s evolutionary history from DNA sequencing

data have proliferated, there has been a recent interest in how to

appropriately compare, or compute a distance, between two such

trees. In addition to being an interesting problem in its own right,

there are certain applications that would benefit immensely from

such distance measures. In particular, such distance measures are

essential for benchmarking the performance of novel phylogenetic

inference methods on simulated data as their output needs to be

compared to known ground truth trees [6].

Following the trends that appeared in the tumor phylogenetic

tree inference space, the first distance measures developed for tu-

mor evolutionary trees assumed the input trees adhered to the

infinite sites assumption (ISA) which states that any mutation is

only gained once and never lost [16]. Early such distance mea-

sures include parent-child and ancestor-descendant distances [9, 10]

which capture information on the number of parent-child (ancestor-

descendant) relationships in one tree but not the other. Since then,

more distance measures designed specifically to capture features

important in the development of cancer have been developed, but

still assume the input trees adhere to the ISA. This includes CASet

and DISC [6] which both aim to capture aspects of how mutations
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are inherited in subsequent populations when computing the dis-

tance between two trees. This also includes Bourque distances [12],

which generalize the Robinson-Foulds distance [23] from traditional

phylogenetics to be applicable to tumor evolution trees. Finally,

another such related distance measure that assumes ISA trees is

MLTED/MLTD [13, 14] which in contrast to other distances, con-

siders two trees that could represent the same mutational history,

but at different levels of resolution, as identical.

In response to recent studies that suggest that the ISA is not

appropriate in many cancers [18], the number of methods that can

infer tumor evolution trees that don’t adhere to the ISA has been

increasing. These methods often utilize a different model of tumor

evolution such as the 𝑘-Dollo model [7] which allows each muta-

tions to be lost up to 𝑘 times, or the Camin-Sokal model [4] which

allows each mutation to be gained multiple times. Some recent

such inference methods include SiCloneFit [27], SCARLET [24],

MEDICC2 [15], recent pre-print FiMO [1], and many others. Cor-

respondingly, there is starting to be an interest in the design of

distance measures that can handle input trees that don’t adhere

to the ISA. However, to our knowledge, the only existing tumor

tree distance measure with this capability is MP3 [5] which gen-

eralizes the classical phylogenetic concept of using rooted triplets

for determining similarity and applies it to tumor phylogenetics.

This method is also designed to be able to handle multiply occur-

ring/parallel mutations or losses of mutations. However, given the

number of existing distance measures that capture different features

of tumor evolution, but rely on the ISA, it would be advantageous

to have a way to use these measures on non-ISA trees, rather than

wait for new distance methods to be designed.

In this paper, we address the need for a diverse set of tumor

distance measures that don’t assume the ISA. We introduce a frame-

work that enables all non-ISA tumor phylogenetic trees to be con-

verted into ISA trees without loss of information. Existing ISA

dependent distance measures can then be applied to these trans-

formed trees. Specifically, we propose the Generalized Matching

Distance (GMD) Problem and describe both an exact algorithm and

a heuristic approach to solving it. Our approaches can be applicable

for any input trees that allow for mutiple gains and/or losses of

mutations. On simulated data we demonstrate the effectiveness

of our exact approach for solving the GMD when applied to trees

with parallel mutations (those that are gained multiple times). We

also demonstrate the effectiveness of our heuristic approach when

input trees contain either parallel mutations or losses of mutations.

Finally, on both simulated data and a real colorectal cancer data

set [19] we demonstrate the ability of our approaches to effectively

measure the distance between trees while maintaining important

properties of the original ISA dependent distance measures.

2 METHODS
2.1 Tumor Phylogenies
We consider a tumor that contains𝑚 mutations. We won’t distin-

guish what types of genomic alterations these may be (SNV, CNA,

etc.). We model the presence or absence of a mutation as a binary
character where 1 represents the presence of the mutation and 0

indicates its absence. Thus any cell in the tumor may be described

using a binary mutation vector b ∈ {0, 1}𝑚 whose 𝑖𝑡ℎ entry, 𝑏 (𝑖),

indicates the state of mutation 𝑖 in the cell. A clone is a collection
of cells with identical mutation vectors. We can now describe the

history of a tumor as a tumor phylogeny 𝑇 where vertices represent

clones that either currently or previously existed at some point

during the tumor’s evolution and directed edges represent the di-

rect ancestral relationships between those clones. We note that

inherently all edges are directed away from the root.

Definition 2.1. A tumor phylogeny 𝑇 is a rooted tree with the

following conditions:

(1) Each vertex 𝑣 is labeled with a binary mutation vector b𝑣 ∈
{0, 1}𝑚 indicating the mutations present in that clone.

(2) Tumors evolve from a healthy cell (without mutations), so

the root 𝑟 is labeled with the vector b𝑟 = [0, . . . , 0]𝑇 .

(3) Any two vertices connected by an edge must have binary

mutation vectors that differ in at least one place. That is,

if (𝑣,𝑤) is an edge in 𝑇 then there must exist some 𝑖 ∈
{1, . . . ,𝑚} such that 𝑏𝑣 (𝑖) ≠ 𝑏𝑤 (𝑖).

(4) All children of any vertex 𝑣 must have unique mutation

vectors. That is, if vertices 𝑣 and𝑤 are siblings, then b𝑣 ≠ b𝑤 .
(5) All 𝑚 mutations appear at least once in 𝑇 . That is, for all

𝑖 ∈ {1, . . . ,𝑚} there exists some vertex 𝑣 where 𝑏𝑣 (𝑖) = 1.

We define an edge (𝑣,𝑤) in 𝑇 as a gain edge for mutation 𝑖 if

𝑏𝑣 (𝑖) = 0 and𝑏𝑤 (𝑖) = 1. Similarly, we define an edge (𝑣,𝑤) in𝑇 as a

loss edge for mutation 𝑖 if 𝑏𝑣 (𝑖) = 1 and 𝑏𝑤 (𝑖) = 0. Note, with these

definitions a single edge (𝑣,𝑤) may be a gain edge for mutation 𝑖

but also is a loss edge for mutation 𝑗 . A tumor phylogeny 𝑇 can

be given one of two different categorizations depending on the

number of distinct mutations that are gained or lost on the edges

in 𝑇 . Specifically, 𝑇 is called a mutation phylogeny if for any 𝑒 in 𝑇

there exists exactly one mutation 𝑖 such that 𝑒 is either a gain or

loss edge for 𝑖 . Otherwise, there must exist some edge 𝑒 in𝑇 where

more than one mutation is either gained or lost. In that case, we

refer to the tumor phylogeny 𝑇 as a clonal phylogeny. Intuitively, a
clonal phylogeny is when some mutations cannot be ordered and

are instead clustered together. Finally, we note that we may use the

terms phylogeny and tree interchangeably.

2.2 Models of Tumor Evolution
The mutational history of a tumor is generally not as permissive

as our definition of a tumor phylogeny. Instead, we often need to

apply amodel of evolution that further constricts howmutations are

gained or lost. We now can identify two types of tumor phylogenies

that adhere to two different existing models of evolution.

The 𝑘-Dollo model allows for each mutation to be gained exactly

once but lost up to 𝑘-times [7]. Formally, we now define a 𝑘-Dollo
phylogeny as follows.

Definition 2.2. A 𝑘-Dollo phylogeny is a tumor phylogeny𝑇 with

the following additional restrictions:

(1) 𝑇 contains exactly one gain edge for all mutations 𝑖 ∈ {1, . . . ,𝑚}.
(2) For all mutations 𝑖 ∈ {1, . . . ,𝑚}, 𝑇 contains at most 𝑘 loss

edges.

We note that a 0-Dollo phylogeny represents a special case called

the Infinite Sites Assumption (ISA) [16] where mutations are gained

but never lost. The ISA model has been used extensively in the field
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of tumor evolution as it provides helpful constraints for inferring

tumor phylogenies (e.g., [8]). In recent years there has been a grow-

ing interest in dropping the ISA assumption [18], and in particular

the 𝑘-Dollo model has been shown to be a useful alternative.

The Camin-Sokal model allows for mutations to be gained any

number of times, but never lost [4]. This model has also been shown

to be a useful alternative to the more restrictive ISA [16]. Let 𝑘-
Camin-Sokal denote the restriction of the Camin-Sokal model where

each mutation can be gained at most 𝑘 times. Formally, we now

define a 𝑘-Camin-Sokal phylogeny as follows.

Definition 2.3. A 𝑘-Camin-Sokal phylogeny is a tumor phylogeny

𝑇 with the following additional restrictions:

(1) For all mutations 𝑖 ∈ {1, . . . ,𝑚},𝑇 contains between 1 and 𝑘

gain edges.

(2) 𝑇 contains no loss edges for any mutation 𝑖 ∈ {1, . . . ,𝑚}.

2.3 Distance Measures on Tumor Phylogenies
A distance measure on tumor phylogenies is a function that takes

in two tumor phylogenies 𝑇1 and 𝑇2 and returns a non-negative

real valued number that indicates how dissimilar they are. The

larger the value, the more dissimilar the trees are to each other;

the closer the value is to 0, the more similar they are. Note that a

distance measure does not need to be a distance metric (i.e. observe

the triangle inequality, symmetry, etc.), although some distance

measures such as CASet and DISC are distance metrics in certain

contexts. Most existing distance measures that are designed for

tumor phylogenies assume that the input phylogenies adhere to

the ISA. In this section, we will build a framework that allows

for distance measures that assume the ISA to be applied to any
tumor phylogeny. We will first show how distance measures that

assume the ISA can be applied to 1-Dollo phylogenies. Then, we

will generalize that approach.

2.3.1 Distance Measures applied to 1-Dollo Phylogenies. First we
will describe a transformation process to turn a 1-Dollo phylogeny

into a 0-Dollo phylogeny, which is the same as a tumor phylogeny

adhering to the ISA–sometimes also called a perfect phylogeny.

Consider a 1-Dollo phylogeny 𝑇 with𝑚 mutations and 𝑛 of those

mutations have a single loss. We will show how to convert 𝑇 into

a 0-Dollo phylogeny 𝑇 ′
on𝑚 + 𝑛 mutations. The only real differ-

ence between 𝑇 and 𝑇 ′
is how the mutation vectors that label the

vertices in 𝑇 ′
are constructed, the phylogenies themselves have

the same topology. So, we describe only how to construct the mu-

tation vectors for 𝑇 ′
. The first𝑚 indices in each mutation vector

b′𝑣 in 𝑇 ′
correspond to the gains of the 𝑚 characters in 𝑇 . The

last 𝑛 indices correspond to losses of these characters (if present),

effectively representing each loss state as a new character. We can

construct such a phylogeny 𝑇 ′
using the following three steps. (1)

For each vertex 𝑣 , directly copy over all entries from b𝑣 to the first

𝑚 indices in b′𝑣 and set 𝑏′𝑣 (𝑖) = 0 for the remaining 𝑛 indices. This

means that all mutation gains are encoded in the same way as in

the original phylogenies. (2) Iterate through all loss edges in 𝑇 .

For the 𝑗𝑡ℎ loss edge considered (𝑣,𝑤) in 𝑇 where the loss edge

corresponds to character 𝑖 , set 𝑏′𝑤 (𝑖) = 1 and 𝑏′𝑤 (𝑚 + 𝑗) = 1. So,

instead of encoding losses as a change of a single mutation from

present to absent, we instead encode it as the gain of a new ‘loss’

mutation while keeping the original mutation as present as well.

(3) For any vertex 𝑥 such that𝑤 is an ancestor of 𝑥 in 𝑇 , also make

the following updates: 𝑏′𝑥 (𝑖) = 1 and 𝑏′𝑥 (𝑚 + 𝑗) = 1. This procedure

allows the original mutation and the newly created ‘loss’ mutation

to be inherited by a descendant populations.

With this transformation, we can now describe a process for ap-

plying distance measures designed for ISA phylogenies to 1-Dollo

phylogenies. Given two 1-Dollo phylogenies 𝑇1 and 𝑇2, convert

them into 0-Dollo phylogenies 𝑇 ′
1
and 𝑇 ′

2
using the transforma-

tion described above. Now, any distance measure that assumes the

ISA can be applied directly to 𝑇 ′
1
and 𝑇 ′

2
as these encode all the

information from the original phylogenies.

2.3.2 Distance Measures applied to Generalized Tumor Phyloge-
nies. We now describe how the transformation approach described

above for 1-Dollo phylogenies can be generalized for any tumor

phylogeny, but especially 𝑘-Dollo phylogenies or 𝑘-Camin-Sokal

phylogenies. While for 1-Dollo phylogenies there was exactly one

gain and at most one loss for each mutation, we may now have

multiple gains and losses for each mutation. To apply the same

transformation, we need to match losses and gains of the same

mutations between tumor phylogenies 𝑇1 and 𝑇2. Mathematically,

we may view such a pairing as a matching of a bipartite graph

𝐺 (𝑇1,𝑇2), whose vertices and edges encode allowed matches be-

tween gains and losses of mutations. To formalize this, we start by

defining the matching graph 𝐺 (𝑇1,𝑇2) obtained from 𝑇1 and 𝑇2.

Definition 2.4. The matching graph of two tumor phylogenies

𝑇1 and 𝑇2 is a bipartite graph𝐺 (𝑇1,𝑇2) = (𝐴 ∪ 𝐵, 𝐸) whose vertices
𝐴 (𝐵) correspond to gains and losses of mutations in 𝑇1 (𝑇2), and

whose edge set 𝐸 is composed of edges (𝑎, 𝑏) such that 𝑎 and 𝑏

correspond to either two gains or two losses of the same mutation,

one in each tree.

Recall that a matching 𝑀 in a bipartite graph is a subset of

edges such that no two edges in 𝑀 are incident to the same ver-

tex. Intuitively, a matching of the matching graph 𝐺 (𝑇1,𝑇2) of

tumor phylogenies 𝑇1 and 𝑇2 describes how to match the gains

and losses of the same mutation between the two phylogenies.

Given a matching𝑀 = {(𝑎1, 𝑏1), . . . , (𝑎 |𝑀 | , 𝑏 |𝑀 | )} of 𝐺 (𝑇1,𝑇2), let
𝐴− = {𝑎1, . . . , 𝑎 |𝐴− | } ⊆ 𝐴 and 𝐵− = {𝑏1, . . . , 𝑏 |𝐵− | } ⊆ 𝐵 be the

subsets of unmatched vertices (mutations) of 𝐺 (𝑇1,𝑇2), where 𝐴−

indicates the unmatched mutations from 𝑇1 and 𝐵
−
the unmatched

mutations from 𝑇2. From𝑀 , 𝐴−
and 𝐵− , we obtain the correspond-

ing 0-Dollo (ISA) phylogenies 𝑇 ′
1
and 𝑇 ′

2
as follows. Similar to the

1-Dollo case, the topologies of the transformed phylogenies are

identical, so we need only to describe how the mutation vectors

for 𝑇 ′
1
and 𝑇 ′

2
are created. Each vertex in 𝑇 ′

1
and 𝑇 ′

2
are labeled by

mutation vectors b′1 and b′2, respectively, of size |𝑀 | + |𝐴− | + |𝐵− |.
The first |𝑀 | indices correspond to matched gains/losses of muta-

tions between 𝑇1 and 𝑇2, followed by |𝐴− | indices corresponding
to unmatched gains/losses of mutations in𝑇1 and then |𝐵− | indices
corresponding to unmatched gains/losses in 𝑇2.

In b′1 and b′2 mutation gains are largely filled out in the same

way as in the 0-Dollo case. That is, a 1 entry at index 𝑖 indicates the

gain of mutation 𝑖 , and this entry persists in the mutation vector of

all descendant vertices. The one difference is that a new mutation

vector index 𝑗 exists for each novel gain of a single mutation (e.g.,
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Figure 1: Phylogenies 𝑇1 and 𝑇2 (left) are both 3-Dollo Phylogenies. Loss edges are indicated by a dashed line and gain edges
by a solid line. The corresponding matching graph𝐺 (𝑇1,𝑇2)is also shown (center), with node colors that match the respective
gain/loss edges in the original phylogenies. The matching indicated by the dark purple edges in 𝐺 can be used to transform 𝑇1
and𝑇2 into𝑇 ′

1
and𝑇 ′

2
, two 0-Dollo Phylogenies (right) by introducing a new index into their corresponding mutation vectors b′1

and b′2 for every time a mutation is lost in either phylogeny. Each loss is now encoded as a gain of the mutation at the newly
added index.

SNV/CNA). Losses are encoded by introducing a new mutation

index in the mutation vector instead of having the original mutation

revert from a 1 to a 0. Figure 1 shows a complete example for two 3-

Dollo phylogenies including their matching graph and the resulting

0-Dollo phylogenies for the specified matching.

We can now apply any distancemeasure dist designed for 0-Dollo
(ISA) Phylogenies to 𝑇 ′

1
and 𝑇 ′

2
. Thus, a matching 𝑀 of 𝐺 (𝑇1,𝑇2),

the matching graph for the original phylogenies, induces a distance

of 𝑑𝑖𝑠𝑡 (𝑇 ′
1
,𝑇 ′

2
) on the transformed phylogenies. This leads to the

following optimization problem.

Problem 2.1. Generalized Matching Distance (GMD) Prob-
lem: Given tumor phylogenies 𝑇1 and 𝑇2 and a distance measure dist
under the the ISA, find a maximum cardinality matching 𝑀 of the
matching graph𝐺 (𝑇1,𝑇2) such that the resulting 0-Dollo phylogenies
𝑇 ′
1
and 𝑇 ′

2
have minimum distance dist(𝑇 ′

1
,𝑇 ′

2
).

2.3.3 An Exact Algorithm to Solve the GMD. The structure of the
matching graph 𝐺 (𝑇1,𝑇2) makes finding the exact solution to the

GMD fairly straightforward, although potentially computationally

costly. We propose the following method: (1) Create the matching

graph G(𝑇1,𝑇2); (2) Enumerate all maximum cardinality matchings

M in the graph; (3) For each matching, compute the transformed

phylogenies 𝑇 ′
1
and 𝑇 ′

2
and compute dist(𝑇 ′

1
, 𝑇 ′

2
); and (4) Return

the matching M* that produces the smallest such distance. Note

that while the number of matchings that need to be checked has a

factorial growth rate, in practice we expect the number of matchings

to often remain relatively small.

To enumerate all maximum cardinality matchings we first ob-

serve that all connected components in𝐺 (𝑇1,𝑇2) consist of vertices
labeled entirely by gains or losses of a single mutation. Therefore, if

we can describe how to enumerate all maximum cardinality match-

ings for a single connected component, then that approach can

be generalized for all maximum cardinality matchings across the

whole graph by combiningmatchings for all connected components.

Furthermore, each such connected component is always a complete

bipartite sub-graph of 𝐺 (𝑇1,𝑇2) (containing all possible edges be-
tween the two sets of vertices). Consider the connected sub-graph

𝑆 = (𝐴𝑖 ∪ 𝐵𝑖 , 𝐸𝑖 ) of 𝐺 (𝑇1,𝑇2) for a gain (or loss) of mutation 𝑖 con-

taining |𝐴𝑖 | vertices from 𝐴 and |𝐵𝑖 | vertices from 𝐵. Without loss

of generality, assume that |𝐴𝑖 | ≤ |𝐵𝑖 |. This connected component is

a particular graph often denoted as 𝐾 |𝐴𝑖 |, |𝐵𝑖 | and whose maximum

cardinality matching will be of size |𝐴𝑖 |. For example, in Figure 1,

the connected component for the losses of mutation 1 consists of 3

vertices from A (labeled 1:1, 1:2, 1:3) and 2 vertices from B (labeled
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Figure 2: A toy example comparing two phylogenies to demonstrate the weighting schemes used as part of the heuristic
approach. (Left) Two mutation phylogenies 𝑇1 and 𝑇2, with 𝑇2 containing parallel mutations of A. (Right) A small portion of the
matching graph, specifically the portion of the graph that matches mutation A, is shown. parent is shown in blue, depth is
shown in green, and lineage is shown in yellow. Brief descriptions of the calculation of the weighting schemes are attached to
the matching graph.

1:1, 1:2) and contains all 6 possible edges between these vertices.

The maximum cardinality matching in this component has size 2

and there are 6 such matchings. Algorithms such as [26] exist for

enumerating maximum cardinality matchings in bipartite graphs.

Furthermore, the fact that 𝑆 is a complete bipartite graph makes

enumerating these matchings an easy two step process: (1) Choose

all sets of size |𝐴𝑖 | vertices from the set of vertices 𝐵𝑖 ; (2) Consider

all possible ways of connecting these vertices to the vertices in 𝐴𝑖 .

In cases where the matching graph 𝐺 (𝑇1,𝑇2) has relatively few

maximum cardinality matchings (when there are few mutations

with relatively small numbers of multiple gains or losses), it can be

computationally feasible to simply check all such matchings. We

will refer to this as the enumerative approach to solving the GMD.

Alternatively, we can take a heuristic approach to quickly pick

a good max-sized matching, which we describe in the following

section.

2.3.4 Minimum-weightmatchings: a heuristic approach. In theGMD

problem, the matching 𝑀 on the matching graph 𝐺 (𝑇1,𝑇2) is the
component that identifies how to map gains and losses in 𝑇1 to

those in 𝑇2. The optimal such mapping will depend on the distance

measure dist being used. In place of an enumerative, exact solution

that may be computationally expensive, we propose a heuristic

approach. Specifically, we propose the following procedure: (1) As-

sign weights 𝑓 (𝑎, 𝑏) to edges (𝑎, 𝑏) in𝐺 (𝑇1,𝑇2) based on features in

both 𝑇1 and 𝑇2; (2) Find a minimum-weight, maximum cardinality

matching using the Hungarian algorithm [17]; (3) Use this match-

ing to perform the transformation to 0-Dollo phylogenies rather

than exhaustively check all possible matchings. The details of the

exact distance measure dist used may also be helpful for picking

an useful weighting scheme for the edges in the matching graph.

In particular, we explore the following three weighting schemes.

depth – the weight 𝑓 (𝑎, 𝑏) of an edge (𝑎, 𝑏) in 𝐺 (𝑇1,𝑇2) is set
equal to the absolute value of the difference between the depth of

𝑎 in 𝑇1 and 𝑏 in 𝑇2.

parent – the weight 𝑓 (𝑎, 𝑏) of an edge (𝑎, 𝑏) in 𝐺 (𝑇1,𝑇2) is set
equal to 0 if 𝑎 and 𝑏 share the same parent mutation(s), 1 otherwise.

lineage – the weight 𝑓 (𝑎, 𝑏) of an edge (𝑎, 𝑏) in 𝐺 (𝑇1,𝑇2) is set
equal to the cardinality of the symmetric difference between the

lineage sets of 𝑎 and 𝑏. We define the lineage set of a mutation as the

union of all of its ancestor mutations and all of its descendant muta-

tions. Figure 2 provides a visual for understanding these weighting

schemes.

3 RESULTS
We apply and analyze our proposed approaches on both simulated

and real data.

3.1 Results on Simulated Data
On simulated data sets we evaluate several aspects of both the enu-

merative and heuristic approaches to solving the GMD. Specifically,

we evaluate: (1) If brute-force GMD enables ISA distance measures

to appropriately penalize differences between phylogenies with par-

allel mutations; and (2) How well the proposed heuristic approach

for the GMD works when applied with different edge weighting

schemes and distance measures. This analysis includes both parallel

mutations and mutation losses.

3.1.1 Data Simulation. Our general simulation procedure for each

of the experiments described below was to use a recursive approach
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to enumerate all trees in a specified space (e.g., k-dollo trees with

8 mutations and 3 losses of one of those mutations) and then to

randomly sample a subset of these trees to use in each experiment.

We note that such trees are inherently biologically feasible as they

do not allow a mutation to be lost before it is gained. The specific

details for simulating data for each experiment are outlined in the

corresponding sections below.

3.1.2 Examining the Effects of Parallel Mutations. Similar to Cic-

colella et al. [5], we wanted to investigate the effect on the distance

evaluation between clonal phylogenies as the number of parallel

mutations increases. We would expect that a phylogeny with more

occurrences of a mutation when compared with a phylogeny with

less occurrences of that same mutation should be deemed further

away from each other than two phylogenies with more similar

numbers of mutation occurrences. In order to set up an experiment

to support this investigation we first create 4 data sets containing

all possible mutation phylogenies with 8 mutations and 1, 2, 3, or 4

gains of mutation ‘A’. Note, these are a specific subset of 𝑘-Camin-

Sokal phylogenies. We then created a base set of trees (called Group

1) by randomly sampling 50 trees from the data set containing 1

gain of mutation ‘A’. We also created 4 test sets (Groups 2-5) by

then randomly sampling 50 trees from the sets with 1-4 gains of

mutation ‘A’. For each group of trees we converted them from mu-

tation phylogenies to clonal phylogenies by randomly selecting 2

pairs of connected nodes in the mutation phylogeny to collapse

to simulate mutations whose order cannot be ascertained. We do

this collapsing since real data is much more likely to be a clonal

phylogeny with gains or losses of different mutations grouped on

single vertices rather than the idealized mutation phylogeny where

each new gain or loss appears on its own vertex. We then conducted

pairwise comparisons between clonal phylogenies in Group 1 with

Groups 2-5. Figure 3 shows the average distance between each test

set and the base set for various different distance measures.

All methods that included the enumerative GMD transformation

plus an ISA dependent distance measure (CASet [6], DISC [6] and

MLTED [14]) show the desired property of monotonically increas-

ing distances as the number of parallel mutations of mutation ‘A’

increased. The MP3 method [5], which was designed to handle

parallel mutations, also shows the same monotonically increasing

property. While neither CASet nor DISC was designed to handle

parallel mutations, neither program throws an error when run with

such data (without the GMD transformation). Specifically, the imple-

mentation of these methods utilize set data-structures rather than

multisets for mutations and thus only one mutation gain is consid-

ered whenever parallel mutations are present within the phylogeny.

This explains the relatively flat slope for these results. However, we

intentionally include these results here to better demonstrate the

exact impact of our approach. We also note that when phylogenies

being compared do not have identical sets of mutations, both CASet

and DISC have the option to either use the union or intersection

of those sets. We only include here results using the union option

because the intersection option effectively removes all signals from

the parallel mutations as only a single gain of that mutation can

be included in the intersection set. As a result, CASet and DISC

when applied without GMD behave almost identically for both

union and intersection. MLTED, without GMD, returns an error on

phylogenies with parallel mutations.

When Ciccolella et al. [5] proposed MP3 (and performed an ex-

periment similar to this one), they suggested that it is better to have

a steeper curve when comparing phlogenies with differing numbers

of occurrences of a mutation. Following this, CASet (union) + GMD

, DISC (union) + GMD, and MLTED + GMD all have a steeper curve

than MP3 and therefore penalize differences across mutation sets

more than MP3. Among these distance measures, MLTED + GMD

has the steepest curve with a total change in distance of 0.15.

Effect of Parallel Mutations on Distances Between Clonal Trees

Occurrences of ‘A’
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Figure 3: The results of an experiment to evaluate how vari-
ous distance measures with and without enumerative GMD
vary in their evaluation of clonal phylogenies. Specifically,
the evaluated phylogenies are a subset of 𝑘-Camin-Sokal phy-
logenies where the only mutation duplicated is mutation ’A’
and 𝑘 is 1, 2, 3, and 4.We evaluate distances usingMP3, CASet
(union) + GMD, CASet (union), DISC (union) + GMD, MLTED
+ GMD, and DISC (union).

3.1.3 Performance of Heuristic Approach. We also analyzed the

performance of our proposed heuristic approach in approximat-

ing solutions to the GMD Problem. Specifically, we explored which

weighting schemes (depth, lineage, parent) paired best with different
ISA distance measures (parent-child (PC) [10], ancestor-descendant

(AD) [10], MLTED [14], CASet [6], DISC [6]). We first create a data

set containing all possible mutation phylogenies with 5 mutations

and 2 losses of mutation ‘A’. Note, these are a specific subset of

𝑘-Dollo phylogenies. We then randomly sampled 100 mutation phy-

logenies from the data set and ran pairwise comparisons between

these 100 mutation phylogenies using all combinations of weight-

ing schemes (for our heuristic approach) and different ISA distance
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Evaluating Heuristic Approach at Approximating Generalized Matching Distance Problem
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Figure 4: The results of experiments to evaluate various factors that could effect the performance of our heuristic approach at
approximating solutions to the GMD Problem. We paired various ISA distance measures (CASet, DISC, PC, AD, and MLTED)
with our proposed weighting schemes (depth, lineage, parent). a) Fraction of trials where the heuristic approach achieved the
optimal solution on phylogenies with 5 mutations and 2 losses of mutation ‘A’. Results are also shown for both mutation
phylogenies and clonal phylogenies that resulted from collapsing nodes in the mutation phylogenies. Random indicates the
probability of selecting an optimal matching randomly from all possible matchings. b) Fraction of trials where the heuristic
approach achieved the optimal solution for a data set with 8 mutations and 2 gains of mutation ‘A’. Results are shown for both
mutation phylogenies and clonal phylogenies obtained by collapsing nodes in the mutation phylogenies.

measures. We then compare these results to using the enumerative

approach for solving the GMD problem for all distance measures.

This allows us to capture what fraction of trials optimally solve

the GMD problem for each combination of weighting scheme and

ISA distance measure. We also perform this same experiment af-

ter using the same collapsing approach described in the previous

section to turn all mutation phylogenies into clonal phylogenies.

Figure 4a shows the complete results from this experiment. We

note we also performed this same experiment but with phylogenies

with 8 mutations and 2 losses of a single mutation and found the

results to be similar.

Across all distance measures and heuristic weighting schemes

there is a decrease in performance when applied to clonal phy-

logenies in comparison to application to the corresponding mu-

tation phylogenies. This could be because the clonal phylogenies

were shorter, providing less information to compute the weighting

schemes-especially in the case of the 𝑙𝑖𝑛𝑒𝑎𝑔𝑒 weighting scheme.

For mutation phylogenies, the heuristic approach is almost always

optimal when using PC distance with theparent weighting scheme.

Specifically, for 5 mutations and 2 losses of ‘A’, it finds the optimal

solution 99.32% of the time. AD distance with the parent weighting
scheme and MLTED distance with the parent weighting scheme

also perform well, and identify an optimal solution in 94.30% and

92.40% of trials. While intuitively simple, the parent weighting
scheme performed the best across all the distance measures for

both clonal and mutation phylogenies except for MLTED in which

lineage achieved better performance for clonal phylogenies. All pair-

ings of ISA distance measures and weighting schemes performed

better than randomly selecting any maximum cardinality matching.

We also performed a similar analysis for phylogenies with 5,6,7

and 8 mutations and 2 gains of mutation ‘A’ (a subset of 𝑘-Camin-

Sokal phylogenies). In this case we used only the distance measures

that performed the best in the previous experiment, parent-child

and ancestor descendant. We saw little difference in the results for

the different number of unique mutations in each tree, so Figure 4b

shows only the results for 8 mutations with 2 gains of mutation ‘A’.

Despite the fact that the number of unique mutations was increased

and that the phylogenies in this experiment contained multiple

gains rather than multiple losses, many of the patterns we saw

in the previous experiment persist. PC distance and the parent
weighting scheme still perform the best with the combination of

these obtaining an optimal solution in 98.10% of trials on mutation

phylogenies and 79.89% of trials on clonal phylogenies. Similar

to the previous experiment, we also see a performance decrease

between clonal phylogenies and mutation phylogenies.
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3.2 Results on Real Data
We also compare three phylogenies that were inferred for a col-

orectal cancer patient CRC2 from Leung et al. [19]. The original

data set consists of targeted single-cell sequencing of 182 cells from

a primary colon tumor and a liver metastasis and a 1000-cancer

gene panel used as the target region for sequencing. The phylo-

genies were inferred by three different methods in three separate

papers–SCARLET [24], SiCloneFit [27], and FiMO [1] (a pre-print

paper). The phylogenies and computed distances for CASet (union)

+ GMD, DISC (union) + GMD, MLTED + GMD and MP3 (as these

were the only distance measures to accurately penalize increasing

differences in mutation occurrences in the simulated experiments)

are shown in Figure 5. We ran the enumerative variant of GMD

as the number of gains/losses were small, and it finished virtually

instantaneously. Specifically, we ran the code on a Dell Poweredge

R540 server with 28 cores and 384 GB of RAM. Note, the SCARLET

tree is the only one containing back mutations (losses) whereas

the SiCloneFit and FiMO phylogenies contain parallel mutations.

Furthermore, the SCARLET tree explicitly orders many mutations

that the other methods simply group together. Thus, we may rea-

sonably expect the SCARLET tree to be more dissimilar to the other

two phylogenies for most distances. The results of CASet (union) +

GMD, DISC (union) + GMD, MLTED + GMD and MP3 agree with

that assumption. We note that the MP3 analysis is more extreme

in both the similarity of the SiCloneFit and FiMO phylogenies and

the dissimilarity of the SCARLET tree to the others. This resembles

the situation in Figure 3 with MP3 yielding a larger dissimiliarity

in its evaluation than the other distance measures. On the other

hand, while MLTED + GMD still evaluates the SiCloneFit and FiMO

trees as most similar, it does not identify the SCARLET tree to be

as dissimilar from them as the other methods do. This is consistent

with the intended behavior of MLTED, which is different than the

other distance measures. Specifically, MLTED was designed to eval-

uate phylogenies at different resolutions that could represent the

same underlying tumor evolutionary history as similar. Thus, the

expanded nature of many mutations in the SCARLET tree should

contribute less to the total distance to the other two phylogenies

when using the MLTED distance, which is exactly what we see.

Thus, our results here suggest the ability of the GMD approach to

maintain the desired properties of the distance measures that it is

used with.

4 CONCLUSION AND FUTUREWORK
There are many existing distance measures to compare tumor phy-

logenies that abide by the Infinite Sites Assumption (ISA). However,

the field of tumor phylogenomics is gradually transitioning to mod-

els of tumor evolution beyond the ISA such as the 𝑘-Dollo and

Camin-Sokal models in order to better represent the realities of

tumor evolution. In order to leverage already existing ISA tumor

distance measures to evaluate tumor phylogenies inferred under

these more relaxed models, we propose the Generalized Match-

ing Distance (GMD) Problem. We both provide an enumerative

approach to solving GMD (which is often very practical to use),

and also propose a heuristic to solve the GMD that utilizes vari-

ous weighting schemes (depth, lineage, parent) to identify a single

matching that is likely to produce a good result. We have shown

that without GMD, some existing ISA distance measures are inca-

pable of correctly penalizing differences in occurrences of parallel

mutations; in some cases, these distance measures are even unus-

able without first using GMD. We also showed that the heuristic

approach we proposed performs well in some restricted cases of

tumor phylogenies; parent-child distance combined with the parent
weighting schemes even generally produces an optimal solution to

the GMD in the case of small mutation phylogenies. Finally, we ap-

plied our GMD approach along with several ISA distance measures

to a real colorectal cancer dataset. We found that our approach

allowed the distance measures to retain their originally designed

properties such as the ability of the MLTED distance measure to

consider phylogenies at different resolutions as similar if they could

represent the same evolutionary history.

Yet, there is much future work that could be done. For one, more

weighting schemes can be developed in addition to the three that

were provided in this paper (depth, lineage, parent). Specifically,
while parent maps quite well to parent-child distance and some sort

of intuition guides the pairing of lineage and ancestor-descendant

distance, we haven’t extensively explored weights that would work

especially well for MLTED, which relies on edit distance rather than

sets of mutations. In addition, experiments on larger phylogenies

containing greater complexity like the gain and loss of multiple

different mutations could provide more comprehensive information

on the optimality of the heuristic approach. Finally, more extensive

comparison between all the distance measures and their GMD

extensions could help researchers in the field better determine

which distance measures to use for their use case.
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Figure 5: Pairwise comparisons between three phylogenies representing a patient with colorectal cancer. (Left) 𝑇1 is the tree
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(indicated in purple). 𝑇3 was inferred by FiMO, also containing parallel mutations. (Right) Pairwise distance comparisons
between the phylogenies on the left using CASet (union) + GMD, DISC(union) + GMD, MLTED + GMD, and MP3.
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