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ABSTRACT

As the field of tumor phylogenomics matures, numerous methods
have been developed to infer tumor phylogenies from many types
of sequencing data. The tumor phylogenies being inferred have
transitioned from abiding strictly to the Infinite Sites Assumption
(ISA), which says that mutations are gained once and never lost,
to more relaxed and more biologically accurate models such as
Camin-Sokal or k-Dollo models which allow mutations to be either
gained or lost multiple times, respectively. As the tumor phyloge-
nies being inferred have become more attuned to the underlying
biology of cancer, methods of comparing, or computing distances,
between these phylogenies have not yet caught up. In order to
address this discrepancy, we propose the Generalized Matching
Distance (GMD) Problem which allows for ISA distance measures
to be applied to non-ISA phylogenies after a particular type of
transformation. We provide a simple, but effective solution for ex-
actly solving the GMD Problem which is often efficient enough for
many tumor phylogenies. We also provide a heuristic approach to
solving the GMD Problem for instances where our exact solution
is not appropriate. In our simulated experiments, we show that
by using our approach to solve the GMD Problem we can effec-
tively use ISA tumor distance measures to compare phylogenies
with parallel mutations (those that are gained multiple times). Ad-
ditionally, we show that our heuristic approach works well on a
subset of phylogenies under the Camin-Sokal and k-Dollo models.
Finally, we apply our method for solving the GMD to three tumor
phylogenies generated from a colorectal cancer patient. The data
for our experiments and the code for using GMD is available at:
https://bitbucket.org/oesperlab/gmd/src/master/
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1 INTRODUCTION

The clonal theory of cancer [21] describes how tumors grow as the
result of an evolutionary process. As descendants of the original
founder cell acquire new somatic mutations, the resulting cell pop-
ulations may proliferate even more quickly, leading to a tumor that
is a heterogeneous collection of different cell populations. There
has been a strong interest in the computational cancer research
community to design computational methods that are able to re-
construct the evolutionary history of an individual’s cancer as a
particular type of rooted tree [3]. The vertices in this tree represent
distinct populations of cells, with unique complements of somatic
mutations, that exist or existed at some point during the tumor’s
evolution. The edges in the tree represent ancestral relationships
between those cell populations. Being able to accurately identify
such a tree has potential implications for both improving a general
understanding of how tumors evolve and how a particular patient
might be best treated [2, 20, 22].

In recent years there have been many new methods developed
to infer the tree encoding a tumor’s evolution from various types
of sequencing data. See [11, 25, 28] for good reviews of such ap-
proaches and the challenges they face. As the number of methods
for inferring a tumor’s evolutionary history from DNA sequencing
data have proliferated, there has been a recent interest in how to
appropriately compare, or compute a distance, between two such
trees. In addition to being an interesting problem in its own right,
there are certain applications that would benefit immensely from
such distance measures. In particular, such distance measures are
essential for benchmarking the performance of novel phylogenetic
inference methods on simulated data as their output needs to be
compared to known ground truth trees [6].

Following the trends that appeared in the tumor phylogenetic
tree inference space, the first distance measures developed for tu-
mor evolutionary trees assumed the input trees adhered to the
infinite sites assumption (ISA) which states that any mutation is
only gained once and never lost [16]. Early such distance mea-
sures include parent-child and ancestor-descendant distances [9, 10]
which capture information on the number of parent-child (ancestor-
descendant) relationships in one tree but not the other. Since then,
more distance measures designed specifically to capture features
important in the development of cancer have been developed, but
still assume the input trees adhere to the ISA. This includes CASet
and DISC [6] which both aim to capture aspects of how mutations
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are inherited in subsequent populations when computing the dis-
tance between two trees. This also includes Bourque distances [12],
which generalize the Robinson-Foulds distance [23] from traditional
phylogenetics to be applicable to tumor evolution trees. Finally,
another such related distance measure that assumes ISA trees is
MLTED/MLTD [13, 14] which in contrast to other distances, con-
siders two trees that could represent the same mutational history,
but at different levels of resolution, as identical.

In response to recent studies that suggest that the ISA is not
appropriate in many cancers [18], the number of methods that can
infer tumor evolution trees that don’t adhere to the ISA has been
increasing. These methods often utilize a different model of tumor
evolution such as the k-Dollo model [7] which allows each muta-
tions to be lost up to k times, or the Camin-Sokal model [4] which
allows each mutation to be gained multiple times. Some recent
such inference methods include SiCloneFit [27], SCARLET [24],
MEDICC?2 [15], recent pre-print FiMO [1], and many others. Cor-
respondingly, there is starting to be an interest in the design of
distance measures that can handle input trees that don’t adhere
to the ISA. However, to our knowledge, the only existing tumor
tree distance measure with this capability is MP3 [5] which gen-
eralizes the classical phylogenetic concept of using rooted triplets
for determining similarity and applies it to tumor phylogenetics.
This method is also designed to be able to handle multiply occur-
ring/parallel mutations or losses of mutations. However, given the
number of existing distance measures that capture different features
of tumor evolution, but rely on the ISA, it would be advantageous
to have a way to use these measures on non-ISA trees, rather than
wait for new distance methods to be designed.

In this paper, we address the need for a diverse set of tumor
distance measures that don’t assume the ISA. We introduce a frame-
work that enables all non-ISA tumor phylogenetic trees to be con-
verted into ISA trees without loss of information. Existing ISA
dependent distance measures can then be applied to these trans-
formed trees. Specifically, we propose the Generalized Matching
Distance (GMD) Problem and describe both an exact algorithm and
a heuristic approach to solving it. Our approaches can be applicable
for any input trees that allow for mutiple gains and/or losses of
mutations. On simulated data we demonstrate the effectiveness
of our exact approach for solving the GMD when applied to trees
with parallel mutations (those that are gained multiple times). We
also demonstrate the effectiveness of our heuristic approach when
input trees contain either parallel mutations or losses of mutations.
Finally, on both simulated data and a real colorectal cancer data
set [19] we demonstrate the ability of our approaches to effectively
measure the distance between trees while maintaining important
properties of the original ISA dependent distance measures.

2 METHODS
2.1 Tumor Phylogenies

We consider a tumor that contains m mutations. We won’t distin-
guish what types of genomic alterations these may be (SNV, CNA,
etc.). We model the presence or absence of a mutation as a binary
character where 1 represents the presence of the mutation and 0
indicates its absence. Thus any cell in the tumor may be described
using a binary mutation vector b € {0,1}™ whose i entry, b(i),
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indicates the state of mutation i in the cell. A clone is a collection
of cells with identical mutation vectors. We can now describe the
history of a tumor as a tumor phylogeny T where vertices represent
clones that either currently or previously existed at some point
during the tumor’s evolution and directed edges represent the di-
rect ancestral relationships between those clones. We note that
inherently all edges are directed away from the root.

Definition 2.1. A tumor phylogeny T is a rooted tree with the
following conditions:

(1) Each vertex v is labeled with a binary mutation vector b, €
{0, 1} indicating the mutations present in that clone.

(2) Tumors evolve from a healthy cell (without mutations), so
the root r is labeled with the vector b, = [0, ..., O]T .

(3) Any two vertices connected by an edge must have binary
mutation vectors that differ in at least one place. That is,
if (v,w) is an edge in T then there must exist some i €
{1,...,m} such that b, (i) # b, (i).

(4) All children of any vertex v must have unique mutation
vectors. That is, if vertices v and w are siblings, then b, # b,,.

(5) All m mutations appear at least once in T. That is, for all
i € {1,...,m} there exists some vertex v where by (i) = 1.

We define an edge (v, w) in T as a gain edge for mutation i if
by(i) = 0and b,y (i) = 1. Similarly, we define an edge (v, w) in T as a
loss edge for mutation i if b, (i) = 1 and b,, (i) = 0. Note, with these
definitions a single edge (v, w) may be a gain edge for mutation i
but also is a loss edge for mutation j. A tumor phylogeny T can
be given one of two different categorizations depending on the
number of distinct mutations that are gained or lost on the edges
in T. Specifically, T is called a mutation phylogeny if for any e in T
there exists exactly one mutation i such that e is either a gain or
loss edge for i. Otherwise, there must exist some edge e in T where
more than one mutation is either gained or lost. In that case, we
refer to the tumor phylogeny T as a clonal phylogeny. Intuitively, a
clonal phylogeny is when some mutations cannot be ordered and
are instead clustered together. Finally, we note that we may use the
terms phylogeny and tree interchangeably.

2.2 Models of Tumor Evolution

The mutational history of a tumor is generally not as permissive
as our definition of a tumor phylogeny. Instead, we often need to
apply a model of evolution that further constricts how mutations are
gained or lost. We now can identify two types of tumor phylogenies
that adhere to two different existing models of evolution.

The k-Dollo model allows for each mutation to be gained exactly
once but lost up to k-times [7]. Formally, we now define a k-Dollo
phylogeny as follows.

Definition 2.2. A k-Dollo phylogeny is a tumor phylogeny T with
the following additional restrictions:

(1) T contains exactly one gain edge for all mutations i € {1,...,m}.
(2) For all mutations i € {1,...,m}, T contains at most k loss
edges.

We note that a 0-Dollo phylogeny represents a special case called
the Infinite Sites Assumption (ISA) [16] where mutations are gained
but never lost. The ISA model has been used extensively in the field
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of tumor evolution as it provides helpful constraints for inferring
tumor phylogenies (e.g., [8]). In recent years there has been a grow-
ing interest in dropping the ISA assumption [18], and in particular
the k-Dollo model has been shown to be a useful alternative.

The Camin-Sokal model allows for mutations to be gained any
number of times, but never lost [4]. This model has also been shown
to be a useful alternative to the more restrictive ISA [16]. Let k-
Camin-Sokal denote the restriction of the Camin-Sokal model where
each mutation can be gained at most k times. Formally, we now
define a k-Camin-Sokal phylogeny as follows.

Definition 2.3. A k-Camin-Sokal phylogeny is a tumor phylogeny
T with the following additional restrictions:

(1) For all mutations i € {1,...,m}, T contains between 1 and k
gain edges.
(2) T contains no loss edges for any mutation i € {1,...,m}.

2.3 Distance Measures on Tumor Phylogenies

A distance measure on tumor phylogenies is a function that takes
in two tumor phylogenies T; and T; and returns a non-negative
real valued number that indicates how dissimilar they are. The
larger the value, the more dissimilar the trees are to each other;
the closer the value is to 0, the more similar they are. Note that a
distance measure does not need to be a distance metric (i.e. observe
the triangle inequality, symmetry, etc.), although some distance
measures such as CASet and DISC are distance metrics in certain
contexts. Most existing distance measures that are designed for
tumor phylogenies assume that the input phylogenies adhere to
the ISA. In this section, we will build a framework that allows
for distance measures that assume the ISA to be applied to any
tumor phylogeny. We will first show how distance measures that
assume the ISA can be applied to 1-Dollo phylogenies. Then, we
will generalize that approach.

2.3.1 Distance Measures applied to 1-Dollo Phylogenies. First we
will describe a transformation process to turn a 1-Dollo phylogeny
into a 0-Dollo phylogeny, which is the same as a tumor phylogeny
adhering to the ISA-sometimes also called a perfect phylogeny.
Consider a 1-Dollo phylogeny T with m mutations and n of those
mutations have a single loss. We will show how to convert T into
a 0-Dollo phylogeny T’ on m + n mutations. The only real differ-
ence between T and T’ is how the mutation vectors that label the
vertices in T’ are constructed, the phylogenies themselves have
the same topology. So, we describe only how to construct the mu-
tation vectors for T’. The first m indices in each mutation vector
b’y in T’ correspond to the gains of the m characters in T. The
last n indices correspond to losses of these characters (if present),
effectively representing each loss state as a new character. We can
construct such a phylogeny T’ using the following three steps. (1)
For each vertex v, directly copy over all entries from b, to the first
m indices in b’ and set b}, (i) = 0 for the remaining n indices. This
means that all mutation gains are encoded in the same way as in
the original phylogenies. (2) Iterate through all loss edges in T.
For the j*% loss edge considered (v, w) in T where the loss edge
corresponds to character i, set b%,(i) = 1 and b/,(m + j) = 1. So,
instead of encoding losses as a change of a single mutation from
present to absent, we instead encode it as the gain of a new ‘loss’
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mutation while keeping the original mutation as present as well.
(3) For any vertex x such that w is an ancestor of x in T, also make
the following updates: b (i) = 1 and b%(m+ j) = 1. This procedure
allows the original mutation and the newly created ‘loss’ mutation
to be inherited by a descendant populations.

With this transformation, we can now describe a process for ap-
plying distance measures designed for ISA phylogenies to 1-Dollo
phylogenies. Given two 1-Dollo phylogenies T; and T, convert
them into 0-Dollo phylogenies T; and T, using the transforma-
tion described above. Now, any distance measure that assumes the
ISA can be applied directly to T and T, as these encode all the
information from the original phylogenies.

2.3.2  Distance Measures applied to Generalized Tumor Phyloge-
nies. We now describe how the transformation approach described
above for 1-Dollo phylogenies can be generalized for any tumor
phylogeny, but especially k-Dollo phylogenies or k-Camin-Sokal
phylogenies. While for 1-Dollo phylogenies there was exactly one
gain and at most one loss for each mutation, we may now have
multiple gains and losses for each mutation. To apply the same
transformation, we need to match losses and gains of the same
mutations between tumor phylogenies T and T>. Mathematically,
we may view such a pairing as a matching of a bipartite graph
G(T1, Tz), whose vertices and edges encode allowed matches be-
tween gains and losses of mutations. To formalize this, we start by
defining the matching graph G(Tj, T2) obtained from T; and T5.

Definition 2.4. The matching graph of two tumor phylogenies
Ty and T is a bipartite graph G(T1, Tz) = (A U B, E) whose vertices
A (B) correspond to gains and losses of mutations in T; (T3), and
whose edge set E is composed of edges (a, b) such that a and b
correspond to either two gains or two losses of the same mutation,
one in each tree.

Recall that a matching M in a bipartite graph is a subset of
edges such that no two edges in M are incident to the same ver-
tex. Intuitively, a matching of the matching graph G(T;, Tz) of
tumor phylogenies T and T, describes how to match the gains
and losses of the same mutation between the two phylogenies.
Given a matching M = {(a1, b1),..., (a|M|, b|M|)} of G(T1, o), let
A” ={a1,...,a4-|} S Aand B = {b1,...,bg-|} C B be the
subsets of unmatched vertices (mutations) of G(Ty, Tz), where A~
indicates the unmatched mutations from Ty and B~ the unmatched
mutations from T5. From M, A~ and B~, we obtain the correspond-
ing 0-Dollo (ISA) phylogenies T| and T, as follows. Similar to the
1-Dollo case, the topologies of the transformed phylogenies are
identical, so we need only to describe how the mutation vectors
for T{ and T, are created. Each vertex in T] and T, are labeled by
mutation vectors b’y and by, respectively, of size |M|+|A™|+|B™|.
The first |M| indices correspond to matched gains/losses of muta-
tions between T; and Ty, followed by |A™| indices corresponding
to unmatched gains/losses of mutations in T and then |B™| indices
corresponding to unmatched gains/losses in T5.

Inb’; and b’, mutation gains are largely filled out in the same
way as in the 0-Dollo case. That is, a 1 entry at index i indicates the
gain of mutation i, and this entry persists in the mutation vector of
all descendant vertices. The one difference is that a new mutation
vector index j exists for each novel gain of a single mutation (e.g.,
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Figure 1: Phylogenies T; and T, (left) are both 3-Dollo Phylogenies. Loss edges are indicated by a dashed line and gain edges
by a solid line. The corresponding matching graph G(T3, T5)is also shown (center), with node colors that match the respective
gain/loss edges in the original phylogenies. The matching indicated by the dark purple edges in G can be used to transform T
and T into 7] and T}, two 0-Dollo Phylogenies (right) by introducing a new index into their corresponding mutation vectors b’;
and b’; for every time a mutation is lost in either phylogeny. Each loss is now encoded as a gain of the mutation at the newly

added index.

SNV/CNA). Losses are encoded by introducing a new mutation
index in the mutation vector instead of having the original mutation
revert from a 1 to a 0. Figure 1 shows a complete example for two 3-
Dollo phylogenies including their matching graph and the resulting
0-Dollo phylogenies for the specified matching.

We can now apply any distance measure dist designed for 0-Dollo
(ISA) Phylogenies to Tl' and T;. Thus, a matching M of G(T1, T2),
the matching graph for the original phylogenies, induces a distance
of dist(T/,T,) on the transformed phylogenies. This leads to the
following optimization problem.

PrOBLEM 2.1. Generalized Matching Distance (GMD) Prob-
lem: Given tumor phylogenies Ty and T> and a distance measure dist
under the the ISA, find a maximum cardinality matching M of the
matching graph G(T1, Tz) such that the resulting 0-Dollo phylogenies
T and T, have minimum distance dist(T], T,).

2.3.3  An Exact Algorithm to Solve the GMD. The structure of the
matching graph G(T;, Tz) makes finding the exact solution to the
GMD fairly straightforward, although potentially computationally
costly. We propose the following method: (1) Create the matching
graph G(T1,12); (2) Enumerate all maximum cardinality matchings
M in the graph; (3) For each matching, compute the transformed

phylogenies T] and T, and compute dist(T{, T,); and (4) Return
the matching M* that produces the smallest such distance. Note
that while the number of matchings that need to be checked has a
factorial growth rate, in practice we expect the number of matchings
to often remain relatively small.

To enumerate all maximum cardinality matchings we first ob-
serve that all connected components in G(Ti, T2) consist of vertices
labeled entirely by gains or losses of a single mutation. Therefore, if
we can describe how to enumerate all maximum cardinality match-
ings for a single connected component, then that approach can
be generalized for all maximum cardinality matchings across the
whole graph by combining matchings for all connected components.
Furthermore, each such connected component is always a complete
bipartite sub-graph of G(T3, T2) (containing all possible edges be-
tween the two sets of vertices). Consider the connected sub-graph
S = (A; UB;, E;) of G(Ti, T2) for a gain (or loss) of mutation i con-
taining |A;| vertices from A and |B;| vertices from B. Without loss
of generality, assume that |A;| < |B;|. This connected component is
a particular graph often denoted as K4, |p,| and whose maximum
cardinality matching will be of size |A;|. For example, in Figure 1,
the connected component for the losses of mutation 1 consists of 3
vertices from A (labeled 1:1, 1:2, 1:3) and 2 vertices from B (labeled
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Figure 2: A toy example comparing two phylogenies to demonstrate the weighting schemes used as part of the heuristic
approach. (Left) Two mutation phylogenies T; and T, with T> containing parallel mutations of A. (Right) A small portion of the
matching graph, specifically the portion of the graph that matches mutation A, is shown. parent is shown in blue, depth is
shown in green, and lineage is shown in yellow. Brief descriptions of the calculation of the weighting schemes are attached to

the matching graph.

1:1, 1:2) and contains all 6 possible edges between these vertices.
The maximum cardinality matching in this component has size 2
and there are 6 such matchings. Algorithms such as [26] exist for
enumerating maximum cardinality matchings in bipartite graphs.
Furthermore, the fact that S is a complete bipartite graph makes
enumerating these matchings an easy two step process: (1) Choose
all sets of size |A;| vertices from the set of vertices B; ; (2) Consider
all possible ways of connecting these vertices to the vertices in A;.

In cases where the matching graph G(Ti, Tz) has relatively few
maximum cardinality matchings (when there are few mutations
with relatively small numbers of multiple gains or losses), it can be
computationally feasible to simply check all such matchings. We
will refer to this as the enumerative approach to solving the GMD.
Alternatively, we can take a heuristic approach to quickly pick
a good max-sized matching, which we describe in the following
section.

2.3.4  Minimum-weight matchings: a heuristic approach. In the GMD
problem, the matching M on the matching graph G(T3, T2) is the
component that identifies how to map gains and losses in Tj to
those in Tp. The optimal such mapping will depend on the distance
measure dist being used. In place of an enumerative, exact solution
that may be computationally expensive, we propose a heuristic
approach. Specifically, we propose the following procedure: (1) As-
sign weights f(a, b) to edges (a, b) in G(Ty, Tz) based on features in
both T1 and T3; (2) Find a minimum-weight, maximum cardinality
matching using the Hungarian algorithm [17]; (3) Use this match-
ing to perform the transformation to 0-Dollo phylogenies rather
than exhaustively check all possible matchings. The details of the
exact distance measure dist used may also be helpful for picking

an useful weighting scheme for the edges in the matching graph.
In particular, we explore the following three weighting schemes.

depth — the weight f(a,b) of an edge (a,b) in G(T1,T2) is set
equal to the absolute value of the difference between the depth of
ainT; and bin Ts.

parent — the weight f(a,b) of an edge (a,b) in G(T1, T2) is set
equal to 0 if a and b share the same parent mutation(s), 1 otherwise.

lineage — the weight f(a, b) of an edge (a,b) in G(T1, T2) is set
equal to the cardinality of the symmetric difference between the
lineage sets of a and b. We define the lineage set of a mutation as the
union of all of its ancestor mutations and all of its descendant muta-
tions. Figure 2 provides a visual for understanding these weighting
schemes.

3 RESULTS

We apply and analyze our proposed approaches on both simulated
and real data.

3.1 Results on Simulated Data

On simulated data sets we evaluate several aspects of both the enu-
merative and heuristic approaches to solving the GMD. Specifically,
we evaluate: (1) If brute-force GMD enables ISA distance measures
to appropriately penalize differences between phylogenies with par-
allel mutations; and (2) How well the proposed heuristic approach
for the GMD works when applied with different edge weighting
schemes and distance measures. This analysis includes both parallel
mutations and mutation losses.

3.1.1  Data Simulation. Our general simulation procedure for each
of the experiments described below was to use a recursive approach
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to enumerate all trees in a specified space (e.g., k-dollo trees with
8 mutations and 3 losses of one of those mutations) and then to
randomly sample a subset of these trees to use in each experiment.
We note that such trees are inherently biologically feasible as they
do not allow a mutation to be lost before it is gained. The specific
details for simulating data for each experiment are outlined in the
corresponding sections below.

3.1.2  Examining the Effects of Parallel Mutations. Similar to Cic-
colella et al. [5], we wanted to investigate the effect on the distance
evaluation between clonal phylogenies as the number of parallel
mutations increases. We would expect that a phylogeny with more
occurrences of a mutation when compared with a phylogeny with
less occurrences of that same mutation should be deemed further
away from each other than two phylogenies with more similar
numbers of mutation occurrences. In order to set up an experiment
to support this investigation we first create 4 data sets containing
all possible mutation phylogenies with 8 mutations and 1, 2, 3, or 4
gains of mutation ‘A’. Note, these are a specific subset of k-Camin-
Sokal phylogenies. We then created a base set of trees (called Group
1) by randomly sampling 50 trees from the data set containing 1
gain of mutation ‘A’. We also created 4 test sets (Groups 2-5) by
then randomly sampling 50 trees from the sets with 1-4 gains of
mutation ‘A’. For each group of trees we converted them from mu-
tation phylogenies to clonal phylogenies by randomly selecting 2
pairs of connected nodes in the mutation phylogeny to collapse
to simulate mutations whose order cannot be ascertained. We do
this collapsing since real data is much more likely to be a clonal
phylogeny with gains or losses of different mutations grouped on
single vertices rather than the idealized mutation phylogeny where
each new gain or loss appears on its own vertex. We then conducted
pairwise comparisons between clonal phylogenies in Group 1 with
Groups 2-5. Figure 3 shows the average distance between each test
set and the base set for various different distance measures.

All methods that included the enumerative GMD transformation
plus an ISA dependent distance measure (CASet [6], DISC [6] and
MLTED [14]) show the desired property of monotonically increas-
ing distances as the number of parallel mutations of mutation ‘A’
increased. The MP3 method [5], which was designed to handle
parallel mutations, also shows the same monotonically increasing
property. While neither CASet nor DISC was designed to handle
parallel mutations, neither program throws an error when run with
such data (without the GMD transformation). Specifically, the imple-
mentation of these methods utilize set data-structures rather than
multisets for mutations and thus only one mutation gain is consid-
ered whenever parallel mutations are present within the phylogeny.
This explains the relatively flat slope for these results. However, we
intentionally include these results here to better demonstrate the
exact impact of our approach. We also note that when phylogenies
being compared do not have identical sets of mutations, both CASet
and DISC have the option to either use the union or intersection
of those sets. We only include here results using the union option
because the intersection option effectively removes all signals from
the parallel mutations as only a single gain of that mutation can
be included in the intersection set. As a result, CASet and DISC
when applied without GMD behave almost identically for both
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union and intersection. MLTED, without GMD, returns an error on
phylogenies with parallel mutations.

When Ciccolella et al. [5] proposed MP3 (and performed an ex-
periment similar to this one), they suggested that it is better to have
a steeper curve when comparing phlogenies with differing numbers
of occurrences of a mutation. Following this, CASet (union) + GMD
, DISC (union) + GMD, and MLTED + GMD all have a steeper curve
than MP3 and therefore penalize differences across mutation sets
more than MP3. Among these distance measures, MLTED + GMD
has the steepest curve with a total change in distance of 0.15.

Effect of Parallel Mutations on Distances Between Clonal Trees
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Figure 3: The results of an experiment to evaluate how vari-
ous distance measures with and without enumerative GMD
vary in their evaluation of clonal phylogenies. Specifically,
the evaluated phylogenies are a subset of k-Camin-Sokal phy-
logenies where the only mutation duplicated is mutation ’A’
and k is 1, 2, 3, and 4. We evaluate distances using MP3, CASet
(union) + GMD, CASet (union), DISC (union) + GMD, MLTED
+ GMD, and DISC (union).

3.1.3  Performance of Heuristic Approach. We also analyzed the
performance of our proposed heuristic approach in approximat-
ing solutions to the GMD Problem. Specifically, we explored which
weighting schemes (depth, lineage, parent) paired best with different
ISA distance measures (parent-child (PC) [10], ancestor-descendant
(AD) [10], MLTED [14], CASet [6], DISC [6]). We first create a data
set containing all possible mutation phylogenies with 5 mutations
and 2 losses of mutation ‘A’. Note, these are a specific subset of
k-Dollo phylogenies. We then randomly sampled 100 mutation phy-
logenies from the data set and ran pairwise comparisons between
these 100 mutation phylogenies using all combinations of weight-
ing schemes (for our heuristic approach) and different ISA distance
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Figure 4: The results of experiments to evaluate various factors that could effect the performance of our heuristic approach at
approximating solutions to the GMD Problem. We paired various ISA distance measures (CASet, DISC, PC, AD, and MLTED)
with our proposed weighting schemes (depth, lineage, parent). a) Fraction of trials where the heuristic approach achieved the
optimal solution on phylogenies with 5 mutations and 2 losses of mutation ‘A’. Results are also shown for both mutation
phylogenies and clonal phylogenies that resulted from collapsing nodes in the mutation phylogenies. Random indicates the
probability of selecting an optimal matching randomly from all possible matchings. b) Fraction of trials where the heuristic
approach achieved the optimal solution for a data set with 8 mutations and 2 gains of mutation ‘A’. Results are shown for both
mutation phylogenies and clonal phylogenies obtained by collapsing nodes in the mutation phylogenies.

measures. We then compare these results to using the enumerative
approach for solving the GMD problem for all distance measures.
This allows us to capture what fraction of trials optimally solve
the GMD problem for each combination of weighting scheme and
ISA distance measure. We also perform this same experiment af-
ter using the same collapsing approach described in the previous
section to turn all mutation phylogenies into clonal phylogenies.
Figure 4a shows the complete results from this experiment. We
note we also performed this same experiment but with phylogenies
with 8 mutations and 2 losses of a single mutation and found the
results to be similar.

Across all distance measures and heuristic weighting schemes
there is a decrease in performance when applied to clonal phy-
logenies in comparison to application to the corresponding mu-
tation phylogenies. This could be because the clonal phylogenies
were shorter, providing less information to compute the weighting
schemes-especially in the case of the lineage weighting scheme.
For mutation phylogenies, the heuristic approach is almost always
optimal when using PC distance with theparent weighting scheme.
Specifically, for 5 mutations and 2 losses of ‘A, it finds the optimal
solution 99.32% of the time. AD distance with the parent weighting
scheme and MLTED distance with the parent weighting scheme
also perform well, and identify an optimal solution in 94.30% and

92.40% of trials. While intuitively simple, the parent weighting
scheme performed the best across all the distance measures for
both clonal and mutation phylogenies except for MLTED in which
lineage achieved better performance for clonal phylogenies. All pair-
ings of ISA distance measures and weighting schemes performed
better than randomly selecting any maximum cardinality matching.

We also performed a similar analysis for phylogenies with 5,6,7
and 8 mutations and 2 gains of mutation ‘A’ (a subset of k-Camin-
Sokal phylogenies). In this case we used only the distance measures
that performed the best in the previous experiment, parent-child
and ancestor descendant. We saw little difference in the results for
the different number of unique mutations in each tree, so Figure 4b
shows only the results for 8 mutations with 2 gains of mutation ‘A’.
Despite the fact that the number of unique mutations was increased
and that the phylogenies in this experiment contained multiple
gains rather than multiple losses, many of the patterns we saw
in the previous experiment persist. PC distance and the parent
weighting scheme still perform the best with the combination of
these obtaining an optimal solution in 98.10% of trials on mutation
phylogenies and 79.89% of trials on clonal phylogenies. Similar
to the previous experiment, we also see a performance decrease
between clonal phylogenies and mutation phylogenies.
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3.2 Results on Real Data

We also compare three phylogenies that were inferred for a col-
orectal cancer patient CRC2 from Leung et al. [19]. The original
data set consists of targeted single-cell sequencing of 182 cells from
a primary colon tumor and a liver metastasis and a 1000-cancer
gene panel used as the target region for sequencing. The phylo-
genies were inferred by three different methods in three separate
papers—-SCARLET [24], SiCloneFit [27], and FIMO [1] (a pre-print
paper). The phylogenies and computed distances for CASet (union)
+ GMD, DISC (union) + GMD, MLTED + GMD and MP3 (as these
were the only distance measures to accurately penalize increasing
differences in mutation occurrences in the simulated experiments)
are shown in Figure 5. We ran the enumerative variant of GMD
as the number of gains/losses were small, and it finished virtually
instantaneously. Specifically, we ran the code on a Dell Poweredge
R540 server with 28 cores and 384 GB of RAM. Note, the SCARLET
tree is the only one containing back mutations (losses) whereas
the SiCloneFit and FiMO phylogenies contain parallel mutations.
Furthermore, the SCARLET tree explicitly orders many mutations
that the other methods simply group together. Thus, we may rea-
sonably expect the SCARLET tree to be more dissimilar to the other
two phylogenies for most distances. The results of CASet (union) +
GMD, DISC (union) + GMD, MLTED + GMD and MP3 agree with
that assumption. We note that the MP3 analysis is more extreme
in both the similarity of the SiCloneFit and FiMO phylogenies and
the dissimilarity of the SCARLET tree to the others. This resembles
the situation in Figure 3 with MP3 yielding a larger dissimiliarity
in its evaluation than the other distance measures. On the other
hand, while MLTED + GMD still evaluates the SiCloneFit and FIMO
trees as most similar, it does not identify the SCARLET tree to be
as dissimilar from them as the other methods do. This is consistent
with the intended behavior of MLTED, which is different than the
other distance measures. Specifically, MLTED was designed to eval-
uate phylogenies at different resolutions that could represent the
same underlying tumor evolutionary history as similar. Thus, the
expanded nature of many mutations in the SCARLET tree should
contribute less to the total distance to the other two phylogenies
when using the MLTED distance, which is exactly what we see.
Thus, our results here suggest the ability of the GMD approach to
maintain the desired properties of the distance measures that it is
used with.

4 CONCLUSION AND FUTURE WORK

There are many existing distance measures to compare tumor phy-
logenies that abide by the Infinite Sites Assumption (ISA). However,
the field of tumor phylogenomics is gradually transitioning to mod-
els of tumor evolution beyond the ISA such as the k-Dollo and
Camin-Sokal models in order to better represent the realities of
tumor evolution. In order to leverage already existing ISA tumor
distance measures to evaluate tumor phylogenies inferred under
these more relaxed models, we propose the Generalized Match-
ing Distance (GMD) Problem. We both provide an enumerative
approach to solving GMD (which is often very practical to use),
and also propose a heuristic to solve the GMD that utilizes vari-
ous weighting schemes (depth, lineage, parent) to identify a single
matching that is likely to produce a good result. We have shown
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that without GMD, some existing ISA distance measures are inca-
pable of correctly penalizing differences in occurrences of parallel
mutations; in some cases, these distance measures are even unus-
able without first using GMD. We also showed that the heuristic
approach we proposed performs well in some restricted cases of
tumor phylogenies; parent-child distance combined with the parent
weighting schemes even generally produces an optimal solution to
the GMD in the case of small mutation phylogenies. Finally, we ap-
plied our GMD approach along with several ISA distance measures
to a real colorectal cancer dataset. We found that our approach
allowed the distance measures to retain their originally designed
properties such as the ability of the MLTED distance measure to
consider phylogenies at different resolutions as similar if they could
represent the same evolutionary history.

Yet, there is much future work that could be done. For one, more
weighting schemes can be developed in addition to the three that
were provided in this paper (depth, lineage, parent). Specifically,
while parent maps quite well to parent-child distance and some sort
of intuition guides the pairing of lineage and ancestor-descendant
distance, we haven’t extensively explored weights that would work
especially well for MLTED, which relies on edit distance rather than
sets of mutations. In addition, experiments on larger phylogenies
containing greater complexity like the gain and loss of multiple
different mutations could provide more comprehensive information
on the optimality of the heuristic approach. Finally, more extensive
comparison between all the distance measures and their GMD
extensions could help researchers in the field better determine
which distance measures to use for their use case.
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