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In this work, we propose a linear machine learning force matching approach that can directly
extract pair atomic interactions from ab initio calculations in amorphous structures. The local fea-
ture representation is specifically chosen to make the linear weights a force field as a force/potential
function of the atom pair distance. Consequently, this set of functions is the closest representation
of the ab initio forces given the two-body approximation and finite scanning in the configurational
space. We validate this approach in amorphous silica. Potentials in the new force field (consisting
of tabulated Si-Si, Si-O, and O-O potentials) are significantly different than existing potentials that
are commonly used for silica, even though all of them produce the tetrahedral network structure and
roughly similar glass properties. This suggests that those commonly used classical force fields do
not offer fundamentally accurate representations of the atomic interaction in silica. The new force
field furthermore produces a lower glass transition temperature (Ty ~1800 K) and a positive liquid
thermal expansion coefficient, suggesting the extraordinarily high T, and negative liquid thermal
expansion of simulated silica could be artifacts of previously developed classical potentials. Overall,
the proposed approach provides a fundamental yet intuitive way to evaluate two-body potentials
against ab initio calculations, thereby offering an efficient way to guide the development of classical

force fields.

I. INTRODUCTION

Computer modeling of atoms and molecules is an in-
dispensable tool today for probing atomic-level physics,
understanding materials behaviors, deciphering chemical
reactions, and examining biological processes.[1, 2] At the
heart of these endeavors lies the intricate task of accu-
rately and efficiently characterizing interactions among
atoms or molecules.[3] Ab initio methods, such as the
wavefunction methods and the density functional theory
(DFT), offer rigorous calculations of these interactions
based on the quantum mechanics of electrons coupled
with the Born-Oppenheimer approximation for nuclei
treatment, generally delivering top-tier accuracy.[4, 5]
However, their demanding computational nature restricts
their applicability, often confining simulations to a few
hundred atoms over relatively short timescales (tens to
hundreds of picosecond) with standard hardware. In con-
trast, classical molecular dynamics and Monte Carlo sim-
ulations, which employ empirical atomic interactions typ-
ically expressed as functions of atomic distances or an-
gles, offer substantial computational efficiency, facilitat-
ing simulations of millions of atoms and the millisecond
timescale. However, this efficiency often comes at the
expense of accuracy and generalizability.

Navigating the tradeoff between computational accu-
racy and efficiency remains a paramount challenge in
atomic-scale modeling.[6] The emergence of machine-
learning force fields holds promise, endeavoring to marry
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the accuracy of ab initio methods with affordable compu-
tational cost, e.g., artificial (and graph) neural network
potentials, Gaussian approximation potentials, moment
tensor potentials, and atomic cluster expansion poten-
tials [7—12]. Yet, while they introduce innovations, sig-
nificant issues remain: 1) they are typically slower than
simple pair potentials by around 1-2 orders of magnitude;
2) they provide less explicit and easy-to-access physi-
cal insights about the many-body interactions; 3) they
risk more failure away from the training region.[13, 14]
While solutions to those issues are being developed, clas-
sical interatomic potentials remain the dominant choice
across the molecular simulation communities, especially
for large and complex systems such as biological systems
and disordered materials.

Classical potentials utilize pre-defined function forms,
such as Lennard-Jones, to describe the atomic interac-
tions. Parameters of the function form are optimized to
align simulation results with observables sourced from ei-
ther experimental data or ab initio simulations. Observ-
ables used most often include structural features (e.g.,
pair distribution functions for disordered systems and
unit cell structure for crystals) and physical properties
(e.g., density and mechanical properties). Because clas-
sical potentials are approximations of the true atomic
interactions, such a potential fitting practice does not
yield a unique solution. Combinations of wildly differ-
ent parameters may give very similar fitting errors; they
may all reproduce the included observables but can lead
to very different behaviors in actual simulations. Most
force fields for ionic systems also define Coulomb in-
teractions using arbitrarily selected or ill-defined point



charges, adding more to the arbitrariness. One example
is silica (SiO3), an archetypal disordered material. The
well-known Beest-Kramer-van Santen (BKS) potential,
probably the most used potential for silica, produces den-
sity and glass transition temperatures that are in poor
agreement with experiments.[15] Newer potentials like
Sundararaman-Huang-Ispas-Kob (SHIK) have been de-
veloped by adding more observables at various pressures.
[16, 17] There also exist several versions of widely used
force fields for modified silicate glasses, each of which in-
cludes a different version of potential for SiO2.[18-20]
There have been many studies trying to evaluate the
accuracy of the those force fields, most of which are
nonetheless limited to comparing the simulated proper-
ties/behaviors to experiments or ab inito simulations.
There is a lack of fundamental insights into how accu-
rate those empirical potentials are in describing atomic
interactions. There also exist questions about the trans-
ferability of these classical potentials. For instance, how
reasonable is it to use the same silica potentials in mod-
ified silicates?

In this work, we introduce a direct method to evaluate
pair interactions from ab initio calculations by linear ma-
chine learning (ML) based force matching. The method
is intuitive and fast, requiring only a small amount of
ab initio data. It produces the closest approximation to
the ab initio forces given the two-body approximation
and finite scanning in the configurational space. When
applied to silica, we found that commonly used classical
force fields do not offer fundamentally accurate repre-
sentations of atomic interactions. The force matching
method can also generate classical pair potentials with-
out pre-defined function forms and parameter optimiza-
tion. The new potential generated for silica yield proper-
ties much closer to experimental observations, especially
in the liquid region. Furthermore, we demonstrate how to
apply this method to evaluate the transferability of silica
potentials to sodium silicates and borosilicates. Overall,
this approach provides explicit physical insights into the
atomic interactions and can enable fast and automatic
development of new classical pair potentials.

II. METHODS
A. Force matching regression method

In classical MD simulations, the potential ideally ap-
proximates the exact many-body atomic interaction seen
in quantum mechanics over the configurational space, by
achieving

min/dRN|UMD(RN) CU@®MP ()
Ump

where Uvp and Uqu are the potential energies in clas-
sical MD and in quantum mechanics, respectively, and
both are functions of RY, the coordinates of all N atoms
in the system. Since F; = —0U(RY)/0R; where F; is

the force on atom I by its surrounding atoms and R is

atom I’s coordinate, we can recast Equation 1 into its

equivalent form for forces[21]
min/dRNZ|F1}/ID(R1;RN) —FMRLRY)2 (2)
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Therefore, the potential development can be solved as a

force matching problem.

The most elementary form of
forces, i.e.,
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where J denotes any other atom in the system (within a
cutoff distance in practice) and Ry is the vector directed
towards atom I from atom J. This pair approximation
can be adequate in many materials, even when bonds of
covalent nature are present. One particular example is
the main group oxide. The strong network-forming co-
valent bonds in these materials restrict the local degrees
of freedom and enable effective decomposition of multi-
body interactions as functions of pair distances. This
promotes the popularity of pair potentials for classical
MD simulations in these contexts.[18, 22]

Within the pair approximation, forces are simplified
to functions of pair distances without concern for orien-
tations. Hence, the forces on individual atoms can be
rewritten as
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where f(r) is the pair force field as a function of distance
from zero to a cutoff distance r.u, |Rrs| and 4(Ryy)
are the length and the unit vector of R;; = R; — Ry,
respectively, and ¢ is the Dirac delta function. For sim-
plicity, Equation 4 considers only one atom species but
it can be easily extended to multi-species systems with
different f,;(r) pairs, where a,b denotes atomic species.
To make Equation 4 applicable in simulations, the in-
tegral can be discretized by summing over thin spherical
shells between from 0 to rcy, that is

F°RRY) =~ Y f(r) ) a(Riy) ()
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where ¢ denotes the ith shell, r; is the radius of the shell,
and J; denotes an atom index within the ¢th shell. Pro-
jected onto a basis and considering all species, the above

formula becomes
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where % is the unit vector along x or y or z axis corre-
sponding to the force component in x or y or z direction,
respectively. Note that the linear coefficients fqp(r;) do
not depend on the projection direction, as long as the
reference direction is consistent for forces and structural
representation.

As derived in Equation 6, the force on atom I holds
an approximately linear relationship with the feature
vector X,; concatenated by elements of X,;[b,i] =
> by, W(Rarps,) - &, which can be understood as an effec-
tive ‘number’ of neighboring atoms in the corresponding
shell depending on the orientations. Thus, the linear co-
efficient vector F, concatenated by fuu(r;), is a vector of
effective forces for all species pairs as functions of pair
distances, which is exactly the target force field for clas-
sical MD simulations but in a tabulated form. As the
shells becomes thinner, the tabulated force field, consist-
ing of a series of fu4(r;), approaches the continuous f,(r)
in Equation 4. In addition, this representation can also
be used with the kernel tricks and other ML methods,
but it will not be as straightforward as linear regression
to extract the effective pair force fields from ab initio
calculations.

The coefficients (or weights) in the simple linear regres-
sion can be solved analytically as (X X)"'XF. How-
ever, the coefficients could be easily biased to the training
data resulting in overfitting, especially as the dimension
of X is large. Therefore, to solve this force-matching
problem, we use the Ridge regression ML model (with
Tikhonov regularization).[23] Instead of directly mini-
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C, the model aims to minimize ZQ’LI’C[F%B (fan(rs)) —
FM2 A b fab(ri)?, where X is the regularization
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parameter controlling the constraints (or degrees of free-
dom) in the force field space. Note that A is a hyper-
parameter that is determined by cross validation before
training the final model.

Once the ML model is trained, the weights of the model
as a function of distance can be directly used as a classi-
cal force field, without further parametrization and opti-
mization. When applying this force field to MD simula-
tions, the ML model or any extra descriptor calculation
is not needed. This is a major difference between this ap-
proach and ML potentials—the resulting force field from
this approach has a format similar to classical potentials
and therefore is as efficient in MD simulations.

B. Additional settings for the force field

Like other classical potentials, the potentials generated
in this work have a long-range cutoff, beyond which no in-
teractions are considered explicitly. The long-range cut-
off rLE is set to 8 A in this study for two reasons: (1)
atomic interactions are found to be very weak at longer
distances, and (2) self interaction needs to be avoided in

the smallest simulation box size used in this study (~17

A) Within the cutoff, there could be some unphysical
fluctuations in the force field (weights) because smooth-
ness is not enforced in the ML method. To enhance the
smoothness in resulting tabulated potentials, we apply
either of the two simple post-processing modifications as
described below.

In the first option, the force field obtained from the ML
model are fitted with specific function forms. Note that
this is a simple curve fitting exercise and no MD simula-
tions are needed for this step. We test three commonly
used forms for interactions in the short range (r < r3%),
i.e., Buckingham,[24] Lennard-Jones (LJ), and Morse po-
tentials with explicit Coulomb interactions,

C
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where a and b denote two atomic species, (4, B, C)
in fBuck=Coul (5 ¢} in pLI=Coul and (D., a, 1) in
are all fitting parameters. The basic con-
stants 1/4meg in Coulomb forces are included but not
written for simplicity. The charges g, (for each form
separately) are determined by the fitting process as well
under the constraint of gg; = —2go. Because the force
field has already been revealed from ML, fitting these
parameters can be straightforward by optimizing a loss
function. Considering the fact that the number of pairs
increases with distances in the average order of r? and
the errors (of the same magnitude) in the force fields
are more detrimental if at large distances, we particu-
larly emphasize the large distance errors in the fitting
loss function,

2
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where 74 ; ranges from the distance between the nearest
neighbor for the specific pair (a,b) to the short range
cutoff r51. To avoid the entrapment of the charge gg; in
local minima, we conduct independent optimization runs
with charges uniformly sampled between 0 and 2.4. The
optimal charge is then chosen based on the lowest loss
function.

For the long-range part (r3f < r < rLE) we choose

the Wolf truncation method for efficiency,[25]
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as followed by previous silica potential developments.[17,
26] For the boundary between SR and LR interaction,
we multiply the above potentials with a commonly-used
window function,[27]

G(r) = exp (%) (12)

(’I’ — Teut

where v=0.2 A controls the width of the smoothing func-
tion.

In the second option for enhancing smoothness, we
smooth the force fields in the short range by applying
the Savitzky-Golay filter with a polyorder of 5 and win-
dow length of 2 A. Here we choose r55=7.98 A to make
the smooth range as wide as possible, and apply the Wolf
truncation for the LR (only 0.02 A in this case) to en-
sure forces decay to zero at r2%. In addition, we can also
enforce smoothness by adding additional regularization
terms into the loss function based on roughness of the
force field. However, the solution needs to be searched
by gradient descent instead of simple matrix multiplica-
tion using Ridge.

Nevertheless, the method proposed here is not limited
to any choice of function forms we listed in this subsec-
tion. One can apply any mathematical forms as needed
or simply use the smoothed tabular force fields.

C. Learning data preparation

As detailed in the earlier section, a Ridge regression
ML model is utilized to obtain a force field that is the
closest approximation of the quantum mechanical force
field within the pair approximation. The descriptors
Xar[byi] = 35 W(Rarpy,) - & can be calculated easily
from a given local configuration of atoms and are related
to both the number of neighboring atoms for atom I and
the relative atomic positions in the shell. The interval
between adjacent shells is set 0.02 A, resulting in a total
dimension of 1200 for all the input feartures. The output
FIQ}EVI are directly collected from ab initio calculations.
For developing force fields involving multiple species, we
can obtain fu,(r) by either learning forces on a atoms or
on b atoms, the results of which may have slight differ-
ences for numerical reasons. A trick to prevent this is to
train the models on different species altogether with all
pairs of X. For instance, the final input for silica con-
tains all Si-Si, Si-O, and O-O for each atom in one data
structure. For Si atoms, Xoo are set to zeros and vice
versa for O atoms. By using the entire data structure
in training, a single force field involving different species,
ie., far(r) = foa(r), can be obtained.

In this study, amorphous configurations for training
this ML model are collected from ab initio molecular dy-
namics (AIMD) simulations based on DFT, implemented
in Vienna Ab initio Simulation Package (VASP).[28]
The generalized gradient approximation of Perdew-
Burke-Ernzerhof is used for the exchange-correlation

4

functional.[29] Corrections for the van der Waals inter-
actions are made using the DFT-D3 method with Becke-
Johnson damping.[30] In all the calculations, the elec-
tronic wave function is expanded using a plane wave basis
up to an energy cutoff of 500 eV. The convergence crite-
ria for the energy during self-consistent field calculations
is set to 107 eV.

A cubic simulation box containing 450 atoms, i.e., 150
SiO5 units, is utilized in this study. Different densities
ranging from 1.5 to 2.8 g/cm? are covered for better map-
ping the energy landscape of interest, resulting in box
lengths varying from 17.48 - 21.53 A. Due to the rela-
tively large simulation system, only the gamma point in
the reciprocal space is considered. The timestep is set to
1 fs. The temperature varies from 3000 - 4000 K, allowing
for adequate sampling of different disordered structures
within a relatively short trajectory. Due to the simplicity
of the ridge algorithm and subtle changes in structures
from liquid to glass, potentials learned from high tem-
perature liquid data should also work for glasses at lower
temperatures. This will be evaluated in the subsequent
sections.

Since the ML model is focused on forces on individ-
ual atoms and their local environments, each atom in a
snapshot of the AIMD trajectory is a data instance. As
a result, more than 400,000 data instances can be effi-
ciently generated from a 300 fs trajectory, which can be
completed in about one day of DFT calculation using 20
CPUs.

III. RESULTS
A. Predicting DFT forces by machine learning

Figure 1a presents the performance of the force match-
ing model for silica, validated against test data. The
force components on individual atoms predicted by the
model align well with those calculated by DFT, observed
for both Si and O atoms. Notably, small forces stem-
ming from ordered local structures exhibit larger devia-
tions compared to large forces arising from distorted local
structures. The RMSE values for Si and O test data are
1.14 and 0.72 eV/ A respectively, resulting in an overall
RMSE of 0.90 eV/A. Efforts to refine the learning out-
comes via the expansion of the training data pool did not
yield better results Further improvement would necessi-
tate the incorporation of additional degrees of freedom,
such as the inclusion of 3/4-body interactions or the de-
ployment of more complex ML architectures. Figure 1b
shows the model performance as a function of the train-
ing set size. Although the model roughly converges with
more than 40,000 training data instances, reasonably cor-
rect force fields can be learned starting from only 2 con-
figurations, as detailed in the Supplementary Material.
The error bars in the figure represent the standard devi-
ations of the performances over 5 resamplings of training
subsets. The variation in the training errors generally de-



creases with more training data, while that in the testing
errors peaks when the training size matches the number
of the weights (Fig. S1 in the Supplementary Material).
At this training size, the weights transition from noises
around zero to reasonable interatomic potentials.
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FIG. 1. (a) Comparison of the force components (forces pro-
jected onto z, y, or z axes) predicted by the ML model with
those calculated by DFT on the testing Si and O (inset) data.
The dashed line representing the perfect match is a guide to
the eye. The brighter colors representing higher data density
lie closely to the dashed line, suggesting that the majority
of forces are well predicted by the ML model. (b) Model
performance as a function of the training set size. The er-
ror bars in the figure represent the standard deviations over
5 resamplings of training subsets. The model starts to learn
reasonable force fields with a small training dataset from only
2 configurations, as detailed in the Supplementary Material.

As detailed in Sec. IT A, the weights of the linear re-
gression model based on Equation 6 directly represent a
force field as a function of distance. These force fields,
henceforth referred to as ‘force-match-DFT’ (FM-DFT),
display notable differences from those learned from SHIK
(FM-SHIK) and BKS (FM-BKS) by exactly the same
method, as illustrated in Fig. 2. Note that BKS and
SHIK forces can be near-perfectly reproduced, and FM-
BKS compared to BKS effectively includes the long-range
Coulomb interactions within the cutoff distance, allow-
ing a fair comparison of these two-body classical force
fields. More details are provided in Sec. S2 of the Sup-

plementary Material. Specifically, FM-DFT stands in
between the harder FM-SHIK and the softer FM-BKS.
Furthermore, the position of the attraction minima and
the zero-point of Si-O forces for FM-DFT are consistent
with those for FM-SHIK but shorter than those for FM-
BKS, which would result in difference in local structures
and associated liquid dynamics. Notably, FM-DFT ex-
hibits a rapid decline within 2-3 A pointing to a softer
medium-range order (MRO) interaction as FM-BKS.
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FIG. 2. Pair force fields obtained from the ML model by learn-
ing DFT forces (denoted as FM-DFT) as functions of pair sep-
aration, compared to those by learning the BKS (FM-BKS)
and SHIK (FM-SHIK) forces. Note that FM-BKS effectively
considers the long-range Coulomb interactions, making it dis-
tinct from its sum of the Buckingham and electrostatic con-
tribution within the real-space cutoff. The small error bars on
FM-DFT representing the standard deviations of the learned
weights over a 5-fold cross validation suggest good stability
of the force matching approach.

We also notice some unphysical forces at very short
ranges (far shorter than the nearest neighbor distance),
probably resulting from sparse data in these areas.
Specifically, in situations where no atomic pair exist at a
particular separation, the force field default to zero due
to regularization. When only a small number of atomic
pairs are available, large variances exhibit in the gen-
erated force field, such as those observed around 1.5-2
A for O-O. These deviations at very short ranges, how-
ever, do not impact simulations as long as pressure or
temperature are not extremely high (e.g., >6000 K).[31]
Therefore, we simply apply a linear force fit (harmonic
approximation) in the affected range to prevent unphys-
ical collision, with cutoffs detailed in Table S1 in the
Supplementary Material.

Within the effective range of potentials (rlineer < r <
rLB) small force variations might also occur due to the
finite resolution of discrete distances. As elaborated in
Sec. IIB, we explored two options to enhance potential



smoothness, 1) function-form fitting, or 2) direct smooth-
ing.

Figure 3a summaries the fitting loss defined in Equa-
tion 10 against the charge of Si for three commonly
used function forms: Buckingham, LJ, and Morse, all
combined with Coulomb interaction. The Buckingham-
Coulomb form with gg; = 0.82 exhibits the lowest fitting
loss. This combination, henceforth referred to as FM-fit,
aligns remarkably with FM-DFT, as shown in Fig. 3b.
In contrast, both the LJ-Coulomb and Morse-Coulomb
models falter in accurately capturing short-range inter-
actions, as shown in the Supplementary Material. This
observation accentuates the Buckingham-Coulomb inter-
action’s capability to best represent the effective pair
interaction in silica, confirming previous preferences in
classical force fields for silica. Because the long-range
Coulomb interactions are effectively projected onto the
short ranges, the effective charge fitted from the FM-
DFT gs; = 0.82 is small compared with the previously
used values (2.40 in BKS and 1.74 in SHIK). The pa-
rameters of FM-fit are summarized in Table S1 in the
Supplementary Material.

The force field directly directly smoothed from FM-
DFT, denoted as FM-smooth, reveals very subtle differ-
ences from FM-fit, as shown in Fig. 3. To determine their
actual effectiveness in silica simulations, it’s essential to
conduct tests in various MD situations.

B. Performance of the generated force field
1. Melt-quenching behaviors

The obtained potentials in the tabulated forms

are then tested in MD with the Large-scale
Atomic/Molecular ~ Massively — Parallel  Simulator
(LAMMPS).[32] Figure 4 illustrates the potential

energy (a) and heat capacity (b) as a function of
temperature for silica simulated by the FM potentials
and commonly used empirical potentials (BKS and
SHIK) during the melt-quenching simulations in the
isothermal-isobaric (NPT) ensemble. Simulation set-
tings with different potentials are all the same. All the
results of the melt-quenching simulations hereinafter are
average of at least five independent runs using the same
setting but different initial atomic velocities. Although
the glass transitions are all observed and the glass heat
capacity are almost the same for these potentials, T, of
the FM-DFT potentials are around 1800 K, as listed in
Table I, significantly lower than the SHIK (by 700 K)
and BKS potentials (by 1400 K), but still higher than
the experimental T, due to the large cooling rate. This
suggests dynamics of supercooled liquids simulated by
the FM-DFT potentials is faster by orders of magnitude,
which is probably due to the differences in short-range
potentials as shown in Fig. 2. Note that the melting
temperature of silica in experiments is around 2000
K,[33] indicating that T, given by the FM potentials
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FIG. 3. (a) Fitting loss defined in Equation 10 as a function of
the charge of Si for the three fitting function forms as detailed
in Sec. IIB. The Buckingham-Coulomb form with gsi =
0.82 has the lowest fitting loss from FM-DFT, and therefore,
is selected for further validation, which will be denoted as
FM-fit hereinafter. (b) Comparison between the force fields
generated by fitting and smoothing after obtaining the raw
force field from the ML model FM-DFT, as detailed in Sec.
II B. The inset shows the subtle changes at the long range.

are more reasonable. The potential energy of silica glass
and the T, are lower if cooled with a smaller cooling
rate, consistent with the glass transition expectation.
In addition, the silica liquids simulated by the FM
potentials have slightly higher specific heat capacity
than that of the BKS and SHIK potentials.

Density changes during the melt-quenching simula-
tions by different potentials are shown in Fig. 5. In
general, the densities of glasses obtained by these po-
tentials are not far from the experimental value except
the BKS potential with a relatively large cutoff like 8.5
A. However, large differences arise in the liquid region.
The supercooled liquids simulated by the FM poten-
tials have large positive thermal expansion coefficients,
whereas those simulated by the BKS and SHIK poten-
tials have small negative thermal expansion coefficients at
least within Ty, < T' < T,,+1000 K. This leads to decreas-
ing density of supercooled liquids for the FM potentials
at higher temperatures. Pushing the temperature beyond
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FIG. 4. (a) Potential energy and (b) heat capacity after re-
moving the thermal fluctuation as a function of temperature
for silica simulated by different classical potentials. Energies
in (a) have been shifted vertically for easier comparison. The
glass transition temperature obtained by the FM potentials,
as marked by arrows in (a), are significantly lower than those
by the SHIK and BKS potentials.

TABLE 1. Properties of silica glasses simulated by different
potentials, including T, heat capacity and density at 300 K,
and Young’s modulus at 0 K. A constant cooling rate of 1K/ps
is used in the melt-quenching simulations. The BKS potential
used here is applied with a SR cutoff of 6 A.

T, Cp Density E

(K) (J/Kg/K) (g/cm?®) (GPa)
FM-fit 1760 641 2.27 60.53
FM-smooth 1832 653 2.29 52.55
BKS 3232 628 2.31 88.30
SHIK 2533 635 2.13 57.23

Exp.[34, 35] 1475-1480[36]  680-730 2.20 70-73

3000 K for simulations employing the FM potentials leads
to system instability (explosion), resonating with silica’s
experimental boiling point of approximately 2500 K.[33]
These findings underscore considerable issues with earlier
potentials, e.g., BKS and SHIK, when modeling silica lig-
uids, and suggest that the previously reported abnormal
relationship between density and thermodynamic stabil-
ity could be exaggerated as consequences of flawed po-
tential parameters.[15] The FM potentials appear poised
to rectify this issue in liquid simulations.

2. Liquid structures at high temperatures

Next, we analyze the atomic structures of silica liquids
simulated by the FM potentials. Figure 6 shows the pair
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FIG. 5. Density as a function of temperature during melt-
quenching simulations of silica simulated by different poten-
tials.

distribution function g(r) and static structure factor S(q)
of liquid structures in equilibrium at 3000 K simulated
by different methods. The results of classical MD are av-
eraged over 100 structures collected every 1 ps, and the
DFT results are averaged over 40 structures collected ev-
ery 5 fs from the production runs. In general, the FM
potentials are better than the BKS potential to reproduce
the 2-point density correlation in AIMD (DFT) simula-
tions of silica liquids, but does not show evident advan-
tages over the SHIK potential. In the short range, i.e.,
1.6-2.2 A in g(r), the peak locations of the FM potentials
are in better agreement with the DFT results than SHIK,
but the peak heights are lower due to softer interactions.
In the medium-range regime, e.g., above 2.2 A in g(r) or
below 4 A=! in S(q), the FM potentials can generally re-
produce the structural characteristics but the simulated
structures seem more amorphous than other methods.

Figure 7 shows the Si-O-Si and the O-Si-O angle dis-
tributions of silica liquid structures at 3000 K simulated
by different methods. Again, the BKS structures devi-
ate the most from the DFT structures, especially in the
Si-O-Si angle. The FM potentials perform similarly to
the SHIK potential in the Si-O-Si angles but show wider
distributions along with lower peak heights in the O-Si-O
distribution, suggesting the FM potentials allow slightly
larger variations of SiOy4 tetrahedra. This is again a re-
sult of the softer interactions than SHIK in the short
range. Nevertheless, we suppose that the FM potentials
are able to reproduce reasonable liquid structures of sil-
ica. Comparison of glass structures simulated by the FM
potentials and other methods are included in SI. Note
that the simulated glass structures are not supposed to
match perfectly with the experimental structure since the
cooling rate difference is around 10 orders.
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FIG. 6. (a) Pair distribution function and (b) static structure
factor of silica liquids at 3000 K simulated by different meth-
ods.

8. Cooling rate effects of mechanical properties

A key aspect of glassy materials is that the materials
properties closely depend on the thermal history, such
as, the cooling rate during the melt-quenching process.
Therefore, we also evaluate the cooling rate effects of
density and Young’s modulus for the FM potentials, as
shown in Fig. 8. The cooling rates vary from 100 to
0.01 K/ps in this study, and the results are average of
at least five independent melt-quenching runs. Although
the two FM potentials are similar (Fig. 3), they behave
differently in the cooling rates effects. FM-smooth shows
a strong cooling rate dependence, i.e., the glass becomes
denser and stronger more quickly when lowering the cool-
ing rate, which however leads to an overshoot in density
compared to experiments. FM-fit however shows a mild
cooling rate dependence, from which the density is al-
most constant (2.27 g/cm?) and the Young’s modulus
increases slowly when cooling slowly, the extrapolation
of which might be very close to the experimental value.

For the traditional potentials BKS and SHIK, they
both show negative cooling rate effects, i.e., the glass
becomes less dense and mechanically weaker when lower-
ing the cooling rate, which contradicts the general trend
for almost all other glasses. This abnormal cooling rate
effect is likely a consequence of the problem of liquid sim-
ulations for the two potentials, as earlier shown in Fig.
5. The previous studies based on these potentials might
not reveal real silica’s behaviors.[31, 37-39]
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FIG. 7. (a) Si-O-Si angle distribution and (b) O-Si-O angle
distribution of silica liquids at 3000 K simulated by different
methods. The structures are the same as those in Fig. 6.

C. Physical insights from applications in silicates

The force-match methodology introduced in this study
offers more than just a tool for crafting classical poten-
tials. It furnishes a direct, user-friendly avenue for prob-
ing variations in atomic interactions under diverse con-
ditions. One pertinent observation stems from analyzing
silica force fields derived from configurations spanning
densities from 1.5 to 2.8 g/cm?®. The distinctions among
these force fields are subtle, staying within 1 eV/ A across
all distances, as shown in Fig. S3 in the Supplementary
Material. Such minimal discrepancies suggest that sil-
ica’s atomic interactions are only marginally influenced
by density. Thus, a singular force field might suffice for
simulating silica across various pressures while maintain-
ing satisfactory precision.

We also extend the approach to evaluate force fields
in sodium silicate and borosilicate with different compo-
sitions. The similar AIMD simulation settings used for
silica were employed to gather training data for the linear
ML models. As detailed in the Supplementary Material,
predicted forces in sodium silicate and borosilicate align
well with their DFT counterparts. The forces on sodium
(Na) atoms exhibit even higher accuracy in predictions
compared to those on silicon (Si) and oxygen (O) due to
simpler coordination environments. All the six pair force
fields, fsi—si, fsi—0, fsi—Na, fo—0; fo-Na, and fNa—Na,
are directly learned from DFT forces on the atoms in sil-
icate configurations with a given Na concentration. Our
approach then allows for an uncomplicated assessment of
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FIG. 8. Cooling rate effects on (a) density and (b) Young’s
modulus of silica glasses simulated by different classical poten-
tials. The dashed lines denote the experimental values with
a much smaller cooling rate ~1 K/s.

pair interactions’ dependency on chemical environments,
notably the concentration variations of specific species
in multi-component systems. For instance, in sodium
silicate, while Na-O forces remain consistent, the Si-O
attractions strengthen as sodium concentration rises, as
illustrated in Fig. 9. Note that these alterations are
more pronounced than those observed due to changes in
silica density. This shift could potentially be attributed
to alterations in the concentration of bridging and non-
bridging oxygen. Therefore, those looking to simulate
sodium silicate using classical pair potentials should con-
sider adopting a composition-dependent parameter set
to obtain high simulation accuracy. Conversely, borosili-
cate interactions exhibit only minor shifts with changing
boron concentrations, hinting that a singular parameter
set, akin to that for silica, may suffice.

IV. DISCUSSION

In summary, this work proposes a new force-matching
approach that can proficiently extract effective pair
atomic interactions from ab initio calculations, leverag-
ing regularized linear regression models. This method
introduces a simple yet effective representation of local
atomic environments, which quantifies the ‘number’ of
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FIG. 9. Force fields of (a) Na-O and (b) Si-O mapped as func-
tions of distances at various sodium concentrations in sodium
silicate, represented as (NazO)z-(SiO2)100—« where z ranges
from 0 to 40. The notable shift in Si-O forces in sodium sil-
icate with sodium concentration underscores the need for a
composition-dependent force field for accurate simulations.

atom pairs projected onto a single axis. As a direct up-
shot of this descriptor set, the regression model’s weights
encapsulate the target force field as functions of pair
distance, which are closest to the quantum mechanical
many-body interactions within the confines of the pair
approximation.

This research provides two applications of this method.
Firstly, it fosters the development of classical force fields
for systems that can be succinctly described by the pair
approximation, exemplified by silica and silicates. We
reiterate that although rooted in ML techniques, our ap-
proach distinctly diverges from ML potentials as well as
conventional or ML-based fitting of classical potential
parameters. Our methodology derives tabulated poten-
tials or parameter sets that are synonymous in terms of
format with established classical potentials. There’s no
need for subsequent ML model computations or descrip-
tor evaluations post-development. As such, this stream-
lined approach surpasses ML potentials in efficiency by
at least an order of magnitude. Simultaneously, it fully
utilizes the force information from ab initio simulations
of complex material structures to achieve higher fidelity
over classical pair potentials fitted from configurational
energy or observables (i.e., derivatives of energy). No-
tably, our approach does not use pre-defined function
forms and produce fundamental information about the
atomic interactions in the system. Furthermore, the
force matching method of ours may be combined with
graph-neural-network-based atom typing methods, such
as Espaloma,[40] to generate highly transferable and ac-
curate force fields.

Another notable feature of our method is the expe-



diency in developing classical potentials, which is evi-
dent in our trials where we generated a new classical
potential by a single day’s worth of computation on a
20-CPU computer. Although our force field may lack
the generalizability of some ML potentials, its swift de-
velopment and integration stand out. It also serves as an
advantageous precursor for top-down classical potential
development, such as aligning with empirical thermody-
namic data, significantly curtailing time spent on high-
dimensional parameter space optimization. Further, our
methodology boasts an enhanced extrapolative capabil-
ity over ML potentials. Illustratively, while our training
for the silica model currently focuses on liquid structures,
the resultant potentials competently model glass struc-
tures and their inherent properties, even at lower tem-
peratures. This is confirmed by direct testing of forces
in configurations at various temperatures, in which satis-
factory accuracy is maintained considering the two-body
approximation. The accuracy is also consistently higher
than BKS and SHIK, as shown in Fig. S2 in the Supple-
mentary Material. The region for extrapolability here is
physically intuitive, i.e., among systems and conditions
where interactions at the atomic level are not expected
to change significantly. The examination of the extrapo-
lable region can be achieved within the method as well,
which leads to its second application.

The second application of our force-matching approach
revolves around enabling rapid and precise assessments of
thermodynamically averaged atomic interactions within
complex atomic environments, grounded in quantum me-
chanical calculations. Historically, there has been a
knowledge gap concerning the accuracy with which prior
empirical potentials of diverse functional forms described
atomic interactions. For instance, for decades, classical
force fields for silica and silicate glasses have selected
the potential function form and compositional depen-
dent or independent parameters with little justification.
Our method bridges this gap by offering insights derived
directly from structures, a departure from evaluations
based on isolated forces from individual particles—in this
study, we provide direct evidence supporting the use of
the Coulomb-Buckingham function form in amorphous
silica structures. Furthermore, by focusing on learning
within structures, we can discern variations in effective
atomic interactions as the environments and conditions
shift. Such knowledge underlines the transferability of
classical force fields. For instance, in silicate systems,
our method efficiently detects changes in atomic interac-
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tions due to alterations in system variables like density
or modifier concentrations (e.g., in sodium silicates and
borosilicates), thereby aiding in the fine-tuning of theo-
retical or semiempirical models.

The methodology we introduce may, on the surface,
appear constrained by the validity of the pair approxi-
mation for the subject material. However, delving into
its foundational philosophy reveals its latent capacity
to encompass higher-order interactions, such as angular
forces, in a manner analogous to pairs. Future investi-
gations might explore extending our approach to multi-
component systems, probing its alignment with more ad-
vanced quantum mechanical simulations, as well as in-
corporating experiment-informed learning for improved
applicability. We believe that this physics-informed ma-
chine learning technique furnishes an alternative avenue,
distinct from existing machine learning potentials, pro-
pelling a deeper comprehension and simulation of amor-
phous materials at the atomic level.

V. DATA AVAILABILITY

The force fields produced in this study, along
with the corresponding codes for data collection
and model training, are accessible for download at
https://github.com/zyumse/FMpotential.

VI. SUPPLEMENTARY MATERIAL

See the supplementary material for variances of the
learned force fields, prediction performance in varying
system sizes, fitting performance using different function
forms, parameters of the FM-fit potential, variances in-
duced by density in silica, glass structures generated by
the FM-DFT potentials, FM-DFT force fields of silicates,
and computational efficiency of the FM-DFT potentials.
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