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A B S T R A C T

Transitions to electric vehicles (EV) are expected to increase electricity use in residences, where most tend
to recharge. We develop a mathematical programming framework for shifting residential EV charging during
low electricity pricing hours to minimize the additional electricity costs that a household incurs from charging
their vehicle. The model also aims to meet additional household and their community preferences by adopting
four secondary objectives: charging as soon as possible when the user arrives at home, charging as late as
possible before the user leaves home, charging for valley filling and peak shaving of the residential load, and
charging in a shared community hub by using a fast charging station. We analyze granular residential energy
data from a sample of Austin households in 2018. We conduct an empirical analysis to compare households’
electricity bills under four electricity pricing schemes, including flat rates and time-of-use rates, both with and
without a separate meter for EV charging. Our findings indicate that if charging behaviors remain unchanged,
installing a separate meter for EVs is more expensive than treating EVs as another residential plug load.
However, under time-of-use EV charging tariffs, households should adjust their charging behaviors, as validated
by our optimization model. Implementing all four secondary charging objectives successfully avoids the on-
peak periods of the EV charging rate and reduces households’ overall daily electricity costs by 38.87 % during
the summer and by 44.3 % during the winter. Charging as soon as possible, charging as late as possible,
and charging at a shared station provide drivers with increased flexibility. Charging as soon as possible and
charging as late as possible lead to the lowest charger utilization, with the former having the longest charging
stop time before home departure and the latter allowing for the longest charging start time upon home arrival.
Charging at a shared station gives rise to the lowest share of charging time over dwell time. Charging for valley
filling and peak shaving of the residential load offers less flexibility but has the advantage of flattening the load
curve and mitigating high peak loads. This proves crucial in safeguarding the community’s energy distribution
infrastructure.

1. Introduction

Since the introduction of electric vehicles (EVs) in the U.S. au-
tomobile market, more than 2.4 million electric automobiles have
been sold (California Energy Commission, 2022). Zero tailpipe emis-
sions, improved energy efficiency, and low operating costs are some
of the light-duty vehicle electrification benefits. The transition to EVs
is expected to increase electricity use in residences, where most users
tend to charge (Tal et al., 2020). As shown by Muratori (2018), even
though the introduction of EVs barely increased the overall energy
consumption at the household level, the shape of aggregate household
electricity demand was affected due to uncoordinated EV charging. As

I This research was partially supported by the National Science Foundation, United States CAREER grant [CBET-2237881]. We also acknowledge the support
provided by a Research Support Grant by the Office of Undergraduate Research at the University of Illinois Urbana-Champaign, United States.
< Corresponding author.
E-mail addresses: joe.ye@gatech.edu (T. Ye), sl116@illinois.edu (S. Liu), kontou@illinois.edu (E. Kontou).

1 Currently at the H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology.

a result, the peak load of the distribution transformers would increase,
which could reduce their lifespan. Empirical insights show that the
adoption of EV home-charging increases the grid load by 7%–14%
during peak hours (Qiu et al., 2022). The absence of managed charging
could be detrimental to such residential distribution infrastructure and
result in cost increases for charging and maintenance (Szinai et al.,
2020). In comparison, a controlled EV charging scheme could lower the
grid’s operating cost while achieving significant reductions in renew-
able resources curtailment (Dean and Kockelman, 2022). By integrating
solar generation and avoiding charging at peak times, a managed
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charging scheme provides flexibility and minimized electricity costs for
households.

To tackle household energy cost increases and efficiency concerns,
while addressing potential grid load challenges, we propose managed
EV charging schemes at the residential and community levels. Such
schemes aim to minimize the cost incurred by an EV driver reflected
in their residential electricity bill and associated with home EV charg-
ing while examining the impacts of coordination of charging at a
community level to avoid severe grid impacts. This paper focuses
on developing such managed charging frameworks to facilitate more
efficient personal and community charging management and cheaper
electricity bills at the household level for EV charging. The proposed
charging schedule management shall benefit EV drivers by reduc-
ing charging-related electricity costs and the utilities by coordinating
charging schedules at the community level.

While recently there have been a handful of pilot managed charging
programs conducted in the U.S. that are primarily run by electric
utilities, there is currently no unified policy or initiative in place to
encourage or mandate managed charging at the community level. This
is primarily due to the lack of common managed charging open proto-
cols (Smart Electric Power Alliance, 2019). Nonetheless, the increasing
interest from electric utilities in managed charging and the growing
number of compatible charging and electricity infrastructure facilities
ensure a promising future of managed charging schemes at a larger
scale (Smart Electric Power Alliance, 2019).

The remainder of the paper is organized as follows. In Section 2,
we summarize work related to clustering and travel pattern inference
and literature on residential unmanaged and managed EV charging
practices. Then, we give an overview of the contribution of our work.
In Section 3, we use and analyze Pecan Street Inc.’s granular resi-
dential electricity load data of a sample of Austin, TX households in
2018 (Pecan Street Inc., 2020). In Section 4, based on the residential
energy consumption and EV charging patterns of these households,
as well as the rates provided by the local utility’s tariff (Austin En-
ergy, 2020), we compute their actual monthly and annual electricity
costs for several billing scenarios. Section 5 presents a EV charging
optimization framework that minimize energy consumption costs while
adhering to traveling needs, power limits, battery capacity constraints,
and charging flexibility preferences (i.e., AFAP, ALAP, peak-shaving
and valley-filling, and shared DCFC station use). In Section 6, we
obtain residential travel patterns through applying k-means clustering
to real-world household energy consumption data from Pecan Street
Inc. We then integrate these into the optimization models, enabling
direct comparisons between unmanaged and managed EV charging
profiles. Such data-driven analytics and comparisons offer insights into
the benefits of EV charging flexibility and control.

2. Literature review

To characterize residential electricity usage and find the distinctive
profiles between different seasons, a range of studies applied clustering
techniques, particularly k-means, on energy load data (Rhodes et al.,
2014; McLoughlin et al., 2015; Choksi et al., 2020; Nuchprayoon,
2014; Jessen et al., 2022; Amri et al., 2016; Okereke et al., 2023).
The profiles of residential electricity usage can provide valuable in-
formation regarding the daily routines of households (Abreu et al.,
2012; Costa and Matos, 2016). These may imply the travel patterns
of a household that owns a vehicle, including departure and arrival
times at residence and average energy demands associated with travel.
Notably, studies (Movahedi et al., 2023; Zhang and Qian, 2018) have
shed light on the role of electricity/energy consumption as a strong
predictor for travel demand and pattern, while others (Sørensen et al.,
2021) demonstrate that the charging behavior of EV owners is highly
correlated with local traffic volumes, indicative of household travel
patterns.

Several studies have explicitly focused on employing k-means clus-
tering to investigate EV charging behaviors. Comprehensive survey
of machine learning techniques applied to EV charging, highlight the
popularity of k-means clustering for identifying distinct charging pat-
terns (Shahriar et al., 2020). Other studies utilized k-means clustering
to identify and analyze EV charging behaviors (Xydas et al., 2016;
Zhang and Qian, 2018). Xydas et al. (2016) employ a similar k-means
clustering approach to our paper but uses the Davies–Bouldin index
for evaluation, while we utilize the Silhouette Score to determine the
optimal cluster number. Furthermore, Zhang and Qian (2018) apply
k-means clustering to a similar dataset sourced from Pecan Street Inc.,
affirming the applicability and relevance of this method for interpreting
EV charging patterns. In our paper, the analysis of the travel patterns
of households with EVs is integrated into the EV charging optimization
modeling to gain insights and uncover real-world implications.

Building upon this body of literature, it is crucial to understand the
underlying charging practices that shape EV users’ behaviors. There
have been a growing number of studies that have examined EV charg-
ing behaviors under unmanaged and managed charging practices. Un-
managed charging practices include charging ‘‘as fast as possible’’
(AFAP) (Flath et al., 2014; Yoon and Kang, 2017) and ‘‘as late as pos-
sible’’ (ALAP) (Flath et al., 2014). AFAP is an unsophisticated strategy
to charge whenever possible. Once the vehicle is plugged in, it will be
charged at the maximum power level till reaching the battery capacity.
ALAP delays the driving availability of EVs by recommending charging
as late as possible. Under ALAP, EVs will start charging at the latest
time slot available and finish charging right before departure. Results
show that AFAP charging typically takes place during times when grid
loads are higher than average. Thus, AFAP results in higher peak loads
and average costs. ALAP charging, corresponding to delayed charging,
occurs during the late night or early morning hours, which leads to
lower costs and peak loads relative to AFAP. It should be noted that
these two charging practices are generally not considered in the context
of managed charging. Rather, they simply serve as unmanaged charging
strategies and are evaluated as heuristics to compare their effectiveness
against managed charging practices.

On the other hand, managed charging practices are determined
by setting the EV charging problem as a convex optimization one.
A number of studies, including Flath et al. (2014), Yoon and Kang
(2017), Kontou et al. (2017), Sioshansi (2012) and Wu et al. (2020),
propose a charging strategy that minimizes the total charging cost. This
strategy is typically formulated as a linear or mixed-integer program.
These studies show that the minimum cost scheme has been effective in
reducing the average charging cost under a time-of-use electricity tariff.
Moreover, numerous studies (e.g., Yoon and Kang (2017), Wu et al.
(2020), Ioakimidis et al. (2018) and Zhang et al. (2014)) have advo-
cated for the practice of valley-filling and peak-shaving the electric grid
load. This practice aims to enhance the stability of the electric grid load
when EVs are integrated into the power system. A common method to
formulate this practice is to construct a nonlinear programming model
that minimizes the variance of the grid load. Results show that under
such a charging practice, the optimal charging profile would become
a flatter curve by shifting peak-hour charging to late nights or early
mornings.

In addition, the concept of shared charging stations within charging
hubs has emerged as an alternative approach to residential EV charging.
These shared charging stations can not only provide incentives for
prospective vehicle owners to purchase EVs but also help alleviate
common challenges associated with EVs, such as range anxiety (Wood
et al., 2018; Ouyang and Xu, 2022). Several studies (e.g., Huang and
Zhou (2015) and Li et al. (2020)) develop optimization frameworks
that aim to minimize the lifetime cost of shared charging stations and
maximize the driving range of EVs in the setting of workplace charging.
Results support that managed charging of shared charging stations
can effectively decrease the cost of operations under time-of-use rates.
Other researchers (e.g., Ucer et al. (2019) and Buckreus et al. (2021)),
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adopt simulation models to look specifically into direct current fast
charging (DCFC), an increasingly popular choice for a shared charging
station (Xie et al., 2018). While the high charging power of a DCFC
station allows EV drivers to finish charging in a short period of time, a
DCFC charging station is usually characterized by high peak load and
low utilization, which could result in high capital and electricity costs
compared to other power rates of shared charging stations (Muratori
et al., 2019; Owens and Dwyer, 2015).

The existing literature on managing EV charging schedules has pre-
dominantly focused on minimum cost optimization without extensively
exploring the impact of different charging preferences. This research
gap motivated our study, which aims to address this limitation and shed
light on the broader implications of managed charging schedules. Our
work highlights the flexibility of managed charging schedules when
they are designed to be responsive to real-world time-of-use electricity
rates, considering not only cost optimization but also various secondary
objectives.

To fill this important research gap, we examine the effects of dif-
ferent charging preferences on EV charging profiles and evaluate their
performance against a set of comprehensive measures. By going beyond
the traditional objective of cost minimization (Cheng and Kontou,
2023), our study explores how alternative charging strategies, such
as charging AFAP, ALAP, peak-shaving and valley-filling, and shared
DCFC station use, impact the charging patterns of EVs. We investigate
how these preferences influence the temporal distribution of charging
events, the peak charging power, the overall grid load, and the degree
of flexibility available to EV drivers.

3. Data description

We use the Pecan Street dataset, which hosts one-minute residential
energy use data for households that own and operate EVs in the year
2018 in Austin TX. The summation of the electricity use of all 9
households is shown in Fig. 1. For the dataset, the following hold:

• The solar power profile corresponds to power generation via
photovoltaic arrays.

• The grid load profile with a positive y-value suggests drawing
power from the electricity grid, while a negative value means
feeding power generated by their solar panels to the grid. In
Fig. 1, the grid load is negative when solar power reaches its peak
value. It can be inferred that the negative value of grid load is due
to solar power’s net metering.

• The original charging profile with a positive value suggests that
the EV is charging.

We focus on households’ expenditure as reflected in their electric-
ity bills in this research. The monthly electricity bills of households
heavily depend on the electricity tariff offered by the utility service
territory of the residence. We leverage the flat rate and the time-of-
use electricity rate schedule from the City of Austin Fiscal Year 2021
Electric Tariff (see Table A.6 in Appendix). The flat rate schedule is
currently implemented while the value-of-solar rate, time-of-use rate,
and EV 360 charging rate schedules are pilot programs. Specifically, the
time-of-use power supply charges (under the time-of-use rate schedule)
can be used to substitute the power supply adjustment rates (under
the flat rate schedule) ‘‘for a term of no less than 12 consecutive
billing cycles’’ (Austin Energy, 2020). The time-of-use power supply
charges for residential energy are different in summer and non-summer
seasons, weekdays and weekends, and on-peak and off-peak hours.
Similar variations hold for the EV 360 charging rates. Fig. 2 presents
these cost functions. It should be noted that the off-peak rate for
charging is $0 because the pilot program intends to offer unlimited
off-peak EV charging at home. Given that both the time-of-use power
supply charges and PEV charging station charges lie entirely in off-
peak hours during weekends and, thus, there is no price variation on
weekends, this paper only focuses on the power supply charges on

Fig. 1. Indicative grid load, solar power, and EV charging power profiles on two
summer days for the households’ sample.
Source: Pecan Street Inc. Dataport (Pecan Street Inc., 2020).

weekdays when formulating cost-minimizing optimization models for
EV charging management that can make a difference. The metered
kilowatt-hour output of the household’s photovoltaic system multiplied
by the value-of-solar rate can serve as credit applicable to offset the
household’s monthly electricity bill. Since the value-of-solar rate is
constant and will not have an impact on the optimal charging profiles,
solar credits are not considered in the optimization models.

A set of exogenous parameters related to EVs and charging power
constraints are expected to impact charging and its electricity bill.
Specifically, battery capacity is assumed 40 kWh, similar to a 2019
Nissan Leaf’s. Note that the EV type discussed in this paper is lim-
ited to Battery Electric Vehicles (BEVs). The charging efficiency is
set at 77% (U.S. Department of Energy, 2020). We also assume that
the households install Level 2 charging equipment since EV owners
commonly install such chargers at home (Lee et al., 2020). Level 2
charging with units operating at 30 Amps is able to deliver 7.2 kW
of power (U.S. Department of Energy, 2021). While 7.2 kW charging
power is the input parameter to our base scenario, we also consider
scenarios under different charging powers. Therefore, optimal profiles
with Level 2 charging operating at 16 Amps (3.3 kW) are compared
with the base scenario in the sensitivity analysis section (Webasto,
2021). In addition, we consider DCFC for the shared charging scenario
with one 50 kW port (Ucer et al., 2019). Endogenous parameters, such
as the households’ travel patterns, are estimated using Pecan Street
power profile data. Both exogenous and endogenous parameters will
serve as inputs to our optimization framework.

4. Empirical analysis results

Before formulating a managed charging model for minimizing
household electricity costs, we are interested in calculating electricity
bills for existing residential energy consumption with electric vehicles,
under the new electricity rate plans. This analysis emphasizes the
need to employ managed charging schemes since without controlled
charging or charging behavior changes, household electricity bills
will most likely increase. An example of a household electricity bill
calculation based on the applicable utility rates in the Austin Electric
Tariff is given in Table 1. The calculation is performed on an indicative
summer month (June 2018) of a randomly selected household. During
this month, the household’s total energy consumption is 1604 kWh,
and 199 kWh out of 1604 kWh is used for EV charging. 9.98% of EV
charging takes place during on-peak hours and 10.87% of residential
energy is consumed during on-peak hours. The 15-minute interval of
maximum EV charging demand of the month is 3.42 kW.
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Fig. 2. Time-of-use cost functions (Austin Energy, 2020).

There are four pricing scenarios we take into consideration. The
first is the default flat rate schedule when EV charging is consid-
ered as part of the residential loads. Only the total residential energy
consumption matters in this scenario. The resulting total bill is only
$175.67, the least among the four scenarios. The second scenario is
the flat rate schedule when there is a separate meter installed for
EV charging. The resulting total bill is $187.36, the second-largest
among the four. The residential energy consumption (excluding EV
charging) and the distribution of EV charging over the hours of the
day are the determining factors of the total bill. The third scenario is
the time-of-use rate schedule when EV charging is considered a part
of the residential services. The resulting total bill is $180.75, around
3% higher than the default flat rate schedule. The time of residential
electricity consumption directly affects the total bill. The last scenario
is a time-of-use rate schedule when there is a separate meter for the EV
charging station. The resulting total bill is $191.81, the most expensive
of the four scenarios. Both the time-of-day variation of the residential
energy consumption (excluding EV charging) and the EV charging time
matter since billing is calculated based on two different time-of-use
electricity cost functions.

The fact that the total bill is higher in the case of a separate EV
charging meter can partly be ascribed to the $30 monthly basic charges.
Nonetheless, even without this $30 basic charge, the total bills with
a separate EV charging meter are still higher than those without a
separate one. Would installing a separate EV charging meter lead to a
higher bill? We argue that it will probably not. Without any behavioral
changes or charging management strategies, 10% of the EV charging
takes place during on-peak hours in this indicative example. In fact,
the average percentage of on-peak hour EV charging for all households
reaches 17.72% (Pecan Street Inc., 2020). Households can potentially
shift their behavior and recharge during off-peak hours, thus cutting a
major portion of their total bills.

We proceed with using Pecan Street household residential energy
data under the four electricity tariff scenarios. Fig. 3 shows the simu-
lated electricity billing results under these pricing scenarios in the year
2018 for the households with EVs. Installing a separate meter for EV is
on average more expensive than including EV as part of the residential
energy consumption. This result is expected since in 2018 households
were charged based on a flat electricity rate schedule, and the bill was
affected by the total energy consumed. In accordance with existing
literature, residents are expected to adjust their EV charging behavior
under a time-of-use EV charging rate (Qiu et al., 2022). We formulate
a managed EV charging model in the following section anticipating
a response to the hourly changes in electricity rates. The objective

is to minimize the cost of electricity bills when a separate meter is
installed for the EV charging station at home. Households would realize
minimum cost and electricity when shifting their charging behavior
under the time-of-use rate through our optimization framework.

5. Methodology

5.1. Problem description

Our analysis results shown in Section 4 suggest that despite that the
households have the lowest electricity bill under the flat rate schedule,
we set out to measure how much we can further reduce the households’
EV charging electricity costs by shifting the EV electricity consumption
to off-peak hours. This reduction would only be possible under a time-
of-use rate schedule, which is a common rate scheme for EV charging
today (Chakraborty et al., 2019). We intend to specifically investigate
the case when a separate meter for EV charging is installed. The
ultimate goal of our proposed computational process is to demonstrate
charging savings that can be accrued through a managed charging pro-
tocol for EVs and the flexibility offered to meet additional management
preferences. We set as our main goal the minimization of electricity
cost. We make assumptions that are essential for determining modeling
parameters associated with EV driving and charging operations, which
are presented below.

• Once the EV driver arrives at home, the vehicle is available to be
plugged in and charge.

• The energy needed for the next trip of each household is a
parameter calculated based on the driver’s next trip driving needs.

• Every household has only one EV.
• During each time of day, the charging power of an EV is a
constant parameter (based on the assumed power level of the EV
charger).

• Every household makes only one trip a day (e.g., commuting
round trip) and only charges once at home.

The process is initiated by identifying the set of inputs, estimating
parameters from Pecan Street data (Pecan Street Inc., 2020), and
formulating the optimization framework that meets the electricity bill
minimization objective. Fig. 4 is a graphic representation of the com-
putational workflow.

The computational process is initiated by identifying classes of
EV arrival and departure times to and from residences based on the
residential power profile data. Then, under the assumed EV battery size
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Fig. 3. Comparison of variation of annual household electricity bills, including EV charging, under four different electricity rate schemes.

Fig. 4. Computational workflow of the presented analysis.

and charging efficiency parameters from the existing literature, Pecan
Street power profile data are used to estimate the travel patterns of
each household’s EV through k-means clustering. The results from the
aforementioned processes, along with the assumed power bounds, serve
as parameters in the convex mathematical program that is formulated
to minimize each household’s electricity bill. The results show the
centrally optimized EV charging profiles.

5.2. Clustering and travel pattern inference

To characterize the energy use of households, we first find the
most representative daily total electricity demand profiles and daily EV
charging profiles for each of the households with EVs through k-means
clustering. Note that the days with no power consumption are dropped,
and the raw 1-minute power data (both electricity demand and EV
charging) are aggregated to 10-minute power data, which will later
serve as an input to our optimization model. Then, the results of the
two clustering are used to infer the households’ arrival and departure
times, and daily travel energy demand, respectively.

5.2.1. K-means clustering
The k-means clustering algorithm is implemented using the KMeans

function in the scikit-learn Python library (Pedregosa et al., 2011) and
follows the description in Hartigan and Wong (1979). We apply the

algorithm on the daily profiles of both the total electricity demand and
the EV charging demand for each household.

In the initial step, this algorithm selects k daily profiles (either
the total electricity demand or the EV charging demand) as the ini-
tial cluster centroids. Specifically, we adopt the ‘‘greedy k-means++’’
initialization method to speed up convergence by making the initial
cluster centroids more distant from each other (Arthur and Vassilvitskii,
2007)

Once the distances between each daily profile and the cluster cen-
troids have been computed, we proceed to allocate each daily profile to
a cluster based on its distance from the nearest centroid. Subsequently,
the updated cluster centroids are determined by calculating the average
of the daily profiles within each cluster. We continue this process
iteratively until the distances between the daily profiles and their
respective cluster centroids are minimized (Arthur and Vassilvitskii,
2007). The objective of k-means clustering can be written as:

D…
i=1

min
�jÀC

(Òxi * �jÒ2)

where xi is the ith daily profile, �j is the centroid (or mean) of the daily
profiles in the jth cluster, and C is the set of disjoint clusters with size
k.
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Table 1
Example of an electricity billing scenario of an Austin household in June 2018.
Default flat rate<

kWh per Tier Charges

Customer’s charge $10.00
Tier 1 500 $14.01
Tier 2 500 $29.16
Tier 3 500 $39.07
Tier 4 104 $9.68
Tier 5 0 $0.00
Community benefit charges $8.27
Regulatory charge $16.18
Power supply adjustment charge $49.35

TOTAL BILL $175.67

Flat rate with separate meters for EV charging<

kWh per Tier Charges

Customer’s charge $10.00
Tier 1 500 $14.01
Tier 2 500 $29.16
Tier 3 405 $31.60
Tier 4 0 $0.00
Tier 5 0 $0.00
Community benefit charges $7.25
Regulatory charge $14.17
Power supply adjustment charge $43.23
EV charging basic charges $30.00
EV charging power supply charges $7.95

TOTAL BILL $187.36

Time-of-use rate<

kWh per Tier Charges

Customer’s charge $10.00
Tier 1 500 $14.01
Tier 2 500 $29.16
Tier 3 500 $39.07
Tier 4 104 $9.68
Tier 5 0 $0.00
Community benefit charges $8.27
Regulatory charge $16.18
Time-of-use power supply charges $54.43

TOTAL BILL $180.75

Time-of-use rate with separate meters for EV charging<

kWh per Tier Charges

Customer’s charge $10.00
Tier 1 500 $14.01
Tier 2 500 $29.16
Tier 3 405 $31.60
Tier 4 0 $0.00
Tier 5 0 $0.00
Community benefit charges $7.25
Regulatory charge $14.17
Time-of-use power supply charges $47.68
EV charging basic charges $30.00
EV charging power supply charges $7.95

TOTAL BILL $191.81

For each household n, we employ k-means clustering to partition
{P d

n,t}d , the daily total electricity demand profiles, into k distinct clus-
ters among all D samples where d À {1, 2,… ,D}. The centroid of the
most frequent cluster, Dn,t, is considered the most representative daily
electricity demand profile of household n. Similarly, for each EV n, we
employ k-means clustering to partition {Xd

n,t}d , the daily EV charging
power profiles, into k distinct groups among allD samples. The centroid
of the most frequent cluster, Cn,t, is considered the most representative
daily charging power profile of EV n.

It is worth noting that the number of clusters k is determined before
clustering. We select the optimal k by finding the one that leads to
the highest mean Silhouette Coefficient over all samples. This score is

defined as:

SC = 1
D

D…
i=1

bi * ai
max{ai, bi}

where ai is the mean distance between the ith sample and all other
samples within the same cluster and bi is the mean distance between the
ith sample and all other samples in the next nearest cluster (Rousseeuw,
1987).

5.2.2. A heuristic method for household travel pattern inference
The two clustering procedures provide us with the most representa-

tive daily electricity demand profile and the most representative daily
EV charging profile. We introduce a heuristic approach to estimate
the travel patterns of each household, including the arrival–departure
times and the daily travel energy demand. These parameters related to
travel patterns are crucial inputs for the optimization model outlined
in Section 5.3.

Our approach leverages the characteristics of U.S. households’ elec-
tricity load profiles during winter, which typically exhibit a morning
peak and an evening peak. We can associate these peaks with household
arrivals and departures, respectively (U.S. Energy Information Adminis-
tration, 2021). Considering that this paper focuses solely on weekdays,
we can safely assume that the weekday arrival and departure times
do not vary substantially between winter and summer, as indicated
by National Household Travel Survey (NHTS) data (U.S. Department
of Transportation, Federal Highway Administration, 2017). Moreover,
multiple studies have highlighted strong correlations between house-
hold energy consumption and travel patterns (Zhang and Qian, 2018;
Sørensen et al., 2021; Movahedi et al., 2023).

Therefore, a ‘‘morning and evening peak’’ heuristic method is em-
ployed for estimating households’ arrival and departure times for both
summer and winter weekdays. Specifically, for each household, we use
the difference between the original most representative daily electricity
demand profile and its corresponding 6-day moving averages to identify
the morning peak and evening peak. The estimation of the daily travel
energy demand is more straightforward. It is directly calculated from
the summation of the most representative daily charging energy profile,
which can easily converted from the most representative daily charging
power profile obtained from the clustering procedure.

The mathematical explanation of the two heuristic methods for
travel pattern estimation are outlined below:

• For each household n, we calculate the difference dn,t betweenDn,t
and its one-hour moving averageMn,t. Then, the time of departure
tdn corresponds to the time of the largest dn,t before 12 P.M., while
the time of arrival tan corresponds to the time of the largest dn,t
after 12 P.M.

• Similarly, for each EV n, we calculate the most representative
daily charging energy profile ÉCn,t from Cn,t by adjusting the unit
from kW to kWh considering that each time slot t corresponds
to 10 min. Finally, Dn, the estimated energy needed to meet
the daily vehicle miles traveled by household n, is obtained by
summing up ÉCn,t over T , the total number of time slots in a
24-hour day.

5.3. Optimization model formulation

Our computational workflow features a charging management op-
timization scheme based on the convex mathematical programming
framework that meets system-wide objectives by minimizing the elec-
tricity cost. The model determines the time-of-use managed charging
protocol and its objective is subject to (a) battery capacity constraints,
(b) grid to vehicle power constraints, (c) EV energy demand constraints,
and (d) charging flexibility. As shown in Section 4, electricity bills are
higher when installing a separate meter for EV charging, if the charging
behavior of the drivers does not shift accordingly or is not managed



Transport Policy 149 (2024) 122–138

128

T. Ye et al.

Table 2
Variables and parameters used in our optimization framework.
Notation Description Notation Description

Indices
N Set of EVs/households T Set of time slots in a 24-h day
Tn Set of time slots, i.e., the time periods of each EV n parked at

home
t Time slot in a 24-h day

Parameters
B Battery capacity of EV (kWh) Dn Energy needed of EV n for completing the next trip
cEV (t) Time-of-use electricity cost per unit of EV charging energy ($/kWh) cRE (t) Time-of-use electricity cost per unit of residential energy use

($/kWh)

An Average of the summation of the max and min power consumption
of a household n, set as a goal for valley-filling and peak shaving

Pn,t Power consumption of household n during time slot t (kW)

pn Charging power to the EV (kW) Q(t) Set of time slots prior to time t, t À Tn
s< The number of the public DCFC station (default is 1) tan Arrival time of the EV n
tdn Departure time of the EV n ⌘ Charging efficiency
⌧ Length of each time slot t, i.e., 10 min

Variables
an,t Binary decision variable: whether an EV n is charging an each time

slot t
xn,t Decision variable: power drawn from the grid by an EV n each time

slot t (kW)

properly. To measure the benefits that households accrue when they
optimize their charging behavior under time-of-use EV charging tariffs,
we construct an optimization model to minimize the total electricity
costs for all households by controlling the energy charged from the grid
to EVs for each interval t. The modeling nomenclature is provided in
Table 2.

The objective function describes a scenario in which there is a
separate residential meter circuit attached to an in-home (garage or
personal parking spot-installed) or a shared EV charging station. Thus,
cEV (t), the time-of-use electricity rate for EV charging, is applied to
the power drawn from the grid by an EV while cRE (t), a different
time-of-use electricity rate, is used for the rest of the residential loads.
The lower and upper boundaries of the energy charged to each EV’s n
battery is denoted as an inequality that needs to hold at each interval,
as shown in constraints set (2). Charging power drawn from the grid
xn,t to recharge an EV’s battery has upper and lower bounds that
should not be exceeded during each interval, as shown in constraints set
(3). Constraints set (4) denotes that at the time of the vehicle’s daily
departure from home, the energy charged to the EV should be equal
to the energy needed to conduct their daily vehicle miles traveled,
essentially accounting for the driver’s travel patterns.

min
…
nÀN

…
tÀT

�
cEV (t) � xn,t + cRE (t) � Pn,t

�
� ⌧ (1)

s.t. 0 f …

t®ÀQ(t)
⌧ � xn,t® f 0.9 � B, ≈n À N ,≈t À Tn, (2)

0 f xn,t f pn � ⌘, ≈n À N ,≈t À Tn, (3)
…
tÀTn

⌧ � xn,t = Dn, ≈n À N . (4)

x = argmin
…
nÀN

…
tÀT

t � xn,t (5)

x = argmax
…
nÀN

…
tÀT

t � xn,t (6)

x = argmin
…
nÀN

…
tÀT

�
xn,t + Pn,t * An

�2 (7)

An =
max (Pn) + min (Pn)

2 ,≈n À N (8)

min
…
nÀN

…
tÀT

�
cEV (t) � xn,t � an,t + cRE (t) � Pn,t

�
� ⌧ (9)

s.t.
…
nÀN

an,t f s<, ≈t À T (10)

…
tÀTn

⌧ � xn,t � an,t = Dn, ≈n À N . (11)

cEV (t) =

h
n
n
n
n
l
n
n
n
nj

h
n
l
nj

0.4 2 : 00 P.M. - 7 : 00 P.M.

0 7 : 00 P.M. - 2 : 00 P.M.
June–September

h
n
l
nj

0.14 2 : 00 P.M. - 7 : 00 P.M.

0 7 : 00 P.M. - 2 : 00 P.M.
October–May

(12)

cRE (t) =

h
n
n
n
n
l
n
n
n
nj

h
n
l
nj

0.06605 3 : 00 P.M. - 6 : 00 P.M.

0.03025 6 : 00 P.M. - 3 : 00 P.M.
June–September

h
n
l
nj

0.03139 3 : 00 P.M. - 6 : 00 P.M.

0.02982 6 : 00 P.M. - 3 : 00 P.M.
October–May

(13)

Our optimization model not only achieves the driver’s cost minimiza-
tion objective but also meets individual households’ and the commu-
nity’s preferences (Flath et al., 2014; Yoon and Kang, 2017; Kontou
et al., 2017; Sioshansi, 2012; Wu et al., 2020; Ioakimidis et al., 2018;
Zhang et al., 2014; Wood et al., 2018; Xie et al., 2018) by adopting
four secondary objectives: charging AFAP when the user arrives at
home, charging ALAP before the user leaves, charging for valley filling
and peak shaving residential load, and charging in a shared DCFC
station defined by constraints (5), (6), (7)–(8), and (9)–(10). The AFAP
case and the ALAP case serve entirely the needs of the drivers, which
aim to charge when is the most convenient for them and allow their
time to be used flexibly even though high peak loads during peak
charging hours might potentially be detrimental to the distribution
system operators. From the system’s perspective, a uniform grid power
profile would be beneficial for the stability and reliability of the utility
grid, which is ensured by Eq. (7). This aims to flatten the net load’s
peaks and valleys by minimizing the squared difference between the
summation of the residential power demand consumed and the power
charged to the EVs and An for each interval. An is the average of
the maximum and minimum of the residential power consumption, as
shown in (8). Besides, the scenario where a shared DCFC station is
installed in the community, instead of installing an EV charging station
in each household, is considered as shown in (9). Under this shared
charger scenario, (9) would substitute (1) as the objective function.
The model would be subject to the same battery capacity and charging
power constraint, in addition to the shared charging station capacity
constraint and the updated energy demand constraint, as shown in
constraint sets (10) and (11), respectively. The model is solved using
Gurobi (version 10.0.1) (Gurobi Optimization, LLC, 2022), coded in
Python (version 3.9.13).
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Fig. 5. The average of the electricity demand clusters in (a) summer weekdays and (b) winter weekdays, the charging power clusters in (c) summer weekdays and (d) winter
weekdays of an indicative household using data from: Pecan Street Inc. Dataport.

6. Results and discussion

We apply the k-means clustering method and the charging man-
agement approaches to optimize the charging profiles of the share of
households that own electric vehicles in Austin, Texas (Pecan Street
Inc., 2020). We select the k-means clustering method over alternative
approaches, such as k-medoids, based on its consistent and superior
performance across a range of established clustering metrics. The Sil-
houette Score, Calinski–Harabasz Index, and Davies–Bouldin Index are
widely recognized measures for evaluating clustering quality. Higher
values for the Silhouette Score and Calinski–Harabasz Index indicate
better clustering quality, while lower values for the Davies–Bouldin
Index indicate better clustering quality. The Silhouette Score is defined
in Section 5.2.1, and the Calinski–Harabasz Index and Davies–Bouldin
Index follow literature definitions (Cali´ski and Harabasz, 1974; Davies
and Bouldin, 1979). To provide a comparative analysis, we assess the
performance of both the k-means clustering and k-medoids clustering
methods using these metrics, and the results are presented in Table A.7
in Appendix. Travel patterns, the utility’s electricity rate, and the
charger type are essential factors that will influence the charging man-
agement outcomes. Thus, we conduct sensitivity analysis to evaluate
the robustness of the model’s outcomes.

6.1. Residential travel patterns analysis

Each of the households has unique travel patterns including the
predicted charging time window (i.e., the time between the arrival
to and departure from residences) and charging demand to satisfy
the energy needed for the next trip. Taking an indicative household
as an example, shown in Fig. 5, the optimal clusters of electricity
demand profiles for summer and winter weekdays are found to be
two, while the optimal charging power profiles of summer and winter
weekdays are determined to be three. The summer electricity demand
of Cluster 1 (Fig. 5(a) left panel) contains 60 daily profiles while that

Table 3
EV travel patterns of the average modeled households.

tan tdn Dn (kWh)

Summer 2 : 30 P.M. 8 : 10 A.M. 9.78
Winter 5 : 20 P.M. 7 : 00 A.M. 7.83

of Cluster 2 (Fig. 5(a) right panel) contains 26 daily profiles. Thus,
Cluster 1 is the most representative daily electricity demand profile
on summer weekdays of this particular household. The same logic is
applied to generate the outcomes presented in the rest of the figures.
The cluster averages of Cluster 1 in Figs. 5(b)–5(d) are, respectively,
the most representative daily electricity demand profile on winter
weekdays, the most representative daily EV charging profile on summer
weekdays, and the most representative daily EV charging profile on
winter weekdays of this indicative household.

According to Section 5.2.2, the most representative daily electricity
demand profiles are processed to calculate the arrival time and depar-
ture time while the most representative daily EV charging profiles are
used to calculate the charging energy demand at home. Table 3 presents
the estimated EV travel patterns on the weekdays of summer and winter
for the households. Zhang et al. (2014) analyzes the vehicle stated
travel behavior data from the 2009 National Household Travel Survey
(NHTS) and suggests that the peak arrival at a residence occurs around
5 : 00 P.M. and the peak departure occurs at around 7 : 00 A.M.. This
aligns our results with the actual travel patterns of U.S. households. A
share of the households may not recharge their electric vehicles during
the sample days we selected, which will not influence the management
of charging profiles of the rest of the households.

6.2. Optimal charging schedule

Applying the optimization model to manage the charging schedule
of households, we present the comparison of the aggregate EV charging
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Fig. 6. EV charging schedule and grid load under the observed behavior and four alternative scenarios of managed charging (cost-minimizing charging scheme and four secondary
objectives) on a summer weekday ((a) and (c)) and a winter weekday ((b) and (d)).

Table 4
Aggregate metrics of secondary charging management objectives on a summer weekday and a winter weekday (values in parenthesis).
Metrics Scenario 1 Scenario 2 Scenario 3 Scenario 4

Average home profile costs ($) 2.20 (0.60) 2.20 (0.60) 2.20 (0.60) 2.20 (0.60)
Max charging power peak (kW) 4.34 (4.34) 4.34 (4.34) 1.59 (0.87) 38.50 (38.50)
Duration of charging power peak (min) 113.75 (82.22) 113.75 (82.22) 10.00 (10.00) 100.00 (60.00)
Peak load of the community (kW) 66.75 (50.27) 36.46 (36.36) 36.46 (14.92) 63.26 (49.89)
Average share of time charging over dwell time (%) 12.60 (11.08) 12.60 (11.08) 70.06 (88.16) 2.20 (2.05)
Average time that charging starts from home arrival (min) 82.50 (112.22) 915.00 (743.33) 82.50 (112.22) 460.00 (432.22)
Average time that charging stops from home departure (min) 716.25 (631.11) 0.00 (0.00) 0.00 (0.00) 31.25 (217.78)
Charger daily utilization (%) 7.56 (6.25) 7.56 (6.25) 49.38 (50.08) 12.50 (10.42)

profiles and grid load under the original charging plan and the optimal
plan for electricity cost minimization while enforcing numerous sec-
ondary objectives (i.e., AFAP, ALAP, leveling grid power, and shared
charging station) in Fig. 6. Figs. 6(a) and 6(b) illustrate the aggregated
charging profiles in summer weekdays and winter weekdays under the
original plan and four alternative scenarios. The charging behaviors
captured under the original plan in the summer determine that the
majority of charging takes place from 2 P.M. up until the morning of the
next day. As for winter weekdays, charging generally occurs during the
daytime and in the early evening from 7 A.M. to 8 P.M. in the original
plan, which coincides with on-peak electricity demand hours. Avoiding
charging during on-peak hours can decrease the electricity costs of the
community. This is exactly what is achieved by all the optimal charging
schemes implemented. Specifically, optimal charging behaviors under
all four charging management scenarios are scheduled before 2 P.M. or
after 7 P.M. All of the four optimal charging practices completely avoid
on-peak hours charging. Therefore, the optimal charging schedule re-
duces the aggregated daily electricity costs from $32.39 to $19.80 on
a summer weekday and $10.18 to $5.67 on a winter weekday.

Although both AFAP and ALAP can decrease the electricity costs
and ensure that households exploit the dwell time flexibility offered
at home to charge their EVs while meeting their daily driving needs,
they do not necessarily follow a scheduling practice that can contribute
to the grid’s stability and reliability. From Figs. 6(c) and 6(d), even
more peaks occur during the charging periods. The AFAP scenario
results in a significant peak in the evening from 7 P.M. to 9 P.M.,
both in summer and winter. Similarly, the ALAP scenario results in
several grid power peaks in the morning in summer and a remarkable
peak in the morning in winter. The peak-shaving and valley-filling
management, which aims to flatten the grid load curve, could mitigate
the potential risk of high peak loads caused by EV charging. The solid
green curves in Fig. 6 showcase the charging profiles and the grid load
trends under the peak-shaving and valley-filling management. Charging
is more uniformly distributed across all the available managing periods
when the EVs are connected to the chargers. The peak in the afternoon
and evening and the valley at night and in the morning are mitigated
by this management strategy, as shown in Figs. 6(c) and 6(d).
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Fig. 7. Boxplots for (a) the share of time charging over dwell time, (b) the time that charging starts from home arrival, and (c) the time that charging stops from home departure
on a summer weekday.

Fig. 8. Boxplots for (a) the share of time charging over dwell time, (b) time that charging starts from home arrival, and (c) time that charging stops from home departure on a
winter weekday.

As for the scenario when only one public DCFC station is installed in
the whole community with sharing capabilities, the resulting optimal
charging periods are much shorter compared to the other three sec-
ondary objectives, allowing households for even more time flexibility
over their vehicles. The shorter charging period is a result of the higher
level of charging power (50 kW versus 7.2 kW) offered by the DCFC.
However, the peak load of DCFC is an apparent drawback of this
charging practice. Figs. 6(c) and 6(d) indicate that while the grid load
under DCFC is certainly higher than the one under the peak shaving and
valley filling scheme, it is not much different from the grid loads under
the AFAP and the ALAP case, especially the former. This is because
charging under the AFAP case coincides with the increased residential
load from other units in the late afternoon when the household vehicles
return home. Additionally, one should not ignore the high demand
charge associated with the DCFC station, which may not be billed
for residential electric service. According to the electricity tariff, the
demand charge depends on the monthly max grid usage in a fifteen-
minute interval. A 10 kW bound of demand charge is typically set
and the demand charge will be billed if the peak demand exceeds
this bound (Austin Energy, 2020). If the demand charge is taken into
consideration, the daily electricity for the DCFC scenario will go up
to $25.17 and $11.05 on a summer weekday and a winter weekday,
respectively. Under such a scenario the optimal electricity cost of
operation even exceeds the original cost. Therefore, the high demand
charge of a DCFC station is an important factor to consider when the
residential community is comparing a shared public DCFC station with
lower-level EV chargers at individual households. Moreover, the higher
operation and infrastructure cost of the shared DCFC station should
be taken into consideration. Installing one public DCFC station might
be more economically viable for a larger community where costs can
be distributed between a greater share of residential units and their
electric vehicle drivers.

Table 4 summarizes the trade-offs of optimal charging schedules
under each scenario. The average daily home profile costs are the
same in all 4 scenarios, further illustrating that all 4 scenarios reach

optimality and achieve cost minimization. The max charging power
peak per day of each household is primarily affected by the power level
of the charger. The max charging power peaks of scenarios 1, 2, and 4
are close to or equivalent to their respective power levels after taking
power efficiency into consideration (5.5 kW for level 2 charging and
38.5 kW for DCFC). These 3 scenarios aim to utilize the maximum level
of charging power available whereas scenario 3 is designed to lower
the max charging power peak. The peak shaving effect of scenario 3 is
evident as scenario 3 also has the minimum value in the duration of
charging power peak and the average peak load for the community. In
comparison, scenarios 1, 2, and 4 have at least 100 continuous minutes
staying at the charging peak power during a day, and the average
community peak loads of scenarios 1 and 4 are over 60 kW on a summer
weekday and over 49 kW on a winter weekday. It might be surprising
that the average community peak load of scenario 2 is close to that of
scenario 3. However, this is reasonable as we investigate further the
optimal schedule of scenario 2: the majority of the charging occurs
during the late night and early morning when the residential grid load
is usually low.

The share of time charging over dwell time is a measure of flexibil-
ity. Scenario 4 gives drivers the highest degree of flexibility as it only
requires around 2% of charging time over dwell time on both a summer
weekday and a winter weekday. According to Figs. 7(a) and 8(a), the
degree of flexibility of scenario 4 is the least variable among the four
scenarios. Scenarios 1 and 2 also allow the drivers for a high level of
flexibility as both scenarios occupy less than 13% of the household
vehicle’s dwell time for charging. However, this level of flexibility can
vary by households, where the share of time charging over dwell time
range from almost 0% to close to 30% on both a summer weekday
and a winter weekday. Relatively, scenario 3 provides the least level
of flexibility as the charging time is spread over the dwell time in
order to achieve the peak shaving and valley filling goal. The share
of time charging over dwell time can vary from 70% to more than 90%
on both a summer weekday and a winter weekday. In addition, the
time that charging starts from home arrival and the time that charging
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Fig. 9. Sensitivity analysis on time of arrival and time of departure when (a) charging AFAP on a summer weekday, (b) charging ALAP on a summer weekday,(c) charging AFAP
on a winter weekday, and (d) charging ALAP on a winter weekday.

stops from home departure can measure the ‘‘convenience’’ of each
scenario. Convenience could suggest that other trips can be added in the
commuting trip prolonging the commuting time and impacting either
the arrival at home in the evening hours or the departure from home
in the morning hours. According to Figs. 7(b), 7(c), 8(b), and 8(c), the
level of convenience is highly variable in general on both a summer
weekday and a winter weekday. This can be explained by the fact that
the metrics that measure convenience depend highly on the commute
time, which differs by household. The results suggest that there is a
trade-off between the time that charging starts from home arrival and
the time that charging stops from home departure. While scenario 2
provides the highest level of convenience before the start of charging
after the driver arrives at home, the time that charging stops from home
departure under scenario 2 is 0 on average, indicating that the drivers
cannot depart until the very last minute. In contrast, scenario 1 only
provides limited free time before charging begins but offers the highest
level of convenience after charging stops. As for scenario 3, the level of
convenience is the least among the four scenarios, which is consistent
with the measures of the level of flexibility. The level of convenience
under scenario 4 is highly varied by households. An explanation for
this significant variability is that only one or limited number of EVs
can charge at the same time under scenario 4. Thus, households that
charge at a later time slot are likely to have lower levels of convenience.
Finally, the charger utilization over 24-h exhibits a similar pattern to
that of the measure of flexibility. A noticeable difference is that scenario
4 has higher charger utilization compared to scenarios 1 and 2. This
may be due to the fact that the same public charger is shared by
multiple households one at a time in scenario 4.

6.3. Sensitivity analysis

Time-of-use electricity price, travel patterns of drivers, as well as the
charger’s power level, are expected to influence the optimal residential
charging scheduling. The following section conducts sensitivity analy-
ses to evaluate the robustness and feasibility of the modeling outcomes
under the uncertainty of the aforementioned parameter.

6.3.1. Sensitivity analysis: Travel patterns
Travel patterns, including the arrival and departure times and the

demand for travel energy, define the time window available to manage
charging behaviors and the volume of energy needed to complete
charging. Specifically, travel patterns of the households are key in-
fluencing factors of the charging schedule under the AFAP and ALAP
scenario. Figs. 9 and 10 present a sensitivity analysis of the travel
patterns and aim to determine the effects of variations in travel pat-
terns on the optimal charging schedules under the AFAP and ALAP
scenario. All of the scenarios under different travel patterns reach their
respective optima. Fig. 9(a) demonstrates the sensitivity analysis on
the arrival time. As the arrival time of the households’ vehicles shifts
from two hours earlier to two hours later than the estimated arrival
time, it is apparent that the AFAP optimal charging schedules shift
accordingly. Despite the shifts in scheduled charging time, the shapes
of the optimal charging schedules are similar. Similar shifts in optimal
charging schedule can be seen in Fig. 9(b), where a sensitivity analysis
is conducted on the departure time. Under the ALAP case, the charging
time is dependent on the departure time of the households. Thus, as
the departure time shifts two hours later than the estimated departure
time, the optimal charging schedules shift accordingly.
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Fig. 10. Sensitivity analysis on the energy volume for travel when (a) charging AFAP on a summer weekday, (b) charging ALAP on a summer weekday, (c) charging for valley
filling and peak shaving grid load on a summer weekday (d) charging for valley filling and peak shaving grid load on a winter weekday, (e) charging AFAP on a winter weekday,
and (f) charging ALAP on a winter weekday.

In real-life scenarios, the actual energy demand for daily household
travel, which is an input to our proposed optimization framework,
might deviate from our estimated energy demand obtained from the
average of the household’s most representative EV charging profile.
To further test the robustness of our model a sensitivity analysis is
conducted, examining various energy demand levels.

The level of energy volume cannot exceed 90% of the battery
capacity since the model assumes that only one trip per day is made
by every household, and every household only charges once at home.
Empirical evidence shows that home charging is preferred by current
EV adopters and could be one of the cheapest and most convenient
charging options (Hardman et al., 2018). Fig. 10 presents the optimal

EV charging schedules of low demand (half of the base case demand),
base demand, and high demand (double of the base demand but less
than the capacity of the vehicle battery) under secondary objectives
1, 2, and 3. It can be observed that the optimal charging schedules
under all three energy levels are able to preserve the optimal cost by
scheduling EV charging during off-peak hours. As the charging energy
volume increases, the charging curve has greater peaks. In addition, the
profiles of the optimal charging schedules are almost identical to each
other under different demand levels. We can safely conclude that the
proposed optimization model is able to work well within a reasonable
range of charging demand levels.



Transport Policy 149 (2024) 122–138

134

T. Ye et al.

Fig. 11. Sensitivity analysis on cost function with the optimal EV charging schedules on (a) a summer weekday when charging AFAP, (b) winter weekday charging AFAP, (c)
summer weekday when charging ALAP, (d) winter weekday when charging ALAP, (e) summer weekday when charging for valley filling and peak shaving grid load, and (f) winter
weekday when charging for valley filling and peak shaving the grid load.

6.3.2. Sensitivity analysis: Utility rates
This section compares the scenario of EVs charging demand being

treated as another residential plug load compared to our main scenario
where a separate meter for EVs is installed. Under the alternative
scenario, cRE (t), the time-of-use electricity rates for residential services
will be applied to the power drawn from the grid by an EV, instead of
cEV (t).

As shown in Fig. 11, the optimal EV charging schedules under
two different cost functions achieve cost minimization successfully as
both schedules avoid their respective peak hours (3 P.M. - 6 P.M.
under cRE (t) and 2 P.M. - 7 P.M. under cEV (t)). When charging AFAP
(Figs. 11(a) and 11(b)), the optimal charging schedules under cEV (t)
have higher peak loads compared to the optimal charging schedules
under cRE (t). Under cEV (t), the optimal charging schedules avoid a

long period of peak hours, thus more charging is scheduled to take
place immediately after the peak hours end. When charging ALAP
(Figs. 11(c) and 11(d)), the optimal charging schedules under two cost
functions are the same because charging is scheduled in late night
and morning, therefore not conflicting with the peak hours. Under
secondary objective 3 (which aims to flatten the grid load curve),
the optimal charging schedules are almost the same since charging is
spread throughout the day despite the difference in peak hours.

Table 5 presents a comparison of the optimized aggregated daily
electricity costs of the households used in our analysis under the two
time-of-use cost functions. It can be seen that higher cost reductions can
be achieved under cEV (t). This can be explained by the fact that the cost
difference between on-peak and off-peak hours is larger under cEV (t).
Firstly, the on-peak hour electricity rates under cEV (t) are higher.
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Fig. 12. Sensitivity analysis on charging power when (a) charging AFAP on a summer weekday, (b) charging ALAP on a summer weekday, (c) charging AFAP on a winter weekday,
and (d) charging ALAP on a winter weekday.

Table 5
Time-of-use daily electricity costs ($) of the original plan and the optimal plan for the
analysis households.
Scenario Original

cost ($)
Optimal
cost ($)

Cost
reduction (%)

Summer weekday with cEV (t) 32.39 19.80 38.87%
Summer weekday with cRE (t) 22.94 22.46 2.14%
Winter weekday with cEV (t) 10.18 5.67 44.30%
Winter weekday with cRE (t) 7.81 7.77 0.38%

Consequently, under unmanaged charging where most charging takes
place during on-peak hours, the original electricity price is reasonably
higher under cEV (t). Secondly, the off-peak hour rate under cEV (t) is set
to be 0. In our optimized charging schedules, all the on-peak hours are
avoided, thus, the portion of the electricity costs are minimized to 0
under cEV (t). Even though on-peak hours are shorter under cRE (t), the
demand for charging is not high enough to schedule charging during
on-peak hours.

6.3.3. Sensitivity analysis: Charging power
Fig. 12 consists of four subgraphs showing the effects of different

charging power on the optimal EV charging schedules under the AFAP
and the ALAP scenario. Charging for valley filling and peak shaving grid
load is not included in this discussion because the change in charging
power does not have an impact on the optimal charging schedule.
Level 2 charging with 16 Amps and level 2 charging with 30 Amps
are considered.

It can be observed that the optimal charging schedules have similar
patterns (i.e., charging around the same time) and the optimal charg-
ing schedule using a level 2 charger has a more flattened curve, as
expected. The level 2 charger with 16 Amps results in a low charging
rate and under a managed optimal charging schedule the on-peak hours
cannot be entirely avoided, resulting in a short period of charging
during the on-peak hour at around 5:30 P.M. when charging AFAP on a
summer weekday 12(a). Thus, the electricity bill under 16 Amps level 2
charger is more expensive. However, one should not ignore the higher
fixed cost associated with installing a 30 Amps level 2 charger, which
will require a greater period of usage to accrue benefits of the charging
cost reduction.

7. Conclusion

In this paper, we characterize the EV charging patterns of a sample
of Austin households and estimate the electricity costs under alternative
electricity rates. Household travel patterns are inferred by applying k-
means clustering along with a heuristic method to households’ daily
energy consumption profiles while the electricity bills under different
pricing scenarios present us an incentive to optimize the EV charging
schedules. In order to maximize the benefits for households, we propose
an optimization framework that not only achieves the objective to
minimize the total electricity costs but also meets households’ and
their community’s preferences by adopting four secondary objectives:
charging AFAP when the EV user arrives at home, charging ALAP
before the user leaves, charging for valley filling and peak shaving
of the residential load, and charging in a shared DC fast charging
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Fig. A.13. Daily electricity consumption of an indicative household in Austin, TX.
Source: Pecan Street Inc. Dataport (Pecan Street Inc., 2020).

station. We demonstrate that under the optimal EV charging manage-
ment, electricity cost reductions can be achieved through managing EV
charging to avoid on-peak hours. Under all four secondary objectives,
the optimal charging schedule reduces daily total electricity costs by
38.87% on a summer weekday and by 44.3% on a winter weekday.
While charging AFAP, ALAP, and in a shared DCFC station allow drivers
to have greater flexibility and free (no charging) downtime despite high
peak loads, charging for valley filling and peak shaving of the grid load
not only achieves the same cost reduction but also flattens the load
curve. We show that charging for valley filling and peak shaving the
grid load is effective in reducing the peak load, which is important for
maintaining the stability of the distribution infrastructure and reducing
the charging and maintenance costs. The price behind maintaining grid
load stability is that this charging management scenario requires a
longer hour of charging. Thus, the level of flexibility and convenience
is likely to be lower for the drivers compared to those of other charging
management scenarios. Furthermore, we identify several important
parameters (i.e., travel patterns, utility rates, and charging powers) of
the optimization model and conduct sensitivity analyses based on these
parameters. The model is proven rigorous and the results robust under
a variety of settings and scenarios.

This study is not without limitations. First, due to limited data
availability, we only focus on a small subset of households in Austin,
whose charging behaviors might not be representative of all EV own-
ers. Home EV charging behavior can exhibit heterogeneity (Sørensen
et al., 2021). Future research should investigate the effect of managed
charging schemes given access to a larger sample of EV household
data. The framework we use can be tailored to different regions, such
as other states in the U.S. and regions in Europe and Asia that are
experiencing electrification of their transportation system. Although
the exact numerical results may not be applicable to residences in
other places, likely due to the difference in power profiles, level of
charging, individual travel patterns, electricity pricing, etc., the relative
policy insights into managed charging schemes under various charging
preferences gained in this study will still apply. Future studies should
also account for additional sensitivity parameters exploration, such as
external temperature, that might affect the travel pattern inference and
EV’s battery performance and optimization procedure employed in this
study, as more granular data is collected.

Future work on this topic can further enhance the proposed method-
ology by incorporating new user-imposed constraints. For example,
future applications can consider users’ comfort levels. This could ex-
clude the scenario of ALAP, since users might face unexpected events
during the day and might not want to take the risk of waiting till the

last minute to finish charging their vehicles. Furthermore, this work
can be expanded by accounting for people with pro-environmental
preferences, e.g. a cleaner grid that includes energy generated from
solar panels installed at residential premises or renewable energy use.
Beyond environmental considerations, EV drivers through vehicle-to-
grid (V2G) technologies can be considered as prosumers, providing
services to the grid. Willingness to participate in such services and
provision programs, as well as benefits accrued from V2G need to be
further modeled and studied (Noel et al., 2018).
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Appendix

By leveraging the average daily energy consumption of a household,
the travel patterns of the household owners can be deduced, as shown
in Fig. A.13. For instance, the second arrow identifies the peak usage of
the day which could correspond to the time of arrival of the household
owners at home. During the night, the household energy consumption
gradually decreases. In the early morning, the energy consumption
increases again, reaching a temporary peak value around 7:30 A.M.
After that, energy consumption profiles are uniform, indicating that
the household residents are not in. Therefore, we can hypothesize that
7:30 A.M. could be the departure time as represented by the blue
arrow on the left-hand side. While we infer the travel patterns of the
household here by just looking at the graph, we propose an algorithm
in Section 5.2.2 that can automate this travel pattern inference process
and be applied to all households.
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Table A.6
Residential electricity billing rates based on 2021 Austin electric tariff.
Panel A: Flat rate
Basic charges ($/month)
Customer $10.00
Energy charges ($/kWh)
0–500 kWh $0.02801
501–1000 kWh $0.05832
1001–1500 kWh $0.07814
1501–2500 kWh $0.09314
Over 2500 kWh $0.10814
Power supply adjustment charge ($/kWh)
Billed kWhs $0.03078
Community benefit charges ($/kWh)
Customer assistance program $0.00154
Service area lighting $0.00124
Energy efficiency services $0.00238
Regulatory charge ($/kWh)
Billed kWhs $0.01009

Panel B: Value-of-solar rider rate
Rate schedule type Value-of-solar rate ($/kWh)
Non-demand $0.09700

Panel C: Time-of-use power supply charges
Summer Non-summer
(June through September) (October through May)

Power supply charges ($/kWh)
Weekdays

Off-Peak $0.03025 $0.02982
Mid-Peak $0.03025 $0.02982
On-Peak $0.06605 $0.03139

Weekends
Off-Peak $0.03025 $0.02982

Power supply periods:
Weekdays
Off-Peak 10:00 P.M.–7:00 A.M.
Mid-Peak 7:00 A.M.–3:00 P.M., 6:00 P.M.–10:00 P.M.
On-Peak 3:00 P.M.–6:00 P.M.
Weekends
Off-Peak Entire day

Panel D: PEV charging station charges
Summer Non-summer
(June through September) (October through May)

Basic charges ($/month)
Delivery

Demand (<10 kW) $30 $30
Demand (>10 kW) $50 $50

Power supply charges ($/kWh)
Weekdays

Off-Peak $0.00000 $0.00000
On-Peak $0.40000 $0.14000

Weekends
Off-Peak $0.00000 $0.00000

Time periods:
Weekdays
Off-Peak 7:00 P.M.–2:00 P.M.
On-Peak 2:00 P.M.–7:00 P.M.
Weekends
Off-Peak Entire day

Table A.7
Clustering quality metrics 95% confidence intervals.
Scenario Silhouette score Calinski–Harabasz index Davies–Bouldin index

k-means k-medoids k-means k-medoids k-means k-medoids

Summer residential 0.17 ± 0.07 0.15 ± 0.07 20.18 ± 11.28 18.80 ± 11.60 2.20 ± 0.49 2.35 ± 0.59
Summer charging 0.34 ± 0.18 0.34 ± 0.18 71.08 ± 109.25 71.37 ± 109.20 1.22 ± 0.45 1.16 ± 0.40
Winter residential 0.28 ± 0.10 0.24 ± 0.11 17.19 ± 6.24 15.89 ± 6.34 1.69 ± 0.38 1.89 ± 0.42
Winter charging 0.32 ± 0.14 0.31 ± 0.16 13.95 ± 8.26 12.69 ± 6.13 1.28 ± 0.21 1.34 ± 0.44
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