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Abstract— While classical autonomous navigation systems
can move robots from one point to another in a collision-
free manner due to geometric modeling, recent approaches to
visual navigation allow robots to consider semantic information.
However, most visual navigation systems do not explicitly reason
about geometry, which may potentially lead to collisions. This
paper presents Visually Adaptive Geometric Navigation (VAGN),
which marries the two schools of navigation approaches to
produce a navigation system that is able to adapt to the visual
appearance of the environment while maintaining collision-free
behavior. Employing a classical geometric navigation system to
address geometric safety and efficiency, VAGN consults visual
perception to dynamically adjust the classical planner’s hyper-
parameters (e.g., maximum speed, inflation radius) to enable
navigational behaviors not possible with purely geometric
reasoning. VAGN is implemented on two different physical
ground robots with different action spaces, navigation systems,
and parameter sets. VAGN demonstrates superior navigation
performance in both a test course with rich semantic and
geometric features and a real-world deployment compared to
other navigation baselines using visual and/or geometric input.

I. INTRODUCTION

Decades of research have been devoted to geometric nav-
igation [1], [2], in which robots perceive their surroundings
as free or occupied (and, sometimes, unknown) tessellations
of the workspace and seek to find geometrically appropriate
paths that are, for example, collision-free, shortest, fastest,
energy efficient, or a combination thereof. These geometric
navigation systems have proven to be highly reliable, and
have been successfully deployed without supervision in real-
world settings over extended periods of time [3].

Thanks to successes in computer vision driven by machine
learning, there has recently been a surge of interest in visual
navigation from within the robotics community [4]-[6]. Us-
ing visual input for navigation is attractive for many reasons.
Chief among these is that the extra information provided by
the semantics of the environment (as opposed to only its
geometry) creates the opportunity for the robot to make more
complex and intelligent movement decisions about where and
how to move (Fig. 1). However, visual navigation systems,
especially those that rely on monocular cameras, often lack a
collision-free guarantee and their navigation path is generally
sub-optimal, e.g., wobbling on a straight path [7].

In this paper, we introduce Visually Adaptive Geometric
Navigation (VAGN), a novel paradigm which marries geomet-
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Fig. 1: Visually Adaptive Geometric Navigation (VAGN) en-
ables semantic-aware and geometrically feasible navigation
in real-world scenarios.

ric and visual navigation using a classical geometric motion
planner and an online visual parameter planner. Although we
intentionally frame the VAGN paradigm broadly enough to be
instantiated by any visual processing and geometric planning
methods, in the experiments of this paper, we implement
VAGN’s visual parameter planner using a Convolutional Neu-
ral Network (CNN) and its geometric motion planner with
existing sampling-based methods. After being shown the
desired semantic-aware and geometric-feasible navigation
behavior with a teleoperated human demonstration, VAGN
is able to adaptively adjust the classical geometric planner’s
parameters with visual input (Fig. 1). VAGN is experimentally
tested in both an artificially constructed obstacle course with
both rich semantic and geometric features and in natural
real-world scenarios. Comparison against a pure geometric
approach and other approaches that utilize visual and/or
geometric input indicates that VAGN can effectively replicate
the desired semantic-aware and geometric-feasible naviga-
tion behavior demonstrated by the human in both domains.

II. RELATED WORK

VAGN extends previous navigation hyperparameter opti-
mization techniques by using both geometric and visual
information. Significant work has been done to demonstrate
the effectiveness of Adaptive Planner Parameter Learning
(APPL) [17]-[21], which combines with classical LIDAR
based approaches to learn a parameter policy and adaptively
adjust planner parameters. While being safe (collision-free)
and efficient (shortest path) in the geometric sense [22],
these systems do not consider any other information than
geometry, e.g., semantics. VAGN takes advantage of the
safety and efficiency of geometric planners and combines



them with a vision component on top which interacts with the
geometric planner through dynamic hyper-parameter adjust-
ment. Additionally, hyper-parameter tuning based navigation
optimization has been largely confined to artificial courses
that are specifically designed to highlight their respective
effectiveness; we use VAGN to extend these controlled exper-
iments to a real-world field deployment. This section reviews
the literature pertaining to other various planning algorithms
that leverage geometric and/or visual sensor modalities.

A. Geometric Navigation

Recently, geometric navigation has been improved using
machine learning approaches when compared to classical
hierarchical planning frameworks [8]-[10]. These systems
allow a robot to navigate without any other traditional
symbolic, rulebased human knowledge or engineering design
[7]. End-to-end systems can be developed through imitation
learning, where perceptual inputs are map directly to motion
commands [11], [12]. Additionally, reinforcement learning
can also be used to learn end-to-end local navigation poli-
cies [10], [13]. Recently, Learning from Hallucination has
also been able to learn navigation planners by randomly
exploring in an open space and synthetically adding (or
“hallucinating”) virtual obstacles to make the motion plans
in the open space optimal [14]-[16]. In contrast, other works
in literature propose to “unwrap” the navigation pipeline
and use machine learning approaches to augment or replace
particular navigation subsystems or components and does not
aim for end-to-end coverage [17].

B. Visual Navigation

Visual navigation systems have emerged with the success
of deep learning and computer vision. Here, we use the
term visual navigation to denote specifically using vision to
directly control robot motion to navigate. One focus of these
system is end-to-end learning, i.e., learning a single function
that directly maps raw RGB pixel input to motion commands
[4], [8]. These systems do not require extensive engineering,
and can capture subtle semantic information from the training
set. Other, more structured ways of implementing visual
navigation include learning planners [18], trajectory costs
[7], and semantic mapping [19].

Unfortunately, visual navigation systems, especially end-
to-end approaches that directly map from pixels to torque,
lack safety guarantees when being deployed out of simulation
in the real physical world. For this reason, the vast majority
of the autonomous robots that have been successfully de-
ployed long-term in the real world without any supervision
utilize purely geometric navigation systems. That is, due to
the lack of safety guarantees for visual navigation systems,
roboticists are still reluctant to deploy purely vision-based
systems in the real-world for extended period of unsuper-
vised time.

Based on the observation that successful visual naviga-
tion systems predominantly focus on generating discrete
actions [18], VAGN only uses visual input to extract semantic
features and generate high-level behaviors (e.g., driving
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Fig. 2: VAGN Architecture. VAGN combines both visual
and geometric navigation by using visual inputs to drive a
parameter planner that determines high level behavior modes
for a geometric motion planner.

quickly/slowly or being cautious around certain types of
obstacles) by setting appropriate hyper-parameters for an
underlying geometric planner. At a high level, this paradigm
of using visual input to trigger changes in a classical geo-
metric planner can produce similar navigation behaviors as
the Visual Teach and Repeat (VTR) paradigm introduced by
Furgale et al. [20]. However, unlike VTR, VAGN does not
require the complex machinery of mapping and localization,
instead learning a holistic mapping directly from single im-
ages to planner parameters that can theoretically be deployed
in environments beyond those in which it has previously
operated.

ITI. APPROACH

VAGN employs a vision component which sits on top of a
geometric navigation planner and makes high-level semantic
decisions, which are then used to adjust the hyper-parameters
of the geometric planner (Fig. 2). In this section, we describe
each component of the VAGN system.

A. Geometric Motion Planner

VAGN employs a classical geometric motion planner to
produce accurate, efficient, and collision-free motions that
move the robot toward a goal. We describe the geometric
motion planner as a function f : G x L X © — A,
where G is the space of geometric onboard perception (e.g.,
LiDAR, depth camera), £ is all the information relevant to
planning to reach the local goal, including odometry and
localization information, © is the hyper-parameter space for
f (e.g., maximum velocity, inflation radius), and A is the
planner’s action space (e.g., commanded linear and angular
velocities). At each time step ¢, the geometric motion planner,
parameterized by 6, € ©, receives geometric input g, € G
and goal-related information /; € £ and produces motion
command a; € A.

The geometric motion planner f is responsible for gener-
ating precise, efficient, and collision-free motions that move
the robot from its current location toward the goal location.
While semantic-aware navigation is typically not possible for
the geometric motion planner, VAGN provides this system



with a level of semantic awareness through f’s hyper-
parameters, which are dynamically adjusted by a vision-
based parameter planner.

B. Visual Parameter Planner

Since the high-dimensional visual input is prone to subtle
environmental variations (e.g., lighting conditions), directly
interacting with the geometric planner may lead to spurious
and suboptimal motions. Therefore, in contrast to most end-
to-end visual navigation approaches [4]-[6], VAGN does not
allow the low-level geometric planner to directly interact
with the visual input. The only interface from the geometric
planner to the visual input is through its hyper-parameters 6
at each time step.

We describe the visual parameter planner as a function
h:V x® — O, where V is the space of visual onboard
perception (e.g., RGB camera), ® is the space of h’s own
internal parameters (e.g., neural network weights and biases),
and © is f’s hyper-parameter space. At each time step ¢,
the visual parameter planner, parameterized by a constant
¢ € P, receives visual input v; € V and produces a parameter
set ; € O to be used by the geometric motion planner f.
Note that ¢ is pre-determined and fixed during deployment,
whereas 6; may change at each deployment time step.

The visual parameter planner h and the geometric motion
planner f, interfacing via f’s hyper parameter 6, at each
time step ¢, work together to enable semantic-aware and
geometrically-feasible navigation.

C. Visual Context Predictor and Parameter Library

In general, the visual parameter planner h’s fixed parame-
ter ¢ € ® can be determined pre-deployment using different
approaches, e.g., classical or learning methods. In this paper,
the visual parameter planner h : V x ® — O is instantiated
by imposing two intermediate functions, i.e., a parameterized
visual context predictor d : V x ¥ — C (h and d may
have different parameter spaces, ® and V), and a one-to-
one mapping p : C — ©. ¢ € C denotes a visual context, i.e.,
a visually cohesive region, and 1 € VU is d’s parameters. We
simplify the notation by writing dy, : V — C, where ¢ € V.
Therefore, 0; = p(dy (vy)).

We also assume that a library B of f’s hyper-parameters
is obtainable, as a subset of ©. Each parameter set 0 € B
is associated with a visual context. Such a library can be
manually constructed by roboticists who are familiar with
the underlying geometric motion planner f (e.g., using
existing parameter tuning guides [21]), or automatically
learned through teleoperated demonstration [22], corrective
interventions [23], evaluative feedback [24], or reinforcement
learning [25].

In this paper, VAGN automatically learns the first interme-
diate function, d, and the parameter library, B (and thus the
second intermediate function, p), from a human teleoperated
demonstration of desired semantic-aware and collision-free
navigation behavior with manual segmentation [22]. To be
specific, the teleoperated demonstration is collected as a
sequence D = {vP, gP,aP}Y | of N steps in length, which

Algorithm 1 VAGN

1: Input: geometric motion planner f, visual parameter planner h,
instantiated as a visual context predictor dy+ and a one-to-one
mapping p (from context to parameters in library B).

cfort=1:T do

Receive visual input v, geometric input g;, local goal I;

Identify visual context ¢ = dy+ (v¢)

Select planner parameter 6; = p(c;)

Navigate with f (g, l¢, 0:).

: end for

AN A

is then segmented into K contexts with K — 1 segmentation
points, 71, To, ..., Tk—1 With 9 = 1 and 74 = N + 1:
{Dy = {vP,gP,aP | 7._1 <i < 7.} } . For each context
Dy, an optimal parameter set 6}, is learned through behavior
cloning so that the geometric motion planner f produces the

closest actions to the demonstration:

QZ:arg;nin Z lla = f(g,0)||m (1)
(9,0)€Dx,
where || - || indicates the weighted Euclidean norm with

weights specified by a diagonal matrix H to weigh each
action dimension. Eqn. 1 can be solved by any black-box
optimization technique; we use CMA-ES [26]. The one-to-
one mapping p is then simply p(ci) = 05.

To learn function dy, VAGN takes the visual (and po-
tentially geometric) input to form a supervised dataset
{vP, e;}N |, where ¢; = k if i is in the k-th segment. It
then estimates the optimal parameters ¢* defined by

. Y exp (dy (vP)ci])
= argmax lo
v = angmax ) log e " (dy(vP)[e])

where [c] denotes the output probability of class c. Since dy,
takes in visual input, VAGN uses a CNN to determine which
context k each v, comes from during runtime.

The VAGN algorithm is shown in Alg. 1.

@

IV. EXPERIMENTS

We implement VAGN to evaluate whether a classical
geometric navigation planner whose hyper-parameters are
dynamically adjusted by a vision system can exhibit desired
semantic-aware and collision-free navigation at the same
time. We deployed VAGN on two robots—a Clearpath Jackal
and Boston Dynamics Spot—that operate in different action
spaces using different underlying navigation systems. For
the purpose of our evaluation, the most relevant comparison
point for VAGN is each robot’s underlying geometric planner
itself (with default hyper-parameters); if the VAGN system
exhibits more of the desired behavior than the geometric
planner alone, then we may conclude that classical ge-
ometric planners can indeed be endowed with semantic-
aware behavior through hyper-parameter tuning by a vision
system. The experiment results show that VAGN produces
navigation behaviors that are both geometrically safe and also
the most similar to the demonstrator in terms of collision-
free navigation success rate, Hausdorff distance, context-
based obstacle clearance, and velocity difference. Note that,
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Fig. 3: Obstacle Course with Geometric and Semantic Fea-
tures and the Six Visual Contexts.
instead of speed as one of the most important metrics for
conventional navigation approaches, we focus primarily on
VAGN’s ability to replicate the desired navigation behavior
as specified by the demonstration.

A. Jackal Obstacle Course Navigation

We implement VAGN on a Clearpath Jackal, which is a
small, differential-drive, wheeled unmanned ground vehicle
with a top speed of 2.0m/s and a turning radius of zero.
It is equipped with a Velodyne VLP-16 LiDAR to provide
geometric perception and a FLIR RGB camera for visual
input. The Velodyne 3D point cloud is projected into 2D laser
scan for 2D navigation and the camera streams 256x320
(down-sampled from original 1024x1280) RGB images.
It runs Robot Operating System (ROS) onboard with the
commonly-used move_base navigation stack. We apply
VAGN to the ROS move_base stack’s local planner, the
Dynamic Window Approach (DWA) planner [2]. The global
planner, i.e., Dijkstra’s algorithm, provides the local DWA
planner with a coarse global path.

As a controlled, pilot test of VAGN, we construct an
obstacle course (20m) which contains both rich semantic and
geometric features. This allows for clear analysis of VAGN
effectiveness compared to various baselines. As shown in
Fig. 3, the black lines represent the boundaries of the course
and the ground of the course is divided into semantically
different segments: two green segments covered by grass and
two grey segments paved by cement. Apart from terrain,
we also want to understand whether VAGN can enable
different navigation behaviors based on obstacle appearance.
To do so, we place two types of geometrically identical,
but visually different obstacles in the environment: hostile
obstacles (small orange bins), which the robot should stay
especially far away from, and nonhostile obstacles (small
blue bins), which the robot simply needs to avoid colliding
with at minimum clearance. A total of six unique contexts
exist on the course: Grass Open (GO), Cement Open (CO),
Grass with Hostile Obstacles (GH), Grass with Nonhostile
Obstacles (GN), Cement with Hostile Obstacles (CH), and
Cement with Nonhostile Obstacles (CN). Note that all these
features are semantic and cannot be perceived by the geomet-
ric laser scan. These contexts demand significantly different
navigation behaviors, which allow for clear demonstrations
of the effectiveness for a large variety of navigation systems.

The authors first decide on the desired semantic-aware
and collision-free navigation behavior in advance. To demon-

Fig. 4: Navigation around Hostile (orange) and Nonhostile
(blue) Obstacles: demonstration (blue), VAGN-VG (green),
VAGN-V (yellow), and DWA (red).

strate the desired semantic-aware and collision-free naviga-
tion behavior, as determined by the authors in advance, one
author of the paper uses a PS4 controller to teleoperate the
robot through the obstacle course (blue trajectory in Fig.
3). The human demonstrator chooses to drive cautiously
and slowly on the grass and speeds up on the cement
surfaces. The author keeps a large distance when facing
the orange hostile obstacles, but hugs very closely to the
blue nonhostile ones. During teleoperation, we also run
the ROS move_base navigation stack in the background,
whose motion commands are preempted by human demon-
stration. We collect the sequence of teleoperated linear and
angular velocity commands, RGB images, local goals on
the move base global path 1m away from the robot, and
all inputs to the move_base node, including laser scans
and global navigation goal. The training set consists only
749 points. Note that with such a small training set, the
learned visual context predictor for VAGN is not expected
to generalize well to unseen environments, but the paradigm
will only devolve to a classical geometric navigation system
that continues to guarantee safety. As mentioned before, the
purpose of the experiments is to demonstrate VAGN as a new
navigation paradigm to enable semantic-aware and collision-
free navigation, not as a generalizable machine learning
algorithm.

We implement the following six methods: (1) pure ge-
ometric (DWA) [2], (2) end-to-end geometric only (E2E-G)
[11], (3) end-to-end vision only (E2E-V) [5], (4) end-to-end
vision and geometric (E2E-VG) [27], (5§) VAGN with visual
context (VAGN-V), and (6) VAGN with visual and geometric
context (VAGN-VG).

1) DWA: DWA is the default local planner in move_base.
Based on a geometric costmap around the robot built by
2D laser scans, DWA samples physically feasible linear and
angular velocities and rolls out these commands using a for-
ward kinodynamics model. It then evaluates these candidate
trajectories using a cost function based on distance to the
closest obstacle, to the local path, and to the local goal.

2) E2E-G: E2E-G is a local planner similar to the ap-
proach by Pfeiffer et al. [11]. It takes in the 897-dimensional
laser scan, concatenates it with the 2D local goal, and feeds
them into a four-layer neural network with [128, 128,
64, 2] neurons. The output is directly linear and angular
velocities.



3) E2E-V: E2E-V is similar to the work by Giusti et al.
[5], but adds the local goal in addition to the RGB image as
input of the neural network. The RGB image is consumed
by four convolution and maxpooling layers, and the learned
embedding is then concatenated with the local goal. The
output is also linear and angular velocities.

4) E2E-VG: E2E-VG is similar to the work by Everett
et al. [27], but not with a focus on social navigation. It
concatenates the CNN output from RGB image with laser
scan and local goal and uses a four-layer neural network
with [128, 128, 64, 2] neurons to produce motion
commands.

5) VAGN-V: Our VAGN-V implementation takes in RGB
image in the high-level context predictor and then dynami-
cally adjusts the local DWA planner’s hyper parameters. All
CNNs utilize the same architecture as the previous methods.

6) VAGN-VG: Our VAGN-VG implementation takes in
both RGB image and laser scan in the context predictor. Its
performance is tested against VAGN-V to see if adding extra
geometric information in the context prediction can improve
performance. Both visual context predictors run at SHz.

Following the demonstration, we find each 6} using
CMA-ES [26] as our black-box optimizer. The optimization
runs on a single Asus Desktop (Intel Xeon) and takes about
six hours, mainly due to the need to replay the rosbag
in real time in order to query move_base; this time
could be significantly reduced with more computational
resources and engineering effort. The specific parameters
learned by VAGN include MAX_VEL_X, MAX_VEL_THETA,
VX_SAMPLES, VTHETA_SAMPLES, OCCDIST_SCALE,
PATH_DISTANCE_BIAS, GOAL_DISTANCE_BIAS, and
INFLATION_RADIUS. Although the interplay among all
parameters may be intricate, many of them are intuitive.
For example, VAGN recognizes that the demonstrator is
careful and stays far away from the orange hostile obstacles
by increasing the inflation radius and decreasing the
max velocity. On the other hand, when encountering the
nonhostile obstacles, VAGN is able to maintain the same
speed for the specific terrain and travels closer to the object
due to the decreased inflation radius.

To quantitatively determine the efficacy of VAGN, we
conduct ten trials of each method in the obstacle course (Fig.
3). We use amcl localization to localize the robot trajectory
and record the velocity profiles. None of the three end-to-
end approaches is able to finish traversing the entire obstacle
course without any collisions on any trial. The robot exhibits
certain signs of obstacle avoidance behaviors (e.g., moving
slightly toward left when getting close to an obstacle on
the right), but it is not able to completely avoid all obstacles
and successfully reach the other side of the course. However,
both visual E2E-V and E2E-VG learn to speed up on cement
and slow down on grass, which shows that vision is suitable
to generate high-level semantics-based navigation behavior,
rather than low-level precise motor skills such as obstacle
avoidance. All ten trials of DWA, VAGN-V, and VAGN-VG
successfully traverse the course without any collision (first
row in Tab. I).

TABLE I: Success Rate (SR) and Hausdorff Distance (HD)

DWA  E2E-G E2E-V  E2E-VG  VAGN-V  VAGN-VG
SR 100% 0% 0% 0% 100% 100%
HD  09m N/A N/A N/A 0.6m 0.3m

The second row of Tab. I shows the Hausdorff distance
of each method with respect to the human demonstration.
Averaged over ten trials each method, VAGN-VG achieves
the smallest average Hausdorff distance, while the trajectory
executed by DWA is the most different from the demonstra-
tion.

Fig. 4 shows close-ups of the overhead view of the robot
trajectory in the vicinity of hostile and nonhostile obstacles.
The blue trajectory denotes the human demonstration, while
the green one is VAGN-VG, yellow one VAGN-V, and red
one default DWA. Around hostile obstacles, VAGN-VG and
VAGN-V learn to increase inflation radius and stay away from
the orange bins, but around nonhostile obstacles, inflation
radius is decreased and the robot hugs close to the blue bins.
Since both hostile and nonhostile obstacles have the same
geometric shape, DWA simply treats them as the same. Tab.
II further shows the average minimum distance to the two
hostile (H) and nonhostile (N) obstacles on grass (G) and on
cement (C) for the successful navigation systems.

TABLE II: Average Minimum Distance to Obstacles

3 GH 4 GN 5 CH 6 CN

Demonstration  0.70m  0.36m  0.83m  0.23m
VAGN-VG 0.64m 0.35m 0.72m  0.29m
VAGN-V 0.62m 045m 0.64m 0.37m
DWA 0.46m 0.52m  0.54m  0.49m

TABLE III: Velocity Difference (m/s)

1G 2C 3GH 4GN 5CH 6CN

VAGN-VG  0.09 0.14 0.16 0.11 0.17 0.28
VAGN-V 0.12  0.18 0.13 0.16 0.23 0.33
DWA 034  1.06 0.32 0.14 0.51 0.45

In terms of velocity similarity, Tab. III shows the average
velocity difference in each context relative to the human
demonstration. VAGN-V and VAGN-VG learn to drive slowly
on grass and speed up on cement, just as the human demon-
stration. Note that the grass and cement are both an equally
traversable plane in a geometric sense, and the color and
texture of grass and cement are not perceivable by LiDAR.
Therefore, DWA navigates at roughly constant speed and
completely ignores the ground type.

B. Spot Field Deployment

From the controlled environment with the Jackal, we
have demonstrated that VAGN-VG is both safe and the most
accurate at emulating a human demonstration. To this end,
we deploy VAGN-VG on another robot with a different
underlying navigation system in a real-world environment
to show the adaptability of the VAGN navigation paradigm.
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constrained environments.

This deployment is designed to more closely emulate real-
world applications of VAGN, in contrast to the controlled
environments in the Jackal experiment. In particular, we use
a BostonDynamics Spot, which is a mid-sized quadruped
robot with a top speed of 1.6m/s and a turning radius of zero.
It is equipped with a Velodyne VLP-16 LiDAR to provide
geometric perception and an Azure Kinect DK Depth RGB
camera for visual input that follows a similar down sampling
protocol as Jackal. The Spot runs GraphNav, a different
sampling-based, purely geometric navigation stack. Similar
to the experiments with Jackal, we utilize teleoperation using
a PS4 controller to provide a human demonstration. The
training procedure for VAGN in this experiment is identical to
that defined above on the Jackal. We deploy VAGN on Spot
on a path that spans 200 meters and is comprised of many
naturally unique contexts. We select four key points along
the trajectory for close inspection: office (O), hallway (H),
wheelchair ramp (R), and sidewalk (S). The whole course
along with the human demonstration and pertinent contexts
is shown in Fig. 5.

TABLE IV: Hausdorff Distance (m) Velocity Difference (m/s)

HD 10 2H 3R 48S
GRAPHNAV ~ 5.09 434 203 145
VAGN-VG 0.65 256 0.73 0.34
VD 10 2 H 3R 4 S
GRAPHNAV  0.22 1.06 0.44 1.17
VAGN-VG 015 0.14 027 0.23

We deploy each method (GraphNav and VAGN-VG) and
use ENML [28] to localize the robot trajectory and record the
velocity profiles. GraphNav is unable to traverse the entire
course—namely the office, ramp, and sidewalk contexts—
and has to be manually reset by human teleoperation to
continue navigation; however, VAGN-VG is able to traverse

the entire course successfully. Fig. 5 shows the overall
trajectory of the human demonstration and the trajectories
of each system in the key points of the course. The blue
trajectory denotes the human demonstration, while the green
is VAGN-VG, and red default GraphNav. VAGN-VG is able
to stay in the middle of the hallway, and plan successful
paths in very narrow corridors. Hausdorff Distance (HD)
in Tab. IV between both GraphNav and VAGN-VG with
respect to the demonstration shows that VAGN-VG plans
a path that is more similar to human demonstration than
GraphNav. Additionally, Tab. IV also shows the average
velocity difference for each context relative to the human
demonstration. VAGN-VG is able to correctly speed up in
safer contexts such as the hallway and the sidewalk, but also
slows down in more confined and cluttered contexts such as
the ramp and office; GraphNav navigates at roughly constant
speed and ignores the semantic information of the contexts.

C. Experiment Summary

To summarize the experiment results, it is difficult for
all end-to-end approaches (E2E-G, E2E-V, E2E-VG) to learn
successful low-level precise obstacle-avoidance behaviors
using such a small training set. Therefore, they fail in all
ten trials due to collision with obstacles. However, they
do exhibit signs of high-level navigation behaviors such as
accelerating and decelerating on cement and grass. VAGN-
Vv and VAGN-VG, on the other hand, learn these high-level
behavior and can successfully perform low-level obstacle
avoidance thanks to the classical local planners that they
employ. Both underlying navigation systems alone do not
consider semantics at all, and therefore produce navigation
behaviors most different from human demonstration. VAGN-
VG utilizes both vision and geometry in context predic-
tion and achieves slightly better performance compared to
VAGN-V’s vision only context predictor. We conclude that



our VAGN-VG is the best among all alternatives tested in
our experiments to enable semantic-aware and collision-free
navigation at the same time.

V. CONCLUSIONS

This paper presents Visually Adaptive Geometric Nav-
igation (VAGN), a novel paradigm that marries geometric
and visual navigation using a classical geometric motion
planner and an online visual parameter planner. VAGN em-
ploys a visual component which sits on top of a geometric
planner and produces high-level semantic decisions (e.g.,
increase/decrease speed, be aggressive/conservative around
obstacles). These high-level decisions interface with the low-
level geometric planner via planner hyper-parameters. The
visual context predictor dynamically adjusts planner param-
eters in response to different semantics in the environment
while the geometric planner produces safe, accurate, and
efficient local motions. VAGN is tested on two autonomous
ground robots and our experiment results show that VAGN
can enable similar semantic-aware and collision-free nav-
igation behaviors as specified by a human demonstration,
compared to other baselines which fail either at collision-
avoidance or considering semantics. The VAGN paradigm can
be applied in disaster response and search and rescue sce-
narios where data cannot be easily obtained; VAGN is able to
learn semantically-correct navigation behavior from a single
demonstration with minimal downtime. One future research
direction is to investigate how the visual context predictor
can generalize to unseen scenarios, e.g., a visually different
obstacle course with similar orange and blue obstacles.
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