

Limits of economy and fidelity for programmable assembly of size-controlled triply-periodic polyhedra

Carlos M. Duque^{a,b,c}, Douglas M. Hall^d, Botond Tyukodi^e, Michael F. Hagan^f, Christian D. Santangelo^{c,g}, and Gregory M. Grason^d

^aMax Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; ^bCenter for Systems Biology Dresden (CSBD), 01307 Dresden, Germany;

^cDepartment of Physics, University of Massachusetts, Amherst, MA 01003; ^dDepartment of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003; ^eDepartment of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania; ^fMartin A. Fisher School of Physics, Brandeis University, Waltham MA 02453;

^gDepartment of Physics, Syracuse University, Syracuse, NY 13210

This manuscript was compiled on April 22, 2024

1 We propose and investigate an extension of the Caspar-Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply-periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies – in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g. periodicity) – is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions for simultaneously efficient and high-fidelity assembly require an intermediate degree of flexibility of local angles and lengths in programmed assembly. Off-target misassembly occurs via incorporation of a variant of disclination defects, generalized to the case of hyperbolic crystals. The possibility of these topological defects is a direct consequence of the very same symmetry principles that underlie the economical design, exposing a basic tradeoff between design economy and fidelity of programmable, size controlled assembly.

self-assembly | programmable materials | addressable assembly | triply-periodic polyhedra | self-closing assembly

1 In Nature, self-assembly underlies the creation of functional materials. From photonic nanostructures (1, 2) to extracellular media (3, 4) to nanoencapsulation (5–7), robust and dynamic control over the precise structure and size of these assemblies is essential to their adaptive properties. Living systems have evolved pathways to direct multi-protein assembly towards morphologies with a tunable size scale (8), from finite diameter shells and tubules (9) to periodically-modulated material composites (10). Indeed, length scale is a fundamental but crucial element of structure control for functional materials. Yet, achieving structures with well-controlled lengths, particularly when the target size is much larger than the constituent size, poses a basic challenge. Notably, the ability to target triply-periodic (i.e. crystalline) architectures with specific symmetries and periodicities that can be scaled to larger than the subunit sizes is fundamental to control of desirable material functions, such as photonic bandgap behavior. In particular, hybrid structures related to the Diamond and Gyroid surfaces are well-known to exhibit prominent bandgaps, and gyroid-like structures have evolved in diverse species of birds, beetles and butterflies as a means of producing structural coloration (11–14). In these assemblies, targeted wavelength-selective properties are achieved by control over periodicity at

the scale of 100s of nm, at least an order of magnitude larger than the protein building blocks themselves.

These examples from nature have inspired recent efforts to design “programmable” building blocks to realize synthetic analogs of hierarchically-organized biological materials (15–19). This strategy targets two key aspects of the protein building blocks of functional biological assemblies. First, new approaches to designing building block *geometry* from the molecular to the colloidal scale have enabled the fabrication of shapes of staggering complexity (20–23). Second, encoding multiple species of subunits with specific interactions to favor a particular network of contacts allows the assignment of a specific “address” to every assembled subunit (15, 17, 24–27). Yet, while such *addressable assembly* offers one simple and generic approach to this problem, where the number of interacting elements must grow with the target size, this paradigm suffers from a corresponding explosion in the complexity of multi-species mixtures as the target grows arbitrarily large (28–30). This is notably the case for programmable *crystalline* assemblies, where the unit cell dimensions typically scale with the size of the programmable building blocks themselves (16, 31–37), so far limiting applications, for example, to the use of nanometric DNA based assembly units to target photonic

Significance Statement

As first suggested by Caspar and Klug, many viruses assemble icosahedral shells (capsids) because the high symmetry of the icosahedron enables economical assembly – enclosing a large volume with relatively few distinct protein subunit types. We generalize this design principle to triply-periodic polyhedra, mesoporous structures approximating cubic minimal surfaces. We demonstrate their programmable assembly from a minimal number of distinct subunits forming arbitrarily large unit cells of tunable, defined size. However, while high symmetry points enable economy in these target structures, they can be seeds of mis-assembly. This design strategy, and the fundamental tradeoff between economy and fidelity, lays the groundwork for deploying rapidly advancing nanotechnology approaches to programmable assembly to achieve size-controlled architectures with tunable functional properties.

All authors designed and performed research, analyzed data and wrote the paper.

The authors declare no competing interests.

²To whom correspondence should be addressed. E-mail: grason@umass.edu

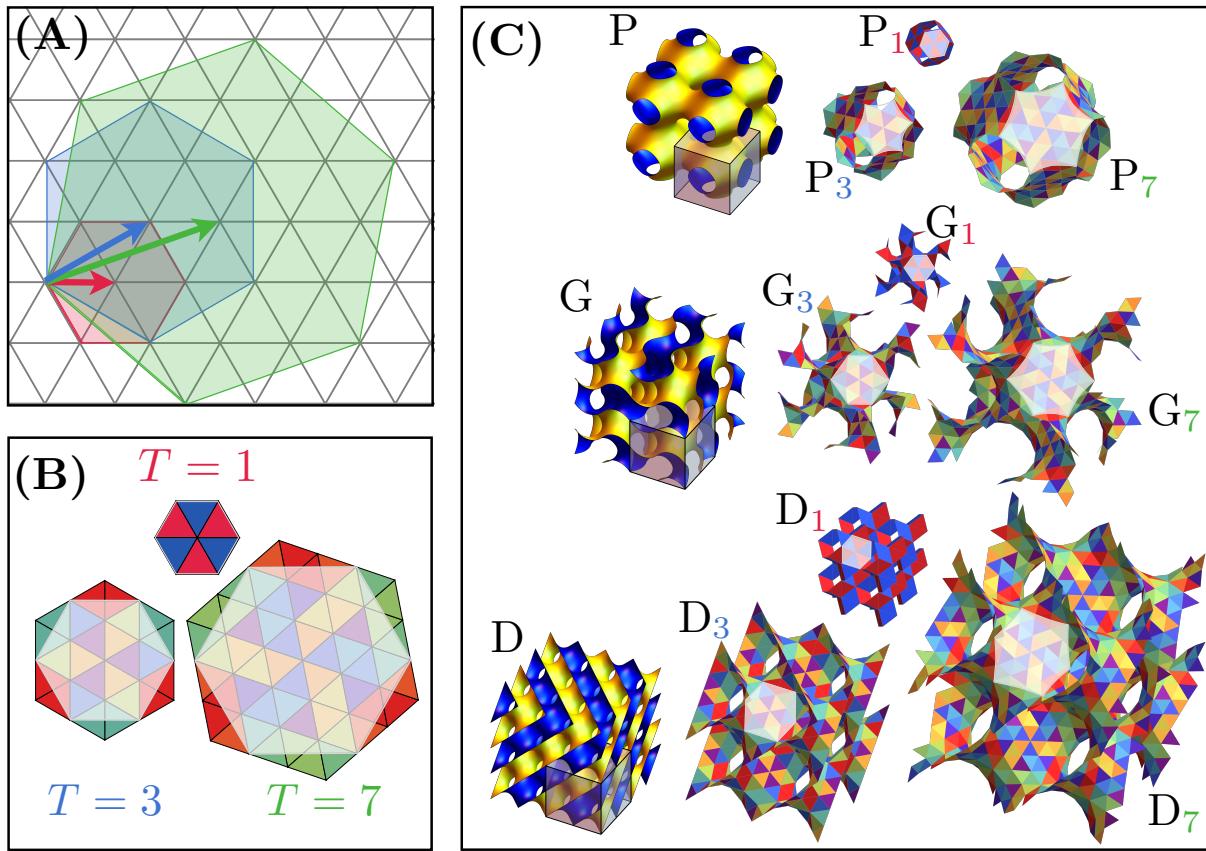


Fig. 1. Design of size-controlled triply-periodic minimal surface assembly from programmable triangular particles. (A) A pair of integers (h, k) is used to define a triangulation vector, \mathbf{L} , which connects a pair of vertices on a triangular lattice, defining the fundamental hexagonal patch. The hexagons in red, blue, and green are built with \mathbf{L} vectors corresponding to the triangulation numbers $T = 1, 3$ and 7 . (B) Underlying triangular faces associated with each fundamental hexagon. Triangles with the same colors represent the same subunit type. (C) From top to bottom: $2 \times 2 \times 2$ subsets of primitive (P), gyroid (G), and diamond (D) TPMS. In each case, transparent boxes are used to highlight a single cubic unit-cell. Each cubic unit-cell is triangulated with the corresponding fundamental hexagon shown in panel (B). The shaded areas on each triangulated unit cell highlight the fundamental hexagon used in the construction.

47 structures with properties in the optical range (38).

48 DNA nanotechnology, in particular, has multiple strategies
 49 to implement addressable assembly, and has been exploited to
 50 target and realize assemblies with a precisely defined, complex
 51 structures (29, 30, 39). Recent works leverage the unprece-
 52 dented combination of control over geometry and interaction
 53 specificity possible through DNA origami to realize a class of
 54 quasi-spherical shells and cylindrical tubes (40–44). Crucially,
 55 their target diameters are regulated by programming their
 56 curvature, achieving finite sizes that are much larger than the
 57 subunits. The design strategy for size-controlled shells (42)
 58 takes advantage of symmetry-based principles proposed for
 59 icosahedral viral shells (45–48), the celebrated *Caspar-Klug*
 60 (CK) construction (49). The CK rules provide a rational
 61 means to determine the minimal number of inequivalent sub-
 62 units (*i.e.* conformations of capsid proteins) needed to form
 63 closed shells of arbitrarily large diameter, an economy of design
 64 presumably favored by selection pressures in viral evolution.
 65 In this context, CK rules might be considered as one class of
 66 solutions to the generic problem of minimizing the *complexity*
 67 of specifically interacting subunit mixtures needed to achieve
 68 size-programmed assembly (50, 51).

69 In this article we propose and explore the extension of the
 70 symmetry-based principles of CK to an entirely distinct class
 71 of programmable assemblies, triply-periodic polyhedra (52,

53), shown schematically in Fig. 1. Like tubules and shells,
 54 these are 2D surface-like assemblies of triangular subunits,
 55 in our case inspired by DNA origami assemblies (42–44). In
 56 contrast to shell-like assemblies, our proposed design rules
 57 employ negative, rather than positive, Gaussian curvature. In
 58 particular, we target the design of a related class of triply-
 59 periodic minimal surfaces (TPMS), the Gyroid (G), Diamond
 60 (D) and Primitive (P) surfaces (54, 55), which all have cubic
 61 symmetry and negative Gaussian curvature. In a conceptually
 62 related work, Tanaka and coworkers demonstrated the ability
 63 to form “bicontinuous” structures related to P and G surfaces
 64 via a model of polygonal nanoplate assembly (53). However,
 65 that design scheme requires distinct polygonal shapes, distinct
 66 symmetries (*i.e.* P vs. G), and moreover, unit cell dimensions
 67 are controllable only by changing the size of the plate-like
 68 particle.

69 We show here that the high symmetries of the P, G and D
 70 structures facilitate a similar economy of design as CK capsids,
 71 arising from the commensurability of their crystallographic
 72 space-groups with their decomposition into triangular building
 73 blocks. Like CK designs of closed shells, we show how the
 74 combination of *interaction specificity*, encoded in specifically
 75 binding edge types, and *geometric specificity*, encoded by the
 76 target edge lengths of and dihedral angles between subunits,
 77 allows the programming of unit cell sizes that are, essentially,
 78

arbitrarily large compared to the subunit size. We analyze the economy of design in triply-periodic polyhedral assemblies in terms of the scaling of the number of distinct subunits needed to achieve a given target periodicity in the crystal, and show that these “inverted” structures achieve similarly optimal scaling with increasing target size in comparison to icosahedral shells.

While the economy of design deriving from symmetry guarantees a unique target ground state, it does not guarantee that it correctly assembles, and if so, at reasonable rates or under physical conditions realizable in experiments. Notably, recent experiments on self-closed tubular assemblies of DNA particles show that subunit flexibility, specifically dihedral bending, gives rise to significant off-target assembly into structures of undesired diameter (44). To understand how geometric specificity, in the form of angular and length flexibility of subunits, limits the ability to achieve controllable crystal dimensions through economically programmed assembly, we study grand canonical Monte Carlo simulations of a physical model of triangular subunit assembly. We consider the effects of variable elastic stiffness, and show that the range of subunit flexibility is restricted by the simultaneous requirements for high-fidelity and rapid assembly, which are respectively favored by low or high flexibility. Notably, the failure mechanism leading to misassembly for sufficiently flexible subunits, in the form of generalized disclination in hyperbolic crystalline structures, can be traced directly to the very same symmetry-based design that guarantees economical assembly.

Design economy of triply-periodic polyhedra

The economy of the CK construction for quasi-spherical assemblies stems from the fact that spherical shells can be decomposed into regular triangular “subunits”, corresponding to geometric structures known as *deltahedra*. In the original CK construction, subunits were themselves triplets of proteins that form the viral capsid (49). Here, we follow the design of Sigl *et al.* (42) and consider the triangular subunit as a single, self-assembling unit, shown schematically in Fig. 2A. The most economical shell designs are closed tilings of equilateral triangles, *i.e.* the Platonic solids: tetrahedron (T), octahedron (O), and icosahedron (I). Among these, the icosahedron possesses the most point symmetries, and correspondingly the largest number of equivalent triangular facets (20). Structures composed of more than this number of triangles necessarily break the 3-fold symmetry of the equilateral subunit, and so increase the number of *inequivalent* triangular elements needed to form them.

CK argued that subtriangulations of the original triangular net that preserve icosahedral symmetry lead to the fewest symmetry-inequivalent positions on the closed shell, and thus require the fewest distinct subunits. Such subtriangulations are constructed from triangular subregions of a planar triangular lattice (46, 47), and are parameterized by the lattice translation vector between vertices $\mathbf{L} = h\mathbf{a}_1 + k\mathbf{a}_2$, where (h, k) are a pair of integers and $\mathbf{a}_1, \mathbf{a}_2$ are basis vectors of the triangular lattice. Then $T \equiv |\mathbf{L}|^2 = h^2 + k^2 + h k$ is the number of subtriangles per base triangle, resulting in a structure with $20T$ subunits. However, the commensurability of subtriangulation and icosahedral symmetry implies that complete shells can be assembled from fewer distinct triangle types, N_T , which is equal to $\lceil T/3 \rceil$ for deltahedral shells (*i.e.*

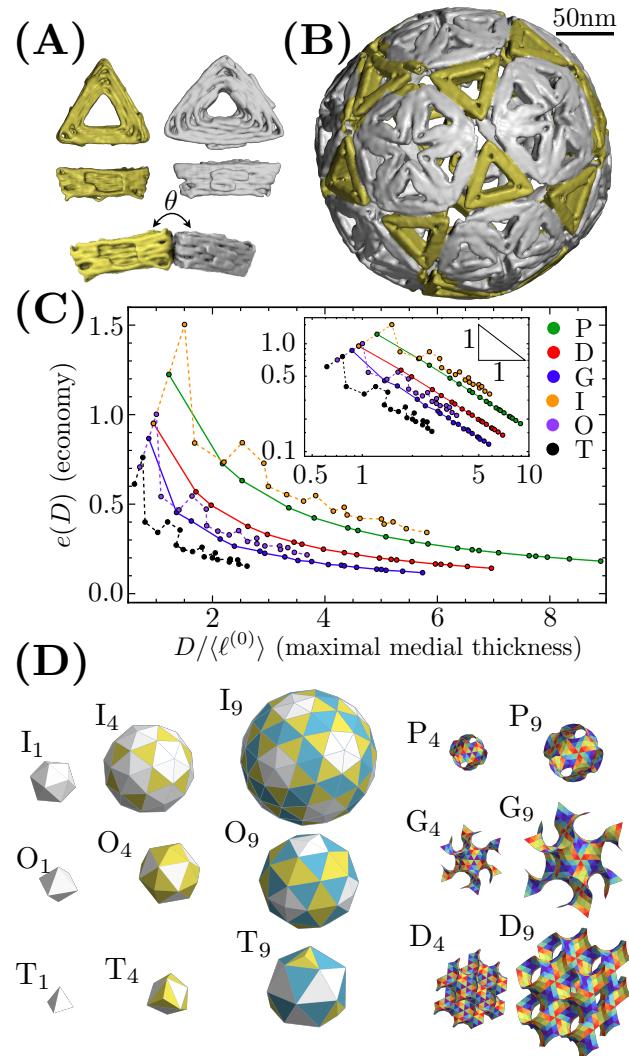


Fig. 2. Economy of programmable assembly of shells and TMPS via triangular particles. (A) Cryo-eM reconstruction of the two different triangular DNA origami subunit types used in the self-assembly of $T = 4$ icosahedral shell shown in (B) adapted from Sigl *et al.* (42). The angle θ highlights the preferred dihedral angle between the subunits. (C) Measure of economy, $e(D)$ for polyhedral crystals (solid lines) and spherical shells (dashed-lines) as a function of the maximal medial thickness, D (in units of mean edge length). Inset: Log-log plot of the same economy measures. (D) Triangulated shells of icosahedral, octahedral, and tetrahedral symmetries with triangulation number $T = 1, 4$, and 9 built with $N_T = \lceil T/3 \rceil$ distinct subunits (left). $T = 4$ and 9 polyhedral crystals built with $N_T = T$ distinct subunits (right).

with equilateral base faces) *. A design objective to maximize the target size, D , of an assembly for a minimal number of distinct subunit types, N_T , suggests a measure of *economy*,

$$e(D) \equiv D/N_T. \quad [1]$$

As shown in Fig. 2C, this measure decreases with target size as $e(D) \sim 1/D$ for deltahedral assemblies – assemblies made from equilateral triangles – where we use the maximal medial thickness (56) as the standard measure of size D †. This scaling can be understood from CK theory, since the triangulation

*There are T inequivalent internal edges in a deltahedral tiling which are distributed into groupings of three (*i.e.* closed triangles). The minimal number of distinct triplets is $\lceil T/3 \rceil$.

†The *medial thickness* of a bounding surface at a particular point is the radius of largest sphere enclosed by the surface tangent to that point (56). Hence, the *maximal medial thickness*,

number is proportional to the surface area and thus $T \propto D^2$. Notably, icosahedral shells maximize this measure of economy among deltahedral shells, which is also consistent with the CK logic. The non-monotonic behavior for shell economies stems from the fact that $N_T = \lceil T/3 \rceil$ for T, O, and I. This leads to “magic numbers” of especially high $e(D)$ values when T is an integer multiple of 3 (e.g. $T = 3, 9, 12, 21 \dots$), corresponding to shell geometries in which the 3-fold axis lies at a vertex of the triangular net (i.e. as opposed to the general case where the 3-fold axis falls at the center of a triangular subunit). Since the $\bar{3}$ symmetry at the center of the hexagonal base of P_T , D_T , and G_T is not compatible with the center of a triangular subunit (and, instead, only at 6-coordinated vertices), such magic numbers do not exist for triply-periodic polyhedra.

This design principle can be extended to triply-periodic triangular assemblies associated with the P, D, and G cubic minimal surfaces, by decomposing these structures into basic hexagonal elements, essentially following what has been dubbed “hexagulation” in studies of dense particle packings on these surfaces (57). As developed by Sadoc and Charvolin (58) and elaborated by others (59–61), high-symmetry tilings of P, G, and D can be derived from the $\{6, 4\}$ tiling of the hyperbolic plane projected onto triply-periodic tesselations of \mathbb{E}^3 (Euclidean three space), provided that point symmetries at the center, vertices and edges of the hexagonal patches are preserved in the space group embedding. However, while CK triangulations are constructed from triangular tilings meeting at 5-fold vertices, $\{6, 4\}$ tilings are constructed from hexagonal tiles that meet in 4-fold vertices (58), which is possible on the hyperbolic plane, as illustrated in Supporting Fig. S1[†]. When projected into cubic tesselations of \mathbb{E}^3 , vertices of a projected skew hexagonal base “tile” are constrained to lie on specific Wyckoff positions of the corresponding crystallographic space group of the structure. See for example, Fig. 3A for G, where the central point of the shaded hexagon sits at the 16a position of $Ia\bar{3}d$, a point of 3-fold roto-inversion symmetry, while the six outer vertices sit at 24d, points of 4-fold roto-inversion (62). Like the triangular base elements of the CK construction, the hexagonal base tile of the triply-periodic P, G, and D polyhedra can be subtriangulated in a way that preserves the point symmetries of the $\{6, 4\}$ tiling (see Methods and examples shown in Supporting Fig. S2). The corresponding triply-periodic triangulations are similarly triangulated by a vector \mathbf{L} that connects a 4-coordinated vertex to center of the hexagon, and thus the tilings are classified by the T number (Fig. 1A).

We use these triply-periodic triangulations of \mathbb{E}^3 as the basis for triangular subunit designs that target the assembly of TPMS whose vertex positions map onto the corresponding minimal surface for arbitrary subtriangulation. We denote these polyhedral target structures as P_T , D_T and G_T according to the respective cubic surface and T number. The geometric and topological data of the embedded structure – edge length, connectivity and dihedral angles – are then used to design target values for the subunit shape and interactions. In our construction, the mean edge length of a basic triangular element is fixed for all structures, while the projection subtriangulation can introduce variation in edge lengths. Fig. 3

used as a generic measure of self-closing size D , corresponds to the radius of the largest sphere that can be enclosed by the surface.

[†]Note that, strictly, the triangulation in the hyperplane satisfies rotoinversion symmetries on the vertices ($\bar{4}$) and centers ($\bar{3}$) of the fundamental hexagonal cells as annotated Supporting Fig. S1A.

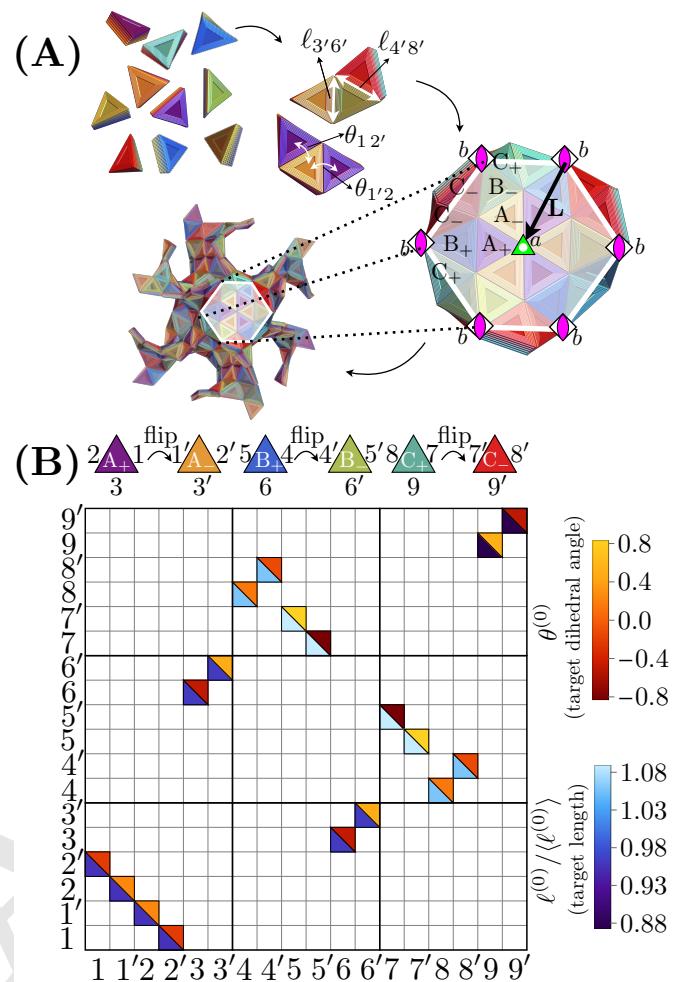


Fig. 3. Program for $T = 3$ Gyroid assembly. (A) Illustration of the self-assembly process: triangular blocks of different types following their interaction matrix template form larger structures, such as the shown G_3 cubic unit-cell. The three-dimensional rendering highlights the structure as DNA origami particle, with the important feature that opposite faces of the particle are distinct, as colored and referenced a \pm in (B). The center and vertices of the highlighted hexagon represent the Wyckoff sites present in the triangulation. The glyph next to each vertex denotes the symmetry of the Wyckoff site. Notice that the translation vector \mathbf{L} , which defines the T number of the structure, joins Wyckoff sites of different symmetry. (B) Interaction matrix for G_3 with each colored block representing a valid edge-pairing. The monovalent design rules used in the construction ensure that a given edge-type is only allowed to bind to at most one other edge-type. The lower (upper) color of each colored-block of the matrix represents the target length (dihedral angle) of a valid edge-pairing. Both planar sides of each triangular block are colored differently to account for the “flipping” symmetry exhibited by TPMS. This is accounted by assigning two edge-types to each triangular block planar side. Unprimed and primed edge-types are respectively the edge sides of the + and – planar sides of each triangular block.

shows an example for the G_3 structure in terms of 9 mutually interacting subunit edges. The interaction matrix in Fig. 3 includes both edge specificity and geometric data about the edge lengths and the dihedral angles formed when particular subunits meet. Notably, the coincident symmetries of the subtriangulation and the $Ia\bar{3}d$ space group allow for the large units cells (96 T triangular particles per cubic repeat of G) to be constructed from only $N_T = T$ distinct subunits. Supporting Figs. S3–6 show corresponding examples of binding specificity and geometry of edges for P, G and D for $T = 1, 3$ and 7

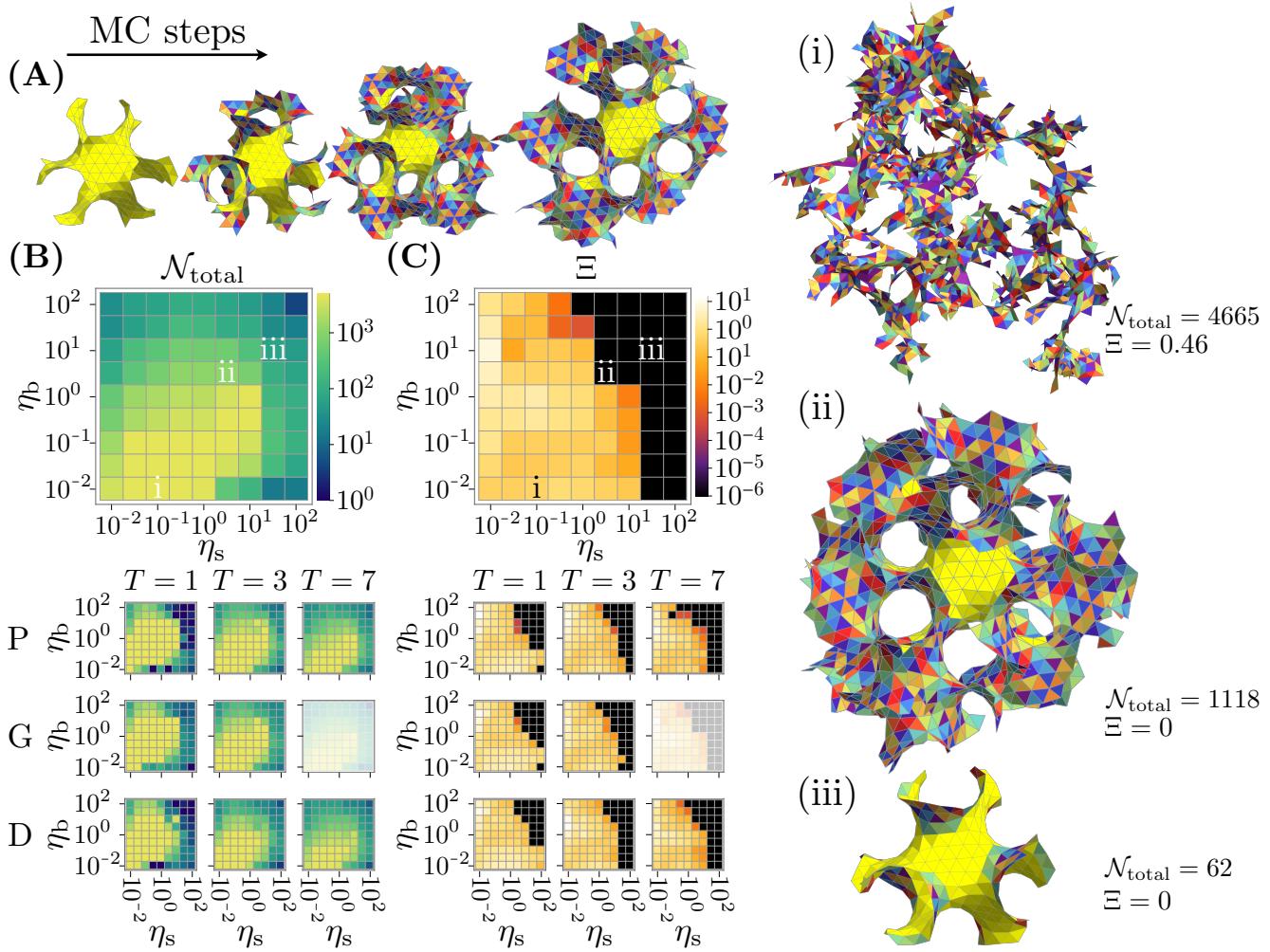


Fig. 4. Efficiency and fidelity of assembly versus geometric specificity of binding. (A) An example assembly simulated trajectory of the G₇ assembly, growing from a fixed “seed” (yellow), with newly bond subunits shown in corresponding colors. (B) and (C), respectively, show the number of assembled subunits (N_{total}) and residual shape strain (Ξ) from simulation trajectories for a range of dimensionless bending (η_b) and stretching (η_s) stiffness, the upper panel highlights the results for G₇, while results for all three symmetries and $T = 1, 3$ and 7 are shown below. Notice that the large panels in (B) and (C) correspond to the smaller whitened panels shown below for the G₇ structure. Points (i), (ii) and (iii) highlight three different conditions for G₇ assembly corresponding to the final structures shown on the right: (i) rapid, off-target assembly; (ii) productive, on-target assembly; and (iii) non-productive, rigid assembly (also shown in Supporting Movies S4-6).

Unlike the CK structures, triply-periodic P_T, D_T and G_T polyhedra have infinite genus in their target (bulk) state. Nevertheless, each structure can be characterized by a well-defined, finite size, roughly corresponding to the characteristic pore size of the structure. To quantify and compare this programmable size scale, we computed the maximal medial thickness D of each triply-periodic polyhedra (56). Fig. 2C plots the finite size design economy, $e(D)$, as function of T for P_T, D_T and G_T polyhedra in comparison to generalized CK designs. Like the CK assemblies, scaling the target size of the triply-periodic polyhedra to larger and larger dimensions (in units of the basic triangular elements) can be achieved at a similar level of economy, with $D \sim T^{1/2}$ and $N_T \sim T$, so that the power law scaling of e with size is identical in the large size limit.

Efficiency versus fidelity of size-economic assembly

The economy of design of our construction for triply-periodic polyhedra depends on the combination of both the interaction specificity between different edge types and the geometric specificity of the edge-edge contacts. To understand the physical limits for the fidelity and assembly yield of these structures, we implemented a coarse-grained model of triangular particle assembly employed in Tyukodi *et al.* (63), in which assembled structures are triangular meshes, with degrees of freedom at their vertices. Similar elastic mesh simulations have been applied to model assemblies of shells and tubules (63–68). Here, the energy of an assembly derives from interactions of bound edges indexed by i and j ,

$$E = \sum_{\langle ij \rangle} \left\{ -\epsilon_{ij} + \frac{k}{2} |\ell_{ij} - \ell_{ij}^{(0)}|^2 + \kappa [1 - \cos(\theta_{ij} - \theta_{ij}^{(0)})] \right\}. \quad [2]$$

The first term describes the binding energy of the edges. We assume that edge i and edge j have a common binding affinity,

266 $\epsilon_{ij} = \epsilon_{\text{bind}}$ if they are programmed to interact, but do not
 267 bind otherwise. Notably, this interaction specificity, which
 268 is crucial for forming a target triply-periodic polyhedra, is
 269 an important contrast to previous studies of capsid assembly
 270 in which all subunit interactions were identical (64–66, 69,
 271 70), but is analogous to models of capsid assembly in which
 272 subunit interactions followed CK rules (68, 71–84). The second
 273 and third terms in eq. (2) describe the energy cost of edge
 274 stretching and bending, respectively, where $\ell_{ij}^{(0)}$ and $\theta_{ij}^{(0)}$ are the
 275 target values for edge ij , as determined from the geometrical
 276 embedding of P_T , D_T and G_T (e.g. as shown for G_3 in Fig. 3).
 277 The respective moduli for edge stretching and dihedral bending
 278 between bound faces are given by k and κ . To consider the
 279 influence of these distinct elastic modes on assembly behavior,
 280 we introduce the dimensionless ratios relative to binding,

$$281 \quad \eta_s \equiv k \langle |\ell_{ij}^{(0)}|^2 \rangle / \epsilon_{\text{bind}}; \quad \eta_b \equiv \kappa / \epsilon_{\text{bind}} \quad [3]$$

282 where $\langle |\ell_{ij}^{(0)}|^2 \rangle$ is the mean-square target edge length.

283 To model near-equilibrium assembly behavior, we perform
 284 grand canonical Monte Carlo simulations (see Methods), which
 285 consider a single cluster of bound, triangular units held at fixed
 286 chemical potential with respect to a population of free subunits
 287 (i.e. monomers) composed of a mixture of all the triangular
 288 species needed to assemble a given triply-periodic polyhedron.
 289 To test the efficiency and quality of targeted assembly, an initial
 290 seed of the preassembled structure is prepared, and the MC
 291 algorithm considers three types of moves: 1) addition/removal
 292 of free subunits to an appropriately unbound triangle edge of
 293 the cluster; 2) vertex displacement of assembled particles; and
 294 3) fission/fusion of edges between bound/unbound edges of the
 295 assembled cluster. Moves are accepted with the Boltzmann-
 296 weighted probability according to the change in energy, Eq.
 297 (2), and chemical potential μ for free monomer addition at
 298 fixed temperature. Example simulation trajectories are shown
 299 for $T = 3$ structures in Supporting Movies S1-3.

300 To consider the role of geometric specificity, we choose
 301 $\epsilon_{\text{bind}} = -6.5k_B T$ and chemical potential $\mu = -4.5k_B T$ and
 302 vary the elastic/binding ratios. We introduce $\mathcal{N}_{\text{total}}$, the average
 303 number of assembled units in the particle cluster, as a
 304 measure of assembly efficiency. To capture the fidelity of the
 305 assembly we quantify the mean-quadratic strain

$$306 \quad \Xi = \langle |\ell_{ij} - \ell_{ij}^{(0)}|^2 \rangle / \langle |\ell_{ij}^{(0)}|^2 \rangle + \langle |\theta_{ij} - \theta_{ij}^{(0)}|^2 \rangle, \quad [4]$$

307 which is computed from the elastic ground-state of the ultimate
 308 structure to remove the influence of thermal fluctuations. We terminated
 309 simulations at 50×10^6 MC sweeps, or when $\mathcal{N}_{\text{total}} = 5000$. We simulated assembly trajectories for
 310 P , G , and D structures for a range of T -numbers and varying
 311 the elastic/binding ratios over four orders of magnitude:
 312 $\eta_s \in [10^{-2}, 10^2]$ and $\eta_b \in [10^{-2}, 10^2]$.

313 Fig. 4B and C show simulation results for the dependence
 314 of $\mathcal{N}_{\text{total}}$ and Ξ on η_b and η_s for G_7 assemblies. They show that
 315 $\mathcal{N}_{\text{total}}$ decreases with both stretching and bending stiffness,
 316 with the efficiency near zero outside of the region $\eta_s \lesssim 10$ and
 317 $\eta_b \lesssim 1$. In contrast, the high-flexibility regime is the regime
 318 of *low fidelity* as indicated by the large, non-zero residual
 319 strain values Ξ . These $\Xi > 0$ values are evidence of assemblies
 320 that form with the correct edge matching specificity, but
 321 nevertheless have a topology that is incompatible with the
 322 target edge lengths and dihedral angles. In other words, while
 323 assembly is rapid when subunits are flexible, $\eta_s \ll 1$ or $\eta_b \ll 1$

324 result in highly defective, “off-target” structures, as shown for
 325 a structure like Fig. 4i. In the opposite limit of $\eta_s \gg 1$ or
 326 $\eta_b \gg 1$, while bonds form the correct geometry so that $\Xi \simeq 0$,
 327 the assembly efficiency is low due to the small rate of new
 328 subunits joining to a free edge. This results in a structure
 329 like Fig. 4iii, with few if any additional subunits bound to
 330 the seed. However, at intermediate flexibility – approximately
 331 $5 \lesssim \eta_s \lesssim 10$ and $5 \lesssim \eta_b \lesssim 10$ – assembly achieves both
 332 significant yield (i.e. $\mathcal{N}_{\text{total}} \gtrsim 10^2$) and high fidelity (i.e.
 333 $\Xi \simeq 0$), indicating productive and defect-free assembly of the
 334 target crystalline structure (Fig. 4ii).

335 The smaller panels of Fig. 4B and C compare the assembly
 336 efficiency, $\mathcal{N}_{\text{total}}$, and fidelity, Ξ , for all three P_T , G_T , and
 337 D_T structures and for sequences of increasing target sizes,
 338 corresponding to $T = 1, 3$, and 7 . All cases show the same
 339 qualitative dependence on angular and length flexibility of
 340 bound subunits: rapid yet off-target assembly at high flexibility,
 341 on-target yet sluggish assembly for stiff structures, and a
 342 regime of productive, on-target assembly in the intermediate
 343 flexibility regime. These overall trends reveal that interaction
 344 specificity alone is not sufficient for reaching target assemblies.
 345 This is indeed consistent with the fact that P_T , G_T and D_T
 346 have an identical interaction matrix for each given T , but
 347 differ in terms of the target edge lengths and dihedral angles.

348 It is instructive to compare these observations to results of
 349 models for positive curvature capsids. While we find that inter-
 350 action specificity (edge-type binding specificity) is essential
 351 for assembly of target triply-periodic polyhedral structures,
 352 small capsid structures can assemble without interaction speci-
 353 ficity, i.e. from systems of identical subunits, within certain
 354 ranges of bending and stretching moduli (64–66, 69). However,
 355 to form larger ($T > 7$) capsids with icosahedral symmetry,
 356 interaction specificity (42) or templating (42, 65) is essen-
 357 tial, and interaction specificity significantly increases target
 358 yields and robustness to parameter variations for smaller cap-
 359 sids (68). Our observation that, in addition to interaction
 360 specificity, a minimal level of geometric specificity is essential
 361 to form a target triply-periodic polyhedral structure is also
 362 consistent with capsids. Even when interaction specificity
 363 allows for only a single ground state capsid structure, mal-
 364 formed structures assemble under conditions of low geometric
 365 specificity and/or strong interactions because mis-bound sub-
 366 units do not have time to anneal before becoming trapped
 367 in the assembly (68, 71–86). On the other hand, too much
 368 geometric specificity leads to low kinetic cross-sections and
 369 thus slow assembly (72, 78). These relative assembly kinetics
 370 are also borne out by variable temperature simulations (at
 371 fixed monomer concentration) of G_7 in Fig. S7, which show
 372 that changing temperature for the triply-periodic polyhedra
 373 has analogous effects as in other self-assembly systems. For
 374 intermediate and stiff binding (ii and iii in Fig. 4), which
 375 respectively exhibit productive reversible assembly or unpro-
 376 ductive slow assembly at the default temperature, increasing
 377 temperature decreases growth rates due to the increased en-
 378 tropic cost of binding. Growth eventually goes to zero above
 379 a melting temperature that decreases with increasing stiffness.
 380 In contrast, the highly flexible binding case (i in Fig. 4), which
 381 exhibits overly rapid, nearly irreversible, defective assembly at
 382 the default temperature, has a nonmonotonic growth rate over
 383 the range of temperatures studied. Increasing temperature
 384 initially facilitates growth by enabling more reversible, less

386 defective assembly which favors further growth. The increased
387 reversibility is reflected in a decreasing residual strain. Growth
388 rates ultimately decrease with increasing temperature due to
389 the entropic cost for binding.

390 Briefly, we note that while we have focused on growth of pre-
391 seeded structures as a primary metric of efficiency of assembly,
392 the dependence of nucleation rates on the geometric specificity
393 of binding is consistent with our observations on growth rates
394 (8). Fig. S8 compares unseeded simulation trajectories of
395 G_7 structures for high- and intermediate binding flexibilities,
396 i.e. conditions (i) and (ii) in Fig. 4, while the stiffest case
397 (iii) was not observed to nucleate on the time scale of the
398 simulation (10^9 MC sweeps). Mean nucleation times increase
399 with stiffness, implying a qualitatively similar trend to the
400 decreasing growth rates with increased stiffness observed in
401 Fig. 4.

402 Defect-mediated mis-assembly

403 In our model of triply-periodic polyhedra, bound subunits
404 have perfect type-specificity, and hence, off-target assemblies
405 must have the same local network of subunits but the wrong
406 global geometry. Here, we show that the primary mechanism
407 of mis-assembly derives from topological defects of the quasi-
408 2D crystalline assembly. These defects take the form of point
409 disclinations, defined relative to the target polyhedral assembly
410 (see Fig. 5A), with an angular wedge of the triangular mesh
411 removed or added relative to its ideal geometry as one encircles
412 a vertex. As in the standard convention for wedge disclinations
413 in 2D crystals (87), we associate the topological charge s of
414 a disclination to the excess degree of bond rotation around
415 a vertex relative to the target structure. This charge can
416 be defined and measured at any given vertex (see Methods
417 and Supporting Fig. S9). As edge binding only takes place
418 between complementary edge-types, such disclinations are
419 only possible at vertices of rotational symmetry in the target
420 assembly, i.e. at vertices located at Wyckoff positions in the
421 target assembly. This means, for example for the $Ia\bar{3}d$ space
422 group of the G_7 structure, the 3 symmetry of the 16a position
423 supports $s = \pm 2\pi/3$ disclinations, while the 4 symmetry of
424 the 24d position supports $s = \pm\pi$ disclinations (5A) [§].

425 Fig. 5B shows the average number of defects per unit cell
426 $n(s)$ for different disclination types in simulations of $T = 7$
427 assemblies, for the same range of flexibilities considered in
428 Fig. 4. Notably, these defects appear when bonds are flexible,
429 coincident with the regime of large residual strains Ξ in off-
430 target assembly, indicating that disclination formation is the
431 primary mechanism of mis-assembly. Surprisingly, this defect
432 population is biased in the *sign* of topological charge. That
433 is, defects with either $s = +2\pi/3$ or $+\pi$ charge form at finite
434 density, corresponding to patches with wedges *removed* relative
435 to the stress-free target geometry, but the negatively-charged
436 variants of these defects do not form at significant densities
437 even in highly bendable or stretchable assemblies for these
438 parameters [¶]. This same bias is also observed for P, G and D

§ Along with this purely topological notion of defects, one can also define a notion of “geometric defects” that is standard to notions of order embedded in curved manifolds (88), and can be related to discrete measures of Gaussian curvature in triangular meshes, namely the excess/deficit of sum of interior angles meeting a vertex (89). Hence, the target (stress free) state of triply-periodic polyhedra exhibits spatially distributed Gaussian curvature both due to the presence of 8-coordinated vertices as well as variable edge lengths in the target mesh.

¶ Our definition of disclination charge accounts for the effective negative Gaussian curvature of the target crystal, but defines excess bond rotation relative to a target bond coordination that may be larger than 6 (e.g. the 8-coordinated vertex at position 24d of G structures).

439 assemblies for variable T numbers, as shown in Supporting
440 Fig. S10. Similarities between the local elastic energies of
441 positive and negative disclination types in Supporting Fig.
442 S11A suggest that this imbalance is not driven by differences
443 in strains generated by these defects types. Instead, we find by
444 simulation of variable excluded volume sizes (Supporting Fig.
445 S11B) that the bias towards $s = +2\pi/3$ or $+\pi$ relative to their
446 negative counterparts is a feature of steric interactions between
447 triangular units: volume exclusion tends to penalize crowding
448 *excess* triangular units around a shared vertex required by
449 $s < 0$ defects.

450 Finally, we note that the residual net topological charge
451 of defects has consequences for the gross morphology of off-
452 target assemblies. In a 2D crystal that grows isotropically,
453 a finite disclination charge density would tend to generate
454 elastic energies that grow superextensively, i.e. faster than
455 the number of subunits (87). Instead, we find a morphological
456 transition in defective assemblies that mitigates growth of
457 elastic energy with assembly. Fig. 5C compares the graph
458 distance d_B of vertices to a *free boundary* in the assembly
459 for the conditions corresponding to off-target vs. on-target
460 assembly in Fig. 4, points (i) and (ii) respectively. Notably,
461 off-target mis-assembly results in narrow, stringy structures
462 ($d_B \lesssim 2$), while on-target assembly of sufficiently rigid subunits
463 results in bulk 2D assembly with the free boundary extending
464 far away from interior subunits. The stringy morphology of off-
465 target mis-assembly has the important effect of reducing the
466 far-field elastic cost of disclinations, as the long-range effects
467 of defects are screened by the presence of free boundaries (70,
468 90). Hence, analogous to the anisotropic domain growth in
469 curvature-frustrated 2D crystals (91–93) or filaments (94),
470 we argue that this narrow, strip-like morphology eludes the
471 superextensive costs that would be otherwise be generated by
472 finite disclination charge densities in isotropically growing 2D
473 crystals.

474 In Fig. S12 we show results for much longer simulation
475 times for G_7 for the cases of low and intermediate flexibility
476 shown in Fig. 4, (i and ii, respectively), to test the ability to
477 assemble large, multi-unit-cell crystals. These results show
478 that running upwards of $\sim 10^8$ MC sweeps leads to assemblies
479 of $N_{\text{total}} \sim 10^3 - 10^4$ subunits, an order of magnitude larger
480 than the 336 subunits per cubic repeat of G_7 . Notably, large
481 crystals formed at intermediate flexibility exhibit only nominal
482 residual strains, consistent with a low density of defects, and
483 bulk-like morphologies, in contrast to the quasi-1D, highly-
484 defective assemblies formed by flexible subunits.

485 Discussion

486 In summary, we have extended the economical design principles
487 of the CK construction of closed shells to triply-periodic,
488 negative curvature programmable assembly. In both cases,
489 economy derives from the commensurability of the symmetries
490 of a subtriangulation with the symmetry elements of
491 the target structure. For triply-periodic polyhedra, this re-
492quires constraining the vertices and centers of the base tile to
493 the Wyckoff sites of appropriate symmetry. Preserving these
494 symmetries in the sub-triangulation guarantees that the sub-
495 triangulation is composed of “redundant” copies of relatively
496 few symmetry-inequivalent particles.

497 However, while the high-symmetry is necessary for design
498 economy, it is also the source of off-target misassembly. No-

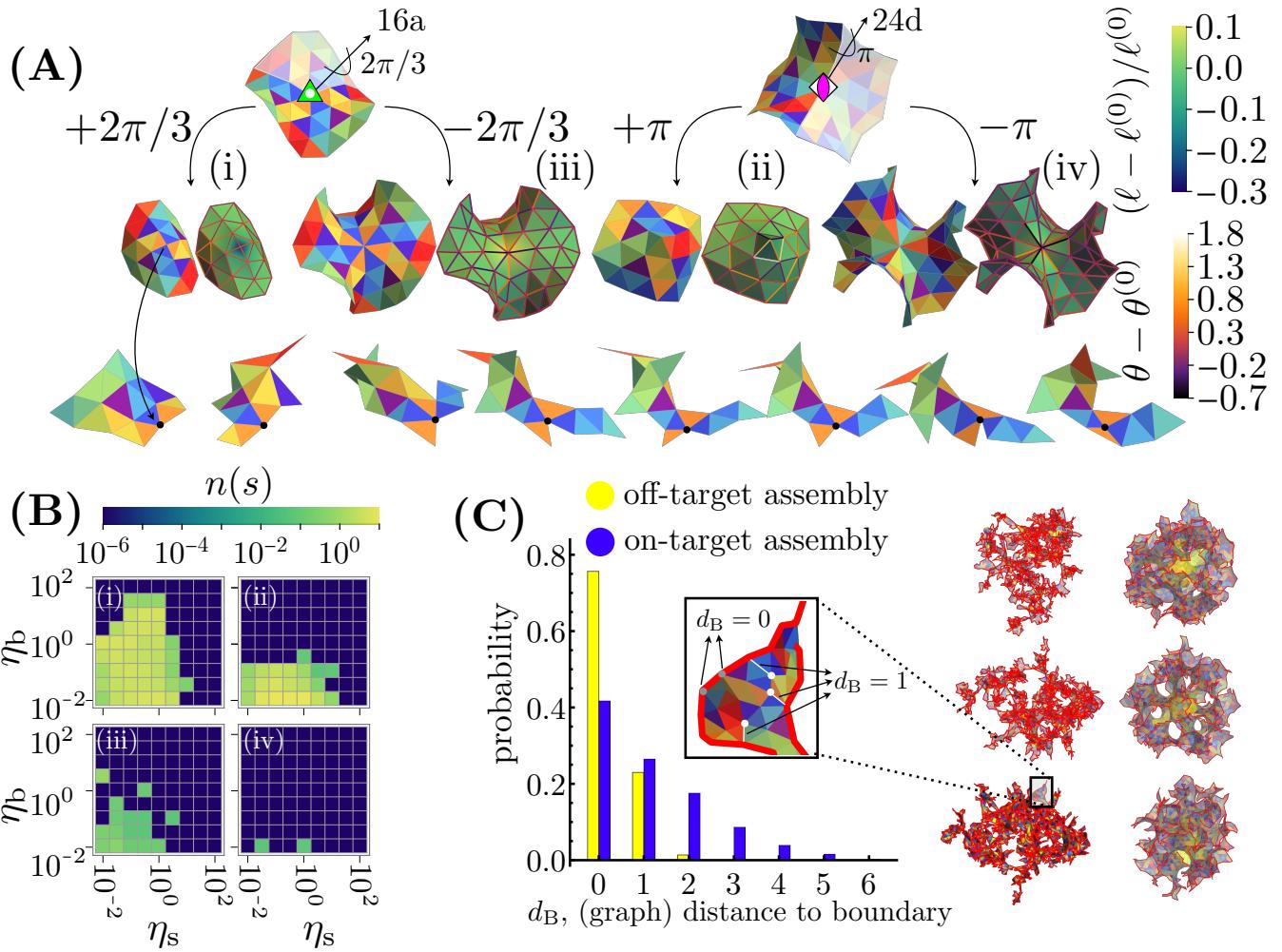


Fig. 5. Disclination pathways to off-target assembly. (A) Positive and negative topological defects compatible with the self-assembly matching rules of a G_7 structure, corresponding respectively to fractional edge removed or added from the target assembly, extending from a high-symmetry vertex. Here, possible defects are constructed by a Volterra-like construction on defectless patches centered at the Wyckoff sites 16a and 24d, where the topological charge s quantifies the excess/defective of rotation angle around the disclination. Each defective patch is colored with respect to the unique triangle species as shown on the left patches as well as their length strain (faces) and angle strain (edges) as shown on the right patches. The snapshot sequence on the bottom shows a possible assembly pathway of a topological defect with charge $s = +2\pi/3$. (B) Number of disclinations formed per primitive cell, $n(s)$, as a function of dimensionless ratios η_s and η_b for each of the defect types labeled from (i) to (iv) for simulated G_7 assembly. (C) Blue (Yellow): probability of a vertex to have a graph distance, d_B , to the boundary of a structure exhibiting on-target (off-target) assembly. The structure snapshots on the right (left) column show different views of the on-target (off-target) structures. The enlarged box shows different examples of vertices having a graph distance $d_B = 0$ and $d_B = 1$. Off- and on-target assembly correspond to points (i) and (ii) in Fig. 4, respectively.

599 notably, the very same rotational symmetries that anchor the
 600 sub-tilings of P_T , D_T and G_T are sites where disclinations are
 601 possible, and these disclinations proliferate if the geometric
 602 specificity of the binding between subunits is too low. Indeed,
 603 as the example in Supporting Fig. S13 illustrates, certain T
 604 values ($T = 4, 12, 16, \dots$) lead to an additional set of (2-fold)
 605 Wyckoff positions, enabling the formation of a third set of $n\pi$
 606 disclinations and thus more assembly errors. This trade-off
 607 between design economy and the propensity for misassembly
 608 is unavoidable. It leads to narrowly defined regimes where
 609 assembly is flexible enough to occur at reasonable rates, but
 610 specific enough to suppress disclinations. The design criteria
 611 for efficient and high-fidelity assembly (i.e. $5 \lesssim \eta_s \lesssim 10$ and
 612 $5 \lesssim \eta_b \lesssim 10$) are thus critical for the experimental design
 613 and realization of size-controlled crystals. In the context of
 614 programmable DNA triangles, experimental yields of off-target

599 tubule assembly suggest a range of bending stiffness to binding
 600 ratio in the range $\eta_b \approx 0.1 - 1$, and dimensional arguments
 601 suggest η_s to be in a similar range, which is notably in the
 602 range of productive and high-fidelity assembly of our physical
 603 model (44).

599 These estimates suggest this system may be ideal for harnessing
 600 the economy of P_T , D_T and G_T for programmed
 601 assembly of crystal structures with unit cells that are tunable to
 602 dimensions larger than those of the subunits, which is currently
 603 a challenge with assembly of colloidal or supramolecular building
 604 blocks. This limitation applies to current approaches to
 605 program the assembly of complex crystals of DNA functionalized
 606 particles (34, 35), as well as DNA origami “voxels” (36, 37).
 607 Notably, the nanometric size of programmable building blocks
 608 typically puts the photonic bandgap behavior far outside of the
 609 range of the optical regime for DNA-programmable crystals,
 610

531 as unit cells sizes have been typically limited to within a few
 532 times the subunit size. Hence it would be advantageous to use
 533 P_T , D_T and G_T assemblies as platforms for bottom-up design
 534 of photonic materials, with wavelength tunable via T . For
 535 example, taking computed bandgaps for gyroidal crystals (12)
 536 and using the ~ 50 nm size of DNA origami triangles (42),
 537 suggests that photonic behavior occurs in the visible range for
 538 $T = 4 - 9$.

539 We note that the photonic structures appearing in bio-
 540 logical structures have slightly different symmetries than the
 541 TPMS structures we have studied here. That is, while TPMS
 542 symmetries correspond to so-called “double network” archi-
 543 tectures (e.g. $Ia\bar{3}d$ spacegroup for G) and such structures
 544 are observed in membranous biological assemblies (95, 96),
 545 photonic bandgap nanostructures formed in butterflies and
 546 beetles (12, 14) correspond to “single network” architectures
 547 which break the symmetry between the two-interpenetrating
 548 channels (e.g. $I4_132$ for single-gyroids). It is, of course,
 549 straightforward to generalize the design scheme studied here
 550 for TPMS derived structures to assemblies that target these
 551 lower-symmetry analogs, for example by projection of sub-
 552 triangulated vertex positions onto *constant-mean curvature*
 553 variants of TPMS (97, 98). In the context of design economy,
 554 this symmetry reduction (i.e. reducing $\bar{3}$ symmetry at the
 555 center of the hexagonal base to 3-fold rotation) would come at
 556 the notable cost of doubling the number of required subunits
 557 relative to the higher symmetry double-network structures.

558 Finally, we note that recent approaches to synthetic protein
 559 design have assembled icosahedral shells of highly-modular
 560 size and structure, realizing CK structures in the range of $T =$
 561 $4 - 100$ (99). Thus, we anticipate that our “inverted CK” design
 562 principles could be a template for engineering new classes
 563 of triply-periodic, protein-based mesoporous frameworks of
 564 controllable periodicity and symmetry.

565 Supporting Information Appendix (SI)

566 **Supporting Information Appendix (SI).** Supporting text appen-
 567 dices are provided to detail the construction algorithm for P_T ,
 568 G_T and D_T assemblies, simulation methods, and analysis of
 569 defects and off-target assembly.

570 **SI Movies.** Supporting Movie S1 (P3.avi) Supporting Movie S2
 571 (G3.avi) Supporting Movie S3 (D3.avi) Supporting Movie S4
 572 (G7_i.avi) Supporting Movie S5 (G7_ii.avi) Supporting Movie
 573 S6 (G7_iii.avi)

574 Materials and Methods

575

576 **Triply-periodic triangulations and interaction rules.** Our construction
 577 of triangulations of P , G and D are based on projecting portions of
 578 planar triangular graphs on the level-set models of these minimal
 579 surfaces, in a way that preserves the symmetries of the *246 tiling
 580 of the \mathbb{H}^2 in the respective cubic space groups of \mathbb{E}^3 (59). In
 581 brief, this construction begins with a triangular base, $1/6$ of the
 582 hexagonal patch. The vertices this triangular base, denoted **a**, **b** and
 583 **c**, are constrained to lie on Wyckoff site positions with appropriate
 584 rotoinversion symmetries to embedded the *246 tiling. As shown in
 585 Table 1, **a** is placed at the $\bar{3}$ center of hexagonal patch, while **b** and **c**
 586 lie on 4 points, corresponding to vertex where four hexagonal patches
 587 meet. Last, we note that inversion “flips” the normal to triangular
 588 particles, so that this hexagonal base is therefore constructed by
 589 a single symmetry equivalent unit. This base triangle itself, when

TPMS	a	b, c
P ($Im\bar{3}m$)	$8c$	$12d$
G ($Ia\bar{3}d$)	$16a$	$24d$
D ($Pn\bar{3}m$)	$4c$	$6d$

591 **Table 1. Wyckoff site symmetries and locations for the vertices the**
 592 **base triangulation tile (i.e. 1/6 of the fundamental hexagon). Notice**
 593 **that vertices b and c share the same Wyckoff site symmetry.**

594 embedded into the respective $Im\bar{3}m$, $Ia\bar{3}d$ and $Pn\bar{3}m$ space groups
 595 thus constitutes the $T = 1$ triangulation of P, G and D.

596 Higher T number triangulations follow from a procedure (de-
 597 scribed in detail in SI Text Sec. 1) where by the planar base triangle
 598 **a**, **b**, **c**, is subtriangulated according the identical construction as
 599 CK, followed by a projection of the vertex positions from the planar
 600 bases (arranged according to the space group symmetries) onto a
 601 level set model of P, G or D via simple gradient flow.

602 This procedure, in general, results in distortions of the dihedral
 603 angles between edge-sharing triangular faces, as well as lengths
 604 of edges, geometric information which we then record and define
 605 to set the *target values* on triangular subunits and their selective
 606 interactions (see SI Text Sec. 2).

607 **Grand Canonical MC simulation.** For the assembly simulations, we
 608 use a model previously developed for icosahedral shell self assembly
 609 (45, 64, 100, 101) and then adapted by us for arbitrary triangle
 610 design (43, 63). Subunits in the model are flexible triangles which
 611 can bind to each other along an edge. The local preferred curvature
 612 is modelled by preferred dihedral angles between neighboring faces
 613 sharing a bond (edge) and any deviation from the preferred dihe-
 614 dral angle has a corresponding bending energy cost. The energy
 615 associated to triangle-triangle binding, edge stretching and dihedral
 616 change (bending) are shown in Eq. 2.

617 Each triangular subunit consists of 3 edges, each of which may
 618 be of distinct interaction type. The interaction matrix defines which
 619 type is allowed to bind to which type. If there are n_s subunit species
 620 in the simulation, there are at most $3n_s$ edge types with $(3n_s)^2$
 621 different interactions, i.e. binding energies, bending moduli and
 622 dihedral angles. In addition, each of the $3n_s$ edge types may have
 623 their own stretching moduli and rest lengths. In the simulations
 624 presented in the main text, we fixed the binding energies for all
 625 allowed edge pair types to the same value. Similarly, bending moduli
 626 for all pairs and stretching moduli for all edge types are also set to
 627 the same value. Moreover, each allowed edge type pair has its own
 628 dihedral angle.

629 The simulation follows the growth of a single structure in the
 630 grand canonical ensemble, i.e. the structure is immersed in a bath of
 631 freely diffusing subunits held at fixed concentration. Concentrations
 632 (or, equivalently, the chemical potentials) for all species are set to be
 633 equal. The dynamics is governed by a series of Monte Carlo moves
 634 with fixed relative rates. The moves allow for subunit exchange
 635 between the structure and the bath, internal binding and unbinding
 636 of edges and thermal fluctuation of vertices with no change in
 637 topology. There are a total number of 11 moves and each move is
 638 carefully designed to satisfy detailed balance with its reverse move
 639 (63).

640 **Calculation of defect charges.** Given a structure assembled with
 641 the matching rules of triply-periodic polyhedra, we can determine
 642 disclination charges by considering closed paths around encircling
 643 the disclinations like the one shown on the Supporting Fig. S9.
 644 Each path can be in general seen as a series of steps in which
 645 each individual step consists of a composition of two rotations: an
 646 initial rotation of angle ϕ_{ij} corresponding to the angle between
 647 two consecutive edges E_i and E_j and a second rotation of angle
 648 θ_j corresponding to the dihedral angle associated with the edge
 649 E_j (s). This approach closely follows the formalism introduced by
 650 belcastro and Hull in which origami folding patterns are viewed
 651 as collections of affine transformations around the internal vertices
 652 of the patterns (102). Furthermore, moving around the vertex or
 653 rotating the surface around the vertex are analogous operations
 654 so we can perform all the ϕ and θ rotations around axes passing

through the enclosed vertex and parallel to $\hat{\mathbf{z}}$ and $\hat{\mathbf{x}}$ respectively. One full rotation amounts then to the composition of rotation operations (from right to left) $\hat{R}_v(\Phi, \hat{\mathbf{n}})$:

$$\begin{aligned} \hat{R}_v(\Phi, \hat{\mathbf{n}}) &= \hat{R}(\theta_0, \hat{\mathbf{x}}) \hat{R}(\phi_{00}, \hat{\mathbf{z}}) \dots \\ &\quad \hat{R}(\theta_2, \hat{\mathbf{x}}) \hat{R}(\phi_{12}, \hat{\mathbf{z}}) \hat{R}(\theta_1, \hat{\mathbf{x}}) \hat{R}(\phi_{01}, \hat{\mathbf{z}}), \end{aligned} \quad [5]$$

where Φ is the desired angle around inclination vertex v whose absolute value can be found can be determined as $|\Phi| = \arccos[(\text{Tr}(\hat{R}_v) - 1)/2]$. With the rotation angle Φ the disclination charge of a defect is defined as the angle deficit $s = 2\pi - |\Phi|$.

ACKNOWLEDGMENTS. The authors thank S. Fraden and D. Hayakawa for help with rendering of cryoEM reconstructions DNA origami assemblies and also B. Rogers for many useful comments on this manuscript. This work was primarily support by the NSF through the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC (DMR-2011846). The authors acknowledge additional support from the German Federal Ministry of Education and Research under grant number 031L0160 and European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 829010 (CMD); European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101026118 (BT); NSF grant DMR-2309635 (MFH); and NSF grant DMR-2217543 (CDS). Simulations were performed using the UMass Cluster at the Massachusetts Green High Performance Computing Center and the High Performance Computing Cluster of MPI-CBG and CSBD. The authors gratefully acknowledge the seminal work of Alan Schoen on geometry of triply-periodic minimal surfaces that was crucial inspiration for this work.

1. JMT Thompson, AR Parker, A vision for natural photonics. *Philosophical Transactions Royal Society London. Series A: Mathematical, Physical Engineering Sciences* **362**, 2709–2720 (2004).
2. RO Prum, ER Dufresne, T Quinn, K Waters, Development of colour-producing β -keratin nanostructures in avian feather barbs. *Journal The Royal Society Interface* **6** (2009).
3. AC Neville, *Biology of Fibrous Composites*. (Cambridge University Press, Cambridge), (1993).
4. P Fratzl, Cellulose and collagen: from fibres to tissues. *Current Opinion Colloid & Interface Science* **8**, 32–39 (2003).
5. JD Perlmutter, MF Hagan, Mechanisms of virus assembly. *Annual Review Physical Chemistry* **66**, 217–239 (2015) PMID: 25532951.
6. CA Kerfeld, C Auggiarques, J Zarzycki, F Cai, M Sutter, Bacterial microcompartments. *Nature Reviews Microbiology* **16**, 277–290 (2018).
7. M Rother, MG Nussbaumer, K Renggli, N Bruns, Protein Cages and Synthetic Polymers: A Fruiting Symbiosis for Drug Delivery Applications, Bionanotechnology and Materials science. *Chem. Soc. Rev.* **45**, 6213–6249 (2016).
8. MF Hagan, GM Grason, Equilibrium mechanisms of self-limiting assembly. *Reviews Modern Physics* **93**, 025008 (2021) Publisher: American Physical Society.
9. F Oosawa, S Asakura, *Thermodynamics of the Polymerization of Protein*. (Academic Press, London), (1975).
10. Y Bouligand, Liquid crystals and biological morphogenesis: Ancient and new questions. *Comptes Rendus Chimie* **11**, 281–296 (2008).
11. K Michelsen, D Stavenga, Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. *Journal The Royal Society Interface* **5**, 85–94 (2008).
12. V Saranathan, et al., Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. *Proceedings National Academy Sciences* **107**, 11676–81 (2010).
13. BD Wiltz, K Michelsen, J Kuipers, H De Raedt, DG Stavenga, Brilliant camouflage: photonic crystals in the diamond weevil, entimus imperialis. *Proceedings Royal Society B: Biological Sciences* **279**, 2524–2530 (2012).
14. V Saranathan, S Narayanan, A Sandy, ER Dufresne, RO Prum, Evolution of single gyroid photonic crystals in bird feathers. *Proceedings National Academy Sciences* **118**, e2101357118 (2021).
15. Y Ke, LL Ong, WM Shih, P Yin, Three-Dimensional Structures Self-Assembled from DNA Bricks. *Science* **338**, 1177–1183 (2012).
16. MR Jones, NC Seeman, CA Mirkin, Programmable materials and the nature of the DNA bond. *Science* **347**, 1260901–1260901 (2015).
17. Z Zeravcic, VN Manoharan, MP Brenner, Colloquium : Toward living matter with colloidal particles. *Reviews Modern Physics* **89**, 031001 (2017).
18. SM Douglas, et al., Self-assembly of dna into nanoscale three-dimensional shapes. *Nature* **459**, 414–418 (2009).
19. PS Huang, BS E, D Baker, The coming of age of *de novo* protein design. *Nature* **537**, 320–327 (2016).
20. SC Glotzer, MJ Solomon, Anisotropy of building blocks and their assembly into complex structures. *Nature Materials* (2007).
21. S Sacanna, DJ Pine, Shape-anisotropic colloids: Building blocks for complex assemblies. *Current Opinion Colloid & Interface Science* **16**, 96–105 (2011).
22. T Heuckel, GM Hocky, S Sacanna, Total synthesis of colloidal matter. *Nature Reviews Materials* volume **6**, 1053–1069 (2021).

23. Z Su, et al., The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: A molecular LEGO approach. *Progress Polymer Science* **103**, 101230 (2020). 727
24. A Murugan, J Zou, MP Brenner, Undesired usage and the robust self-assembly of heterogeneous structures. *Nature Communications* **6**, 6203 (2015). 728
25. A Murugan, Z Zeravcic, MP Brenner, S Leibler, Multifarious assembly mixtures: Systems allowing retrieval of diverse stored structures. *Proceedings National Academy Sciences* **112**, 54–59 (2015). 729
26. WM Jacobs, A Reinhardt, D Frenkel, Rational design of self-assembly pathways for complex multicomponent structures. *Proceedings National Academy Sciences* **112**, 6313–6318 (2015). 730
27. WM Jacobs, D Frenkel, Self-assembly of structures with addressable complexity. *Journal American Chemical Society* **138**, 2457–2467 (2016) PMID: 26862684. 731
28. Z Zeravcic, VN Manoharan, MP Brenner, Size limits of self-assembled colloidal structures made using specific interactions. *Proceedings National Academy Sciences* **111**, 15918–15923 (2014). 732
29. Y Ke, et al., DNA brick crystals with prescribed depths. *Nature Chemistry* **6**, 994–1002 (2014). 733
30. LL Ong, et al., Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. *Nature* **552**, 72–77 (2017). 734
31. D Nykypachuk, MM Maye, D Van Der Lelie, O Gang, DNA-guided crystallization of colloidal nanoparticles. *Nature* **451**, 549–552 (2008). 735
32. E Auyeung, et al., Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. *Nature Nanotechnology* **7**, 24–28 (2012). 736
33. Y Tian, et al., Ordered three-dimensional nanomaterials using dna-prescribed and valence-controlled material voxels. *Nature Materials* **19**, 789–796 (2020). 737
34. WB Rogers, JC Crocker, Direct measurements of dna-mediated colloidal interactions and their quantitative modeling. *Proceedings National Academy Sciences* **108**, 15687–15692 (2011). 738
35. A Hensley, WM Jacobs, WB Rogers, Self-assembly of photonic crystals by controlling the nucleation and growth of dna-coated colloids. *Proceedings National Academy Sciences* **119**, e2114050118 (2022). 739
36. PW Majewski, et al., Resilient three-dimensional ordered architectures assembled from nanoparticles by dna. *Science Advances* **7**, eabf0617 (2021). 740
37. A Michelson, et al., Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks. *Science* **376**, 203–207 (2022). 741
38. SH Park, H Park, K Hur, S Lee, Design of dna origami diamond photonic crystals. *ACS Applied Bio Materials* **3**, 747–756 (2020) PMID: 35019418. 742
39. T Gerling, KF Wagenbauer, AH Neuner, H Dietz, Dynamic dna devices and assemblies formed by shape-complementary, nonbase pairing 3d components. *Science* **347**, 1446–1452 (2015). 743
40. PWK Rothenmund, et al., Design and characterization of programmable dna nanotubes. *Journal American Chemical Society* **126**, 16344–16352 (2004) PMID: 15600335. 744
41. E Benson, et al., Dna rendering of polyhedral meshes at the nanoscale. *Nature* **523**, 441–444 (2015). 745
42. C Sigl, et al., Programmable icosahedral shell system for virus trapping. *Nature Materials* **20**, 1281–1289 (2021). 746
43. TE Videbaek, et al., Tiling a tubule: how increasing complexity improves the yield of self-limited assembly. *Journal Physics: Condensed Matter* **34**, 134003 (2022). 747
44. D Hayakawa, et al., Geometrically programmed self-limited assembly of tubules using dna origami colloids. *Proceedings National Academy Sciences* **119**, e2207902119 (2022). 748
45. R Zandi, D Reguera, RF Bruinsma, WM Gelbart, J Rudnick, Origin of icosahedral symmetry in viruses. *Proceedings National Academy Sciences* **101**, 15556–15560 (2004). 749
46. R Twarock, A Luque, Structural puzzles in virology solved with an overarching icosahedral design principle. *Nature Communications* **10**, 4414 (2019). 750
47. A Siber, Icosadeltahedral geometry of geodesic domes, fullerenes and viruses: A tutorial on the t-number. *Symmetry* **12** (2020). 751
48. JE Johnson, JA Speir, Quasi-equivalent viruses: A paradigm for protein assemblies. *J. Mol. Biol.* **269**, 665–675 (1997). 752
49. DLD Caspar, A Klug, Physical Principles in the Construction of Regular Viruses. *Cold Spring Harbor Symposia on Quantitative Biology* **27**, 1–24 (1962). 753
50. J Bohlin, AJ Turberfield, AA Louis, P Åulc, Designing the self-assembly of arbitrary shapes using minimal complexity building blocks. *ACS Nano* **17**, 5387–5398 (2023) PMID: 36763807. 754
51. DEP Pinto, P Sulc, F Sciorino, J Russo, Design strategies for the self-assembly of polyhedral shells. *Proceedings National Academy Sciences* **120**, e2219458120 (2023). 755
52. MC Pedersen, ST Hyde, Polyhedra and packings from hyperbolic honeycombs. *Proceedings National Academy Sciences* **115**, 6905–6910 (2018). 756
53. H Tanaka, T Dotera, ST Hyde, Programmable self-assembly of nanoplates into bicontinuous nanostructures. *ACS Nano* **0**, null (0) PMID: 37527198. 757
54. EA Lord, AL Mackay, Periodic minimal surfaces of cubic symmetry. *Current Science* **85**, 346–362 (2003). 758
55. AH Schoen, Reflections concerning triply-periodic minimal surfaces. *Interface Focus* **2**, 658–668 (2012). 759
56. GE Schroeder, SJ Ramsden, AG Christy, ST Hyde, Medial surfaces of hyperbolic structures. *The European Physical Journal B - Condensed Matter* **35**, 551–564 (2003). 760
57. T Dotera, H Tanaka, Y Takahashi, Hexagulation numbers: the magic numbers of equal spheres on triply periodic minimal surfaces. *Structural Chemistry* **28**, 105–112 (2017). 761
58. JF Sadoc, J Charvolin, Infinite periodic minimal surfaces and their crystallography in the hyperbolic plane. *Acta Crystallographica Section A* **45**, 10–20 (1989). 762
59. SJ Ramsden, V Robins, ST Hyde, Three-dimensional Euclidean nets from two-dimensional hyperbolic tilings: kaleidoscopic examples. *Acta Crystallographica Section A* **65**, 81–108 (2009). 763
60. MC Pedersen, ST Hyde, Hyperbolic crystallography of two-periodic surfaces and associated

811 structures. *Acta Crystallographica Section A* **73**, 124–134 (2017).

812 61. MC Pedersen, ST Hyde, S Ramsden, JK Kirkensgaard, Mapping hyperbolic order in curved
813 materials. *Soft Matter* **19**, 1586–1595 (2023).

814 62. CT Chandler, F Boscherini, B Bunker, eds., *International Tables for Crystallography: X-ray*
815 *absorption spectroscopy and related techniques*. (International Union of Crystallography,
816 Chester, England) Vol. I, 1 edition, (2020).

817 63. B Tyukodi, F Mohajerani, DM Hall, GM Grason, MF Hagan, Thermodynamic Size Control in
818 Curvature-Frustrated Tubules: Self-Limitation with Open Boundaries. *ACS Nano* (2022).

819 64. GM Rotskoff, PL Geissler, Robust nonequilibrium pathways to microcompartment assembly.
820 *Proceedings National Academy Sciences United States America* **115**, 6341–6346 (2018).

821 65. S Li, P Roy, A Traverset, R Zandi, Why large icosahedral viruses need scaffolding proteins.
822 *Proc. Natl. Acad. Sci. U. S. A.* **115**, 10971–10976 (2018).

823 66. S Panahandeh, et al., How a virus circumvents energy barriers to form symmetric shells.
824 *ACS Nano* **14**, 3170–3180 (2020).

825 67. H Fang, B Tyukodi, WB Rogers, MF Hagan, Polymorphic self-assembly of helical tubules is
826 kinetically controlled. *Soft Matter* **18**, 6716–6728 (2022).

827 68. F Mohajerani, et al., Multiscale modeling of hepatitis b virus capsid assembly and its dimor-
828 phism. *ACS Nano* **16**, 13845–13859 (2022) doi: 10.1021/acsnano.2c02119.

829 69. J Wagner, R Zandi, The robust assembly of small symmetric nanoshells. *Biophys. J.* **109**,
830 956 (2015).

831 70. S Li, R Zandi, A Traverset, GM Grason, Ground States of Crystalline Caps: Generalized
832 Jellium on Curved Space. *Phys. Rev. Lett.* (2019).

833 71. R Schwartz, PW Shor, PE Prevelige, B Berger, Local Rules Simulation of the Kinetics of
834 Virus Capsid Self-Assembly. *Biophys. J.* **75**, 2626–2636 (1998).

835 72. MF Hagan, D Chandler, Dynamic Pathways for Viral Capsid Assembly. *Biophys. J.* **91**, 42–
836 54 (2006).

837 73. RL Jack, MF Hagan, D Chandler, Fluctuation-dissipation ratios in the dynamics of self-
838 assembly. *Phys. Rev. E* **76**, 021119 (2007).

839 74. MF Hagan, OM Elrad, RL Jack, Mechanisms of Kinetic Trapping in Self-Assembly and
840 Phase Transformation. *J. Chem. Phys.* **135**, 104115 (2011).

841 75. D Rapaport, The Role of Reversibility in Viral Capsid Growth: A Paradigm for Self-Assembly.
842 *Phys. Rev. Lett.* **101**, 186101 (2008).

843 76. DC Rapaport, Studies of reversible capsid shell growth. *J. Phys.: Condens. Matter* **22**,
844 104115 (2010).

845 77. DC Rapaport, Molecular dynamics simulation of reversibly self-assembling shells in solution
846 using trapezoidal particles. *Phys. Rev. E* **86**, 051917 (2012).

847 78. S Whitelam, et al., The Impact of Conformational Fluctuations on Self-Assembly: Cooper-
848 ative Aggregation of Archaeal Chaperonin Proteins. *Nano Lett.* **9**, 292–297 (2009).

849 79. HD Nguyen, VS Reddy, CL Brooks, Deciphering the Kinetic Mechanism of Spontaneous
850 Self-Assembly of Icosahedral Capsids. *Nano Lett.* **7**, 338–344 (2007).

851 80. H Nguyen, C Brooks, Generalized structural polymorphism in self-assembled viral particles.
852 *Nano Lett.* **8**, 4574 (2008).

853 81. HD Nguyen, VS Reddy, CL Brooks, Invariant Polymorphism in Virus Capsid Assembly. *J.*
854 *Am. Chem. Soc.* **131**, 2606–14 (2009).

855 82. AW Wilber, et al., Reversible Self-Assembly of Patchy Particles into Monodisperse Icosahedral
856 Clusters. *J. Chem. Phys.* **127**, 085106 (2007).

857 83. AW Wilber, JPK Doye, AA Louis, ACF Lewis, Monodisperse self-assembly in a model with
858 protein-like interactions. *J. Chem. Phys.* **131**, 175102 (2009).

859 84. S Cheng, A Aggarwal, MJ Stevens, Self-assembly of artificial microtubules. *Soft Matter* **8**,
860 5666 (2012).

861 85. MF Hagan, Modeling Viral Capsid Assembly. *Adv. Chem. Phys.* **155**, 1–68 (2014).

862 86. S Whitelam, RL Jack, The Statistical Mechanics of Dynamic Pathways to Self-Assembly.
863 *Ann Rev Phys Chem* **66**, 143–63 (2015).

864 87. HS Seung, DR Nelson, Defects in flexible membranes with crystalline order. *Phys. Rev. A*
865 **38**, 1005–1018 (1988).

866 88. M Kléman, Curved crystals, defects and disorder. *Advances Physics* **38**, 605–667 (1989).

867 89. D Meek, D Walton, On surface normal and gaussian curvature approximations given data
868 sampled from a smooth surface. *Computer Aided Geometric Design* **17**, 521–543 (2000).

869 90. GM Grason, Defects in crystalline packings of twisted filament bundles. i. continuum theory
870 of disclinations. *Phys. Rev. E* **85**, 031603 (2012).

871 91. S Schneider, G Gompper, Shapes of crystalline domains on spherical fluid vesicles. *Euro-
872 physics Letters* **70**, 136 (2005).

873 92. G Meng, J Paulose, DR Nelson, VN Manoharan, Elastic Instability of a Crystal Growing on
874 a Curved Surface. *Science* **343** (2014).

875 93. GM Grason, Perspective: Geometrically frustrated assemblies. *J. Chem. Phys.* **145**, 110901
876 (2016).

877 94. Y Yang, R Meyer, MF Hagan, Self-Limited Self-Assembly of Chiral Filaments. *Phys. Rev.*
878 *Lett.* **104**, 258102 (2010).

879 95. ZA Almsherqi, T Landh, SD Kohlwein, Y Deng, Chapter 6 cubic membranes: The missing
880 dimension of cell membrane organization in *International Review of Cell and Molecular Bi-
881 ology*, International Review of Cell and Molecular Biology. (Academic Press) Vol. 274, pp.
882 275–342 (2009).

883 96. E Selstam, J Schelin, WP Williams, AP Brain, Structural organisation of prolamellar bodies
884 (plb) isolated from zea mays. parallel tem, saks and absorption spectra measurements on
885 samples subjected to freeze-thaw, reduced ph and high-salt perturbation. *Biochimica et*
886 *Biophysica Acta (BBA) - Biomembranes* **1768**, 2235–2245 (2007).

887 97. DM Anderson, HT Davis, JCC Nitsche, LE Scriven, Periodic surfaces of prescribed mean
888 curvature in *Physics of Amphiphilic Layers*, eds. J Meunier, D Langevin, N Boccara.
889 (Springer Berlin Heidelberg, Berlin, Heidelberg), pp. 130–130 (1987).

890 98. K Grosse-Brauckmann, Gyroids of constant mean curvature. *Experimental Mathematics* **6**,
891 33–50 (1997).

892 99. QM Dowling, et al., Hierarchical design of pseudosymmetric protein nanoparticles. (Bioengi-
893 neering), preprint (2023).

894 100. R Zandi, P van der Schoot, D Reguera, W Kegel, H Reiss, Classical Nucleation Theory of
895 Virus Capsids. *Biophys. J.* **90**, 1939–1948 (2006).

896 101. R Zandi, B Dragnea, A Traverset, R Podgornik, On virus growth and form. *Phys. Rep.*
897 (2020).

898 102. sarah-marie belcastro, TC Hull, Modelling the folding of paper into three dimensions using
899 affine transformations. *Linear Algebra its Applications* **348**, 273–282 (2002).

1

² Supporting Information for

³ **Limits of economy and fidelity for programmable assembly of size-controlled triply-periodic
4 polyhedra**

⁵ Carlos M. Duque, Douglas M. Hall, Botond Tyukodi, Michael F. Hagan, Christian D. Santangelo, and Gregory M. Grason

⁶ Gregory M. Grason

⁷ E-mail: grason@umass.edu

⁸ **This PDF file includes:**

⁹ Supporting text

¹⁰ Figs. S1 to S22

¹¹ Legends for Movies S1 to S6

¹² SI References

¹³ **Other supporting materials for this manuscript include the following:**

¹⁴ Movies S1 to S6

15 **Supporting Information Text**

16 **1. Extension of Caspar Klug construction to P,G,D triangulations**

17 The construction of Caspar and Klug is a procedure to create structures with increasing number of subunits proportional to the
18 triangulation number T while preserving icosahedral symmetry (1). The extension of this construction to the structures studied
19 here was formulated previously (2), considering the dual problem of packing spheres on the surface with packing deriving from
20 hexagonal packing of the plane. Here, we give an explicit procedure for deriving the sub-triangulations ($T > 1$) derived from
21 base triangulations ($T = 1$) of the P,G, and D surfaces based on the principles of Caspar and Klug. In each case, the vertices of
22 the base triangulations are identified with vertices and centers of the hexagonal base tiles associated with each structure.

23 The steps of the construction are outlined in Fig S14, yielding explicit coordinates for vertices of each triangle in the cubic
24 unit cell. The $T = 1$ structure is taken as a starting point, which is then sub-divided to the desired triangulation number.
25 Finally, each vertex is translated by gradient flow along an objective function to arrive closer to an approximation of the target
26 surface.

27 From the $T = 1$ structure, both the coordinates of each triangle's vertices in the unit cell is known and also an indexing of
28 each triangle's neighbors is derived by identifying which edges are shared by which triangles. The extended construction is to
29 then identify a part of the planar triangular lattice with each triangles of $T = 1$ by an orthogonal projection: each edge of the
30 $T = 1$ structure corresponds to a vector $\mathbf{L} = h\mathbf{a}_1 + k\mathbf{a}_2$ of the planar structure with standard triangular lattice vectors $\mathbf{a}_1, \mathbf{a}_2$.
31 The triangulation indices h, k are integers that enumerate different triangulation numbers via the relation $T = h^2 + k^2 + hk$ that
32 derives from the area of the equilateral triangle with edge \mathbf{L} expressed in units of the original triangular lattice vectors' length.

33 Adjacent edges on the $T = 1$ structure are identified with vectors in the planar diagram $\mathbf{L}, \mathbf{U}_1 = -k\mathbf{a}_1 + (h+k)\mathbf{a}_2$ and
34 $\mathbf{U}_2 = (h+k)\mathbf{a}_1 + -h\mathbf{a}_2$. Each vertex contained in the triangle with edges \mathbf{L}, \mathbf{U}_1 can be expressed as $i\mathbf{a}_1 + j\mathbf{a}_2$, and equivalently
35 as $\frac{1}{T}(i(h+k) + jk)\mathbf{L} + \frac{1}{T}(jh - ik)\mathbf{U}_1$. This mapping of vertices is an orthographic projection, so that while the triangulation
36 of the icosahedron in this manner will yield equilateral triangles, here isosceles triangles are found due to the isosceles triangles
37 of $T = 1$ deriving from the asymmetric units of P,G and D. The edges of the ($T > 1$) triangulation follow from the mapping
38 identifying \mathbf{L}, \mathbf{U}_1 and the additional identification of \mathbf{U}_2 wherever an edge of the planar diagram crosses over the vector \mathbf{L} .

39 The resulting sub-triangulations are planar except for triangles near the boundary. In the final step to construct the explicit
40 coordinates of the $T > 1$ triangulation, in the spirit of quasi-equivalence, vertices of the sub-triangulation are each translated
41 by gradient flow along the function f^i ($i = P, G, D$) to the nodal approximation of the target surface $f = 0$ while minimizing
42 the distance that each vertex is translated from its initial value. This is performed by using Mathematica software to minimize
43 $\|\mathbf{x} - \mathbf{x}_0\|^2$ subject to the constraint $f(\mathbf{x}) = 0$. While the vertices are transformed, the edge topology is kept the same by
44 preserving the edge data according to indexing of each vertex before and after the gradient flow. This final step preserves the
45 symmetries of the structure because each $f(x, y, z)$ has the targeted symmetries.

46 **2. Derivation of matching rules and geometric parameters for simulation**

47 With the cubic unit cell of structures derived using the construction of the previous section, we next consider the matching rules
48 for building blocks that exactly address the target structure in the rigid limit, of zero compliance in either bending or stretching.
49 We consider the minimal number of subunit types required where each subunit has three edges, each edge has a single length,
50 dihedral angle with respect to its neighbor, and only binds with exactly one subunit type and a single corresponding edge index
51 (see figure 2). When comparing to triangulations of icosahedral shells and other deltahedral shells, we further allow a triangle to
52 adopt three-fold symmetry, so that each of its three edges have the same lengths, dihedrals, and bind to a single edge identity.

53 The types and matching rules may be identified in the unit cell directly from the identifications found by applying the
54 discrete symmetries of the corresponding target surface. For the purpose of generating matching rules for the simulations,
55 we only use the translational and rotational symmetries (no inversion or mirror symmetry), resulting in twice the number of
56 subunit species with distinct species that are related by the additional symmetries not considered. Taking advantage of the
57 rotoinversion symmetries of the ultimate triangulations in \mathbb{E}^3 then allows us further to identify "flipped" triangle pairs, as a
58 single sub unit type.

59 In principle, the explicit construction detailed above in the previous section will preserve these symmetries from the original
60 structure, since we are applying orthogonal projection of a three-fold symmetric structure onto the the $T = 1$ structure and
61 gradient flow according to a function that has the same symmetry. We have developed a method to check whether the numerical
62 procedure for construction preserves symmetry by re-deriving type and matching rule assignment from a given triangulation
63 with vertex coordinates and indexing of triangle neighbors. The procedure is an exhaustive search of all possible assignments,
64 made simpler by the method of constraint propagation: successive sub-symmetries are found by attempting to identify pairs of
65 triangles and their orientations, and propagating the additional identifications that are necessary for such a structure.

66 The constraint propagation of an identification follows from recursive evaluations of local matches on the collection of
67 triangles $\{t_i\}$ of the explicit triangulation of the unit cell. A list of proposed type assignments is maintained, with each t_i
68 having a type and a rotation relative to other members of the type. Each type has an additional Boolean value assigning
69 three-fold symmetry. At each recursion, a proposed match is t_a and t_b and a rotation r that identifies side j of t_a with side
70 $j + r \bmod 3$ of t_b . The recursion consists of the following:

- 71 1. For all three sides $j = 1..3$, check that corresponding side lengths and dihedrals match.
- 72 2. If this local match fails, the entire propagation terminates and the type assignment is rejected.

73 3. If the local match succeeds but has been previously identified, no additional matching is required (this is the base case to
74 the recursion).

75 4. If the local match succeeds but t_a and t_b were previously identified to be the same type but with a different rotation, and
76 furthermore no threefold symmetry was previously identified, then threefold symmetry is proposed for this type. Two recursive
77 calls are made to identify $j = 1$ $j = 2$ and $j = 1$ $j = 3$ neighbors of t_a , with rotations such that the corresponding edges shared
78 with t_a are identified.

79 5. If the match succeeds and t_a and t_b are different types, then the proposed type assignments is updated to reflect their
80 proposed identification. All triangles of the same type as t_b are assigned the same type as t_a and their relative rotations with
81 respect to t_a follow from the their relation to t_b and the new proposed rotation r from t_a to t_b . Three recursive calls are made
82 to identify neighbor j of t_a with neighbor $j + r \bmod 3$ of t_b , with the appropriate rotations that derive from the identifications of
83 the sides of t_a and t_b , starting again at step 1 each time.

84 The result of applying this matching algorithm for all possible pairs and possible rotations is that a minimal number of
85 types is identified. The appropriate side lengths and dihedrals for each type can be found from any triangle that has that type,
86 and the matching rules are found from the types of each neighbor. This algorithm was implemented in Mathematica, which is
87 included as supplementary information.

88 3. Ground state energies of topological defects and effect of excluder size

89 To show that the overabundance of positive defects cannot be readily attributed to some elastic favorability of positive defects,
90 we calculated the ratio $E(+|s|)/E(-|s|)$, where $E(\pm|s|)$ are the ground state elastic energies of defect patches of charge $\pm|s|$.
91 We performed energy minimization as a function of the ratio $\eta_s/\eta_b \sim k/\kappa$, with k and κ being the moduli for stretching and
92 dihedral bending respectively. We considered defect patches for the charges $s = \pm 2\pi/3$ and $s = \pm\pi$ for G_7 using the patch
93 topologies shown on Fig. 5A. Each energy minimization was performed in Mathematica with a conjugate gradient algorithm
94 and using the geometry of the patches of Fig. 5A as initial conditions. In Fig. S11A we show the ratios for charge magnitudes
95 $|s| = 2\pi/3$ and $|s| = \pi$. In general, we do not observe a regime in which positive defects have a much smaller elastic cost than
96 negative defects. On one hand, positive defects appear to have a higher elastic energy cost than their negative counterparts for
97 $\eta_s/\eta_b \lesssim 10$. On the other hand, the positive to negative elastic cost becomes comparable for $\eta_s/\eta_b \gtrsim 10$. These results suggest
98 then the necessity of a different mechanism in order to rationalize the excess of positive charges.

99 In Fig. S11B we investigate how steric interactions affect the overall excess of positive charges for the case of G_7 structures.
100 We probe the defect imbalance by measuring the quantities n_+ and n_- of a given structure which are defined as the total
101 number of charges of positive and negative sign respectively. Defining $n_{\text{total}} = n_+ + n_-$ and $\Delta n = n_+ - n_-$, we measure the
102 mean relative counts difference between positive and negative charges, $\langle \Delta n / n_{\text{total}} \rangle$, and explore how it varies as the size of the
103 normalized excluder radius between adjacent subunits, $R_{\text{exc}}/\langle \ell_0 \rangle$, is increased. We fixed the chemical potential, $\mu = -4.5k_B T$,
104 and considered three different values for binding affinity between subunits, E_{bind} . To calculate the mean values 10 independent
105 realizations per point were considered. Simulations were run for 50×10^6 Monte Carlo steps or until the number of assembled
106 subunits was at least $N_{\text{total}} = 5000$. For each E_{bind} we found that as $R_{\text{exc}}/\langle \ell_0 \rangle$ increases, $\langle \Delta n / n_{\text{total}} \rangle$ tends to saturate to
107 values ~ 1 , which we interpret as a clear signature of the fact that negative defects tend to be suppressed as the excluder radius
108 increases. In other words, the allowed configurations of multiple subunits around a given vertex is considerably affected by the
109 size of the excluder radius of neighboring subunits.

110 4. Preclosure bias and origin of stringy structures

111 In Fig. S11C we further explore the bias for defect preclosure and calculate $\langle n(s)_{\text{uc}} \rangle$, the mean total number of defects with
112 charge s per unit-cell and study how $\langle n(s)_{\text{uc}} \rangle$ varies with increasing binding affinity ϵ_{bind} . We work again with G_7 and fix the
113 chemical potential and excluder radius to $\mu = -4.5k_B T$ and $R_{\text{exc}}/\langle \ell_0 \rangle = 0.26$ respectively. Furthermore, we set $\eta_s = 1$ and
114 $\eta_b = 0.01$ and solved for the elastic moduli k and κ by normalizing with respect to the binding affinity value, $\epsilon_{\text{bind}} = -6.5k_B T$,
115 used throughout the main text. We used the same stopping criteria of the previous section and considered 50 independent
116 Monte Carlo realizations. As $\epsilon_{\text{bind}}/k_B T$ grows large and edge binding moves become more favorable the amounts of positively
117 charged defects, namely $s = +2\pi/3, +\pi$, increase while the amounts of negatively charged defect types hardly experience any
118 increment. Only for $s = -2\pi$ we see an increase past $\epsilon_{\text{bind}}/k_B T \gtrsim 6.5$. This type of charge is compatible by any vertex whether
119 or not they exhibit any n -fold rotational symmetry. This can be realized by adding twice as much subunits around the vertex
120 before closure. The results hint that rapid “off-target” assembly induced by large edge binding is reflected on an overabundance
121 of topological defects. The steric interactions due to excluders introduce an additional bias for the selection of positive defects.

122 In Fig. S11D we show the dependence of mean graph distance to the boundary, $\langle d_B \rangle$, with respect to the binding affinity.
123 We perform this calculation by measuring the graph geodesic of all the vertices composing a structure to the nearest vertex
124 located at the boundary of the structure. In order to avoid any bias coming from the starting seed, we do not include the
125 graph distance of vertices belonging to the seed. We additionally considered the zero, $d_B = 0$, distance contributions of all
126 the vertices located at the boundary of the structure. As the binding affinity increases we observe that $\langle d_B \rangle$ increases with
127 ϵ_{bind} . In general, we observe that in order to accommodate the increasing number of defects, the structures adopt “stringy”
128 morphologies like in Fig. 5C in which defects are located near the boundaries of the structure. We noticed that $d_B \lesssim 1$ for
129 small ϵ_{bind} while $d_B \lesssim 3$ for larger values of ϵ_{bind} . Even for large ϵ_{bind} , however, we observe that $\langle d_B \rangle \lesssim 1$ which suggests, at
130 least for the binding affinity range we considered, that vertices located at the boundary of the structure tend to skew $\langle d_B \rangle$
131 towards smaller values regardless of the strength of the binding affinity.

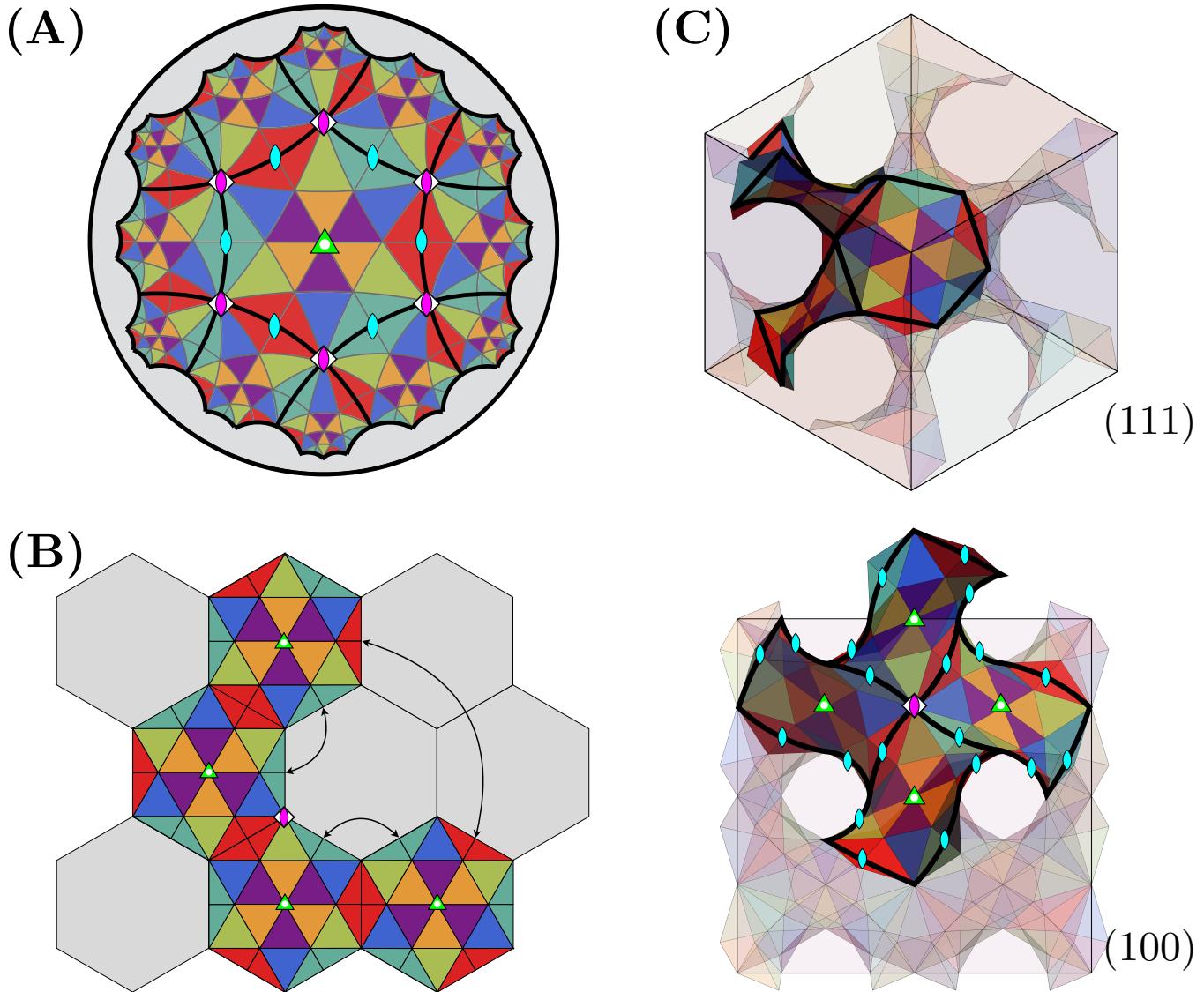


Fig. S1. (A) T=3 triangulation projected onto \mathbb{H}^2 . The triangles are colored following the ID labels assigned to triangular subunits of T=3 triply-periodic polyhedra. The thick black lines correspond to the lines of the $\{6, 4\}$ hyperbolic tessellation which can be further subdivided using a single non-Euclidean triangular mono-tile with internal angles $\{\pi/3, \pi/4, \pi/4\}$ corresponding to the T=1 case. The vertices marked with glyphs are points that map to Wyckoff sites associated to the space groups of the different TPMS. (B) Planar template illustrating how the sides of 4 hexagonal T=3 tiles should be identified in order to perform a folding and distorting procedure leading to the \mathbb{E}^3 arrangement shown on (C) for the G₃ case in which they all meet at a single vertex of $\bar{4}$ symmetry.

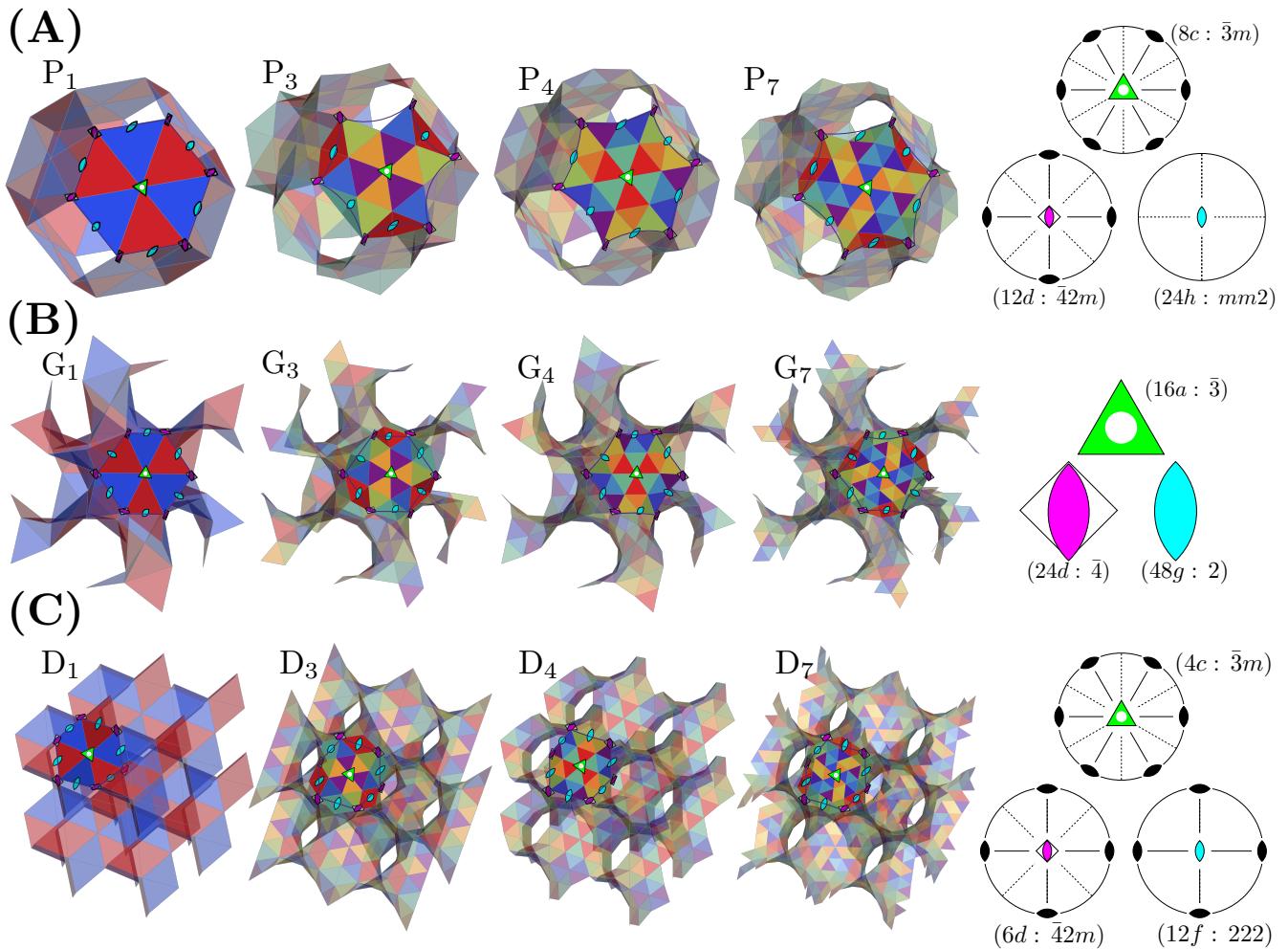


Fig. S2. Wyckoff sites of triply-periodic polyhedral crystals. **(A-C)** Wyckoff sites of different symmetry are present on the fundamental hexagonal patches of P_T , G_T and D_T respectively. The symmetry of each Wyckoff site is encoded by one of the glyphs shown on the right panels. Notice that sites with symmetries 8c, 16a, and 4c as well as 12d, 24d, and 6d are present for all shown T numbers of P_T , G_T and D_T respectively. Among these, P_4 , G_4 , and D_4 respectively, lead to an addition family of 2-fold symmetric vertices at 24h, 48g, and 12f.

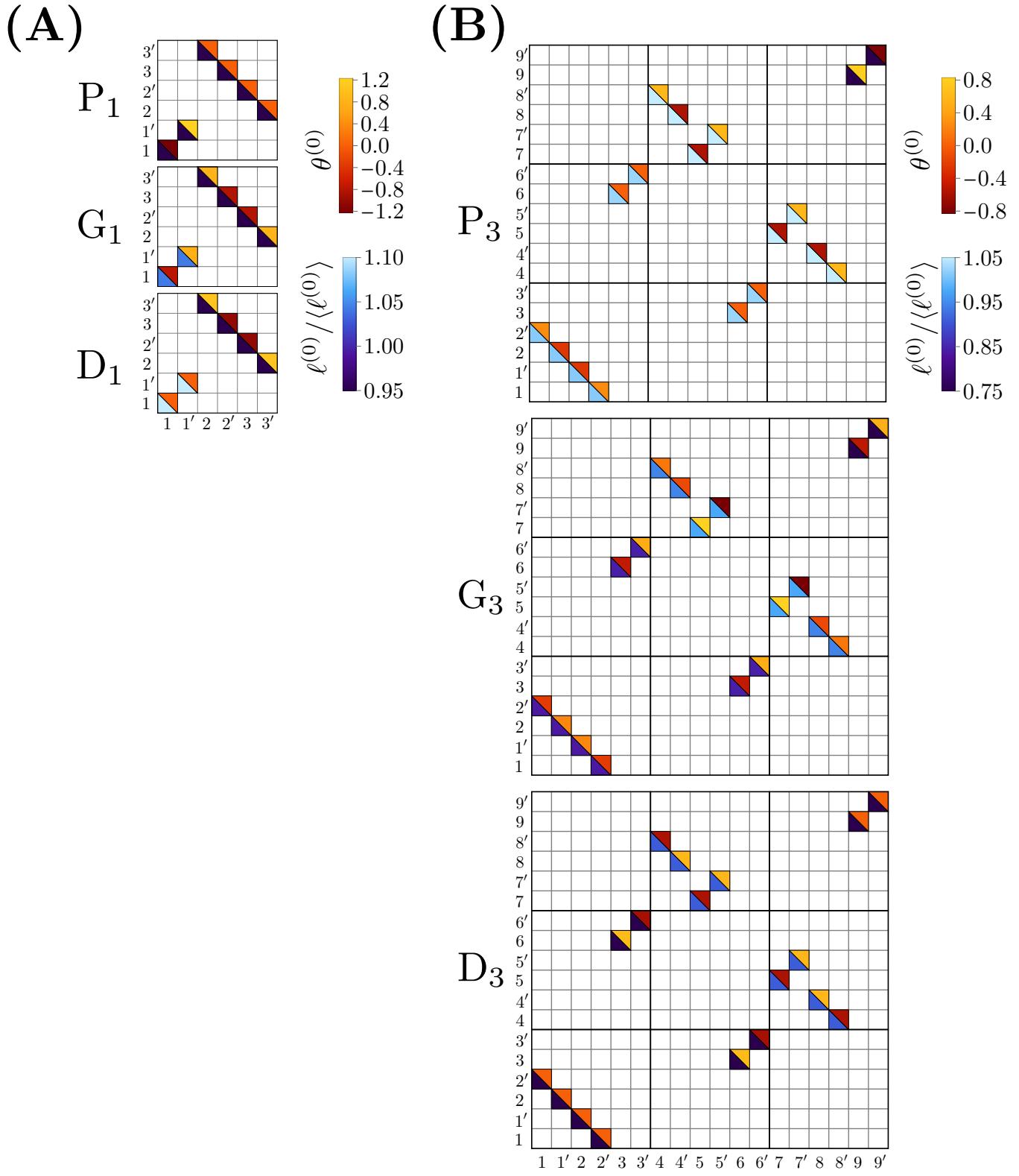


Fig. S3. (A-B) Interaction matrix for $T=1$ and $T=3$ structures respectively. Each colored block represents a valid edge-pairing in which the lower (upper) half color of each colored-block in the matrix represents the target length (dihedral angle) of a valid edge-pairing. Notice that the matrix “topologies” for a given triangulation number T are the same and we only need to specify the geometric data of each structure.

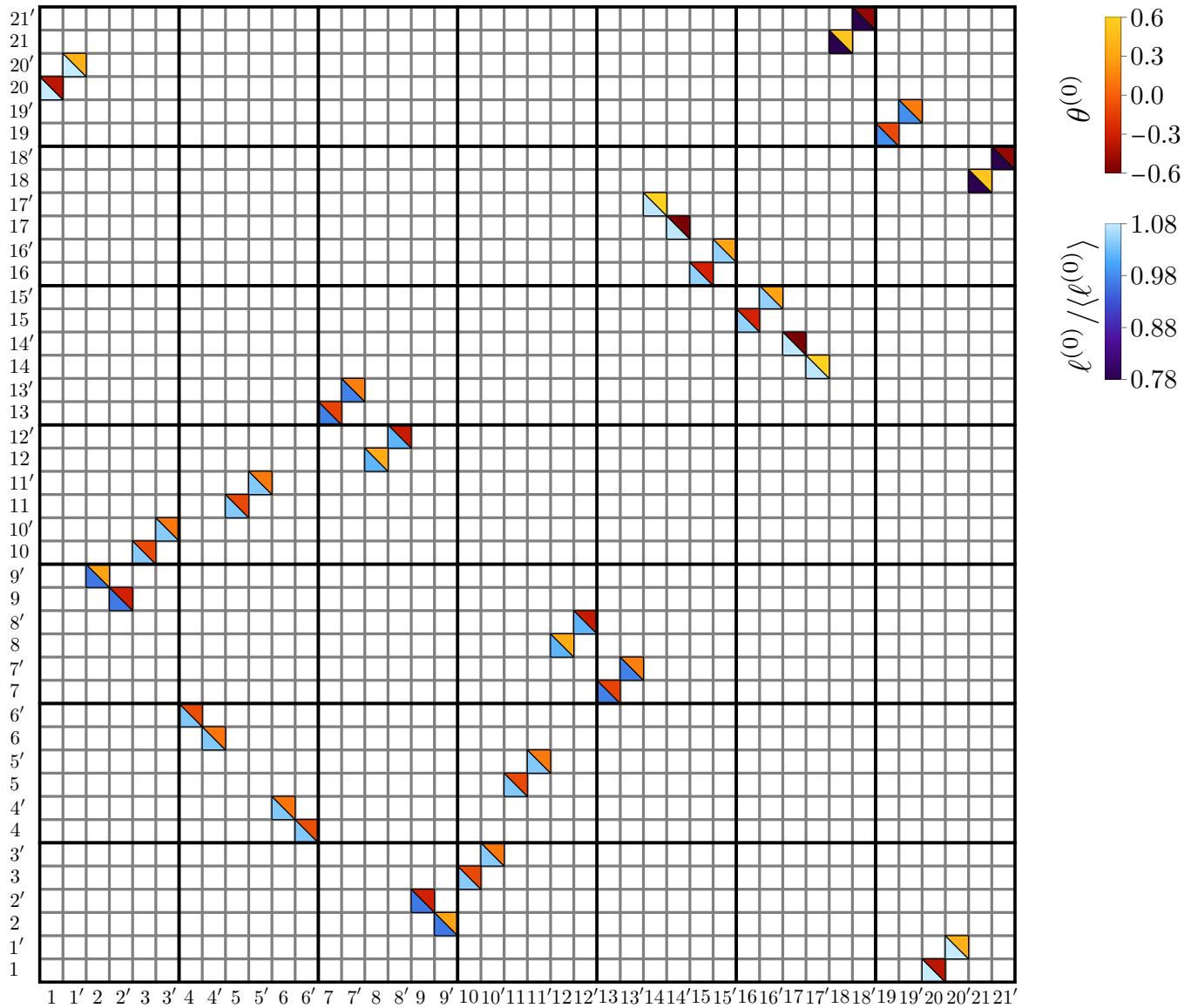


Fig. S4. Interaction matrix for P_7 . Each colored block represents a valid edge-pairing in which the lower (upper) half color of each colored-block in the matrix represents the target length (dihedral angle) of a valid edge-pairing.

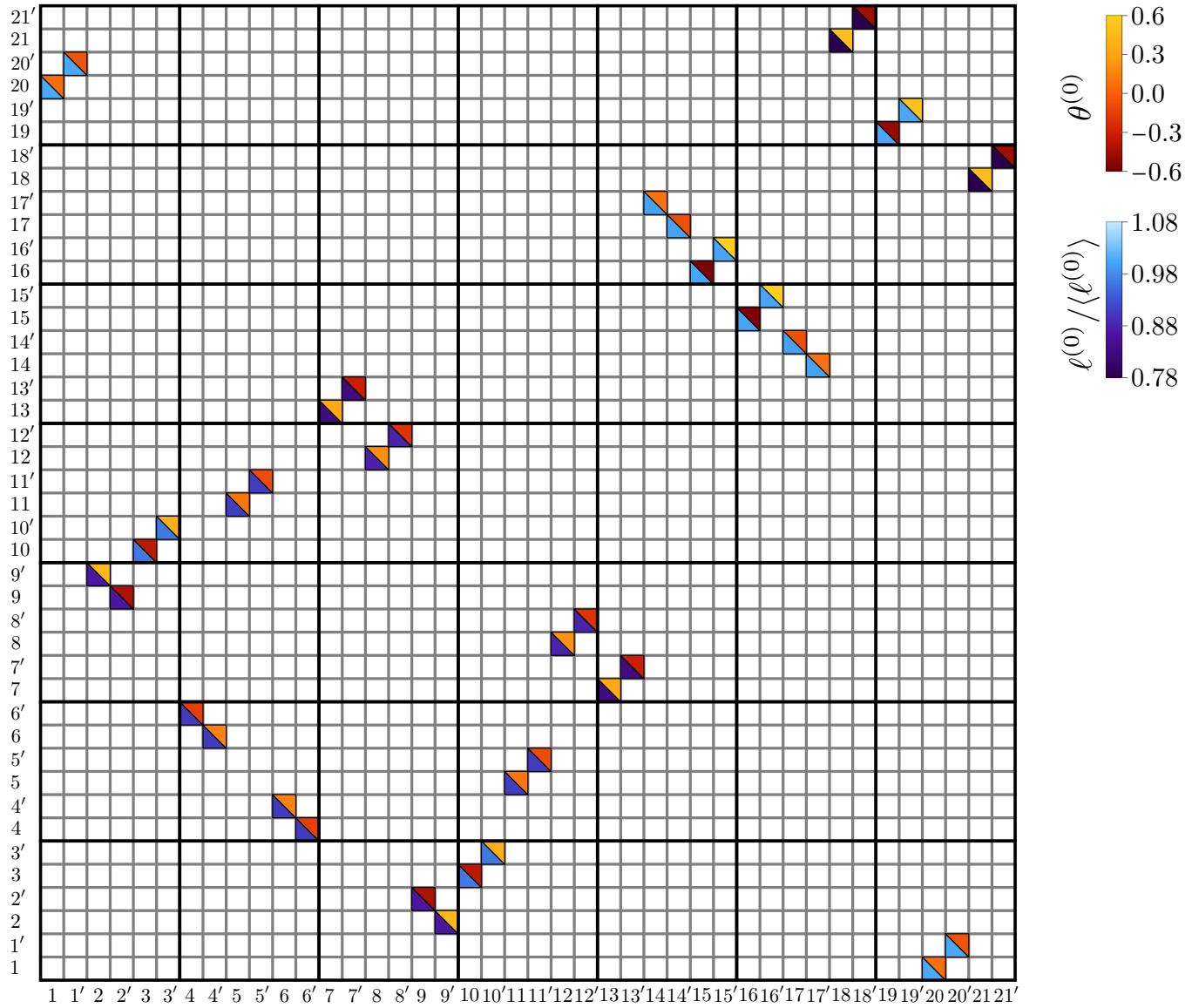


Fig. S5. Interaction matrix for G_7 . Each colored block represents a valid edge-pairing in which the lower (upper) half color of each colored-block in the matrix represents the target length (dihedral angle) of a valid edge-pairing.

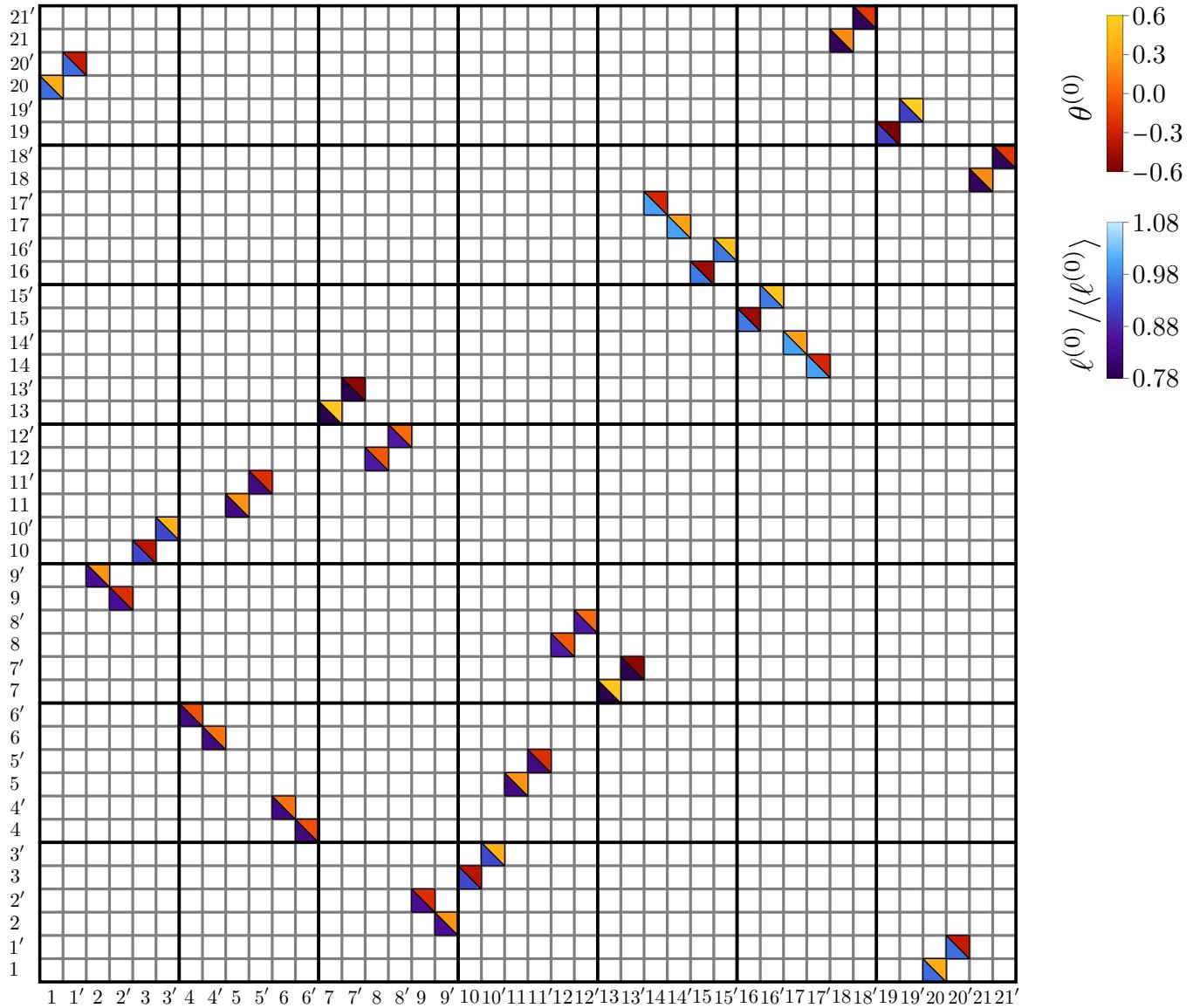


Fig. S6. Interaction matrix for D_7 . Each colored block represents a valid edge-pairing in which the lower (upper) half color of each colored-block in the matrix represents the target length (dihedral angle) of a valid edge-pairing.

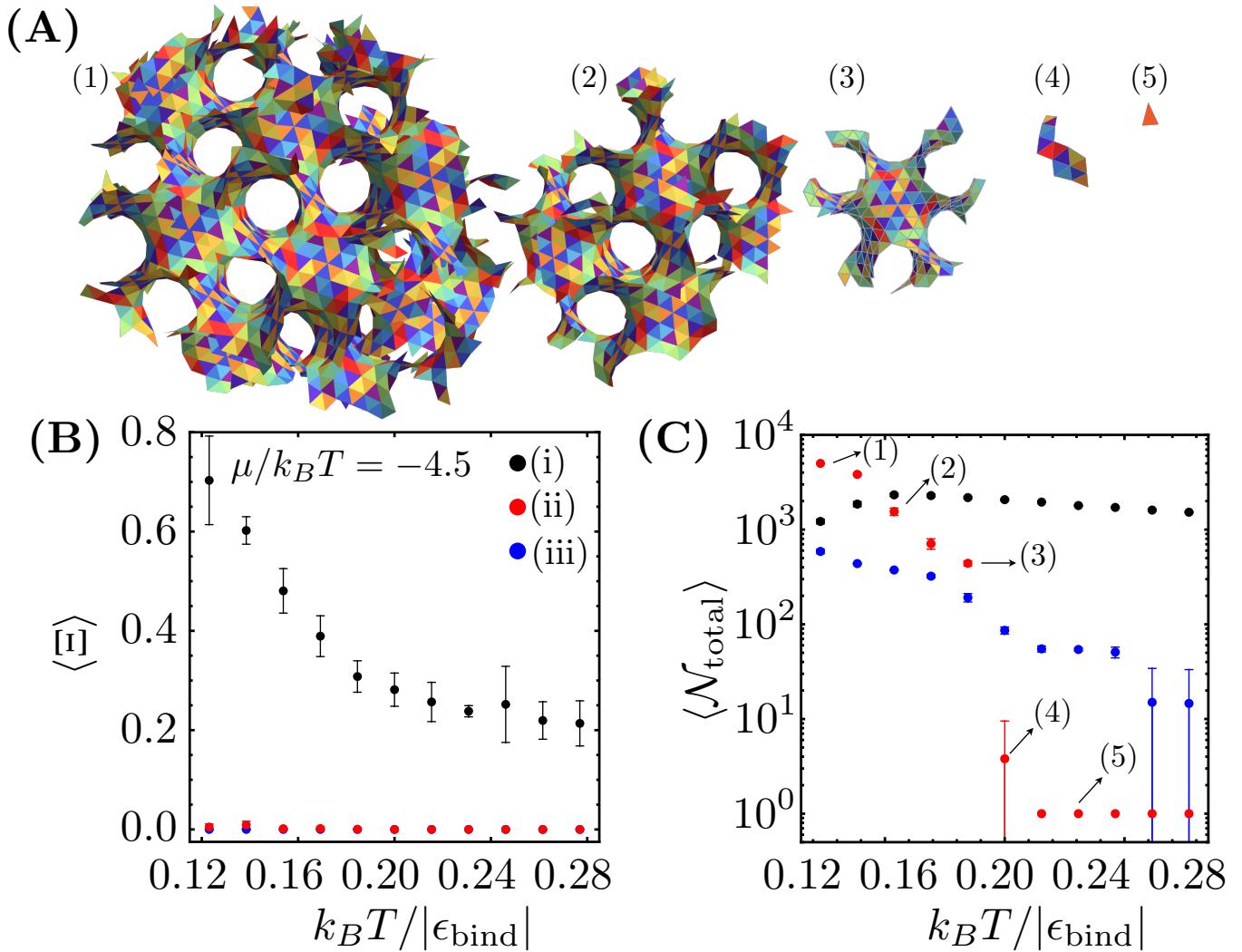


Fig. S7. Results from simulations performed at varied temperatures. (A) G₇ Snapshots corresponding to simulations using the conditions of the intermediate flexibility regime (ii) of Fig. 4, corresponding to parameter values indicated in (C). (B) Mean quadratic strain, $\langle \Xi \rangle$, as a function of increasing $k_B T / |\epsilon_{bind}|$. Black, red, and blue points respectively correspond to the simulation parameters of cases i, ii, and iii of Fig. 4. (C) Mean number of assembled triangles, $\langle \mathcal{N}_{total} \rangle$, for the same temperature range and simulation parameters used in (B). Each labeled point for case ii matches the simulation conditions of the snapshots shown in (A). Each data point in (B) and (C) was calculated with respect to 5 independent realizations. All simulations were performed at fixed bath concentration $\mu / k_B T = 4.5$. Simulations were ended either when $\mathcal{N}_{total} = 5000$ or when 50×10^6 MC sweeps were reached. In order to allow for melting, the triangles composing the seed structure are also allowed to disassemble.

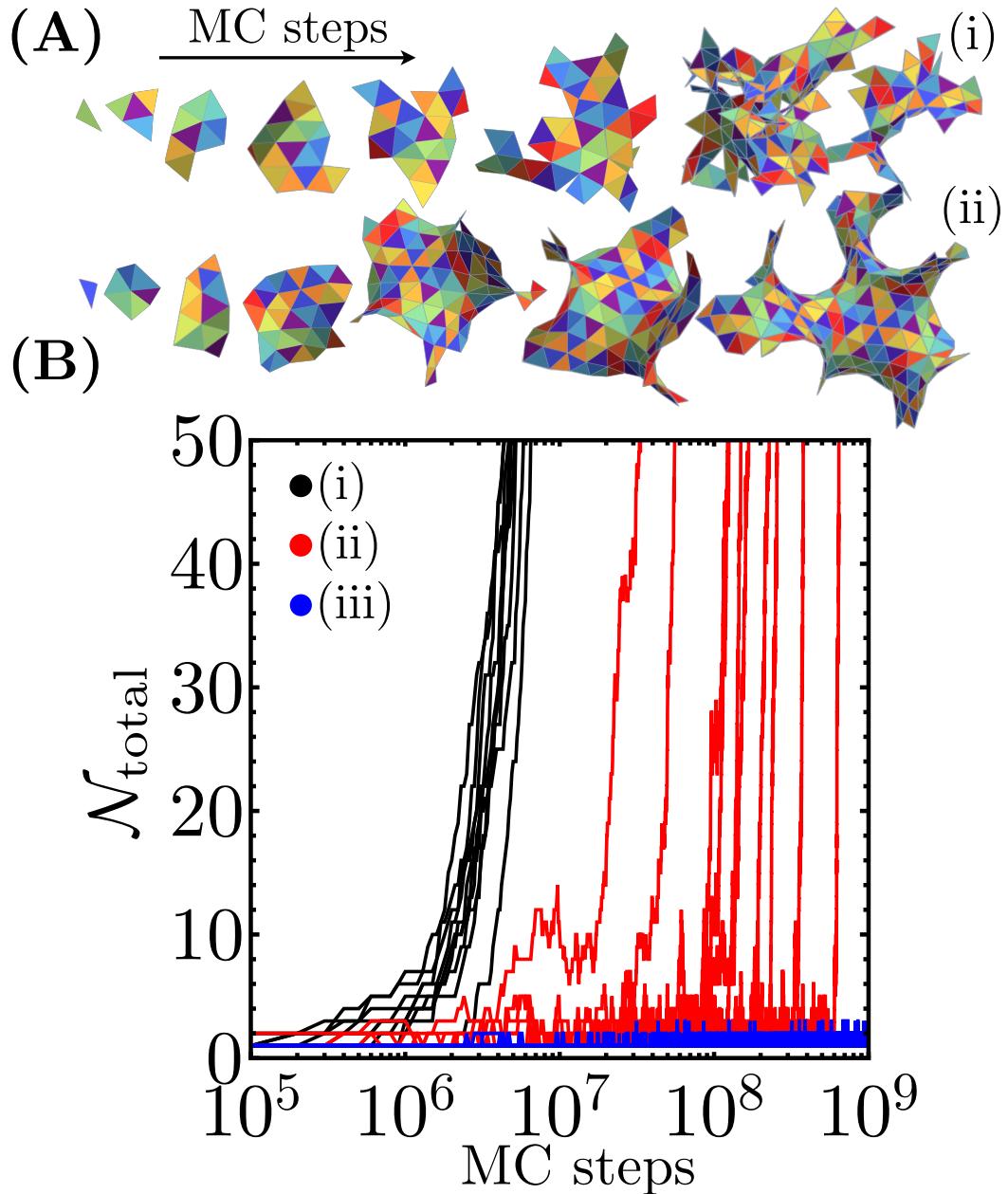


Fig. S8. Results from unseeded simulations to investigate nucleation. (A) Top (bottom): Sequence of snapshots showing a nucleation pathway for a small G_7 structure using the simulation parameters of i (ii) of Fig. 4. In both cases, the size of the rightmost structures is 336 triangles (i.e. the seed size of G_7). (B) Number of assembled subunits, N_{total} , as a function of the number of MC steps for unseeded structures using the simulation parameters of cases i (black), ii (red), and iii (blue) of Fig. 4. We show time traces of 10 independent realizations for each of the simulated regimes. Simulations were ended either when $N_{\text{total}} = 336$ or when 10^9 MC sweeps were reached.

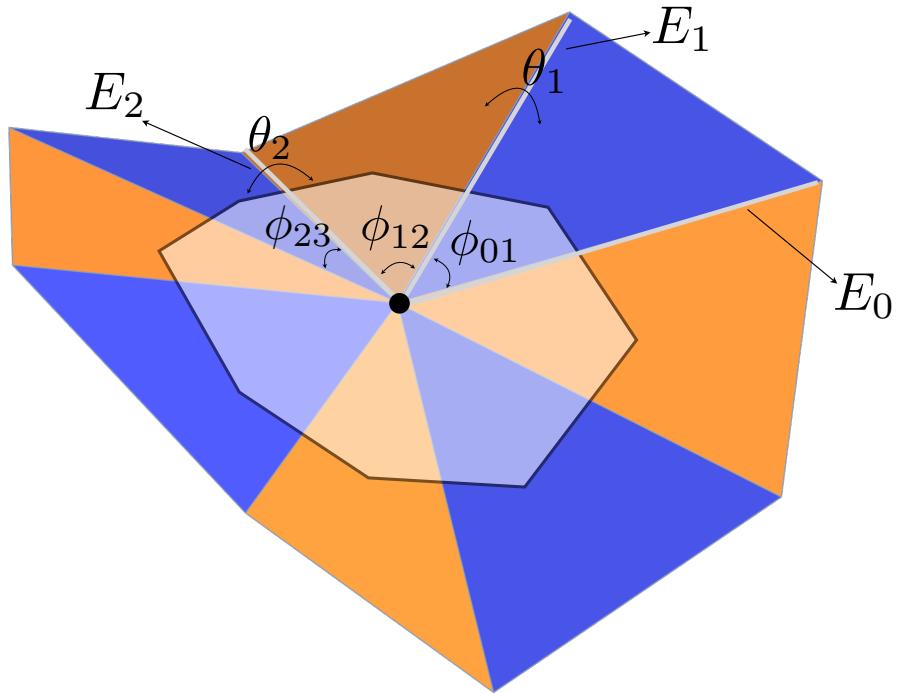


Fig. S9. Illustration of the topological charge calculation procedure: given a closed path of subunits around a vertex we can move across the anticlockwise-ordered edges, E_i , meeting at the vertex in order to determine the charge. Moving between two edges E_1 and E_2 an angular contribution ϕ_{01} is picked up. As we move to the neighboring subunit and angle contribution corresponding to the dihedral angle is picked up as well. The process is continued until we are back at the starting subunit. Using the collection of ordered angles $\phi_{01}, \theta_1, \phi_{12}, \theta_2, \dots$ allows us to build the rotation composition of Eq. 2. Notice that in order to find the “true” effective rotational angle Φ we need to use the ϕ and θ angles of the “target” geometry instead of the “current” geometry.

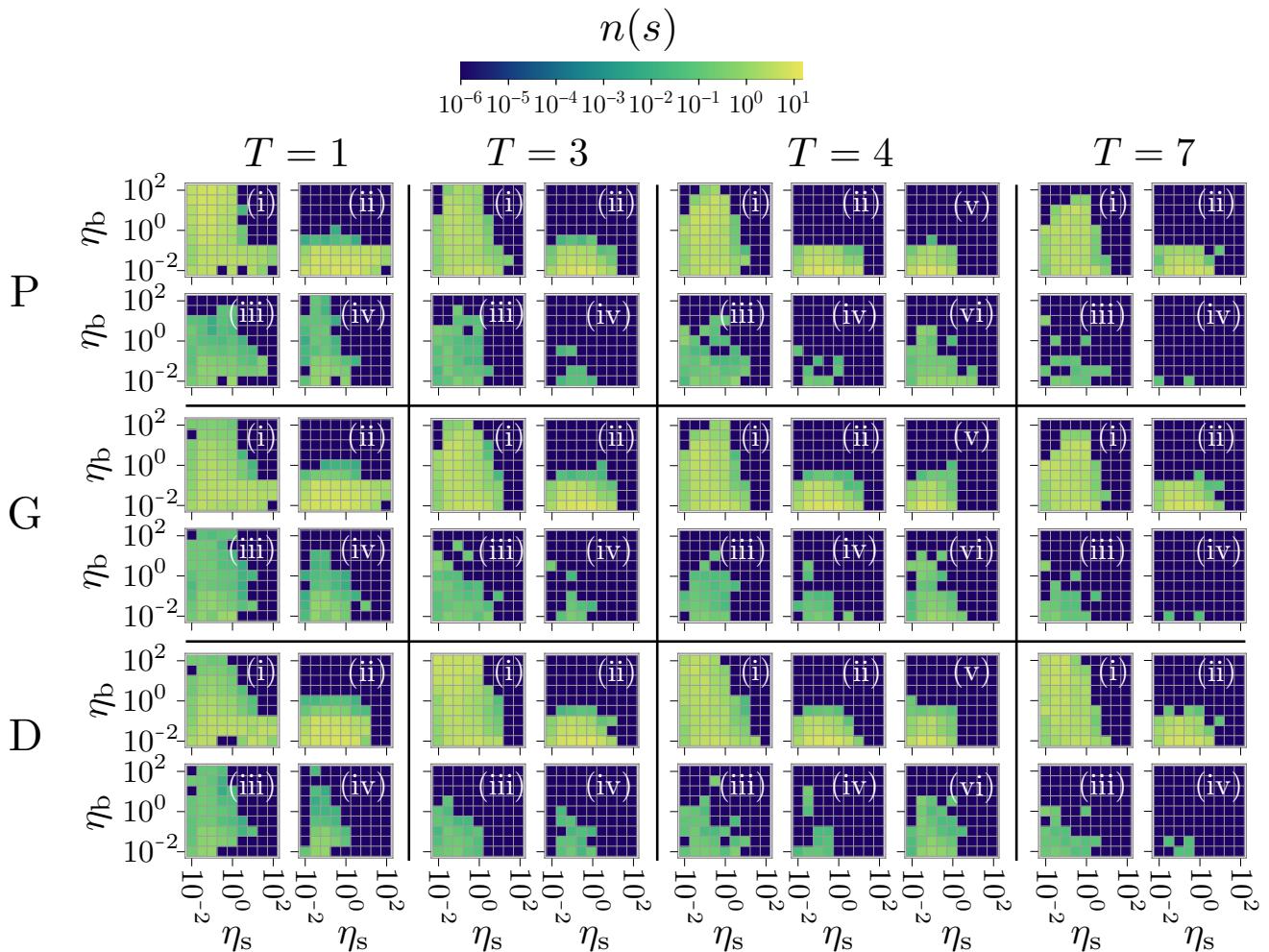


Fig. S10. Defect population per unit cell, $n(s)$, as a function of dimensionless ratios η_s and η_b for each of the defect types. Panels (i) to (vi) respectively correspond to charges $+2\pi/3$, $+\pi$, $-2\pi/3$, $-\pi$, $+\pi'$, and $-\pi'$.

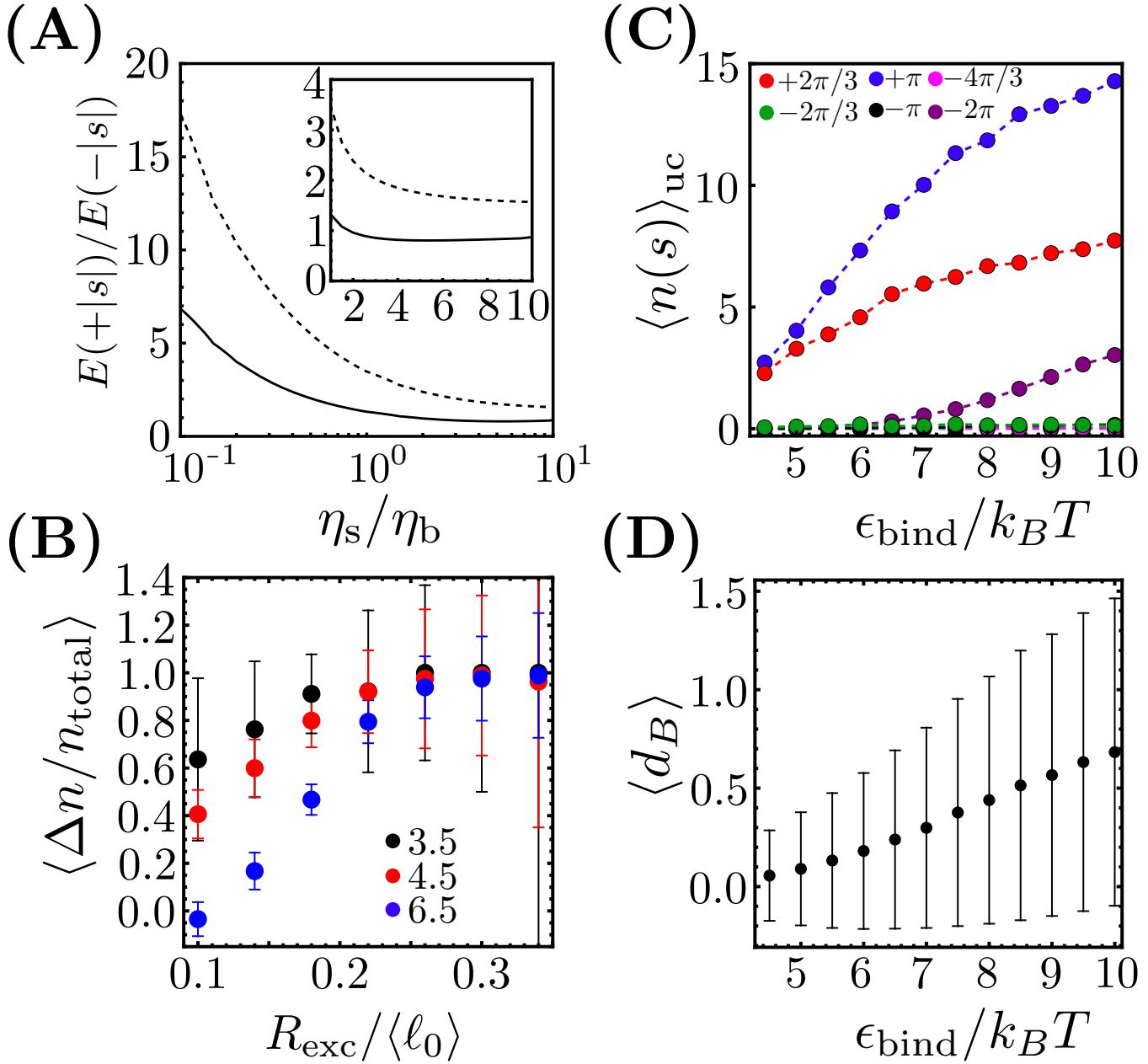


Fig. S11. (A) Elastic energy ratio $E(+|s|)/E(-|s|)$ for $|s| = 2\pi/3$ (solid line) and $|s| = \pi$ (dashed line) as a function of η_s/η_b . (B) Mean relative counts difference between positive and negative charges, $\langle \Delta n/n_{\text{total}} \rangle$, for increasing excluder radius size. The black, red, and blue points correspond to fixed binding affinity values $E_{\text{bind}} = 3.5$, 4.5 , and 6.5 respectively. (C) Mean defect type population per unit cell, $\langle n(s)_{\text{uc}} \rangle$, for a G_7 structure for increasing binding affinity, ϵ_{bind} . The elastic moduli are fixed for all points and calculated using $\eta_s = 1$ and $\eta_s = 0.01$ with a reference value $E_{\text{bind}} = 6.5k_B T$. The chemical potential, $\mu = -4.5k_B T$, is also fixed for all points. Each point is computed as the mean of 50 independent realizations. (D) Mean graph distance, $\langle d_B \rangle$, for increasing binding affinity and same simulations parameters of (C).

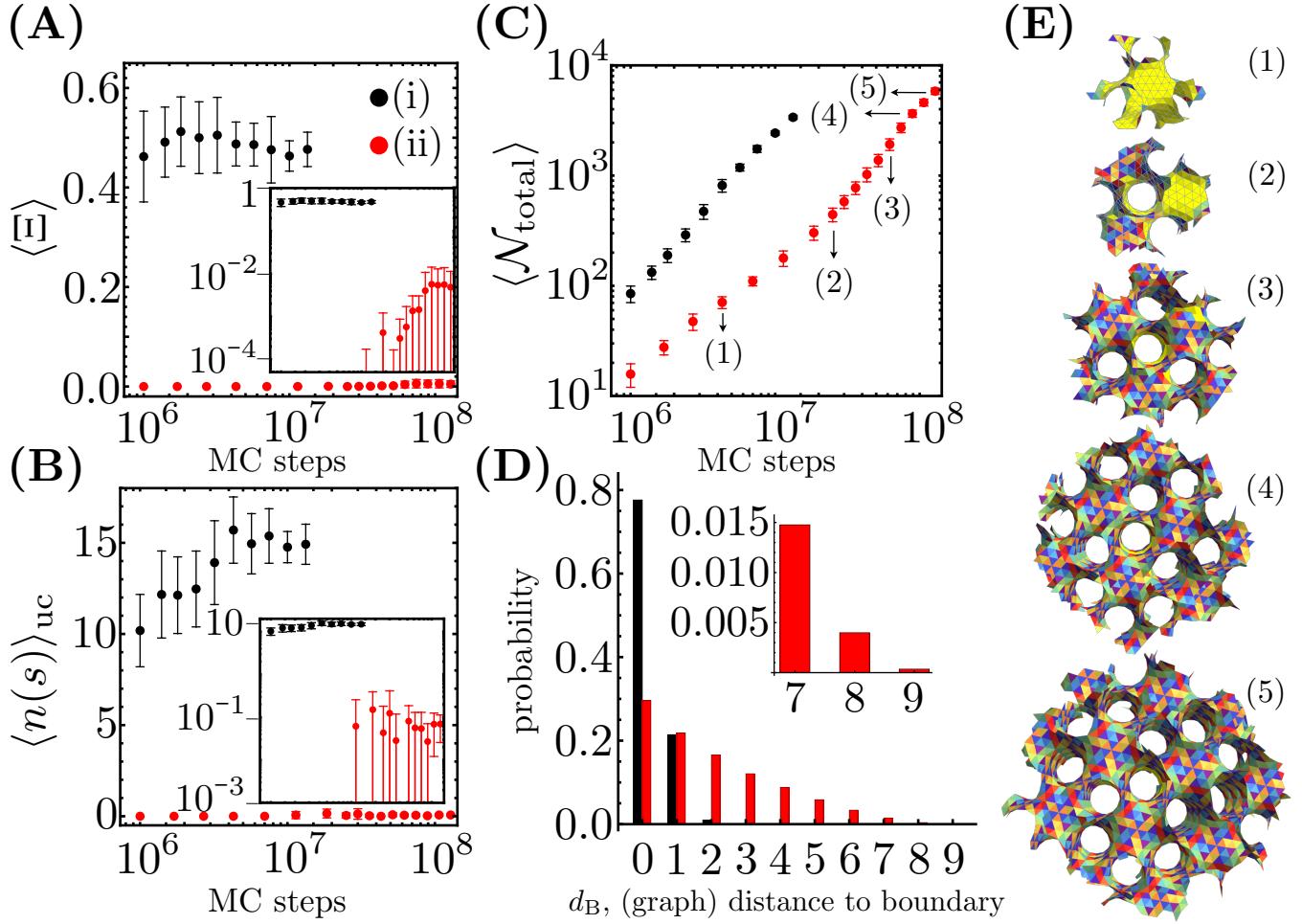


Fig. S12. Long simulations demonstrating the growth of structures that are much larger than the subunit scale. (A-B) Mean quadratic strain, $\langle \Xi \rangle$, and mean total number of defects (per unit cell), $\langle n(s) \rangle_{uc}$, as a function of the number MC steps. Simulations are shown for the simulation conditions of i (black) and ii (red) of Fig. 4. The insets of both (A) and (B) show log-log plots of the same quantities. (C) Mean number of assembled subunits, $\langle N_{total} \rangle$, for the cases i and ii of Fig. 4 as a function of MC steps. The largest $\langle N_{total} \rangle$ values for case ii case show that the intermediate flexibility structures grown to sizes up to ~ 6000 subunits (roughly 18 times bigger than the starting seed size). (D) Probability of a vertex to have a graph distance, d_B , to the boundary with respect to the cases i and ii. The probabilities were calculated using the terminal (largest) structures for both i and ii cases. (E) Sequence of snapshots showing a sample pathway for a single case of intermediate flexibility ii. The different assembly stages correspond to the labeled points of (C). We used 10 independent realizations for each of the simulated regimes. The simulations for regime i (ii) were performed to $\gtrsim 10^7$ ($\gtrsim 10^8$) MC sweeps.

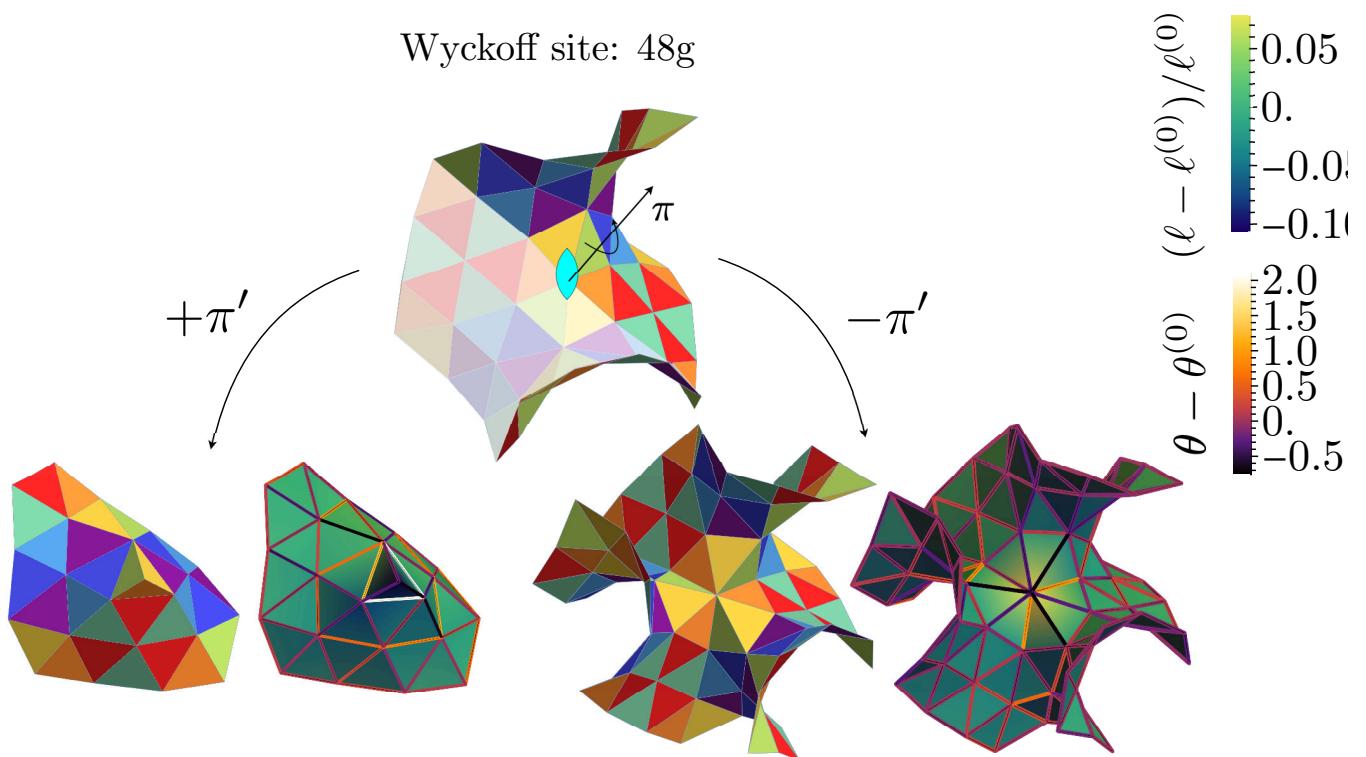


Fig. S13. For a subset of T values additional Wyckoff sites with a 2-fold symmetry can be found. The triangulation on top shows a defectless patch exhibiting a Wyckoff site 48g present in G_4 structures. Defects of charge $s = \pm\pi$ are generated through a Volterra construction on the defectless patch. The charges are primed to distinguish them from the defects obtained through the Wyckoff sites 24d. Each defective patch is colored with respect to the unique triangle ID label as shown on the left patches as well as their length strain (faces) and angle strain (edges) as shown on the right patches.

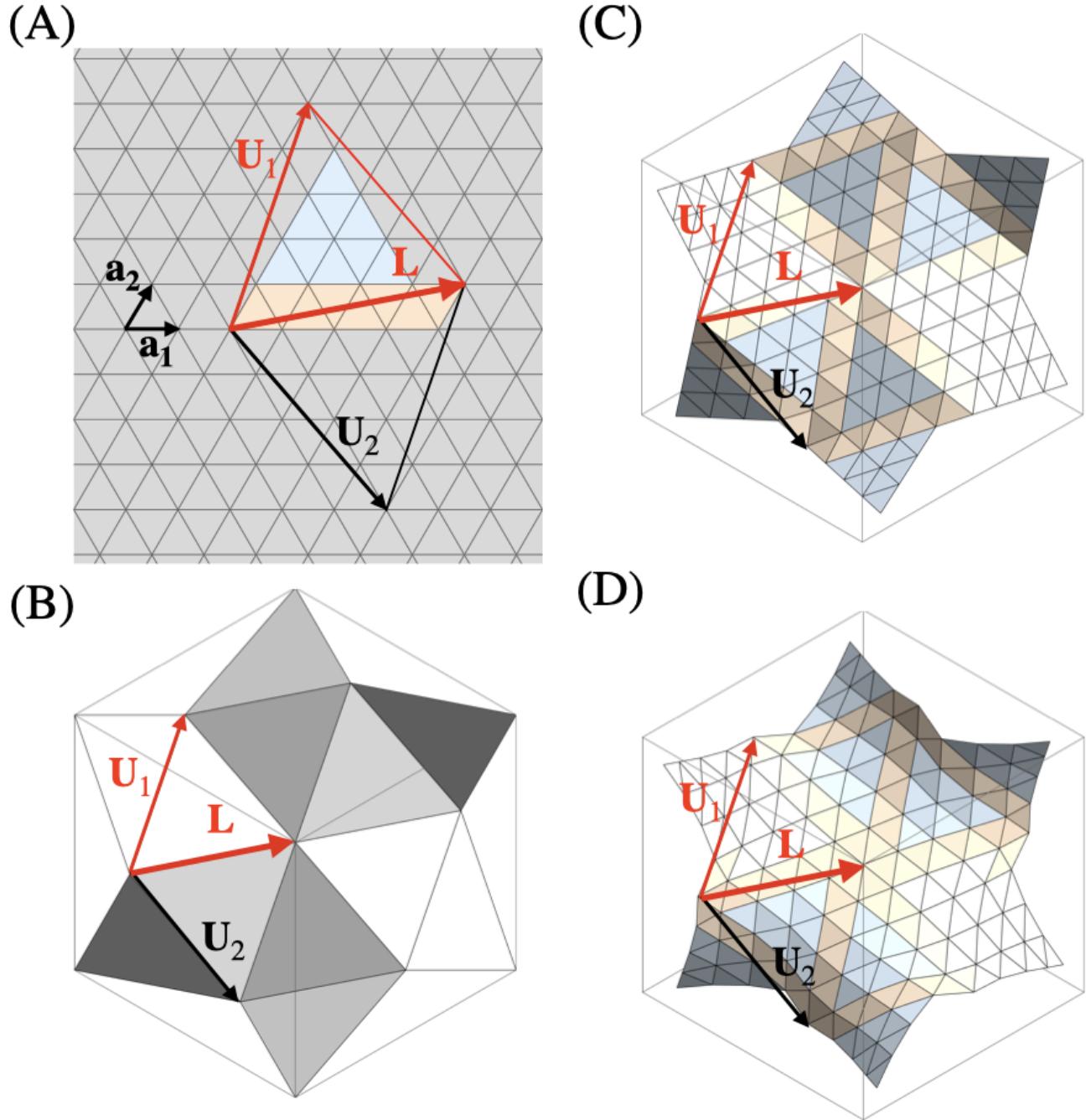


Fig. S14. Construction of triangulation for given T from $T = 1$ triangulation. **(A)** A planar construction defines the vectors L , U_1 , U_2 in terms of the triangular lattice vectors a_1 , a_2 . The lattice triangles contained in the larger triangle with edges L , U_1 (blue) will be mapped to each face and the lattice triangles that contain the line segment L (orange) will be mapped to each edge of the base ($T = 1$) triangulation. Here, the construction is illustrated for $(h, k) = (4, 1)$. **(B)** The base triangulation is a set of triangles so that each triangle has three neighbors and a consistent orientation can be assigned to the triangulation. Here, the unit cell of the $T = 1$ triangulation associated with the gyroid surface is shown, deriving from the surface's asymmetric units. **(C)** The triangles of the planar construction are mapped to the base triangulation by identifying each edge with the triangulation vector L and associated neighboring edges U_1 , U_2 . **(D)** Finally, the vertices are translated closer to the surface while maintaining the targeted symmetries of the structures.

132 **5. The model**

133 In this section we provide additional details about the model and Monte Carlo simulation that we used to generate the results
 134 in the main text. The model and algorithm have been presented in ref. (3–5). In particular, we consider flexible triangular
 135 subunits which can bind to each other along edges with a set of preferred dihedral angles that set the preferred curvatures
 136 of the assembling sheet. Monte Carlo simulations are performed in the grand canonical ensemble at fixed μVT , with μ the
 137 chemical potential of subunits in the bath. Each Monte Carlo simulation involves a single cluster undergoing assembly and
 138 disassembly, with subunits taken from or returned to the bath respectively, as well as structural relaxation moves. We describe
 139 specific differences with respect to the RG model below.

140 **A. Energies.** Each three edges of the triangular subunits may be of different types, $t(p) = 1, 2, 3$, for edge index p and whether
 141 a given type can bind to another type is given by the matching rules.

142 The total energy of the system is given by

$$143 E = \sum_p^{3n_s} E_{\text{stretch}}^p + \frac{1}{2} \sum_{\langle pq \rangle} (E_{\text{bend}}^{pq} + E_{\text{bind}}^{pq}) \quad [1]$$

144 where the first sum goes over all edges, with n_s the number of subunits in the cluster. The second sum only goes over bound
 145 edges (i.e. non-boundary, adjacent edges, so there are $2n_b$ terms in the sum, with n_b as the number of bonds). The $1/2$ factor
 146 corrects for double counting.

147 The stretching energy is defined as:

$$148 E_{\text{stretch}}^p = \epsilon_s \frac{(l^p - l_0)^2}{2} \quad [2]$$

149 where ϵ_s is the stretching modulus, l^p is the instantaneous length, and l_0 is the stress-free (rest) length of an edge. For the
 150 tubule model we set the stretching modulus and rest length equal for all edges.

151 The bending energy is quadratic in deviations from the preferred dihedral angle:

$$152 E_{\text{bend}}^{pq} = \kappa_b \frac{(\theta^{pq} - \theta_0^{t(p)t(q)})^2}{2} \quad [3]$$

153 with p and q adjacent edges and $t(p), t(q)$ the edge types. κ_b is the bending modulus and is set equal for all edge types. $\theta_0^{t(p)t(q)}$
 154 is the preferred dihedral angle between edges with types $t(p)$ and $t(q)$.

155 Binding energies corresponding to all matching edge pairs are set equal, to $E_{\text{bind}}^{pq} \equiv \epsilon_b$.

156 In addition to the above terms, each subunit has at its center of mass a spherical excluder of radius $0.2l_0$ to prevent subunit
 157 overlaps. Finally, to prevent extreme distortions of subunits, maximum edge length fluctuations are limited to $l_0/2 < l < 3l_0/2$.

158 **B. Coarse-graining.** Our model is motivated by the triangular DNA origami subunits developed in Sigl et al.(6), in which
 159 subunits bind through lock-and-key ‘patches’ along subunit edges in which attractive interactions are generated through
 160 blunt-end stacking of unsatisfied nucleotides. Therefore, in our model we define attractive bonds along subunit edges (rather
 161 than at vertices as in the RG model). In particular, attractive bonds occur at each shared pair of subunit edges with the same
 162 type. Because the interactions in the experimental system are driven by nucleotide stacking, they are extremely short-ranged
 163 in comparison to the subunit size (the subunit edge lengths are approximately 60 nm). Therefore, in our simulations we
 164 avoid resolving the short length scale fluctuations in separation distance between bound edges and their associated vertices by
 165 coarse-graining as follows.

166 A microstate i is defined as the position of all the $3n_s$ vertices of n_s subunits: $i \rightarrow (\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{3n_s})$ The grand canonical
 167 probability density of finding the system around state i is

$$168 f(i) = \frac{P(\vec{x}_1, \vec{x}_1 + d\vec{x}_1; \dots; \vec{x}_1, \vec{x}_{n_s} + d\vec{x}_{n_s})}{d\vec{x}_1 d\vec{x}_2 \dots d\vec{x}_{3n_s}} = \frac{1}{Z_\Omega} \frac{e^{\beta n_s \mu}}{\lambda^{9n_s}} e^{-\beta E_i} \quad [4]$$

169 where μ is the chemical potential and λ^3 is the standard state volume. This probability density has the dimensions of
 170 $1/\text{volume}^{3n_s}$ corresponding to all the $3n_s$ vertices of the subunits. Due to bonds, however, some pairs of vertices are confined
 171 within a *binding volume* v_a . We consider a square-well potential so that the binding energy is constant within this volume.
 172 Analogous to Ref. (7), we can then coarse-grain to avoid resolving intra-bond fluctuations. We assume that fluctuations of
 173 bound edges are sufficiently small that each pair of vertices at either end of a bound edge pair are constrained within a *binding*
 174 *volume* v_a . Note that we constrain vertices rather than edges so that the coarse-grained microstate can be represented in terms
 175 of positions of vertices rather than edges, which is easier to implement computationally. In the coarse-grained system, a coarse
 176 microstate is specified by the coordinates corresponding to the independent vertex degrees of freedom (with 1 degree of freedom
 177 for each bound vertex group and unbound vertex): $\Gamma \rightarrow (\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{n_v})$, where n_v is the number of independent bound vertex
 178 groups and free vertices. The probability of such a coarse-grained state is given by the net weight of all the corresponding
 179 fine-grained microstates:

$$\rho(\Gamma) = \int_{\{v_a\}} f(i) d^{n_{VB}} \vec{x} \quad [5]$$

where n_{VB} is the number of vertex-bonds and is given by $n_{VB} = 3n_s - n_v$. For simplicity, we take the limit in which $\sqrt[3]{v_a}$ is small in comparison to the length scale over which the elastic energy varies, so that the energy is constant within the bound volume v_a . Then $f(i)$ is a constant, and the probability density is given by

$$\rho(\Gamma) = \frac{1}{Z_\Omega} v_a^{n_{VB}} \frac{e^{\beta n_s \mu}}{\lambda^{9n_s}} e^{-\beta E_\Gamma} \quad [6]$$

where E_Γ is the total energy of state Γ (including stretching, bending and binding energies). The coarse graining process is illustrated in Fig. S15.

C. Implementation and data structure. The simulation is implemented on top of the OpenMesh library (8). Subunits are implemented as triangular mesh elements. OpenMesh uses the halfedge data structure which is suitable to implement triangles with directed normals (Fig S16). The directed halfedges allow for a clockwise iteration through the boundary of a triangle, which makes the two faces of the triangles distinguishable. Only halfedges with opposite orientations can bind together, making it impossible to form a Möbius strip, for example. The data structure and the resulting iterators in OpenMesh allow for an easy and efficient iteration over the neighborhood of mesh elements (vertices, edges and faces). The implementation of mesh element rearrangements is less straightforward, but we implemented it via the insertion and removal of virtual triangles. In addition, OpenMesh allows for the storage of various properties on mesh elements, allowing storage of edge types and face types stored on the elements. To improve readability in the upcoming sections, we will not represent halfedges separately.

6. The Monte Carlo moves

In this section we detail the Monte Carlo moves of the simulation. Our algorithm has 11 moves: vertex displacement, simple subunit insertion/deletion, wedge insertion/deletion, wedge fusion/fission, crack fusion/fission, and edge fusion/fission.

Detailed balance. For the transition between state Γ and Γ' detailed balance corresponds to (7, 9):

$$P(\Gamma) \times \alpha(\Gamma \rightarrow \Gamma') \times p_{acc}(\Gamma \rightarrow \Gamma') = P(\Gamma') \times \alpha(\Gamma' \rightarrow \Gamma) \times p_{acc}(\Gamma' \rightarrow \Gamma) \quad [7]$$

where $\alpha(\Gamma \rightarrow \Gamma')$ is the probability of generating a $\Gamma \rightarrow \Gamma'$ move attempt (trial), $p_{acc}(\Gamma \rightarrow \Gamma')$ is the probability of accepting the move, and $P(\Gamma) = \rho(\Gamma) d^{n_{VB}(\Gamma)} \vec{x}$ is the equilibrium probability of finding a system in a voxel of volume $d^{n_{VB}(\Gamma)} \vec{x}$.

Next, we use Eq. Eq. (7) to define the acceptance criteria for each MC move. The acceptance criteria are derived in detail for the wedge fusion/fission move; the steps to follow are the same for all other moves.

A. Vertex displacement. In this move, a vertex is randomly selected, a random uniform displacement is drawn, and the vertex is displaced to its new position according to:

$$x \rightarrow x + \mathcal{U}(-d_{max}, d_{max}) \quad [8]$$

$$y \rightarrow y + \mathcal{U}(-d_{max}, d_{max}) \quad [9]$$

$$z \rightarrow z + \mathcal{U}(-d_{max}, d_{max}) \quad [10]$$

with d_{max} the maximum displacement. The move is accepted with a probability $p_{acc} = \exp(-\Delta E / k_B T)$ where ΔE is the (bending plus stretching) energy change due to the displacement. The parameter d_{max} can be adjusted during a burn-in period to optimize convergence to equilibrium. Generally optimal values are on the order of the typical length scale of thermal fluctuations dictated by the elastic energy, leading to acceptance probabilities on the order of 50%. In our simulations typical values are between $d_{max} = [0.01l_0, 0.1l_0]$. The vertex displacement move is illustrated in Fig S17: the number of subunits n_s , number of vertices n_v , number of vertex bonds n_{VB} and number of bonds n_b remains unchanged during this move.

B. Simple insertion / removal.

B.1. Simple insertion. In this move, an edge is randomly selected from the set of all boundary edges, where a new subunit will be attached. The number of such boundary edges is n_e . Subunits can be inserted in n_r different rotations, where n_r is the number of distinct rotational states for a subunit which has one edge aligned with the edge of a neighboring subunit. For our triangular subunits with three distinct edge types, $n_r = 3$. In our algorithm, during insertion of a subunit its rotational state is chosen randomly from the set of three possibilities. If the aligned edge is not complementary to the type of the boundary edge, then the move is rejected. In this work, the two edges must be of the same type to be complementary.

The positions of two of the new subunit's vertices (those at either end of the edge being bound) are set equal to the positions of the corresponding vertices of the boundary edge to which it is binding. The third vertex position is randomly chosen from within a volume v_{add} centered at the equilibrium position of the new vertex.

Thus, the attempt probability for a simple insertion is given by:

$$\alpha(i \rightarrow j) = n_e k_i \tau n_r \times \frac{1}{n_e n_r (v_{add}/d\vec{x})}. \quad [11]$$

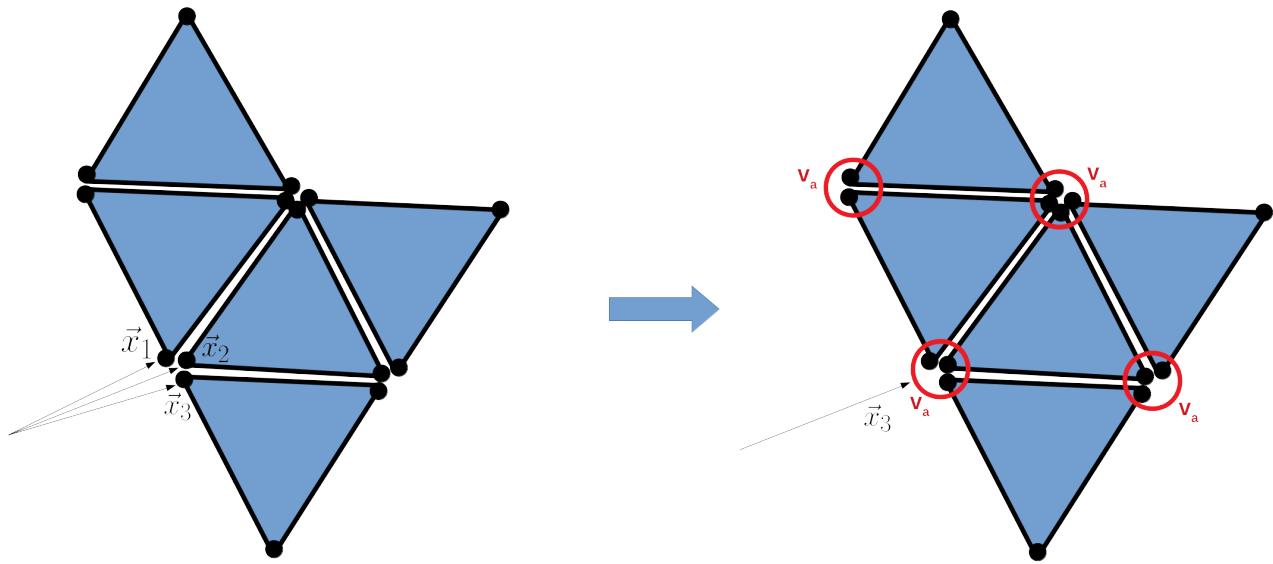


Fig. S15. Coarse-graining of an example cluster configuration. In this configuration, the number of subunits is $n_s = 5$, the number of initial (before coarse-graining) vertices is $3n_s = 15$, and the number of vertices after coarse-graining is $n_v = 7$. The red circles indicate bound vertex groups, and the number of vertex degrees of freedom that have been eliminated by coarse-graining in this configuration is $n_{vb} = 1 + 3 + 2 + 2 = 8 = 3n_s - n_v$. Motivated by DNA origami subunits in Sigl et al. (6), the attractive interactions (i.e. 'bonds') in this model occur along edge-pairs of the same type shared by two subunits. In this configuration there are $n_b = 4$ bonds.

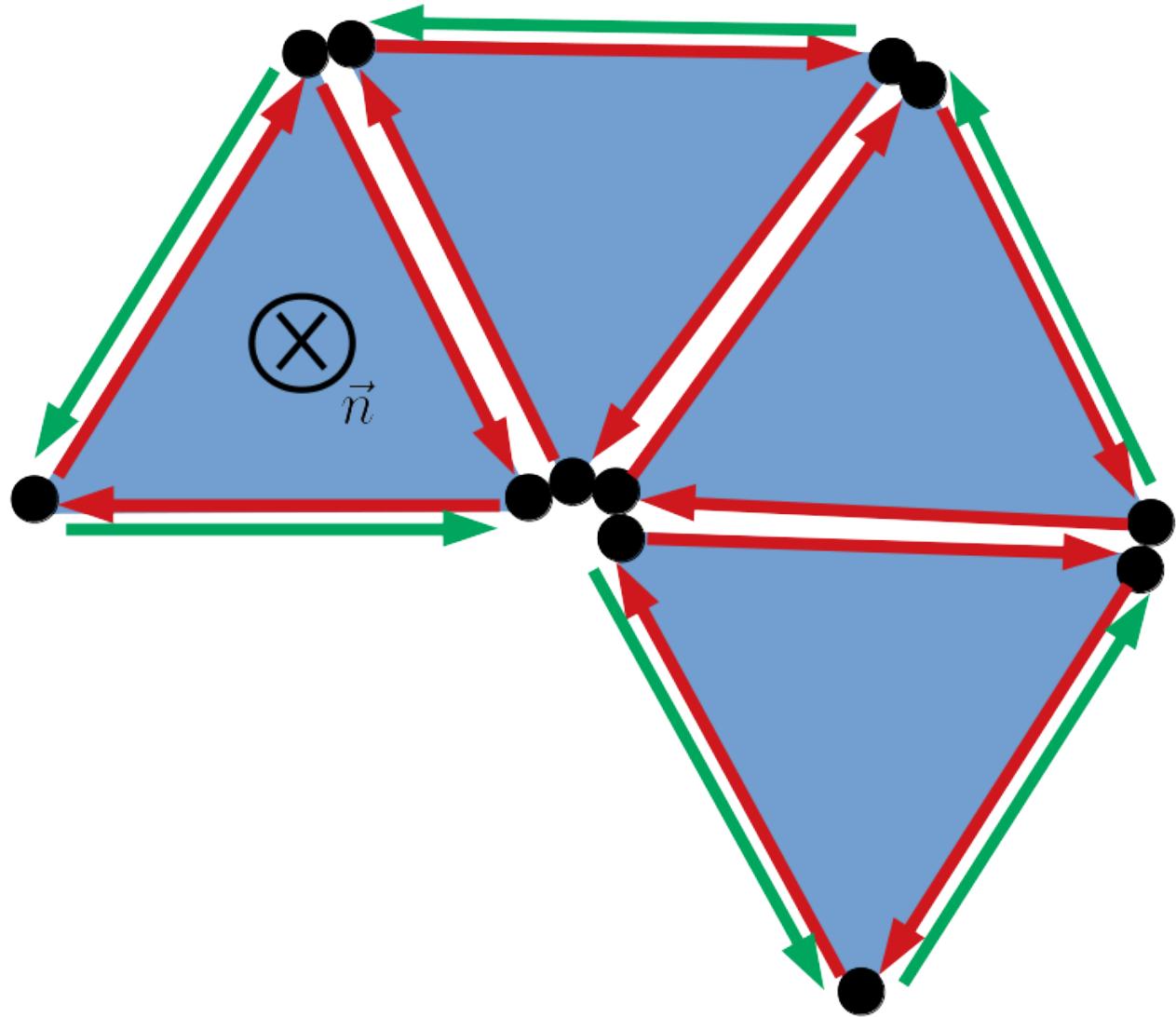


Fig. S16. The halfedge data structure used by OpenMesh. Each edge is represented by two directed edges. Boundary edges are no exception and thus are represented by a non-boundary halfedge and a boundary halfedge (in green). This latter is irrelevant for our model. Directed edges allow for the unambiguous definition of face normals, for efficient iterations of the element's neighborhood as well as boundary iterations.

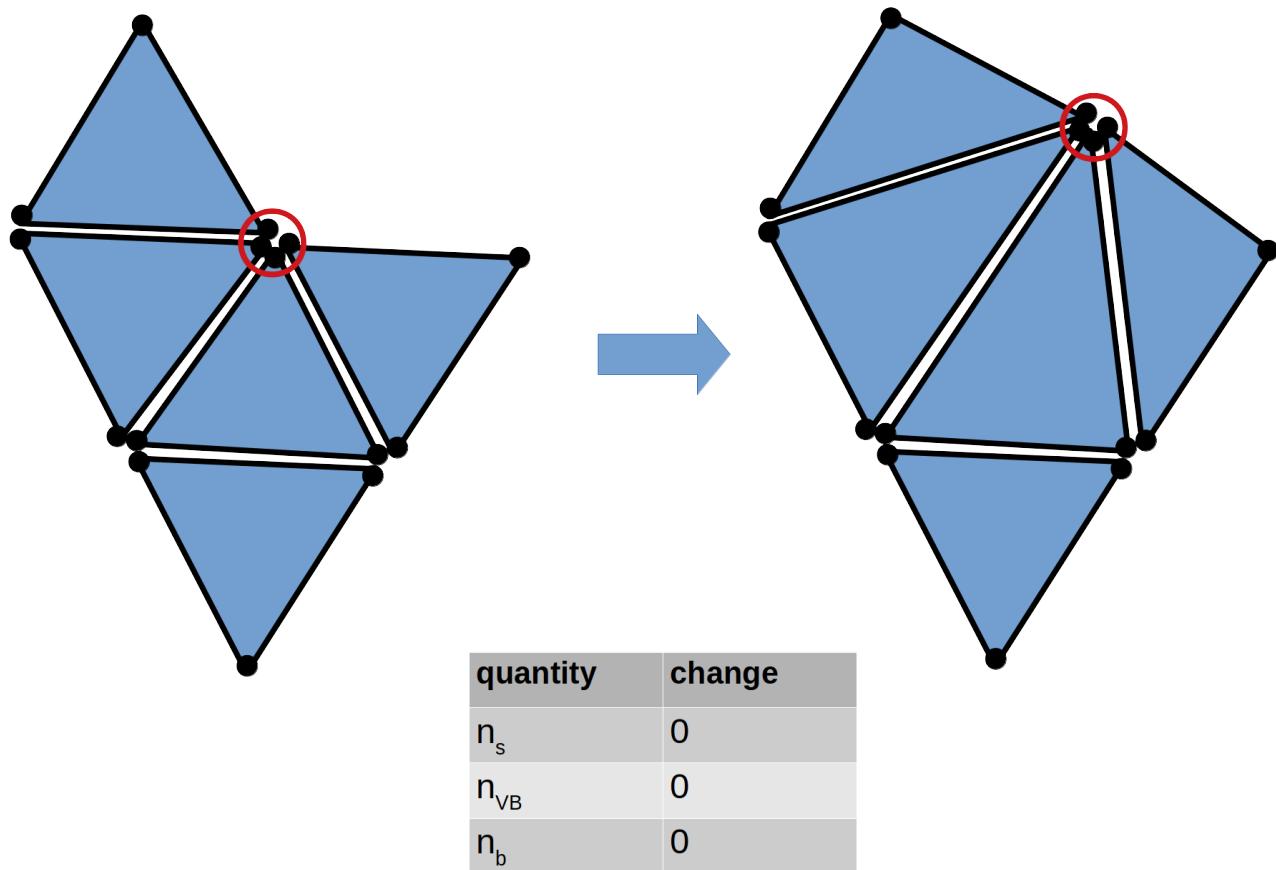


Fig. S17. Vertex move. A vertex is randomly displaced and the move is accepted according to the usual Metropolis probability.

228 Then, applying Eq. Eq. (7) and the attempt probability for the reverse move (simple deletion, presented next, Eq. Eq. (13)),
 229 the acceptance probabilities for a simple insertion is

$$230 \quad p_{\text{acc}}(i \rightarrow j) = \min \left[1, \frac{v_a^2 v_{\text{add}}}{\lambda^9} \exp[-(\Delta E_{i \rightarrow j} - \mu)/k_B T] \right]. \quad [12]$$

231 $\Delta E_{i \rightarrow j}$ is the energy change due to the move and includes the stretching energy of the newly inserted subunit, its bending
 232 energy along the shared edge, and the binding energy due to the creation of an extra bond. During this move, one new (edge)
 233 bond and two new vertex bonds are created; i.e. $n_b \rightarrow n_b + 1$ and $n_{\text{VB}} \rightarrow n_{\text{VB}} + 2$. Moreover, the number of vertices in the
 234 structure increases by one, $n_v \rightarrow n_v + 1$.

235 **B.2. Simple removal.** The reverse move to simple insertion is simple removal. Subunits that can be deleted with this move are
 236 those with two boundary edges. The number of simply removable subunits is n_{sr} . One of these is selected randomly, so the
 237 attempt probability is

$$238 \quad \alpha(j \rightarrow i) = n_{\text{sr}} k_i \tau \times \frac{1}{n_{\text{sr}}} \quad [13]$$

239 and, using Eq. Eq. (7) and Eq. Eq. (11), the acceptance probability is

$$240 \quad p_{\text{acc}}(j \rightarrow i) = \min \left[1, \frac{\lambda^9}{v_a^2 v_{\text{add}}} \exp[-(\Delta E_{j \rightarrow i} + \mu)/k_B T] \right] \quad [14]$$

241 During this move, the structure loses one (edge) bond and two vertex bonds; $n_b \rightarrow n_b - 1$ and $n_{\text{VB}} \rightarrow n_{\text{VB}} - 2$. The number of
 242 vertices in the structure decreases by one, $n_v \rightarrow n_v - 1$.

243 If there are multiple species with chemical potentials μ_k , detailed balance must be satisfied for each species, individually.
 244 Moreover, each species can have different insertion rates k_i^k .

245 To keep $\alpha < 1$, we ensure that the insertion rate k_i constrained by

$$246 \quad n_e k_i \tau n_r < 1 \quad [15]$$

$$247 \quad n_{\text{sr}} k_i \tau < 1 \quad [16]$$

248 In equilibrium, one can use adaptive rates, i.e. reduce k_i on the run if the above condition is not satisfied. In that case,
 249 sampling is not taken for the ensuing several time steps. Alternatively, the rates may be set to a low enough value from the
 250 beginning and only tested on the run to ensure that the $\alpha < 1$ condition is satisfied. This latter technique is appropriate for
 251 dynamical runs as it keeps the rates constant throughout the simulation.

252 Moreover, we must ensure that v_{add} is large enough so that the vertex does not leave the v_{add} volume during structural
 253 relaxation moves; otherwise the insertion/deletion moves would not be reversible and the detailed balance would be violated.
 254 For a better convergence, one could choose a gaussian distribution $\mathcal{N}(\vec{r})$ for the position of the new vertex instead of a uniform
 255 distribution $1/v_{\text{add}}$. In this case, this distribution has to be accounted for in the acceptance probabilities $p_{\text{acc}}(i \rightarrow j)$ and
 256 $p_{\text{acc}}(j \rightarrow i)$.

257 C. Wedge insertion/removal.

258 **C.1. Wedge insertion.** Wedges are positions in the structure where a triangle can be inserted via attaching to two edges (Fig. S19).
 259 In a wedge move, we pick randomly from the set of available wedge positions in the structure, and pick a random orientation
 260 for the new subunit. Denoting the number of wedge positions in a given structure as n_w , the attempt probability for a wedge
 261 move is

$$262 \quad \alpha(i \rightarrow j) = n_w k_i \tau n_r \times \frac{1}{n_r n_w} \quad [17]$$

263 In contrast to the simple insertion move, there is no need for random vertex displacement in a wedge move because all three
 264 vertices of the new subunit are fixed by the three vertices of the wedge position. Combining Eq. Eq. (17) and the attempt
 265 probability for wedge removal (Eq. Eq. (19)), The acceptance probability for a wedge insertion is

$$266 \quad p_{\text{acc}}(i \rightarrow j) = \min \left[1, \frac{v_a^3}{\lambda^9} \exp[-(\Delta E_{i \rightarrow j} - \mu)/k_B T] \right]. \quad [18]$$

267 During a wedge insertion, two edge bonds and three vertex bonds are created; i.e., $n_b \rightarrow n_b + 2$ and $n_{\text{VB}} \rightarrow n_{\text{VB}} + 3$, but
 268 the number of vertices is unchanged, $n_v \rightarrow n_v$. $\Delta E_{i \rightarrow j}$ includes the binding energy of the two newly formed bonds, the two
 269 bending energies along the two newly bound edges and the stretching energy of the newly inserted subunit.

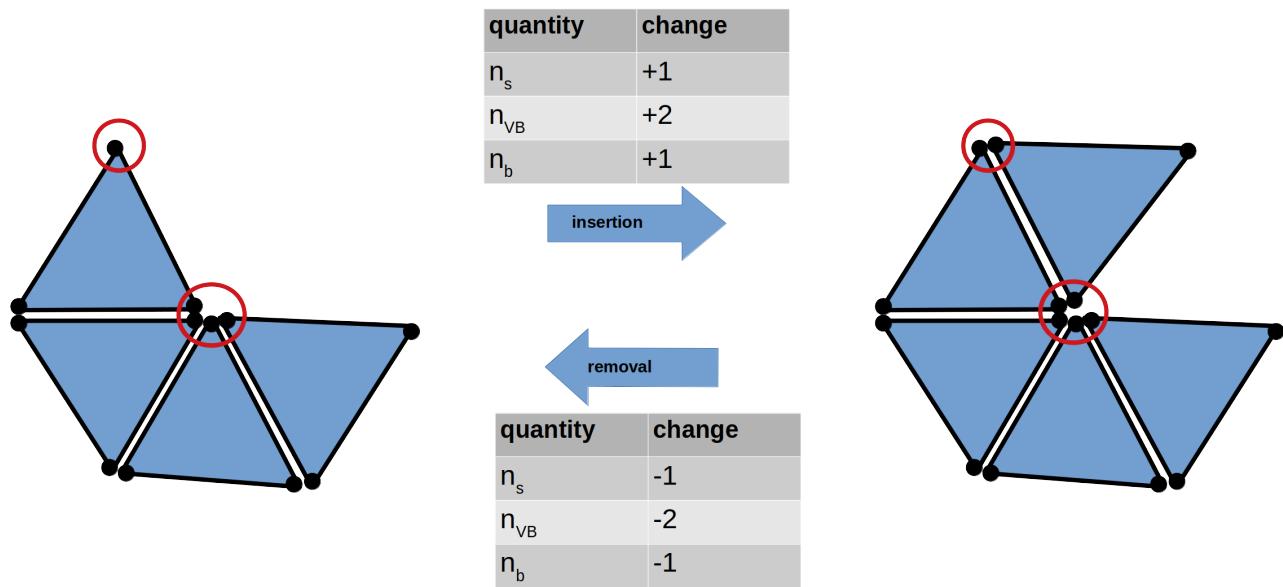


Fig. S18. Simple insertion and removal.

270 **C.2. Wedge removal.** The reverse move of wedge insertion is wedge removal. In a wedge removal, we randomly choose one of the
 271 removable wedges from a given structure. With the number of removable wedges as n_{wr} , the attempt probability is

$$272 \quad \alpha(j \rightarrow i) = n_{\text{wr}} k_i \tau \times \frac{1}{n_{\text{wr}}}. \quad [19]$$

273 Using Eq. Eq. (17), the acceptance probability for a wedge removal is then

$$274 \quad p_{\text{acc}}(j \rightarrow i) = \min \left[1, \frac{\lambda^9}{v_a^3} \exp[-(\Delta E_{j \rightarrow i} + \mu)/k_B T] \right]. \quad [20]$$

275 We have the following constraints on rates k_i for wedge insertion/removal:

$$276 \quad n_w k_i \tau n_r < 1 \quad [21]$$

$$277 \quad n_{\text{wr}} k_i \tau < 1 \quad [22]$$

278 As for simple insertion and removal, in the case of multiple species, detailed balance is satisfied for each species separately
 279 for wedge insertion/removal.

280 **D. Wedge fusion / fission.**

281 **D.1. Wedge fusion.** In this move, a *fusible wedge* is closed, without inserting a new subunit (Fig S20). That is, the two vertices
 282 on either side of the wedge opening are merged into a single vertex. Fusible wedges are vertex pairs that i) form a wedge (as in
 283 the case of wedge insertion) and ii) are within a separation distance of l_{fuse} .

284 Denoting the number of fusible wedge positions as n_w , in each MC step, a wedge fusion is attempted with probability
 285 $n_w k_{\text{wf}} \tau$, where k_{wf} is an adjustable parameter controlling the relative probability of attempting wedge fusion. Then, a wedge
 286 position is selected randomly from the set of all n_w fusible wedges. The attempt probability is thus

$$287 \quad \alpha(i \rightarrow j) = n_w k_{\text{wf}} \tau \times \frac{1}{n_w}. \quad [23]$$

288 Using Eqs. Eq. (23) and Eq. (25), the acceptance probability for fusion moves is

$$289 \quad p_{\text{acc}}(i \rightarrow j) = \min \left[1, \frac{v_a}{v_{\text{fuse}}} \exp(-\Delta E_{i \rightarrow j}/k_B T) \right] \quad [24]$$

290 where $v_{\text{fuse}} = (4\pi/3)(l_{\text{fuse}}/2)^3$ is the volume of a sphere with diameter l_{fuse} , and $\Delta E_{i \rightarrow j}$ is the energy change due to the fusion,
 291 including changes in bending, stretching, and binding energies. A fusion move increases the number of edge bonds and vertex
 292 bonds by one, $n_b \rightarrow n_b + 1$ and $n_{VB} \rightarrow n_{VB} + 1$; the factor of v_a appears in Eq. Eq. (24) to account for the latter.

293 **D.2. Wedge fission.** Wedge fission, in which a wedge is opened, is the reverse of the wedge fusion move. Fissionable edges are
 294 those edges that can be split along their boundary vertex to obtain a wedge. Denoting the number of such edges as n_f , the
 295 probability of attempting a wedge fission move during an MC step is $n_f k_{\text{wf}} \tau$. If a fission move is attempted, then an edge is
 296 selected randomly from the n_f fissionable edges. The position of one of the new vertices is selected randomly within the sphere
 297 of volume v_{fuse} centered at the original position of the merged vertices, and the other new vertex is placed in the opposite
 298 direction from the original position, at the same distance. Thus, the attempt generation probability is

$$299 \quad \alpha(j \rightarrow i) = n_f k_{\text{wf}} \tau \times \frac{1}{n_f (v_{\text{fuse}}/d\vec{x})} \quad [25]$$

300 and the acceptance probability is

$$301 \quad p_{\text{acc}}(j \rightarrow i) = \min \left[1, \frac{v_{\text{fuse}}}{v_a} \exp(-\Delta E_{j \rightarrow i}/k_B T) \right] \quad [26]$$

302 We verify that detailed balance holds between wedge fusion and fission as follows. There are two cases to consider:

303 1. $(v_{\text{fuse}}/v_a) \exp(-\Delta E_{j \rightarrow i}/k_B T) < 1 \Leftrightarrow (v_a/v_{\text{fuse}}) \exp(-\Delta E_{i \rightarrow j}/k_B T) > 1$

304 In this case, $p_{\text{acc}}(i \rightarrow j) = 1$ and $p_{\text{acc}}(j \rightarrow i) = (v_{\text{fuse}}/v_a) \exp(-\Delta E_{j \rightarrow i}/k_B T)$. Then

$$305 \quad P_i \times \alpha(i \rightarrow j) \times p_{\text{acc}}(i \rightarrow j) = \frac{1}{Z_\Omega} v_a^{n_{VB,i}} \exp[-(E_i - \mu n_{s,i})/k_B T] \frac{1}{\lambda^{9n_{s,i}}} \times d^{n_{V,i}} \vec{x} \times k_{\text{wf}} \tau \quad [27]$$

306 and

$$307 \quad P_j \times \alpha(j \rightarrow i) \times p_{\text{acc}}(j \rightarrow i) = \frac{1}{Z_\Omega} v_a^{n_{VB,j}} \exp[-(E_j - \mu n_{s,j})/k_B T] \frac{1}{\lambda^{9n_{s,j}}} \times d^{n_{V,j}} \vec{x} \quad [28]$$

$$308 \quad \times k_{\text{wf}} \tau d\vec{x} / v_{\text{fuse}} \times (v_{\text{fuse}}/v_a) \exp(-\Delta E_{j \rightarrow i}/k_B T)$$

309 [29]

310 Using: $\Delta E_{j \rightarrow i} = E_i - E_j$, $n_{s,i} = n_{s,j}$ (because the move leaves the subunit number unchanged), $n_{VB,i} = n_{VB,j} - 1$ (one
 311 vertex bond is broken upon fission) and $n_{V,i} = n_{V,j} + 1$ (an extra vertex is being born upon fission), we see that the two
 312 are equal and detailed balance holds.

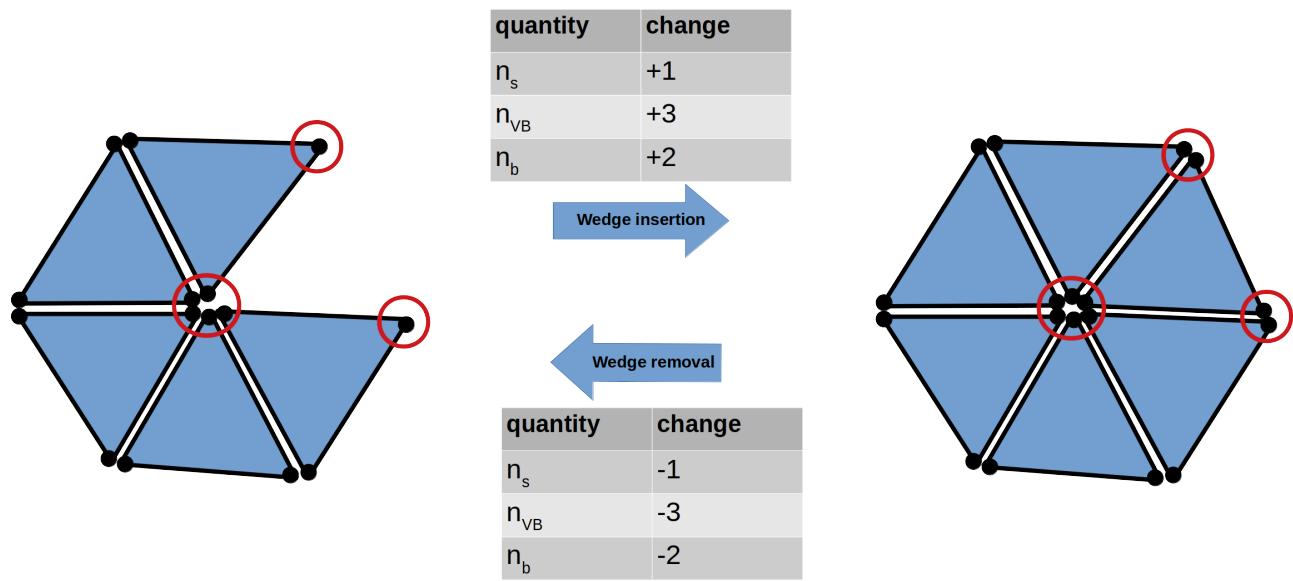


Fig. S19. Wedge insertion and removal.

313 2. $(v_{\text{fuse}}/v_a) \exp(-\Delta E_{j \rightarrow i}/k_B T) > 1 \Leftrightarrow (v_a/v_{\text{fuse}}) \exp(-\Delta E_{i \rightarrow j}/k_B T) < 1$

314 In this case, $p_{\text{acc}}(i \rightarrow j) = (v_a/v_{\text{fuse}}) \exp(-\Delta E_{i \rightarrow j}/k_B T)$ and $p_{\text{acc}}(j \rightarrow i) = 1$. Then

315
$$P_i \times \alpha(i \rightarrow j) \times p_{\text{acc}}(i \rightarrow j) = \frac{1}{Z_\Omega} v_a^{n_{\text{VB},i}} \exp[-(E_i - \mu n_{s,i})/k_B T] \frac{1}{\lambda^{9n_{s,i}}} \times d^{\text{nv},i} \vec{x} \times k_{\text{wf}} \tau \quad [30]$$

316
$$\times (v_a/v_{\text{fuse}}) \exp(-\Delta E_{i \rightarrow j}/k_B T) \quad [31]$$

317 and

318
$$P_j \times \alpha(j \rightarrow i) \times p_{\text{acc}}(j \rightarrow i) = \frac{1}{Z_\Omega} v_a^{n_{\text{VB},j}} \exp[-(E_j - \mu n_{s,j})/k_B T] \frac{1}{\lambda^{9n_{s,j}}} \times d^{\text{nv},j} \vec{x} \quad [32]$$

319
$$\times k_{\text{wf}} \tau d\vec{x}/v_{\text{fuse}} \quad [33]$$

321 Using again $\Delta E_{j \rightarrow i} = E_i - E_j$, $n_{s,i} = n_{s,j}$, $n_{\text{VB},i} = n_{\text{VB},j} - 1$ and $n_{v,i} = n_{v,j} + 1$, detailed balance holds.

322 Note that detailed balance is satisfied regardless of the values of $k_{\text{wf}} \tau$ or v_{fuse} , but as with all of the move frequencies
323 these parameters can be optimized during burn-in to accelerate convergence to the equilibrium distribution $P(i)$. In our
324 simulations, we find that the optimal value of v_{fuse} is on the order of the optimal value of d_{max} for analogous reasons: if v_{fuse} is
325 too small there will be very few vertex pairs identified as fusible, so n_w will be low. If v_{fuse} is too large, there will be many
326 fusion candidates but most fusion attempts will be rejected due to the large elastic energy change necessary for the merging
327 deformation.

328 Most importantly, we note the constraint on the parameters $k_{\text{wf}} \tau$ to ensure that generation probabilities do not become
329 larger than unity. Because each attempt is generated as a three step process, using three probabilities, one has to ensure that
330 all those probabilities are less than 1. Specifically,

331
$$n_w k_{\text{wf}} \tau < 1 \quad [34]$$

332
$$n_f k_{\text{wf}} \tau < 1. \quad [35]$$

333 E. Crack fusion / fission.

334 **E.1. Crack fusion.** Crack fusion closes a crack within the structure; i.e., two adjacent pairs of edges are merged (Fig. S21). Cracks
335 are identified as 4-edge-length holes inside the structure. If the vertices of the hole are labeled A, B, C, D then the polygon
336 ABCD forms a closed loop (see Fig. S21). The crack can be closed by either merging vertices A and C (and correspondingly
337 edges CD to DA and AB to BC) or by merging vertices B and D (and correspondingly edges AD to AB and CD to CB). Each
338 4-edge-length loop thus defines two potential fusible cracks. However, an additional condition for a crack to be fusible is that
339 its merging vertices must be within a distance l_{fuse} (A and C or D and B in this example). In this work, we have set the crack
340 fusion volume to be the same as that for wedge fusion to reduce the number of parameters, but it is not necessary that they be
341 the same and the acceptance probability is

342
$$p_{\text{acc}}(i \rightarrow j) = \min \left[1, \frac{v_a}{v_{\text{fuse}}} \exp(-\Delta E_{i \rightarrow j}/k_B T) \right] \quad [36]$$

343 There are two edge bonds and one vertex bond formed during a crack fusion.

344 **E.2. Crack fission.** The reverse move for crack fusion is crack fission. With the number of potential cracks as n_{cf} :

345
$$\alpha(j \rightarrow i) = n_{\text{cf}} k_{\text{cf}} \tau \times \frac{1}{n_{\text{cf}} (v_{\text{fuse}}/d\vec{x})} \quad [37]$$

346
$$p_{\text{acc}}(j \rightarrow i) = \min \left[1, \frac{v_{\text{fuse}}}{v_a} \exp(-\Delta E_{j \rightarrow i}/k_B T) \right] \quad [38]$$

348 As for the case of wedge fusion/fission, the crack fusion attempt frequency parameter k_{cf} is constrained by the conditions
349 maintaining probabilities smaller than unity:

350
$$n_c k_{\text{cf}} \tau < 1 \quad [39]$$

351
$$n_{\text{cf}} k_{\text{cf}} \tau < 1 \quad [40]$$

352
$$[41]$$

353 F. Edge fusion / fission.

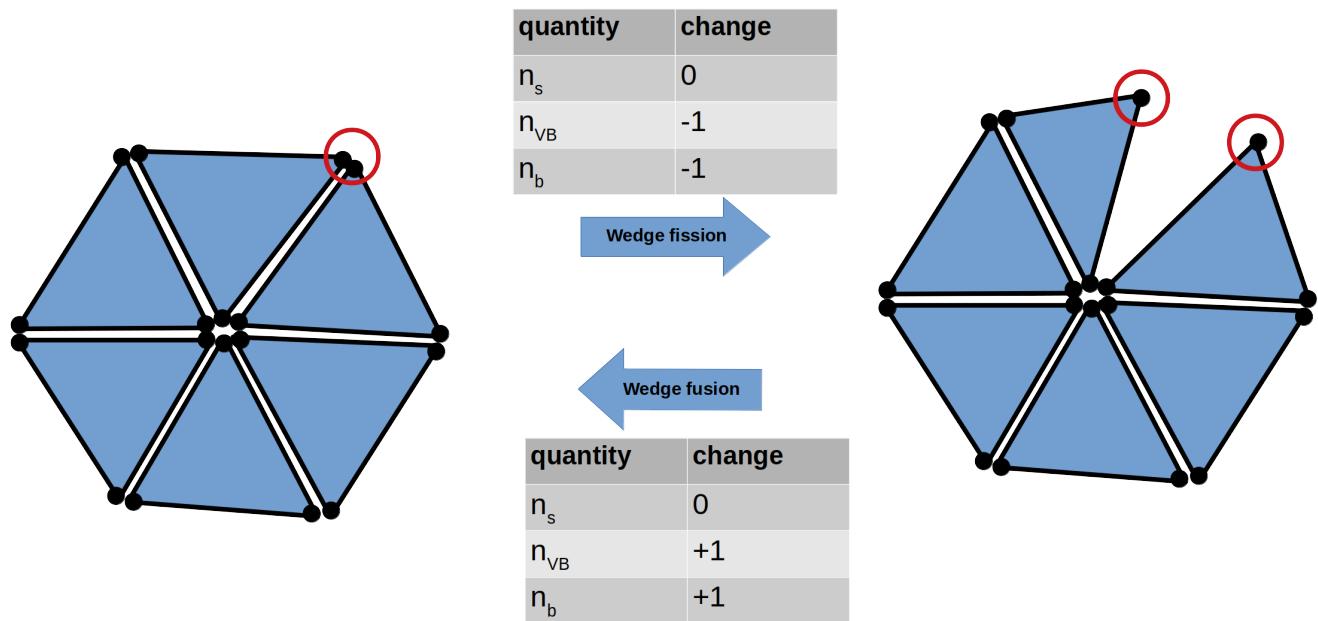


Fig. S20. Wedge fusion and fission.

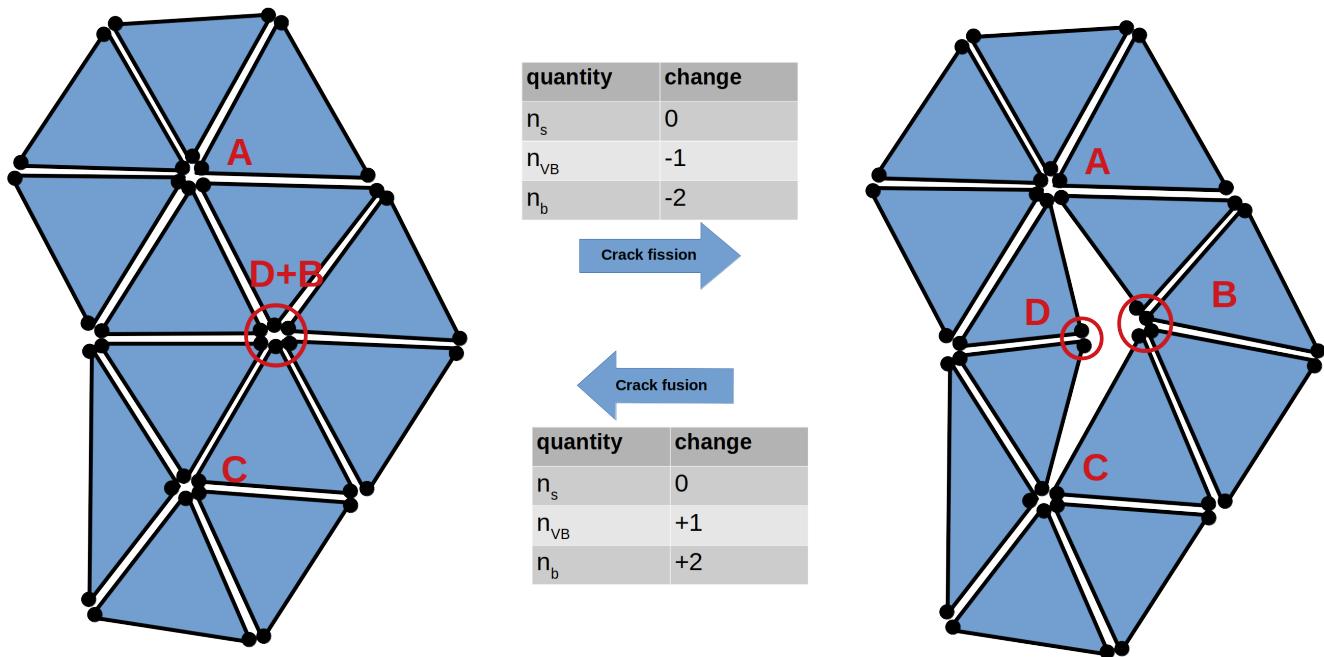


Fig. S21. Crack fusion and fission.

354 **F.1. Edge fusion.** During this move two non-neighbor edges are fused (Fig. S22). Fusible edges are non-neighboring edge pairs
 355 whose corresponding vertices are within a separation distance l_{fuse} . Since edges are directed, they can only fuse such that, after
 356 fusion, they point in the opposite direction. Assuming the edges to be fused are $A \rightarrow B$ and $C \rightarrow D$ (see Fig. S22), vertex A
 357 will merge into vertex D and vertex B will merge into vertex C . Edges are counted as fusible if A is within a distance l_{fuse} to
 358 D and B is also within a distance l_{fuse} to C . The attempt probability is analogous to that for wedge and crack fusion/fission,

$$359 \quad \alpha(i \rightarrow j) = n_e k_{\text{ef}} \tau \times \frac{1}{n_e} \quad [42]$$

360 with n_e the number of fusible edges and k_{ef} the edge fusion frequency parameter. The acceptance probability is

$$361 \quad p_{\text{acc}}(i \rightarrow j) = \min \left[1, \left(\frac{v_a}{v_{\text{fuse}}} \right)^2 \exp(-\Delta E_{i \rightarrow j} / k_B T) \right] \quad [43]$$

362 During edge fusion, one edge bond and two vertex bonds are created.

363 **F.2. Edge fission.** Edge fission is the reverse move of edge fusion. n_{ef} is the number of breakable edges, that is, those edges that
 364 have both vertices on the boundary and which would not result in breaking the structure apart.

$$365 \quad \alpha(j \rightarrow i) = n_{\text{ef}} k_{\text{ef}} \tau \times \frac{1}{n_{\text{ef}} (v_{\text{fuse}} / d\vec{x})^2} \quad [44]$$

366 The factor $1/(v_{\text{fuse}})^2$ arises because we must select a random position for each pair of vertices, independently. The acceptance
 367 probability is then

$$368 \quad p_{\text{acc}}(j \rightarrow i) = \min \left[1, \left(\frac{v_{\text{fuse}}}{v_a} \right)^2 \exp(-\Delta E_{j \rightarrow i} / k_B T) \right]. \quad [45]$$

369 To maintain probabilities within unity, the edge fusion frequency parameter k_{ef} is constrained by

$$370 \quad n_e k_{\text{ef}} \tau < 1 \quad [46]$$

$$371 \quad n_{\text{ef}} k_{\text{ef}} \tau < 1. \quad [47]$$

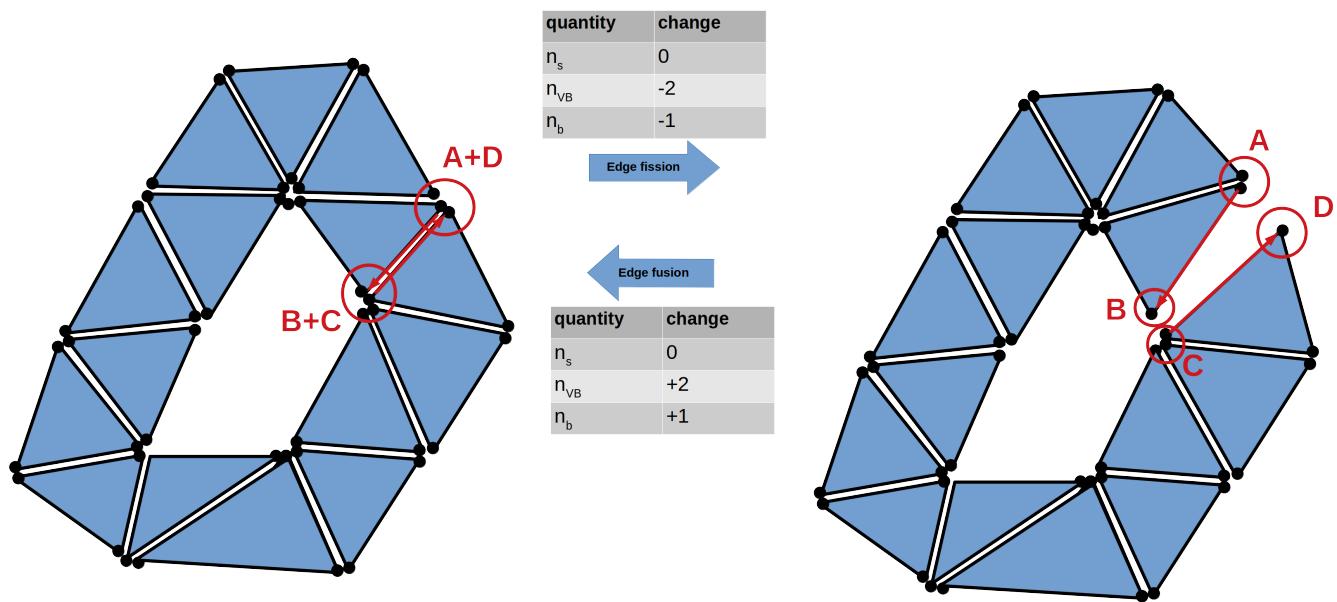


Fig. S22. Edge fusion and fission.

372 **Movie S1. (P3.avi)** Self-assembly trajectory for a P_3 structure in the on-target regime with $\eta_s = 10$, $\eta_b = 5$,
373 $\mu = -4.5k_B T$, and $\epsilon_{bind} = -6.5k_B T$ The yellow subunits form a minimal translational simple cubic unit-cell
374 which we use as the seed for self-assembly.

375 **Movie S2. (G3.avi)** Self-assembly trajectory for a G_3 structure in the on-target regime with $\eta_s = 10$, $\eta_b = 5$,
376 $\mu = -4.5k_B T$, and $\epsilon_{bind} = -6.5k_B T$ The yellow subunits form a minimal translational bcc unit-cell which we use
377 as the seed for self-assembly.

378 **Movie S3. (D3.avi)** Self-assembly trajectory for a D_3 structure in the on-target regime with $\eta_s = 10$, $\eta_b = 5$,
379 $\mu = -4.5k_B T$, and $\epsilon_{bind} = -6.5k_B T$ The yellow subunits form a minimal translational fcc unit-cell which we use
380 as the seed for self-assembly.

381 **Movie S4. (G7_i.avi)** Self-assembly trajectory for a G_7 structure in the off-target regime corresponding to
382 the structure shown on Fig. 4i with $\eta_s = 0.1$, $\eta_b = 0.01$, $\mu = -4.5k_B T$, and $\epsilon_{bind} = -6.5k_B T$ The yellow subunits
383 form a minimal translational bcc unit-cell which we use as the seed for self-assembly.

384 **Movie S5. (G7_ii.avi)** Self-assembly trajectory for a G_7 structure in the on-target regime corresponding to
385 the structure shown on Fig. 4ii with $\eta_s = 5$, $\eta_b = 5$, $\mu = -4.5k_B T$, and $\epsilon_{bind} = -6.5k_B T$ The yellow subunits form
386 a minimal translational bcc unit-cell which we use as the seed for self-assembly.

387 **Movie S6. (G7_iii.avi)** Self-assembly trajectory for a G_7 structure in the inefficient regime corresponding to
388 the structure shown on Fig. 4iii with $\eta_s = 50$, $\eta_b = 10$, $\mu = -4.5k_B T$, and $\epsilon_{bind} = -6.5k_B T$ The yellow subunits
389 form a minimal translational bcc unit-cell which we use as the seed for self-assembly.

390 References

- 391 1. DLD Caspar, A Klug, Physical Principles in the Construction of Regular Viruses. *Cold Spring Harbor Symposia on*
392 *Quantitative Biology* **27**, 1–24 (1962).
- 393 2. T Dotera, H Tanaka, Y Takahashi, Hexagulation numbers: the magic numbers of equal spheres on triply periodic minimal
394 surfaces. *Structural Chemistry* **28**, 105–112 (2017).
- 395 3. TE Videbaek, et al., Tiling a tubule: how increasing complexity improves the yield of self-limited assembly. *Journal Physics: Condensed Matter* **34**, 134003 (2022).
- 396 4. B Tyukodi, F Mohajerani, DM Hall, GM Grason, MF Hagan, Thermodynamic Size Control in Curvature-Frustrated
397 Tubules: Self-Limitation with Open Boundaries. *ACS Nano* (2022).
- 398 5. H Fang, B Tyukodi, WB Rogers, MF Hagan, Polymorphic self-assembly of helical tubules is kinetically controlled. *Soft*
399 *Matter* **18**, 6716–6728 (2022).
- 400 6. C Sigl, et al., Programmable icosahedral shell system for virus trapping. *Nature Materials* **20**, 1281–1289 (2021).
- 401 7. GM Rotskoff, PL Geissler, Robust nonequilibrium pathways to microcompartment assembly. *Proceedings National Academy*
402 *Sciences United States America* **115**, 6341–6346 (2018).
- 403 8. M Botsch, S Steinberg, S Bischoff, L Kobbelt, OpenMesh – a generic and efficient polygon mesh data structure in *OpenSG*
404 *Symposium*. (2002).
- 405 9. D Frenkel, B Smit, Understanding molecular simulation: From algorithms to applications (1996).