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Abstract
Background  This study investigates the effects of pores on the mechanical properties of metals produced by additive manu-
facturing, which can limit strength and ductility.
Objective  This research aims to both measure and model the rate of crack growth emanating from these pores in additively 
manufactured Ti-6Al-4 V fabricated with laser powder bed fusion.
Methods  Uniaxial tensile samples containing intentionally embedded penny-shaped pores were mechanically tested to 
failure, and loading was interrupted by a series of unload steps to measure the stiffness degradation with load. The factors 
contributing to reduction in stiffness, namely (1) elastic and plastic changes to geometry, (2) the effect of plastic deformation 
on modulus, and (3) crack growth, were deconvoluted through finite element modeling, and the crack size was estimated at 
each unloading step.
Results  The stiffness-based method was able to detect stable crack growth in samples with large pores (1.6% to 11% of the 
cross-sectional area). Crack growth as a function of strain was fit to a model where the crack driving force was based on 
equivalent strain and a model where the crack driving force was based on energy release rate.
Conclusions  Significant crack growth occurred only after the onset of necking in samples containing small pores, while 
samples containing large pores experienced continuous crack growth with strain.

Keywords  Crack growth · Titanium alloys · Fracture · Ductility · Finite element modeling

Introduction

In laser powder bed fusion (PBF-LB) additive manufactur-
ing (AM), components are fabricated layer-by-layer, through 
the iterative spreading of powder, melting of the powder by 
scanning a two-dimensional pattern with a laser, and solidi-
fication of the molten metal to fuse to the layer below. PBF-
LB provides design flexibility allowing for the manufactur-
ability of complex, three-dimensional parts [1].

One challenge in adopting PBF-LB for structural applications 
is the variability in material properties, which can be attributed 

to heterogeneous microstructures, preferred crystallographic 
texture, and porosity [2, 3]. Pores encountered in AM are typi-
cally classified as lack-of-fusion (LOF), keyhole, bead-up, or gas 
entrapment [4, 5]. LOF pores have irregular, sharp morphologies 
that may initiate early failure due to high stress concentration 
factors. In this study, PBF-LB Ti-6Al-4 V was studied, the duc-
tility of which in uniaxial tension has been shown to be sensitive 
to pores greater than 0.4% of the cross-sectional area [6].

Additive manufacturing provides a means for isolating the 
effect of individual defects on fracture behavior through the 
fabrication of internal pores with a specified size, shape, and 
location, which was not previously possible with conven-
tional processing methods. Samples containing fabricated 
pores have been designed to study the effect of a single 
defect on fracture under various stress states [6–11].

Studies modeling crack growth have primarily investigated  
cracks under plane strain. In an analysis by Chobin [12], crack  
growth in a center-cracked-tension (CCT) 70/30 brass plate 
was studied. No stable crack growth was observed until the 
onset of necking, after which the rate of crack growth with 
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respect to engineering strain was shown to be proportional 
to the crack length, a. A differential amount of crack growth, 
da, was related to a differential change in far-field engineer-
ing strain, dεeng as:

where A is a proportionality constant. The primary benefit 
of the Chobin model is its simplicity, as engineering strain 
and crack size can be measured experimentally. However, 
the model is empirical and does not consider the micro-
scopic processes occurring near the crack tip singularity 
that drive crack growth, limiting the model’s potential for 
extrapolation.

A crack tip singularity may be characterized by the 
J-integral [13]. For the J-integral to uniquely describe the 
stress and strain fields around a crack, loading must be pro-
portional, the material must behave elastically, and crack tip 
deformation cannot be excessive. Under these conditions, 
the J-integral is equivalent to the energy release rate, G, 
which is the rate of change of potential energy with respect 
to crack area. Although the J-integral is applicable to only 
a stationary crack, Rice et  al. [14] used compatibility, 
equilibrium, and thermodynamic considerations around a 
plane strain crack tip to relate crack growth to the J-integral, 
termed the RDS model:

where δc represents the crack tip opening displacement 
a short distance, rm, behind the crack tip, α, β, and λ are 
unitless constants, σ0 is the yield strength, E is the Young’s 
modulus, and e is Euler’s number. The model captures the 
transition from stable crack growth, where the rate of crack 
growth with respect to strain is finite, to unstable crack 
growth, where the rate of crack growth is infinite.

To quantify the evolution of damage during a mechanical 
test, various nondestructive testing methods have been devel-
oped, including stiffness measurements, electrical resistance 
measurements, ultrasonic testing, and X-ray tomography 
[15–18]. In the compliance method, samples are periodically 
unloaded and the reduction in stiffness due to crack growth 
is measured. Bonora et al. [19] performed stiffness meas-
urements on uniaxial mechanical tests of nearly-dense high 
strength steel and high purity copper, and separated geo-
metrical effects from damage accumulation. They attributed 
a rapid decrease in the material’s stiffness during uniform 
plastic deformation to damage accumulation. Yoshida et al. 
[20] similarly observed that the effective Young’s modulus, 
E, decreased with the von Mises equivalent plastic strain, �p, 
and proposed that the modulus, initially E0, exponentially 
decayed to an asymptotic value, Ea:

(1)da = Aa d�eng

(2)�c =
�rm

�0

dJ

da
+ �r

�0

E
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e�EJ
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0
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where the decay constant, ξ, controls the rate at which the 
modulus decreases with plastic strain.

In the present study, Ti-6Al-4 V samples, containing 
designed internal flaws ranging from 0.37% to 11% of the 
gauge section’s cross-sectional area, were mechanically 
tested, and load-unload cycles were used to measure the 
reduction in stiffness. Through comparison to a series of 
finite element models, experimental stiffness measurements 
were used to estimate crack growth. A Chobin-like model 
and a modified RDS model were calibrated to the experi-
mental data. Both calibrated crack growth models were eval-
uated at a series of preexisting pore sizes, and the rates of 
crack growth with respect to engineering strain and the strain 
at which the crack became unstable, leading to fracture, were 
identified. This study describes a method to both measure 
and model crack growth from a single lack-of-fusion type 
pore in additively manufactured Ti-6Al-4V.

Experimental Methods

Sample Fabrication

Samples were designed in accordance with ASTM E8 [21] 
with the sample geometry shown in Fig. 1(a). A gauge length 
of 24 mm was used for all engineering strain measurements. 
The samples were fabricated with a ProX 320 machine (3D 
Systems, Rock Hill, SC), with the samples’ axes colinear 
with the vertical build direction. After fabrication, the sam-
ples were heat treated in an argon environment at 850 °C 
for 2 h [22]. The samples were fabricated as cylinders and 
the gauge sections were machined to the final dimensions.

In each sample, a single intentional pore was designed 
to behave similarly to a lack-of-fusion defect; however, the 
pores required a finite height to prevent dross from closing 
the defect. Each pore was designed as a cylinder with its axis 
parallel to the loading direction, with a height of 240 µm (4 
layers) as described in previous work [6], and located at the 
sample’s center as shown schematically in Fig. 1(b). Due to 
the axisymmetric geometry and boundary conditions, crack 
growth for modeling was considered to be one-dimensional 
along the radial direction. In a previous study on Ti-6Al-4 V 
samples containing similar internal pores, X-ray computed 
tomography (XCT) identified little change in pore volume 
after loading to 75% of the failure strain, indicating that 
cracking, rather than pore growth, dominated the fracture 
behavior [6].

X-ray computed tomography, with a voxel size of 
10 µm, was used to quantify the initial pore sizes, and the 
same parameters were used as in a previous study on the 

(3)E = Eo − (Eo − Ea)(1 − e−��
p

)
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same material [6]. An example of a pore prior to mechani-
cal testing is shown in Fig. 1(c). The fabricated pores were 
smaller than designed (Table 1), and were measured to 
range from 0.37% to 11% of the sample cross-sectional 
area. Archimedes density measurements verified that  
the samples were nearly fully dense, with the least dense 
sample having a density of 99.6%. The designed pores’ 
volumes were too small to be detectable by Archimedes 
measurements. The largest pore was designed to be 0.05% 
of the sample’s volume, while the standard error of the 
Archimedes measurements was 0.07%.

Mechanical Testing

Mechanical testing was conducted with an electromechanical 
load frame (Criterion 45, MTS Systems Corporation, Eden 
Prairie, MN). A crosshead displacement rate of 0.007 mm/s 
was used for both loading and unloading, corresponding to 
a quasi-static strain rate of 3 × 10–4 s−1. Surface deformation 
fields were measured with stereo-digital image correlation 
(DIC), where a uniform white basecoat and a black speckle 
pattern were applied to each sample prior to mechanical test-
ing. Two digital cameras (GRAS-50S5M-C, Teledyne FLIR, 
Wilsonville, OR) recorded images at a rate of 1 Hz, and the 
DIC images were postprocessed by VIC-3D software (Cor-
related Solutions, Irmo, SC) to calculate engineering strain.

Three samples were fabricated for each of the three pore 
sizes (Table 1); additionally, three fully dense samples with-
out any designed pore were fabricated. For one sample of 
each pore size, a monotonic test was conducted to identify 
the elongation to failure. For the remaining samples, the dis- 
placement to failure was divided into twenty-five equivalent  
steps, and after each step the sample was unloaded to 10kN, 
corresponding to an engineering stress of 350 MPa (e.g., 
Fig. 2(a) for a fully dense sample). The stiffness, k, was 
calculated for each load-unload cycle based on engineering 
stress–strain values.

Stiffness Modeling

During each mechanical test, the measured stiffness 
decreased because of three factors: changing sample geom-
etry due to the elastic Poisson effect and plastic incompress-
ibility, reduction of elastic modulus due to plastic strain, and 
crack growth. All three stiffness-reducing phenomena were 
incorporated into finite element models (Abaqus FEA, Das-
sault Systèmes, France).

Regarding the first factor, during uniform plastic defor-
mation, reduction in the sample’s cross-sectional area and 
increase in gauge length reduced the stiffness with 1/(1 + εeng)2 
[19]. To capture the effect of changing geometry on the stiff-
ness into the necking regime, the material’s elasto-plastic 
response was defined by elastic parameters in Table 2, and 
an isotropic J2 plasticity model with Swift Law hardening:

where the parameters n, A, ε0, K1, and K2 were calibrated 
using the fully dense samples’ data and are given in Table 2. 
As shown in Fig.  2(a), good agreement was achieved 
between fully-dense experimental and finite element model 
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Fig. 1   (a) Sample dimensions, where the sample’s axis was along 
the vertical build direction. All dimensions are in millimeters unless 
otherwise noted. The engineering strains were measured with 24 mm 
long virtual extensometers. A preexisting pore was located at the 
center of each sample, as shown schematically in gray. (b) Schematic 
of preexisting pore and subsequent crack growth due to far-field stress 
studied here. (c) XCT reconstruction of as-built pore with a mean 
diameter of 1986 µm

Table 1   Comparison of intended pore diameter to diameter measured 
with XCT. In all subsequent analysis, the measured pore diameters 
were used

Design XCT Measurement

Diameter (µm) Cross-Section 
Fraction

Equivalent 
Diameter (µm)

Cross-
Section 
Fraction

600 1.0% 365 0.37%
1200 4.0% 757 1.6%
2400 16% 1986 11%
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stress–strain behavior across the elastic, uniform plastic, and 
necking regimes.

The degradation of modulus with plastic strain is a 
global effect (equation (3)) and affects material points 
far from the designed defect. This effect may be caused 
by microplasticity, point defect pinning, or an evolving 
texture, although it is unlikely to be the latter because 
the effect is most prevalent at small strains [23, 24]. The 
calibrated Yoshida-Uemori model is given in Fig. 2(b), 
and the parameters are provided in Table 2. The elastic 
modulus degradation was incorporated in the finite ele-
ment models with a user material model (UMAT).

Any additional decrease in stiffness is attributed to a 
crack emanating from the designed pore, as shown sche-
matically in Fig. 1(b). To identify the effect of cracks 
on stiffness, samples with circular internal cracks with 
diameters ranging from 300 μm to 4200 μm (0.25% to 
49% cross-sectional area) were modeled. The cracks were 
modeled as having zero height and traction-free surfaces. 
Elements near the crack tips had edge lengths of 20 µm. 
In each individual model, the crack tip was stationary, as 
these simulations were used to measure stiffness.

Finite element simulations were loaded and unloaded 
at increments of 0.5% engineering strain to calculate the 
stiffness. The relationship between stiffness, initial crack 
diameter, and engineering strain is given in Fig. 3(a). The 
stiffness decreases with engineering strain in all cases, 
with the reduction due to crack size a secondary effect.

The rate of change in stiffness with respect to engineering 
strain is shown in Fig. 3(b). There is little decrease in stiffness in 
the elastic regime regardless of pore size. After yielding the stiff-
ness decreases sharply due to degradation of stiffness with plastic 
strain, the thinning cross-section, and elongating gauge length.

The sensitivity of the compliance method for deter-
mining crack size is inversely proportional to the rate of 
change of the stiffness with respect to crack size, �k

�a
 , which 

is shown in Fig. 3(c). The uncertainty of crack radius, δa, 
due to an uncertainty in the stiffness, �k , is:

The uncertainty of stiffness is dictated by the repeatabil-
ity of the method used to measure displacement (here DIC). 
When accounting for sample geometry effects and modulus 

(5)�a =
(
�k

�a

)−1

�k

Fig. 2   (a) Engineering stress–strain curve of load-unload experiment and fully-dense finite element simulation on a fully dense sample. The unload 
steps were spaced at approximately 1/25th of the total displacement to failure and the sample was unloaded to 10 kN at each interval. (b) The modu-
lus as calculated from the true-stress, true-strain curve for a fully dense sample is fit with the Yoshida-Uemori stiffness reduction model

Table 2   Calibrated material 
parameters for elastic behavior, 
strain hardening, and modulus 
degradation

Elastic Properties Swift Law Yoshida-Uemori 
Parameters

Eo (GPa) Poisson’s ratio (-) n (-) A (MPa) εo (-) K1 (MPa) K2
(MPa)

Ea (GPa) ξ (-)

120.9 0.30 0.090 1389 0.014 1195 400 107.7 12.8
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degradation due to plastic strain, the stiffness measurements 
were found to be approximately normally distributed with a 
standard deviation of 0.26%. The contours of Fig. 3(c) cor-
respond to uncertainties tabulated in Table 3. At moderate 
strains (< 14%) and small initial pore sizes (850 µm diam-
eter, or < 2% cross-sectional area), the compliance method 
is not sensitive to crack growth. This limitation is less severe 
for smaller pores beyond the onset of necking, or for larger 
pores with a diameter greater than 1500 µm (6.3% of the 
cross-sectional area), where crack growth on the order of 
100’s of microns may be resolved over the uncertainty of 
stiffness measurements.

The crack size at a given engineering strain for a meas-
ured stiffness was estimated using the data in Fig. 3(a). 
Because of the uncertainty in the stiffness measurement, 
it was treated as a random, normally distributed variable 
with a mean of the experimentally measured value and 
with a standard deviation of 0.26%, as discussed above. 
The calculation of crack size is schematically shown in 
Fig. 4, where the relationship between crack size and 
stiffness obtained from finite element modeling is used 
to transform the distribution of stiffness to crack size 
estimates. The transformation is non-linear; a normal 
distribution of stiffness is transformed to a non-normal, 
negatively skewed distribution of crack size. For a small 

confidence interval (e.g., 1%), the estimate of crack size 
falls within a narrow bound, but there is a large probabil-
ity for Type II error where the true crack size falls outside 
of the confidence bound; conversely, a large confidence 
interval (e.g., 99%) decreases the probability of Type II 
error, but at the expense of increasing the range of con-
sidered crack sizes [25].

Crack Growth Models

Both the Chobin-like and modified RDS models were 
reformulated so that an increment of crack growth, da, was 
expressed in terms of an increment of far-field engineering 
strain, dεeng [12, 14].

Fig. 3   Contour plots of (a) relative stiffness, k/k0, where k0 is the stiffness of a sample without a crack and at zero strain, as a function of refer-
ence configuration penny-shaped crack’s diameter and engineering strain, where 100% signifies no reduction; (b) partial derivative of the stiff-
ness with respect to engineering strain, with units expressed in terms of percent change per unit engineering strain; and (c) partial derivative of 
the stiffness with respect to pore radius, with units of percent change per micron

Table 3   Uncertainty in crack diameter due to a 0.26% uncertainty in 
the stiffness

Sensitivity (%/µm) Crack Diameter 
Uncertainty (µm)

-0.1 × 10–3 2600
-0.2 × 10–3 1300
-0.5 × 10–3 520
-1.0 × 10–3 260
-2.0 × 10–3 130
-4.0 × 10–3 65

Fig. 4   Transformation of relative stiffness distribution (shown on 
y-axis) to crack size distribution (shown on x-axis), shown for a sam-
ple containing a 2 mm pore (11% cross-sectional area) at an engineer-
ing strain of 0.8%. The distribution of the stiffness measurement, with 
confidence intervals indicated by color, is assumed to be normally 
distributed. The crack diameter is related to the stiffness through 
finite element modeling, given as the solid black curve
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Chobin‑like model

Chobin reported that stable crack growth during monotonic 
loading was only observed after the onset of necking, and 
therefore equation (1) is only applicable in that regime [12]. 
In this study, to generalize the equation so it is applicable to 
the elastic, uniform plastic, and localized plastic regimes, the 
rate of crack growth with respect to engineering strain was 
assumed to be a separable function of equivalent strain and 
crack size. If a is zero, da must necessarily be zero, while da 
can be nonzero for a differential amount of strain. A function 
that satisfies the above requirements is:

where A, n, m, and p are calibration coefficients. A is the 
proportionality constant from Chobin’s previous analysis. 
The term (ea∕n − 1) depends only on crack-size; if there is no 
initial crack, this term is zero and precludes crack growth. 
The coefficient n controls the nonlinearity of crack growth; 
if n is large, the crack driving force is approximately lin-
early proportional to crack size, whereas a small value of n 
implies the crack driving force exponentially increases with 
crack size.

The final term, 
(
e�tot∕m − p

)
 , depends only on strain, where 

m behaves similarly to n. At zero strain, p controls this term’s 
magnitude. For p = 1, there is no differential crack growth in 
the unloaded state even with a differential increment of strain, 
while a decreasing value of p increases the initial crack driv-
ing force. A measure of total strain, �tot , is calculated in a fully 
dense finite element simulation at the location corresponding 
to the crack tip, and is given as:

(6)daplane strain = A(ea∕n − 1)
(
e�tot∕m − p

)
d�eng

(7)�tot =
�VM

E
+ �

p

VM

As the crack grows, the measure of total strain is considered 
at the new location. However, the spatial gradient of strain is 
small, as shown in Fig. 5(a).

For a crack under plane strain for which the Chobin model 
was initially derived, the crack’s area grows linearly with 
crack length. However, for axisymmetric crack growth, the 
crack’s area grows quadratically with crack length. The incre-
ments in crack area of cracks under plane strain (width, W, 
and crack length, aplane strain) and axisymmetric cracks (radius, 
aaxisymmetric) are given as:

Here, to relate the two crack types, it is assumed that the 
axisymmetric crack’s initial radius and the initial length of 
the crack under plane strain are equal, given as a0, and that 
both cracks initially have equivalent cross-sectional area (W 
a0 = π a0

2). The increments of crack area are set equal to one 
another to give:

Substituting equation (9) into equation (6),

Compared to the equation for crack growth under plane 
strain conditions, the additional term ( a0

2a
 ) corresponds to the 

added resistance to crack growth due to an increase in crack 
perimeter, and thus fracture process zone volume.

The Chobin-like model assumes that the crack driving 
force depends only on crack size and equivalent strain. 
However, it has been shown that ductile fracture depends 
not only on equivalent strain but also on stress state (e.g., 

(8)
dAplane strain = Wdaplane strain

dAaxisymmetric = 2�aaxisymmetricdaaxisymmetric

(9)daplane strain =
2aaxisymmetric

a0
daaxisymmetric

(10)daaxisymmetric = A(ea∕n − 1)
(
e�tot∕m − p

)( a0

2a

)
d�eng

Fig. 5   (a) Color contours of measure of total strain in a fully dense sample as a function of engineering strain and distance from the axis of sym-
metry, used in the Chobin-like crack growth model. Beyond the onset of necking, the measure of total strain increases faster than the engineering 
strain, and is smallest near the sample’s surface. The crack driving force contribution for the Chobin-like model, equation (10), is a product of 
the (b) crack-size term, (ea∕n − 1) , and (c) strain-based term, 

(
e�tot∕m − p

)
 , evaluated for parameters in Table 4. The crack-size term exhibits expo-

nential behavior, whereas the strain-based term is approximately linear in the range of pore sizes and engineering strains studied



159Experimental Mechanics (2024) 64:153–165	

stress triaxiality and normalized Lode angle parameter [26, 
27]). Because this study only considered uniaxial tension 
where the stress state was similar for all samples, stress 
state-dependent fitting parameters were not incorporated in 
equation (10).

Modified RDS model

In the derivation of the RDS model, Rice et al. stated that 
when only a single crack front is present, the crack tip sin-
gularity’s J-integral is only a function of crack size and 
must be equal to the applied J-integral, JA, which is a func-
tion of both crack size and another value that monotonically 
increases with the intensity of loading [14]. In this study, 
the monotonically increasing parameter was taken to be the 
far-field engineering strain. Equating J with JA, and taking 
the total derivative:

Substituting equation (11) into equation (2), the increment 
of crack growth is written as:

and the calibrated values for α, β, λ/rm, and δc/rm are given 
in Table 4.

The first term in the denominator, �c
rm

�o

�
 , is the material’s 

intrinsic resistance to crack growth, and the second term, 
�(�o)

2

E�
ln

(
e�EJA

rm(�o)
2

)
 , is due to a moving stress singularity. The 

final term, �JA
�a

 , accounts for instability; as this term’s mag-
nitude increases, the rate of crack growth accelerates. During 
necking, this term dominates the other terms, causing the 
rate of crack growth to become infinite.

As with the Chobin-like model, the RDS equation was 
derived for the growth of cracks under plane strain and must 
be modified to account for increasing crack perimeter. It 
was found that the factor derived in equation (9) underpre-
dicted the ductility of samples containing small cracks, so 
to better capture experimental data, the 

(
2a

a0

)
 term was 

cubed. Additionally, for the large deformations in this study, 
the J-integral does not uniquely characterize the crack-tip 
singularity, but rather the energy release rate, G, was used 
to quantify its severity:
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It has been shown that stress fields around axisymmetric 
cracks are more diffuse than cracks under plane strain [28]. 
Therefore, the authors hypothesize that cubing the magni-
tude of the factor derived in equation (9) offsets the overes-
timation of the axisymmetric crack’s severity.

To calculate the energy release rate for a given crack size, 
two finite element models were used: one with a crack diam-
eter 5 μm larger, and the other with a crack diameter 5 µm 
smaller, than the nominal crack size. The energy release 
rate describes the rate of change of strain energy, dU, with 
respect crack area, dA, and was approximated with the dif-
ference quotient:

As with the stiffness simulations, axisymmetric finite  
element simulations were performed on samples containing 
stationary cracks with diameters up to 4200 µm (49% of cross-
sectional area). Cubic spline interpolation was performed to 
obtain the energy release rate as a continuous function of 
engineering strain and crack diameter, as shown in Fig. 6(a).

The partial derivative of G with respect to engineer-
ing strain, as shown in Fig. 6(b), is small for small cracks 
(< 850 µm, or 2% cross-sectional area) at moderate strains 
(< 14% cross-sectional area). The crack driving force in 
this regime is small, corresponding to limited crack growth. 
Because strain localizes in the neck, the rate of increase of G 
with respect to far-field engineering strain accelerates after 
the onset of necking. The partial derivative of G with respect 
to crack size, as shown in Fig. 6(c), affects the stability of 
crack growth (equation (13)). At small strains, regardless 
of crack size, this term is small. In the necking regime, this 
value rapidly increases and leads to sudden crack growth 
and subsequent fracture. For large cracks, this term is small 
but G is large; the crack growth rate is therefore non-zero 
but the rate does not change significantly with increased  
far-field strain.

The authors emphasize that the energy release rate was used 
in this study to approximate the severity of a defect of a given 
size, area-fraction, and stress–strain history, and is not nec-
essarily consistent with the measurement of J-integrals with 
standard fracture toughness tests. Rather than precracking the 
pores as with fracture toughness samples, the pores instead 
were intended to behave as those inside in-service components; 
it is likely that some blunting occurred prior to crack initia-
tion. Additionally, during full-ligament yielding, J no longer 
uniquely defines the crack tip and the assumptions used in the 
derivation of the RDS model are not satisfied; however, G is 
still related to the severity of the crack. Finally, the crack tip 
constraint for an axisymmetric, penny-shaped crack in uni-
axial tension is less severe than in typical fracture toughness 
specimens [29].

(14)G(�eng) = −
dU

dA

||||�eng
≈ −

ΔU

ΔA

||||�eng
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Results and Discussion

Mechanical Testing

The stiffnesses, measured during unloading and subsequent 
reloading, as a function of engineering strain are shown in 
Fig. 7. The reduction of stiffness was consistent for each size 
of designed pore whether it was measured during unload-
ing or reloading. For the fully dense samples, shown in 
Fig. 7(a), a dashed line shows the decrease in stiffness due 

to cross-sectional area reduction for uniform plastic defor-
mation. It is assumed that there is negligible crack growth 
in the fully dense sample, and therefore the large dispar-
ity between the experimentally measured stiffness and the 
changing geometry is ascribed to the degradation of Young’s 
modulus with plastic strain, as described by the Yoshida-
Uemori equation.

Each stiffness measurement was converted to a series of 
crack size confidence intervals with the method illustrated 
in Fig. 4. The final crack size measurement and confidence 
intervals were based on fracture surface micrographs, as 
described and shown in Fig. S1 of the supplementary infor-
mation. For small pores, namely the sample containing a 
365 µm pore (0.37% of the cross-sectional area) as shown 
in Fig. 8(a), at small strains the compliance method had low 
sensitivity and the confidence bounds are initially large (e.g., 
the 99% confidence bound of crack diameter ranges from 0 to 
2 mm) and do not provide useful information on crack size. 
However, with increasing strains the compliance method’s 
sensitivity increases, the confidence intervals narrow, and the 
upper bound of crack size decreases with increasing strain. 
As cracks do not decrease in size, this upper bound is applica-
ble to measurements made at smaller strains. For the sample 
containing a pore with a diameter of 365 µm, for the final 
stiffness measurement at an engineering strain of 15.3%, the 
compliance measurement provided only 54% confidence that 
the crack was larger than the initial diameter, and the upper 
bound for the 99% confidence interval was a crack with a 
1075 µm diameter. Fracture occurred shortly afterwards, at 
an engineering strain of 16.0%, where the fracture surface 
micrographs suggested the crack rapidly grew to its final size 
of approximately 3500 µm before final failure.

For larger pores – especially the 1986 μm pore (11% of 
cross-sectional area) as shown in Fig. 8(c) – the compli-
ance method is more sensitive. Confidence intervals of crack 
growth conclusively show a crack steadily growing with 
engineering strain.

Fig. 6   Contour plots of (a) energy release rate, in kJ/mm2, as a function of crack diameter and engineering strain; (b) the partial derivative of 
the energy release rate with respect to engineering strain, in kJ/mm2 per unit strain; and (c) the partial derivative of the energy release rate with 
respect to the crack radius in kJ/mm2 per micron. The contours are spaced at exponentially increasing intervals

Fig. 7   Stiffness measurements for (a) two fully dense samples, and 
two samples containing a pore with initial diameter of (b) 365  μm 
(0.37% cross-sectional area), (c) 757 μm (1.6% cross-sectional area), 
and (d) 1986  µm (11% cross-sectional area) within 6  mm diameter 
gauge cross-sections. The stiffness is shown for two samples, calcu-
lated for both the unloading and reloading curves. For the fully dense 
samples in (a), the calculated stiffness decreases faster than that due 
to reduction in cross-sectional area alone due to the Poisson effect 
and plastic incompressibility (shown with the dashed line)
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Parameter Fitting

Given an initial crack size, the Chobin-like and modified 
RDS models were numerically integrated to obtain the 
crack size as a function of applied macroscopic engineering 
strain. An optimization code (fmincon, MATLAB 2022b, 
MathWorks, Natick, MA) identified best fit parameters. 
The final crack size measurement from the fracture surface 
micrograph had the same weight as the contribution from all 
compliance-based measurements. The best-fit parameters for 
each model are given in Table 4 and the crack growth curves, 
as a function of engineering strain, are superimposed on the 
crack size measurements in Fig. 8.

A parametric study was performed on the two crack 
growth models. The displacement to failure was defined as 
when the crack size reached half the sample’s cross-sectional 
area, and the initial pore diameter was varied from fully 
dense to 4 mm. For the Chobin-like model, the parameter 
A inversely correlates to failure strain for all pore sizes, as 
shown in Fig. 9(a). The parameter n, shown in Fig. 9(b), 
controls the failure strain of large cracks, while the param-
eter m, shown in Fig. 9(c), has the greatest impact on the 
strain to failure for small cracks. The parameter p, as shown 
in Fig. 9(d) most affects the failure strain of medium-sized 
cracks, ranging from 500 µm to 1000 µm (0.7%-2.8% cross-
sectional area).

Although only the displacement to failure is shown 
in Fig. 9, the models were fit using both the intermedi-
ate crack sizes using compliance measurements and the 
final crack size using fracture surfaces. Based on strain to 

failure considerations alone, the parameters are non-unique, 
because an increase in both m and n could be offset by a 
decrease in A. The non-uniqueness, coupled with the model 
not incorporating the physics of crack growth, limit the mod-
el’s potential for extrapolation where preexisting defects are 
outside of a range of 365 µm and 1986 µm (0.37% to 11% 
cross-sectional area).

In the modified RDS model, the parameters α, shown in 
Fig. 10(a), and δc/rm, shown in Fig. 10(d), were inversely 
related, where increasing α reduced the strain to failure 
across a wide range of pore diameters, while increasing 
δc/rm resulted in the opposite behavior. The parameter β 
(Fig. 10(b)) had an asymmetric effect, where decreasing β 
had little effect on the strain to failure whereas an increased 
β decreased the strain to failure. Finally, the parameter λ/rm 
had negligible effect on the strain to failure (Fig. 10(c)) such 
that the modified RDS model, in the context of this study, 
reduces to a three-parameter model.

Crack Growth Models

Chobin‑like model

In the Chobin-like model, the crack growth rate is a sepa-
rable function of crack size and strain as described in equa-
tion (10), and the magnitude of each component is shown 
in Fig. 5(b)–(c). For the crack-size based term, (ea∕n − 1) , 
the scaling parameter, n, is 0.33 mm and small compared to 
the sizes of cracks in this study; therefore, the crack driv-
ing force rises exponentially with crack size, as shown in 

Fig. 8   Crack growth confidence bounds, for pores with initial size of (a) 365 μm (0.37% cross-sectional area), (b) 757 μm (1.6% cross-sectional 
area), and (c) 1986 μm (11% cross-sectional area). The final confidence intervals, which are bracketed in thicker vertical lines, are fracture sur-
face measurements, whereas the other confidence intervals are derived from stiffness measurements. The fitted Chobin-like and modified RDS 
models for crack growth are superimposed

Table 4   Calibrated parameters 
for Chobin-like and modified 
RDS models

Chobin-Like Model Modified RDS Model

A (mm) n (mm) m (-) p (-) α (-) β (-) δ/rm (-) λ/rm (m−1)

5.29 0.33 0.44 0.88 9.06 0.68 0.262 4.3 × 105
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Fig. 5(b). In this model, the growth of large cracks increases 
the crack driving force, which in turn causes the crack to 
grow larger; this positive feedback loop results in runaway 
crack growth. The strain-based term, 

(
e�tot∕m − p

)
 , shown in 

Fig. 5(c), behaves more linearly, only gradually increasing 
through the range of engineering strains in this study. The 
Chobin-like model indicates that crack growth is more sensi-
tive to current crack size than applied strain.

The Chobin-like model predicts a gradual and consist-
ent increase in crack diameter with increasing strain, as 
shown in Fig. 8, unlike the modified RDS model. Even for 
small cracks, the Chobin-like model suggests that crack 
growth is non negligible; this feature is not consistent  
with the results of the compliance-based stiffness meas-
urements where the Chobin-like model’s crack growth 
falls outside the 99% confidence intervals for the 365 µm 
diameter (0.37% cross-sectional area) pore at strains near 
fracture in Fig. 8(a).

Modified RDS model

For small preexisting pores at small displacements, the 
RDS model suggests negligible crack growth. Only after 
the onset of necking is crack growth non-negligible, but 

Fig. 9   Parameter study for the 
Chobin-like model investigating 
the effects of: (a) A, (b) n, (c) m, 
and (d) p on the strain to failure 
versus initial pore diameter. 
In each case, the parameter of 
interest was perturbed by a fac-
tor of 1/5 and 5, while the other 
parameters were held constant 
at their values in Table 4. The 
displacement to failure was 
calculated with the preexist-
ing pore size ranging from 0 
to 4000 µm. The black dots 
are experimentally determined 
strains at fracture for the given 
preexisting pore diameters

Fig. 10   Parameter study for the modified RDS model investigating 
the effects of: (a) α, (b) β, (c) λ/rm, and (d) δc/rm on the strain to fail-
ure versus preexisting pore diameter. In each case, the parameter of 
interest was perturbed by a factor of 1/5 and 5, while the other param-
eters were held constant at their values in Table 4. The displacement 
to failure was calculated with the preexisting pore size ranging from 
0 to 4000  µm. The black dots represent experimentally determined 
strains at fracture for the given preexisting pore diameters
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due to the rapid increase in G with respect to engineer-
ing strain in the necking regime, there is only brief stable 
crack growth prior to fracture. For large cracks, even prior 
to necking, G is large and the instability factor is small, 
and therefore the crack grows in a stable manner.

If the material’s intrinsic resistance to crack growth, δc/
rm, would be increased, as shown in Fig. 10(d), the strain 
to failure would greatly increase for samples containing 
large pores. However, for samples containing small pores, 
the instability factor dominates crack growth in the neck-
ing regime, and there would be negligible increase in the 
strain to failure. To increase ductility, rather than increas-
ing a sample’s crack growth resistance, the onset of neck-
ing would need to be delayed.

Model comparison

To compare the two models, both crack growth models were 
extrapolated, with initial pore diameters ranging from fully 
dense to 4000 µm (44% of the cross-sectional area) and the 
strain to failure (taken as when the crack grew to half the 
sample’s cross-sectional area) is shown in Fig. 11(a). Both 
crack growth models agree well with experimentally meas-
ured failure strains.

In the crack-containing finite element models, the crack 
tip was modeled as stationary, and therefore the onset of 
necking and subsequent loss in load-carrying capacity was 
exclusively due to plasticity effects. Three distinct regions 
were identified: the elastic, uniform plastic, and necking 
regimes. The 0.2% offset rule was used to calculate the tran-
sition between the elastic and uniform plastic regions, and 
the criterion from ASTM E8 7.9.3.2 was used to delineate 
the uniform plastic from the necking regime [21]. Because 
the stationary crack tip finite element models did not have 
a fracture criterion, failure was assumed to occur when 
the sample lost 28% of its peak load carrying capacity, as 
observed experimentally with fully dense samples; as the 
force rapidly decreased over a small interval of engineer-
ing strain, the specific value of 28% has little effect on the 
defined failure strain.

The elastic, uniform plastic, and necking regimes from the 
stationary crack-tip finite element models are superimposed on 
the crack growth models’ displacements to failure in Fig. 11(a). 
Although the stationary finite element models identify that 
increasing initial pore size expedites the onset of necking and loss 
in load-carrying capability, they greatly underestimate the effect 
of crack size on the failure strain. This discrepancy shows that 
the reduction of stiffness due to the presence of the crack alone 

Fig. 11   (a) Extrapolated 
displacement to failure for the 
Chobin-like and modified RDS 
crack growth models as function 
of preexisting pore diameter. 
Regions of elastic, uniform 
plastic, and necking deforma-
tion from finite element simula-
tions with a stationary crack 
are shaded. (b) Extrapolated 
displacement to failure from 
the crack growth models are 
compared against the fraction of 
remaining cross-sectional area. 
The dashed lines emanate from 
origin, and ductility is directly 
proportional to remaining cross-
sectional area along these lines. 
Contours of the crack diameter, 
in millimeters, as a function of 
engineering strain and preexist-
ing pore diameter, for the (c) 
Chobin-like and (d) modified 
RDS models
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is insufficient for modeling the ductility in PBF-LB Ti-6Al-4 V 
uniaxial tension samples. When crack growth is accounted for 
with either the Chobin-like or RDS model, the growing crack 
size leads to necking at smaller strains, and this localization 
accelerates the rate of crack growth. The discrepancy between 
models with and without a moving crack tip is negligible for 
pores smaller than 100 µm (0.03% cross-sectional area), because 
even without crack growth, the sample would lose its load car-
rying capability due to plasticity effects alone. Conversely, for 
larger pores, the discrepancy becomes more pronounced, e.g., 
for a 1000 µm pore, or 3% of the cross-sectional area, finite ele-
ment modeling with a stationary crack tip suggests loss in load-
bearing capacity at an engineering strain of 18%, whereas both 
the Chobin-like and RDS crack growth models suggest fracture 
would occur at a substantially lower engineering strain of 7%.

If the Chobin-like model is extrapolated to crack sizes 
greater than 1986 µm (11% of the cross-sectional area), 
samples are predicted to fracture early in the elastic regime, 
whereas the RDS model predicts that large flaws will result 
in fracture near the yield point. Both models predict a wide 
range of strains to failure for cracks smaller than 365 µm 
(0.4% of the cross-sectional area). The upper bound for sto-
chastic pores in PBF-LB ranges between 60 µm to 220 µm 
[30], and extreme value statistics may be the cause of large 
variances in the strain to failure between otherwise identical 
nearly-dense samples.

The models’ displacements to failure as a function of per-
centage of cross-sectional area relative to a dense sample are 
shown in Fig. 11(b), where the dashed lines emanating from 
origin indicate ductility being proportional to cross-sectional 
area loss. For small cracks (smaller than 10% of cross-sectional 
area loss), the effect of crack size on ductility is more signifi-
cant than loss of cross-sectional area alone would suggest. For 
cracks larger than 10% of the cross-sectional area, the models 
suggest that the ductility is approximately proportional to area-
loss fraction.

The crack diameter as a function of initial pore size and 
engineering strain is compared for the Chobin-like model in 
Fig. 11(c) and the modified RDS model in Fig. 11(d). For 
the Chobin-like model, even at small displacements non-
negligible crack growth is predicted. Conversely, the modi-
fied RDS model in Fig. 11(d) predicts an incubation period 
of negligible crack growth. For samples with small pores, 
crack growth is minimal until necking, while large cracks 
continually grow after the sample yields.

Conclusions

In this study, PBF-LB Ti-6Al-4 V uniaxial tension samples 
containing internal preexisting flaws were tested to fracture 
with cyclic load/unload cycles to measure the stiffness and 

nondestructively evaluate crack growth. Finite element anal-
yses were used to decouple the effect of stable crack growth 
from other factors that reduce stiffness during elasto-plastic 
loading, and used to calibrate two crack growth models. This 
study’s primary conclusions are:

•	 For small preexisting pores (< 2% cross-sectional area), 
the change in stiffness during an unloading cycle was 
found to be insensitive to crack growth at moderate dis-
placements (< 14% engineering strain). However, in this 
regime, the crack driving force was also small.

•	 For large preexisting pores (11% of the cross-sectional 
area), the stiffness-based crack-size measurement method 
conclusively identified stable crack growth after the sam-
ple yielded.

•	 A Chobin-like crack growth model identified that the 
crack driving force grew exponentially with crack size, 
but only approximately linearly with strain.

•	 According to the RDS crack growth model, small pores 
(< 2% cross-sectional area) experienced minimal crack 
growth prior to sudden, unstable growth in the necking 
regime, while large cracks steadily grew at small dis-
placements. The instability factor was geometry depend-
ent, and the onset of unstable crack growth may behave 
differently for different sample geometries.

•	 Under uniaxial tension, both the Chobin-like and RDS 
crack growth models suggest that for cracks larger than 
10% of the cross-sectional area, the ductility is approxi-
mately proportional to area-loss fraction. However, as 
crack size decreases below 10% of the cross-sectional 
area, the ductility sharply exceeds that proportional to 
area-loss fraction.
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