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Abstract

Background This study investigates the effects of pores on the mechanical properties of metals produced by additive manu-
facturing, which can limit strength and ductility.

Objective This research aims to both measure and model the rate of crack growth emanating from these pores in additively
manufactured Ti-6Al-4 V fabricated with laser powder bed fusion.

Methods Uniaxial tensile samples containing intentionally embedded penny-shaped pores were mechanically tested to
failure, and loading was interrupted by a series of unload steps to measure the stiffness degradation with load. The factors
contributing to reduction in stiffness, namely (1) elastic and plastic changes to geometry, (2) the effect of plastic deformation
on modulus, and (3) crack growth, were deconvoluted through finite element modeling, and the crack size was estimated at
each unloading step.

Results The stiffness-based method was able to detect stable crack growth in samples with large pores (1.6% to 11% of the
cross-sectional area). Crack growth as a function of strain was fit to a model where the crack driving force was based on
equivalent strain and a model where the crack driving force was based on energy release rate.

Conclusions Significant crack growth occurred only after the onset of necking in samples containing small pores, while

samples containing large pores experienced continuous crack growth with strain.

Keywords Crack growth - Titanium alloys - Fracture - Ductility - Finite element modeling

Introduction

In laser powder bed fusion (PBF-LB) additive manufactur-
ing (AM), components are fabricated layer-by-layer, through
the iterative spreading of powder, melting of the powder by
scanning a two-dimensional pattern with a laser, and solidi-
fication of the molten metal to fuse to the layer below. PBF-
LB provides design flexibility allowing for the manufactur-
ability of complex, three-dimensional parts [1].

One challenge in adopting PBF-LB for structural applications
is the variability in material properties, which can be attributed
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to heterogeneous microstructures, preferred crystallographic
texture, and porosity [2, 3]. Pores encountered in AM are typi-
cally classified as lack-of-fusion (LOF), keyhole, bead-up, or gas
entrapment [4, 5]. LOF pores have irregular, sharp morphologies
that may initiate early failure due to high stress concentration
factors. In this study, PBF-LB Ti-6Al-4 V was studied, the duc-
tility of which in uniaxial tension has been shown to be sensitive
to pores greater than 0.4% of the cross-sectional area [6].
Additive manufacturing provides a means for isolating the
effect of individual defects on fracture behavior through the
fabrication of internal pores with a specified size, shape, and
location, which was not previously possible with conven-
tional processing methods. Samples containing fabricated
pores have been designed to study the effect of a single
defect on fracture under various stress states [6—11].
Studies modeling crack growth have primarily investigated
cracks under plane strain. In an analysis by Chobin [12], crack
growth in a center-cracked-tension (CCT) 70/30 brass plate
was studied. No stable crack growth was observed until the
onset of necking, after which the rate of crack growth with
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respect to engineering strain was shown to be proportional
to the crack length, a. A differential amount of crack growth,
da, was related to a differential change in far-field engineer-
ing strain, de,,, as:

da=Aade,,, 1)

where A is a proportionality constant. The primary benefit
of the Chobin model is its simplicity, as engineering strain
and crack size can be measured experimentally. However,
the model is empirical and does not consider the micro-
scopic processes occurring near the crack tip singularity
that drive crack growth, limiting the model’s potential for
extrapolation.

A crack tip singularity may be characterized by the
J-integral [13]. For the J-integral to uniquely describe the
stress and strain fields around a crack, loading must be pro-
portional, the material must behave elastically, and crack tip
deformation cannot be excessive. Under these conditions,
the J-integral is equivalent to the energy release rate, G,
which is the rate of change of potential energy with respect
to crack area. Although the J-integral is applicable to only
a stationary crack, Rice et al. [14] used compatibility,
equilibrium, and thermodynamic considerations around a
plane strain crack tip to relate crack growth to the J-integral,
termed the RDS model:

ar, dj ) elEJ
5C=—m—+ﬂrEln< 2> ()

(1)) da T 50

where 0, represents the crack tip opening displacement
a short distance, r,, behind the crack tip, @, f, and 4 are
unitless constants, o, is the yield strength, E is the Young’s
modulus, and e is Euler’s number. The model captures the
transition from stable crack growth, where the rate of crack
growth with respect to strain is finite, to unstable crack
growth, where the rate of crack growth is infinite.

To quantify the evolution of damage during a mechanical
test, various nondestructive testing methods have been devel-
oped, including stiffness measurements, electrical resistance
measurements, ultrasonic testing, and X-ray tomography
[15-18]. In the compliance method, samples are periodically
unloaded and the reduction in stiffness due to crack growth
is measured. Bonora et al. [19] performed stiffness meas-
urements on uniaxial mechanical tests of nearly-dense high
strength steel and high purity copper, and separated geo-
metrical effects from damage accumulation. They attributed
a rapid decrease in the material’s stiffness during uniform
plastic deformation to damage accumulation. Yoshida et al.
[20] similarly observed that the effective Young’s modulus,
E, decreased with the von Mises equivalent plastic strain, 2,
and proposed that the modulus, initially E,, exponentially
decayed to an asymptotic value, E:

E=E,—(E,—E)1-¢) 3)

where the decay constant, &, controls the rate at which the
modulus decreases with plastic strain.

In the present study, Ti-6Al-4 V samples, containing
designed internal flaws ranging from 0.37% to 11% of the
gauge section’s cross-sectional area, were mechanically
tested, and load-unload cycles were used to measure the
reduction in stiffness. Through comparison to a series of
finite element models, experimental stiffness measurements
were used to estimate crack growth. A Chobin-like model
and a modified RDS model were calibrated to the experi-
mental data. Both calibrated crack growth models were eval-
uated at a series of preexisting pore sizes, and the rates of
crack growth with respect to engineering strain and the strain
at which the crack became unstable, leading to fracture, were
identified. This study describes a method to both measure
and model crack growth from a single lack-of-fusion type
pore in additively manufactured Ti-6Al-4V.

Experimental Methods
Sample Fabrication

Samples were designed in accordance with ASTM ES8 [21]
with the sample geometry shown in Fig. 1(a). A gauge length
of 24 mm was used for all engineering strain measurements.
The samples were fabricated with a ProX 320 machine (3D
Systems, Rock Hill, SC), with the samples’ axes colinear
with the vertical build direction. After fabrication, the sam-
ples were heat treated in an argon environment at 850 °C
for 2 h [22]. The samples were fabricated as cylinders and
the gauge sections were machined to the final dimensions.

In each sample, a single intentional pore was designed
to behave similarly to a lack-of-fusion defect; however, the
pores required a finite height to prevent dross from closing
the defect. Each pore was designed as a cylinder with its axis
parallel to the loading direction, with a height of 240 pm (4
layers) as described in previous work [6], and located at the
sample’s center as shown schematically in Fig. 1(b). Due to
the axisymmetric geometry and boundary conditions, crack
growth for modeling was considered to be one-dimensional
along the radial direction. In a previous study on Ti-6Al-4 V
samples containing similar internal pores, X-ray computed
tomography (XCT) identified little change in pore volume
after loading to 75% of the failure strain, indicating that
cracking, rather than pore growth, dominated the fracture
behavior [6].

X-ray computed tomography, with a voxel size of
10 um, was used to quantify the initial pore sizes, and the
same parameters were used as in a previous study on the
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Fig.1 (a) Sample dimensions, where the sample’s axis was along
the vertical build direction. All dimensions are in millimeters unless
otherwise noted. The engineering strains were measured with 24 mm
long virtual extensometers. A preexisting pore was located at the
center of each sample, as shown schematically in gray. (b) Schematic
of preexisting pore and subsequent crack growth due to far-field stress
studied here. (¢) XCT reconstruction of as-built pore with a mean
diameter of 1986 pm

same material [6]. An example of a pore prior to mechani-
cal testing is shown in Fig. 1(c). The fabricated pores were
smaller than designed (Table 1), and were measured to
range from 0.37% to 11% of the sample cross-sectional
area. Archimedes density measurements verified that
the samples were nearly fully dense, with the least dense
sample having a density of 99.6%. The designed pores’
volumes were too small to be detectable by Archimedes
measurements. The largest pore was designed to be 0.05%
of the sample’s volume, while the standard error of the
Archimedes measurements was 0.07%.

Table 1 Comparison of intended pore diameter to diameter measured
with XCT. In all subsequent analysis, the measured pore diameters
were used

Design XCT Measurement
Diameter (um) Cross-Section  Equivalent Cross-
Fraction Diameter (um) Section
Fraction
600 1.0% 365 0.37%
1200 4.0% 757 1.6%
2400 16% 1986 11%

Mechanical Testing

Mechanical testing was conducted with an electromechanical
load frame (Criterion 45, MTS Systems Corporation, Eden
Prairie, MN). A crosshead displacement rate of 0.007 mm/s
was used for both loading and unloading, corresponding to
a quasi-static strain rate of 3x 10~ s~!. Surface deformation
fields were measured with stereo-digital image correlation
(DIC), where a uniform white basecoat and a black speckle
pattern were applied to each sample prior to mechanical test-
ing. Two digital cameras (GRAS-50S5M-C, Teledyne FLIR,
Wilsonville, OR) recorded images at a rate of 1 Hz, and the
DIC images were postprocessed by VIC-3D software (Cor-
related Solutions, Irmo, SC) to calculate engineering strain.

Three samples were fabricated for each of the three pore
sizes (Table 1); additionally, three fully dense samples with-
out any designed pore were fabricated. For one sample of
each pore size, a monotonic test was conducted to identify
the elongation to failure. For the remaining samples, the dis-
placement to failure was divided into twenty-five equivalent
steps, and after each step the sample was unloaded to 10kN,
corresponding to an engineering stress of 350 MPa (e.g.,
Fig. 2(a) for a fully dense sample). The stiffness, k, was
calculated for each load-unload cycle based on engineering
stress—strain values.

Stiffness Modeling

During each mechanical test, the measured stiffness
decreased because of three factors: changing sample geom-
etry due to the elastic Poisson effect and plastic incompress-
ibility, reduction of elastic modulus due to plastic strain, and
crack growth. All three stiffness-reducing phenomena were
incorporated into finite element models (Abaqus FEA, Das-
sault Systemes, France).

Regarding the first factor, during uniform plastic defor-
mation, reduction in the sample’s cross-sectional area and
increase in gauge length reduced the stiffness with 1/(1 + :3eng)2
[19]. To capture the effect of changing geometry on the stiff-
ness into the necking regime, the material’s elasto-plastic
response was defined by elastic parameters in Table 2, and
an isotropic J2 plasticity model with Swift Law hardening:

nA(e, +&)"" AZ for & < 0.080
Ac,=1{ K,AZ" for 0.080 < & <0.140 )
K,A for € > 0.140

where the parameters 7, A, €, K;, and K, were calibrated
using the fully dense samples’ data and are given in Table 2.
As shown in Fig. 2(a), good agreement was achieved
between fully-dense experimental and finite element model
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Fig.2 (a) Engineering stress—strain curve of load-unload experiment and fully-dense finite element simulation on a fully dense sample. The unload
steps were spaced at approximately 1/25th of the total displacement to failure and the sample was unloaded to 10 kN at each interval. (b) The modu-
lus as calculated from the true-stress, true-strain curve for a fully dense sample is fit with the Yoshida-Uemori stiffness reduction model

stress—strain behavior across the elastic, uniform plastic, and
necking regimes.

The degradation of modulus with plastic strain is a
global effect (equation (3)) and affects material points
far from the designed defect. This effect may be caused
by microplasticity, point defect pinning, or an evolving
texture, although it is unlikely to be the latter because
the effect is most prevalent at small strains [23, 24]. The
calibrated Yoshida-Uemori model is given in Fig. 2(b),
and the parameters are provided in Table 2. The elastic
modulus degradation was incorporated in the finite ele-
ment models with a user material model (UMAT).

Any additional decrease in stiffness is attributed to a
crack emanating from the designed pore, as shown sche-
matically in Fig. 1(b). To identify the effect of cracks
on stiffness, samples with circular internal cracks with
diameters ranging from 300 pm to 4200 pm (0.25% to
49% cross-sectional area) were modeled. The cracks were
modeled as having zero height and traction-free surfaces.
Elements near the crack tips had edge lengths of 20 um.
In each individual model, the crack tip was stationary, as
these simulations were used to measure stiffness.

Finite element simulations were loaded and unloaded
at increments of 0.5% engineering strain to calculate the
stiffness. The relationship between stiffness, initial crack
diameter, and engineering strain is given in Fig. 3(a). The
stiffness decreases with engineering strain in all cases,
with the reduction due to crack size a secondary effect.

The rate of change in stiffness with respect to engineering
strain is shown in Fig. 3(b). There is little decrease in stiffness in
the elastic regime regardless of pore size. After yielding the stiff-
ness decreases sharply due to degradation of stiffness with plastic
strain, the thinning cross-section, and elongating gauge length.

The sensitivity of the compliance method for deter-
mining crack size is inversely proportional to the rate of
change of the stiffness with respect to crack size, % which
is shown in Fig. 3(c). The uncertainty of crack ra?iius, Oy
due to an uncertainty in the stiffness, §,, is:

5, = (%>_15k 5)

The uncertainty of stiffness is dictated by the repeatabil-
ity of the method used to measure displacement (here DIC).
When accounting for sample geometry effects and modulus

Table 2 Calibrated material

N . . Elastic Properties Swift Law Yoshida-Uemori
parameters for elastic behavior, Parameters
strain hardening, and modulus
degradation E,(GPa) Poisson’sratio(-) n(-) A (MPa) g, (-) K, MPa) K, E,(GPa) &(-)

(MPa)
120.9 0.30 0.090 1389 0.014 1195 400 107.7 12.8
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Fig.3 Contour plots of (a) relative stiffness, k/k,, where k, is the stiffness of a sample without a crack and at zero strain, as a function of refer-
ence configuration penny-shaped crack’s diameter and engineering strain, where 100% signifies no reduction; (b) partial derivative of the stiff-
ness with respect to engineering strain, with units expressed in terms of percent change per unit engineering strain; and (c) partial derivative of
the stiffness with respect to pore radius, with units of percent change per micron

degradation due to plastic strain, the stiffness measurements
were found to be approximately normally distributed with a
standard deviation of 0.26%. The contours of Fig. 3(c) cor-
respond to uncertainties tabulated in Table 3. At moderate
strains (< 14%) and small initial pore sizes (850 um diam-
eter, or <2% cross-sectional area), the compliance method
is not sensitive to crack growth. This limitation is less severe
for smaller pores beyond the onset of necking, or for larger
pores with a diameter greater than 1500 pum (6.3% of the
cross-sectional area), where crack growth on the order of
100’s of microns may be resolved over the uncertainty of
stiffness measurements.

The crack size at a given engineering strain for a meas-
ured stiffness was estimated using the data in Fig. 3(a).
Because of the uncertainty in the stiffness measurement,
it was treated as a random, normally distributed variable
with a mean of the experimentally measured value and
with a standard deviation of 0.26%, as discussed above.
The calculation of crack size is schematically shown in
Fig. 4, where the relationship between crack size and
stiffness obtained from finite element modeling is used
to transform the distribution of stiffness to crack size
estimates. The transformation is non-linear; a normal
distribution of stiffness is transformed to a non-normal,
negatively skewed distribution of crack size. For a small

Table 3 Uncertainty in crack diameter due to a 0.26% uncertainty in
the stiffness

Crack Diameter
Uncertainty (um)

Sensitivity (%/um)

-0.1x1073 2600
-0.2%x1073 1300
-0.5%x1073 520
-1.0x 1073 260
-2.0x1073 130
-40x%x1073 65

confidence interval (e.g., 1%), the estimate of crack size
falls within a narrow bound, but there is a large probabil-
ity for Type II error where the true crack size falls outside
of the confidence bound; conversely, a large confidence
interval (e.g., 99%) decreases the probability of Type II
error, but at the expense of increasing the range of con-
sidered crack sizes [25].

Crack Growth Models

Both the Chobin-like and modified RDS models were
reformulated so that an increment of crack growth, da, was
expressed in terms of an increment of far-field engineering

strain, dseng [12, 14].
" , \ 99%
99% Confidence in
98.5% stiffness measurement
. o [
% 75%
98% |
3 975% !t Resulting crack
< YY1 size distribution 50
X 97% °
=
96.5% r
96% | 25%
95.5% r
1%
0 1 2 3 4

Crack Diameter (mm)

Fig.4 Transformation of relative stiffness distribution (shown on
y-axis) to crack size distribution (shown on x-axis), shown for a sam-
ple containing a 2 mm pore (11% cross-sectional area) at an engineer-
ing strain of 0.8%. The distribution of the stiffness measurement, with
confidence intervals indicated by color, is assumed to be normally
distributed. The crack diameter is related to the stiffness through
finite element modeling, given as the solid black curve

SEM



158

Experimental Mechanics (2024) 64:153-165

Chobin-like model

Chobin reported that stable crack growth during monotonic
loading was only observed after the onset of necking, and
therefore equation (1) is only applicable in that regime [12].
In this study, to generalize the equation so it is applicable to
the elastic, uniform plastic, and localized plastic regimes, the
rate of crack growth with respect to engineering strain was
assumed to be a separable function of equivalent strain and
crack size. If a is zero, da must necessarily be zero, while da
can be nonzero for a differential amount of strain. A function
that satisfies the above requirements is:

da

plane strain

= A(ea/n - 1)(66101/’” - p)degng (6)

where A, n, m, and p are calibration coefficients. A is the
proportionality constant from Chobin’s previous analysis.
The term (¢*/" — 1) depends only on crack-size; if there is no
initial crack, this term is zero and precludes crack growth.
The coefficient n controls the nonlinearity of crack growth;
if n is large, the crack driving force is approximately lin-
early proportional to crack size, whereas a small value of n
implies the crack driving force exponentially increases with
crack size.

The final term, (effw/ m._ p), depends only on strain, where
m behaves similarly to n. At zero strain, p controls this term’s
magnitude. For p=1, there is no differential crack growth in
the unloaded state even with a differential increment of strain,
while a decreasing value of p increases the initial crack driv-
ing force. A measure of total strain, €,,,, is calculated in a fully
dense finite element simulation at the location corresponding
to the crack tip, and is given as:
] +&

Etor = E VM @)

As the crack grows, the measure of total strain is considered
at the new location. However, the spatial gradient of strain is
small, as shown in Fig. 5(a).

For a crack under plane strain for which the Chobin model
was initially derived, the crack’s area grows linearly with
crack length. However, for axisymmetric crack growth, the
crack’s area grows quadratically with crack length. The incre-
ments in crack area of cracks under plane strain (width, W,
and crack length, @, srain) @nd axisymmetric cracks (radius,

a ) are given as:

axisymmetric

dAplane strain = Wdap

=2ra

lane strain

da ®)

dA

axisymmetric axisymmetric*“ axisymmetric

Here, to relate the two crack types, it is assumed that the
axisymmetric crack’s initial radius and the initial length of
the crack under plane strain are equal, given as a,, and that
both cracks initially have equivalent cross-sectional area (W
a,=m a,?). The increments of crack area are set equal to one
another to give:

2aa)cisymmemc

daplane strain = a daaxisymmetric (9)
0

Substituting equation (9) into equation (6),
a
daioymmenic = A" = D" = p) (52 )dews  (10)

Compared to the equation for crack growth under plane
strain conditions, the additional term (Z—Z) corresponds to the
added resistance to crack growth due to an increase in crack
perimeter, and thus fracture process zone volume.

The Chobin-like model assumes that the crack driving
force depends only on crack size and equivalent strain.
However, it has been shown that ductile fracture depends
not only on equivalent strain but also on stress state (e.g.,
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Fig.5 (a) Color contours of measure of total strain in a fully dense sample as a function of engineering strain and distance from the axis of sym-
metry, used in the Chobin-like crack growth model. Beyond the onset of necking, the measure of total strain increases faster than the engineering
strain, and is smallest near the sample’s surface. The crack driving force contribution for the Chobin-like model, equation (10), is a product of
the (b) crack-size term, (¢%/" — 1), and (c) strain-based term, (efw/ m_ p), evaluated for parameters in Table 4. The crack-size term exhibits expo-
nential behavior, whereas the strain-based term is approximately linear in the range of pore sizes and engineering strains studied
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stress triaxiality and normalized Lode angle parameter [26,
27]). Because this study only considered uniaxial tension
where the stress state was similar for all samples, stress
state-dependent fitting parameters were not incorporated in
equation (10).

Modified RDS model

In the derivation of the RDS model, Rice et al. stated that
when only a single crack front is present, the crack tip sin-
gularity’s J-integral is only a function of crack size and
must be equal to the applied J-integral, J,, which is a func-
tion of both crack size and another value that monotonically
increases with the intensity of loading [14]. In this study,
the monotonically increasing parameter was taken to be the
far-field engineering strain. Equating J with J,, and taking
the total derivative:

dJ _ aJA aJA deeng
da~ da ' 0e,. da an

eng

Substituting equation (11) into equation (2), the increment
of crack growth is written as:

aly
d _ / 350,{’, d
ap[(me strain — ) ‘Eeng (12)
deoy _ Poo) y ( erBL | _ oy
I, Ea rm(zr())z da
and the calibrated values for a, g, 4/r,,, and 6 /r,, are given

in Table 4.
The first term in the denominator, S %, is the material’s

m

intrinsic resistance to crack growth, and the second term,
2
8(s,) In( <4E

Ea ru(o,)’
final term, —2, accounts for instability; as this term’s mag-
nitude increases, the rate of crack growth accelerates. During
necking, this term dominates the other terms, causing the
rate of crack growth to become infinite.

As with the Chobin-like model, the RDS equation was
derived for the growth of cracks under plane strain and must
be modified to account for increasing crack perimeter. It
was found that the factor derived in equation (9) underpre-
dicted the ductility of samples containing small cracks, so

>, is due to a moving stress singularity. The

to better capture experimental data, the (E) term was

ay

cubed. Additionally, for the large deformations in this study,
the J-integral does not uniquely characterize the crack-tip
singularity, but rather the energy release rate, G, was used
to quantify its severity:

0G/0emg
de,

axisymmetric = B eng
(@)3 de0y _ ) | ( _eBG G
a, Iy @ Ea rm(o'“)z da

13)

da

It has been shown that stress fields around axisymmetric
cracks are more diffuse than cracks under plane strain [28].
Therefore, the authors hypothesize that cubing the magni-
tude of the factor derived in equation (9) offsets the overes-
timation of the axisymmetric crack’s severity.

To calculate the energy release rate for a given crack size,
two finite element models were used: one with a crack diam-
eter 5 pm larger, and the other with a crack diameter 5 um
smaller, than the nominal crack size. The energy release
rate describes the rate of change of strain energy, dU, with
respect crack area, dA, and was approximated with the dif-
ference quotient:

du

_avy AU
dA |, ~

AA

Eeng eng

G(eeng) = (14)

As with the stiffness simulations, axisymmetric finite
element simulations were performed on samples containing
stationary cracks with diameters up to 4200 um (49% of cross-
sectional area). Cubic spline interpolation was performed to
obtain the energy release rate as a continuous function of
engineering strain and crack diameter, as shown in Fig. 6(a).

The partial derivative of G with respect to engineer-
ing strain, as shown in Fig. 6(b), is small for small cracks
(<850 um, or 2% cross-sectional area) at moderate strains
(< 14% cross-sectional area). The crack driving force in
this regime is small, corresponding to limited crack growth.
Because strain localizes in the neck, the rate of increase of G
with respect to far-field engineering strain accelerates after
the onset of necking. The partial derivative of G with respect
to crack size, as shown in Fig. 6(c), affects the stability of
crack growth (equation (13)). At small strains, regardless
of crack size, this term is small. In the necking regime, this
value rapidly increases and leads to sudden crack growth
and subsequent fracture. For large cracks, this term is small
but G is large; the crack growth rate is therefore non-zero
but the rate does not change significantly with increased
far-field strain.

The authors emphasize that the energy release rate was used
in this study to approximate the severity of a defect of a given
size, area-fraction, and stress—strain history, and is not nec-
essarily consistent with the measurement of J-integrals with
standard fracture toughness tests. Rather than precracking the
pores as with fracture toughness samples, the pores instead
were intended to behave as those inside in-service components;
it is likely that some blunting occurred prior to crack initia-
tion. Additionally, during full-ligament yielding, J no longer
uniquely defines the crack tip and the assumptions used in the
derivation of the RDS model are not satisfied; however, G is
still related to the severity of the crack. Finally, the crack tip
constraint for an axisymmetric, penny-shaped crack in uni-
axial tension is less severe than in typical fracture toughness
specimens [29].

SEM



160 Experimental Mechanics (2024) 64:153-165
(a) 100000 (C) 1000
4000 4000
31623
=S 10000 316
3 =3
}: 3000 3162 }: 3000 100
g 1000 2
§ 2000 316 & 2000 82
a 1100 O
x < 10
& 1000 % & 1000
o) 10 &) 3
3
0 ‘ o ——= ‘ 1 0 1
0 005 01 015 02 0 005 01 015 02 0 005 01 015 02

Engineering Strain (-)

Engineering Strain (-)

Engineering Strain (-)
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Results and Discussion
Mechanical Testing

The stiffnesses, measured during unloading and subsequent
reloading, as a function of engineering strain are shown in
Fig. 7. The reduction of stiffness was consistent for each size
of designed pore whether it was measured during unload-
ing or reloading. For the fully dense samples, shown in
Fig. 7(a), a dashed line shows the decrease in stiffness due
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Fig. 7 Stiffness measurements for (a) two fully dense samples, and
two samples containing a pore with initial diameter of (b) 365 pm
(0.37% cross-sectional area), (¢) 757 pm (1.6% cross-sectional area),
and (d) 1986 um (11% cross-sectional area) within 6 mm diameter
gauge cross-sections. The stiffness is shown for two samples, calcu-
lated for both the unloading and reloading curves. For the fully dense
samples in (a), the calculated stiffness decreases faster than that due
to reduction in cross-sectional area alone due to the Poisson effect
and plastic incompressibility (shown with the dashed line)

to cross-sectional area reduction for uniform plastic defor-
mation. It is assumed that there is negligible crack growth
in the fully dense sample, and therefore the large dispar-
ity between the experimentally measured stiffness and the
changing geometry is ascribed to the degradation of Young’s
modulus with plastic strain, as described by the Yoshida-
Uemori equation.

Each stiffness measurement was converted to a series of
crack size confidence intervals with the method illustrated
in Fig. 4. The final crack size measurement and confidence
intervals were based on fracture surface micrographs, as
described and shown in Fig. S1 of the supplementary infor-
mation. For small pores, namely the sample containing a
365 um pore (0.37% of the cross-sectional area) as shown
in Fig. 8(a), at small strains the compliance method had low
sensitivity and the confidence bounds are initially large (e.g.,
the 99% confidence bound of crack diameter ranges from 0 to
2 mm) and do not provide useful information on crack size.
However, with increasing strains the compliance method’s
sensitivity increases, the confidence intervals narrow, and the
upper bound of crack size decreases with increasing strain.
As cracks do not decrease in size, this upper bound is applica-
ble to measurements made at smaller strains. For the sample
containing a pore with a diameter of 365 um, for the final
stiffness measurement at an engineering strain of 15.3%, the
compliance measurement provided only 54% confidence that
the crack was larger than the initial diameter, and the upper
bound for the 99% confidence interval was a crack with a
1075 um diameter. Fracture occurred shortly afterwards, at
an engineering strain of 16.0%, where the fracture surface
micrographs suggested the crack rapidly grew to its final size
of approximately 3500 um before final failure.

For larger pores — especially the 1986 pm pore (11% of
cross-sectional area) as shown in Fig. 8(c) — the compli-
ance method is more sensitive. Confidence intervals of crack
growth conclusively show a crack steadily growing with
engineering strain.
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Parameter Fitting

Given an initial crack size, the Chobin-like and modified
RDS models were numerically integrated to obtain the
crack size as a function of applied macroscopic engineering
strain. An optimization code (fmincon, MATLAB 2022b,
MathWorks, Natick, MA) identified best fit parameters.
The final crack size measurement from the fracture surface
micrograph had the same weight as the contribution from all
compliance-based measurements. The best-fit parameters for
each model are given in Table 4 and the crack growth curves,
as a function of engineering strain, are superimposed on the
crack size measurements in Fig. 8.

A parametric study was performed on the two crack
growth models. The displacement to failure was defined as
when the crack size reached half the sample’s cross-sectional
area, and the initial pore diameter was varied from fully
dense to 4 mm. For the Chobin-like model, the parameter
A inversely correlates to failure strain for all pore sizes, as
shown in Fig. 9(a). The parameter n, shown in Fig. 9(b),
controls the failure strain of large cracks, while the param-
eter m, shown in Fig. 9(c), has the greatest impact on the
strain to failure for small cracks. The parameter p, as shown
in Fig. 9(d) most affects the failure strain of medium-sized
cracks, ranging from 500 um to 1000 pum (0.7%-2.8% cross-
sectional area).

Although only the displacement to failure is shown
in Fig. 9, the models were fit using both the intermedi-
ate crack sizes using compliance measurements and the
final crack size using fracture surfaces. Based on strain to

failure considerations alone, the parameters are non-unique,
because an increase in both m and n could be offset by a
decrease in A. The non-uniqueness, coupled with the model
not incorporating the physics of crack growth, limit the mod-
el’s potential for extrapolation where preexisting defects are
outside of a range of 365 um and 1986 um (0.37% to 11%
cross-sectional area).

In the modified RDS model, the parameters a, shown in
Fig. 10(a), and 6 /r,,, shown in Fig. 10(d), were inversely
related, where increasing a reduced the strain to failure
across a wide range of pore diameters, while increasing
0/r,, resulted in the opposite behavior. The parameter
(Fig. 10(b)) had an asymmetric effect, where decreasing
had little effect on the strain to failure whereas an increased
S decreased the strain to failure. Finally, the parameter A/r,,
had negligible effect on the strain to failure (Fig. 10(c)) such
that the modified RDS model, in the context of this study,
reduces to a three-parameter model.

Crack Growth Models
Chobin-like model

In the Chobin-like model, the crack growth rate is a sepa-
rable function of crack size and strain as described in equa-
tion (10), and the magnitude of each component is shown
in Fig. 5(b)—(c). For the crack-size based term, (e*/" — 1),
the scaling parameter, 7, is 0.33 mm and small compared to
the sizes of cracks in this study; therefore, the crack driv-
ing force rises exponentially with crack size, as shown in

Table 4 Calibrated parameters
for Chobin-like and modified

Chobin-Like Model

Modified RDS Model

RDS models A (mm) n (mm)

m (-)

pG) o) B S, (-) My (m™)

5.29 0.33 0.44

0.88 9.06 0.68 0.262 43x10°

SEM
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Fig. 5(b). In this model, the growth of large cracks increases
the crack driving force, which in turn causes the crack to
grow larger; this positive feedback loop results in runaway
crack growth. The strain-based term, (ef/" — p), shown in
Fig. 5(c), behaves more linearly, only gradually increasing
through the range of engineering strains in this study. The
Chobin-like model indicates that crack growth is more sensi-
tive to current crack size than applied strain.

The Chobin-like model predicts a gradual and consist-
ent increase in crack diameter with increasing strain, as
shown in Fig. 8, unlike the modified RDS model. Even for
small cracks, the Chobin-like model suggests that crack
growth is non negligible; this feature is not consistent
with the results of the compliance-based stiffness meas-
urements where the Chobin-like model’s crack growth
falls outside the 99% confidence intervals for the 365 um
diameter (0.37% cross-sectional area) pore at strains near
fracture in Fig. 8(a).

Modified RDS model
For small preexisting pores at small displacements, the

RDS model suggests negligible crack growth. Only after
the onset of necking is crack growth non-negligible, but
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due to the rapid increase in G with respect to engineer-
ing strain in the necking regime, there is only brief stable
crack growth prior to fracture. For large cracks, even prior
to necking, G is large and the instability factor is small,
and therefore the crack grows in a stable manner.

If the material’s intrinsic resistance to crack growth, §./
r,,» would be increased, as shown in Fig. 10(d), the strain
to failure would greatly increase for samples containing
large pores. However, for samples containing small pores,
the instability factor dominates crack growth in the neck-
ing regime, and there would be negligible increase in the
strain to failure. To increase ductility, rather than increas-
ing a sample’s crack growth resistance, the onset of neck-
ing would need to be delayed.

Model comparison

To compare the two models, both crack growth models were
extrapolated, with initial pore diameters ranging from fully
dense to 4000 um (44% of the cross-sectional area) and the
strain to failure (taken as when the crack grew to half the
sample’s cross-sectional area) is shown in Fig. 11(a). Both
crack growth models agree well with experimentally meas-
ured failure strains.

Fig. 11 (a) Extrapolated

In the crack-containing finite element models, the crack
tip was modeled as stationary, and therefore the onset of
necking and subsequent loss in load-carrying capacity was
exclusively due to plasticity effects. Three distinct regions
were identified: the elastic, uniform plastic, and necking
regimes. The 0.2% offset rule was used to calculate the tran-
sition between the elastic and uniform plastic regions, and
the criterion from ASTM ES8 7.9.3.2 was used to delineate
the uniform plastic from the necking regime [21]. Because
the stationary crack tip finite element models did not have
a fracture criterion, failure was assumed to occur when
the sample lost 28% of its peak load carrying capacity, as
observed experimentally with fully dense samples; as the
force rapidly decreased over a small interval of engineer-
ing strain, the specific value of 28% has little effect on the
defined failure strain.

The elastic, uniform plastic, and necking regimes from the
stationary crack-tip finite element models are superimposed on
the crack growth models’ displacements to failure in Fig. 11(a).
Although the stationary finite element models identify that
increasing initial pore size expedites the onset of necking and loss
in load-carrying capability, they greatly underestimate the effect
of crack size on the failure strain. This discrepancy shows that
the reduction of stiffness due to the presence of the crack alone
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is insufficient for modeling the ductility in PBF-LB Ti-6Al-4 V
uniaxial tension samples. When crack growth is accounted for
with either the Chobin-like or RDS model, the growing crack
size leads to necking at smaller strains, and this localization
accelerates the rate of crack growth. The discrepancy between
models with and without a moving crack tip is negligible for
pores smaller than 100 um (0.03% cross-sectional area), because
even without crack growth, the sample would lose its load car-
rying capability due to plasticity effects alone. Conversely, for
larger pores, the discrepancy becomes more pronounced, e.g.,
for a 1000 um pore, or 3% of the cross-sectional area, finite ele-
ment modeling with a stationary crack tip suggests loss in load-
bearing capacity at an engineering strain of 18%, whereas both
the Chobin-like and RDS crack growth models suggest fracture
would occur at a substantially lower engineering strain of 7%.

If the Chobin-like model is extrapolated to crack sizes
greater than 1986 pm (11% of the cross-sectional area),
samples are predicted to fracture early in the elastic regime,
whereas the RDS model predicts that large flaws will result
in fracture near the yield point. Both models predict a wide
range of strains to failure for cracks smaller than 365 um
(0.4% of the cross-sectional area). The upper bound for sto-
chastic pores in PBF-LB ranges between 60 um to 220 um
[30], and extreme value statistics may be the cause of large
variances in the strain to failure between otherwise identical
nearly-dense samples.

The models’ displacements to failure as a function of per-
centage of cross-sectional area relative to a dense sample are
shown in Fig. 11(b), where the dashed lines emanating from
origin indicate ductility being proportional to cross-sectional
area loss. For small cracks (smaller than 10% of cross-sectional
area loss), the effect of crack size on ductility is more signifi-
cant than loss of cross-sectional area alone would suggest. For
cracks larger than 10% of the cross-sectional area, the models
suggest that the ductility is approximately proportional to area-
loss fraction.

The crack diameter as a function of initial pore size and
engineering strain is compared for the Chobin-like model in
Fig. 11(c) and the modified RDS model in Fig. 11(d). For
the Chobin-like model, even at small displacements non-
negligible crack growth is predicted. Conversely, the modi-
fied RDS model in Fig. 11(d) predicts an incubation period
of negligible crack growth. For samples with small pores,
crack growth is minimal until necking, while large cracks
continually grow after the sample yields.

Conclusions
In this study, PBF-LB Ti-6Al-4 V uniaxial tension samples

containing internal preexisting flaws were tested to fracture
with cyclic load/unload cycles to measure the stiffness and

nondestructively evaluate crack growth. Finite element anal-
yses were used to decouple the effect of stable crack growth
from other factors that reduce stiffness during elasto-plastic
loading, and used to calibrate two crack growth models. This
study’s primary conclusions are:

e For small preexisting pores (<2% cross-sectional area),
the change in stiffness during an unloading cycle was
found to be insensitive to crack growth at moderate dis-
placements (< 14% engineering strain). However, in this
regime, the crack driving force was also small.

e For large preexisting pores (11% of the cross-sectional
area), the stiffness-based crack-size measurement method
conclusively identified stable crack growth after the sam-
ple yielded.

e A Chobin-like crack growth model identified that the
crack driving force grew exponentially with crack size,
but only approximately linearly with strain.

e According to the RDS crack growth model, small pores
(<2% cross-sectional area) experienced minimal crack
growth prior to sudden, unstable growth in the necking
regime, while large cracks steadily grew at small dis-
placements. The instability factor was geometry depend-
ent, and the onset of unstable crack growth may behave
differently for different sample geometries.

e Under uniaxial tension, both the Chobin-like and RDS
crack growth models suggest that for cracks larger than
10% of the cross-sectional area, the ductility is approxi-
mately proportional to area-loss fraction. However, as
crack size decreases below 10% of the cross-sectional
area, the ductility sharply exceeds that proportional to
area-loss fraction.
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