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We propose and investigate an extension of the Caspar-Klug symme-
try principles for viral capsid assembly to the programmable assem-
bly of size-controlled triply-periodic polyhedra, discrete variants of
the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired
by a recent class of programmable DNA origami colloids, we demon-
strate that the economy of design in these crystalline assemblies —
in terms of the growth of the number of distinct particle species re-
quired with the increased size-scale (e.g. periodicity) — is compara-
ble to viral shells. We further test the role of geometric specificity in
these assemblies via dynamical assembly simulations, which show
that conditions for simultaneously efficient and high-fidelity assem-
bly require an intermediate degree of flexibility of local angles and
lengths in programmed assembly. Off-target misassembly occurs via
incorporation of a variant of disclination defects, generalized to the
case of hyperbolic crystals. The possibility of these topological de-
fects is a direct consequence of the very same symmetry principles
that underlie the economical design, exposing a basic tradeoff be-
tween design economy and fidelity of programmable, size controlled
assembly.

self-assembly | programmable materials | addressable assembly | triply-

periodic polyhedra | self-closing assembly

I n Nature, self-assembly underlies the creation of functional
materials. From photonic nanostructures (1, 2) to extra-
cellular media (3, 4) to nanoencapsulation (5-7), robust and
dynamic control over the precise structure and size of these
assemblies is essential to their adaptive properties. Living sys-
tems have evolved pathways to direct multi-protein assembly
towards morphologies with a tunable size scale (8), from finite
diameter shells and tubules (9) to periodically-modulated ma-
terial composites (10). Indeed, length scale is a fundamental
but crucial element of structure control for functional mate-
rials. Yet, achieving structures with well-controlled lengths,
particularly when the target size is much larger than the con-
stituent size, poses a basic challenge. Notably, the ability to
target triply-periodic (i.e. crystalline) architectures with spe-
cific symmetries and periodicities that can be scaled to larger
than the subunit sizes is fundamental to control of desirable
material functions, such as photonic bandgap behavior. In par-
ticular, hybrid structures related to the Diamond and Gyroid
surfaces are well-known to exhibit prominent bandgaps, and
gyroid-like structures have evolved in diverse species of birds,
beetles and butterflies as a means of producing structural
coloration (11-14). In these assemblies, targeted wavelength-
selective properties are achieved by control over periodicity at
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the scale of 100s of nm, at least an order of magnitude larger
than the protein building blocks themselves.

These examples from nature have inspired recent efforts to
design “programmable” building blocks to realize synthetic
analogs of hierarchically-organized biological materials (15—
19). This strategy targets two key aspects of the protein
building blocks of functional biological assemblies. First, new
approaches to designing building block geometry from the
molecular to the colloidal scale have enabled the fabrication
of shapes of staggering complexity (20-23). Second, encoding
multiple species of subunits with specific interactions to favor
a particular network of contacts allows the assignment of a spe-
cific “address” to every assembled subunit (15, 17, 24-27). Yet,
while such addressable assembly offers one simple and generic
approach to this problem, where the number of interacting
elements must grow with the target size, this paradigm suffers
from a corresponding explosion in the complexity of multi-
species mixtures as the target grows arbitrarily large(28-30).
This is notably the case for programmable crystalline assem-
blies, where the unit cell dimensions typically scale with the
size of the programmable building blocks themselves (16, 31—
37), so far limiting applications, for example, to the use of
nanometric DNA based assembly units to target photonic
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As first suggested by Caspar and Klug, many viruses assemble
icosahedral shells (capsids) because the high symmetry of
the icosahedron enables economical assembly — enclosing a
large volume with relatively few distinct protein subunit types.
We generalize this design principle to triply-periodic polyhedra,
mesoporous structures approximating cubic minimal surfaces.
We demonstrate their programmable assembly from a minimal
number of distinct subunits forming arbitrarily large unit cells
of tunable, defined size. However, while high symmetry points
enable economy in these target structures, they can be seeds
of mis-assembly. This design strategy, and the fundamental
tradeoff between economy and fidelity, lays the groundwork
for deploying rapidly advancing nanotechnology approaches
to programmable assembly to achieve size-controlled architec-
tures with tunable functional properties.
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Fig. 1. Design of size-controlled triply-periodic minimal surface assembly from programmable triangular particles.(A) A pair of integers
(h, k) is used to define a triangulation vector, L, which connects a pair of vertices on a triangular lattice, defining the fundamental hexagonal patch. The hexagons in red, blue,
and green are built with L vectors corresponding to the triangulation numbers 7" = 1, 8 and 7. (B) Underlying triangular faces associated with each fundamental hexagon.
Triangles with the same colors represent the same subunit type. (C) From top to bottom: 2 x 2 x 2 subsets of primitive (P), gyroid (G), and diamond (D) TPMS. In each case,
transparent boxes are used to highlight a single cubic unit-cell. Each cubic unit-cell is triangulated with the corresponding fundamental hexagon shown in panel (B). The shaded
areas on each triangulated unit cell highlight the fundamental hexagon used in the construction.

structures with properties in the optical range (38).

DNA nanotechnology, in particular, has multiple strategies
to implement addressable assembly, and has been exploited to
target and realize assemblies with a precisely defined, complex
structures (29, 30, 39). Recent works leverage the unprece-
dented combination of control over geometry and interaction
specificity possible through DNA origami to realize a class of
quasi-spherical shells and cylindrical tubes (40-44). Crucially,
their target diameters are regulated by programming their
curvature, achieving finite sizes that are much larger than the
subunits. The design strategy for size-controlled shells (42)
takes advantage of symmetry-based principles proposed for
icosohedral viral shells (45-48), the celebrated Caspar-Klug
(CK) construction (49). The CK rules provide a rational
means to determine the minimal number of inequivalent sub-
units (4.e. conformations of capsid proteins) needed to form
closed shells of arbitrarily large diameter, an economy of design
presumably favored by selection pressures in viral evolution.
In this context, CK rules might be considered as one class of
solutions to the generic problem of miminizing the complexity
of specifically interacting subunit mixtures needed to achieve
size-programmed assembly (50, 51).

In this article we propose and explore the extension of the
symmetry-based principles of CK to an entirely distinct class
of programmable assemblies, triply-periodic polyhedra (52,

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

53), shown schematically in Fig. 1. Like tubules and shells,
these are 2D surface-like assemblies of triangular subunits,
in our case inspired by DNA origami assemblies (42—44). In
contrast to shell-like assemblies, our proposed design rules
employ negative, rather than positive, Gaussian curvature. In
particular, we target the design of a related class of triply-
periodic minimal surfaces (TPMS), the Gyroid (G), Diamond
(D) and Primitive (P) surfaces (54, 55), which all have cubic
symmetry and negative Gaussian curvature. In a conceptually
related work, Tanaka and coworkers demonstrated the ability
to form “bicontinuous” structures related to P and G surfaces
via a model of polygonal nanoplate assembly (53). However,
that design scheme requires distinct polygonal shapes, distinct
symmetries (i.e. P vs. G), and moreover, unit cell dimensions
are controllable only by changing the size of the plate-like
particle.

We show here that the high symmetries of the P, G and D
structures facilitate a similar economy of design as CK capsids,
arising from the commensurability of their crystallographic
space-groups with their decomposition into triangular building
blocks. Like CK designs of closed shells, we show how the
combination of interaction specificity, encoded in specifically
binding edge types, and geometric specificity, encoded by the
target edge lengths of and dihedral angles between subunits,
allows the programming of unit cell sizes that are, essentially,
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arbitrarily large compared to the subunit size. We analyze
the economy of design in triply-periodic polyhedral assemblies
in terms of the scaling of the number of distinct subunits
needed to achieve a given target periodicity in the crystal,
and show that these “inverted” structures achieve similarly
optimal scaling with increasing target size in comparison to
icosohedral shells.

While the economy of design deriving from symmetry guar-
antees a unique target ground state, it does not guarantee that
it correctly assembles, and if so, at reasonable rates or under
physical conditions realizable in experiments. Notably, recent
experiments on self-closed tubular assemblies of DNA particles
show that subunit flexibility, specifically dihedral bending,
gives rise to significant off-target assembly into structures of
undesired diameter (44). To understand how geometric speci-
ficity, in the form of angular and length flexibility of subunits,
limits the ability to achieve controllable crystal dimensions
through economically programmed assembly, we study grand
canonical Monte Carlo simulations of a physical model of tri-
angular subunit assembly. We consider the effects of variable
elastic stiffness, and show that the range of subunit flexibility
is restricted by the simultaneous requirements for high-fidelity
and rapid assembly, which are respectively favored by low or
high flexibility. Notably, the failure mechanism leading to
misassembly for sufficiently flexible subunits, in the form of
generalized disclination in hyperbolic crystalline structures,
can be traced directly to the very same symmetry-based design
that guarantees economical assembly.

Design economy of triply-periodic polyhedra

The economy of the CK construction for quasi-spherical as-
semblies stems from the fact that spherical shells can be de-
composed into regular triangular “subunits”, corresponding
to geometric structures known as deltahedra. In the original
CK construction, subunits were themselves triplets of proteins
that form the viral capsid (49). Here, we follow the design of
Sigl et al (42) and consider the triangular subunit as a sin-
gle, self-assembling unit, shown schematically in Fig. 2A. The
most economical shell designs are closed tilings of equilateral
triangles, i.e. the Platonic solids: tetrahedron (T), octahe-
dron (O), and icosahedron (I). Among these, the icosahedron
possesses the most point symmetries, and correspondingly the
largest number of equivalent triangular facets (20). Structures
composed of more than this number of triangles necessarily
break the 3-fold symmetry of the equilateral subunit, and so
increase the number of inequivalent triangular elements needed
to form them.

CK argued that subtriangulations of the original triangular
net that preserve icosahedral symmetry lead to the fewest
symmetry-inequivalent positions on the closed shell, and thus
require the fewest distinct subunits. Such subtriangulations
are constructed from triangular subregions of a planar trian-
gular lattice (46, 47), and are parameterized by the lattice
translation vector between vertices L = ha; + kaz, where
(h,k) are a pair of integers and a;, as are basis vectors of
the triangular lattice. Then T = |L|2 =R+ Kk +hkis
the number of subtriangles per base triangle, resulting in a
structure with 207" subunits. However, the commensurabil-
ity of subtriangulation and icoshedral symmetry implies that
complete shells can be assembled from fewer distinct triangle
types, Nr, which is equal to [T/3] for deltahedral shells (i.e.

Duque etal.

4 6 8
D/ (¢} (maximal medial thickness)
(D) -
Iy

Fig. 2. Economy of programmable assembly of shells and TMPS
via triangular particles. (A) Cryo-eM reconstruction of the two different
triangular DNA origami subunit types used in the self-assembly of 7" = 4 icosahedral
shell shown in (B) adapted from Sigl et al. (42). The angle 6 highlights the preferred
dihedral angle between the subunits. (C) Measure of economy, e(D) for polyhedral
crystals (solid lines) and spherical shells (dashed-lines) as a function of the maximal
medial thickness, D (in units of mean edge length). Inset: Log-log plot of the same
economy measures. (D) Triangulated shells of icosahedal, octahedral, and tetrahedral
symmetries with triangulation number T' = 1, 4, and 9 built with Np = [T/3]
distinct subunits (left). 7' = 4 and 9 polyhedral crystals built with N = T distinct
subunits (right).

with equilateral base faces) *. A design objective to maximize
the target size, D, of an assembly for a minimal number of
distinct subunit types, Nr, suggests a measure of economy,

e(D) = D/Nr. 1]

As shown in Fig. 2C, this measure decreases with target size
as e(D) ~ 1/D for deltahedral assemblies — assemblies made
from equilateral triangles — where we use the maximal medial
thickness (56) as the standard measure of size D . This scaling
can be understood from CK theory, since the triangulation

*There are T inequivalent internal edges in a deltahedral tiling which are distributed into groupings
of three (i.e. closed triangles). The minimal number of distinct triplets is [7"/37.

T The medial thickness of a bounding surface at a particular point is the radius of largest sphere
enclosed by the surface tangent to that point (56). Hence, the mazimal medial thickness,
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number is proportional to the surface area and thus T' < D?.
Notably, icosahedral shells maximize this measure of economy
among deltahedral shells, which is also consistent with the CK
logic. The non-monotonic behavior for shell economies stems
from the fact that Np = [T/3] for T, O, and 1. This leads to
“magic numbers” of especially high e(D) values when 7' is an
integer multiple of 3 (e.g. T = 3,9,12,21...), corresponding
to shell geometries in which the 3-fold axis lies at a vertex of
the triangular net (i.e. as opposed to the general case where
the 3-fold axis falls at the center of a triangular subunit). Since
the 3 symmetry at the center of the hexagonal base of Pr,
D, and G is not compatible with the center of a triangular
subunit (and, instead, only at 6-coordinated vertices), such
magic numbers do not exist for triply-periodic polyhedra.

This design principle can be extended to triply-periodic
triangular assemblies associated with the P, D, and G cubic
minimal surfaces, by decomposing these structures into ba-
sic hexagonal elements, essentially following what has been
dubbed “hexagulation” in studies of dense particle packings on
these surfaces (57). As developed by Sadoc and Charvolin (58)
and elaborated by others (59-61), high-symmetry tilings of
P, G, and D can be derived from the {6,4} tiling of the hy-
perbolic plane projected onto triply-periodic tesselations of
E? (Euclidean three space), provided that point symmetries
at the center, vertices and edges of the hexagonal patches are
preserved in the space group embedding. However, while CK
triangulations are constructed from triangular tilings meeting
at 5-fold vertices, {6,4} tilings are constructed from hexagonal
tiles that meet in 4-fold vertices (58), which is possible on
the hyperbolic plane, as illustrated in Supporting Fig. S1 y
When projected into cubic tesselations of E®, vertices of a
projected skew hexagonal base “tile” are constrained to lie
on specific Wyckoff positions of the corresponding crystallo-
graphic space group of the structure. See for example, Fig.
3A for G, where the central point of the shaded hexagon sits
at the 16a position of Ia3d, a point of 3-fold roto-inversion
symmetry, while the six outer vertices sit at 24d, points of
4-fold roto-inversion (62). Like the triangular base elements
of the CK construction, the hexagonal base tile of the triply-
periodic P, G, and D polyhedra can be subtriangulated in a
way that preserves the point symmetries of the {6,4} tiling
(see Methods and examples shown in Supporting Fig. S2).
The corresponding triply-periodic triangulations are similarly
triangulated by a vector L that connects a 4-coordinated ver-
tex to center of the hexagon, and thus the tilings are classified
by the T' number (Fig. 1A).

We use these triply-periodic triangulations of E* as the
basis for triangular subunit designs that target the assembly
of TPMS whose vertex positions map onto the corresponding
minimal surface for arbitrary subtriangulation. We denote
these polyhedral target structures as Py, D7 and Gr according
to the respective cubic surface and T' number. The geomet-
ric and topological data of the embedded structure — edge
length, connectivity and dihedral angles — are then used to
design target values for the subunit shape and interactions. In
our construction, the mean edge length of a basic triangular
element is fixed for all structures, while the projection sub-
triangulation can introduce variation in edge lengths. Fig. 3

used as a generic measure of self-closing size D, corresponds to the radius of the largest sphere
that can be enclosed by the surface.
*Note that, strictly, the triangulation in the hyperplane satisfies rotoinversion symmetries on the

vertices (4) and centers (3) of the fundamental hexagonal cells as annotated Supporting Fig. S1A.
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Fig. 3. Program for T = 3 Gyroid assembly. (A) lllustration of the
self-assembly process: triangular blocks of different types following their interaction
matrix template form larger structures, such as the shown Gg cubic unit-cell. The
three-dimensional rendering highlights the structure as DNA origami particle, with
the important feature that opposite faces of the particle are distinct, as colored
and referenced a 4 in (B). The center and vertices of the highlighted hexagon
represent the Wyckoff sites present in the triangulation. The glyph next to each vertex
denotes the symmetry of the Wyckoff site. Notice that the translation vector L, which
defines the T" number of the structure, joins Wyckoff sites of different symmetry. (B)
Interaction matrix for G with each colored block representing a valid edge-pairing.
The monovalent design rules used in the construction ensure that a given edge-type
is only allowed to bind to at most one other edge-type. The lower (upper) color of
each colored-block of the matrix represents the target length (dihedral angle) of a
valid edge-pairing. Both planar sides of each triangular block are colored differently to
account for the “flipping" symmetry exhibited by TPMS. This is accounted by assigning
two edge-types to each triangular block planar side. Unprimed and primed edge-types
are respectively the edge sides of the 4+ and — planar sides of each triangular block.

shows an example for the Gs structure in terms of 9 mutually
interacting subunit edges. The interaction matrix in Fig. 3
includes both edge specificity and geometric data about the
edge lengths and the dihedral angles formed when particular
subunits meet. Notably, the coincident symmetries of the
subtriangulation and the Ia3d space group allow for the large
units cells (967 triangular particles per cubic repeat of G)
to be constructed from only Ny = T distinct subunits. Sup-
porting Figs. S3-6 show corresponding examples of binding
specificity and geometry of edges for P, G and D for T'=1,3
and 7
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Fig. 4. Efficiency and fidelity of assembly versus geometric specificity of binding. (A) An example assembly simulated trajectory of the G7 assembly,
growing from a fixed “seed” (yellow), with newly bond subunits shown in corresponding colors. (B) and (C), respectively, show the number of assembled subunits (Netar) and
residual shape strain (Z) from simulation trajectories for a range of dimensionless bending (1) and stretching (ns) stiffness, the upper panel highlights the results for G7, while
results for all three symmetries and 7' = 1, 3 and 7 are shown below. Notice that the large panels in (B) and (C) correspond to the smaller whitened panels shown below for
the G structure. Points (i), (i) and (iii) highlight three different conditions for Gz assembly corresponding the final structures shown on the right: (i) rapid, off-target assembly;

(i) productive, on-target assembly; and (iii) non-productive, rigid assembly (also shown in Supporting Movies S4-6).

Unlike the CK structures, triply-periodic Pr, Dr and Gp
polyhedra have infinite genus in their target (bulk) state.
Nevertheless, each structure can be characterized by a well-
defined, finite size, roughly corresponding to the characteristic
pore size of the structure. To quantify and compare this
programmable size scale, we computed the maximal medial
thickness D of each triply-periodic polyhedra (56). Fig. 2C
plots the finite size design economy, e(D), as function of T" for
Pr, Dr and Gr polyhedra in comparison to generalized CK
designs. Like the CK assemblies, scaling the target size of the
triply-periodic polyhedra to larger and larger dimensions (in
units of the basic triangular elements) can be achieved at a
similar level of economy, with D ~ T%/2 and Ny ~ T, so that
the power law scaling of e with size is identical in the large
size limit.

Duque etal.

Efficiency versus fidelity of size-economic assembly

The economy of design of our construction for triply-periodic
polyhedra depends on the combination of both the interac-
tion specificity between different edge types and the geometric
specificity of the edge-edge contacts. To understand the physi-
cal limits for the fidelity and assembly yield of these structures,
we implemented a coarse-grained model of triangular particle
assembly employed in Tyukodi et al. (63), in which assembled
structures are triangular meshes, with degrees of freedom at
their vertices. Similar elastic mesh simulations have been ap-
plied to model assemblies of shells and tubules (63-68). Here,
the energy of an assembly derives from interactions of bound
edges indexed by ¢ and j,

k 0 0
E = Z { — €5+ §|€” —EEj>|2 —|—Kj[1 — COS(@Z‘]‘ — 02(3>)] } [2]
(i3)
The first term describes the binding energy of the edges. We
assume that edge ¢ and edge j have a common binding affinity,

PNAS | April22,2024 | vol. XXX | no.XX | 5

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265



266
267
268
269

270

272

273

274

275

276

277

278

279

280

281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

€ij = €bind if they are programmed to interact, but do not
bind otherwise. Notably, this interaction specificity, which
is crucial for forming a target triply-periodic polyhedra, is
an important contrast to previous studies of capsid assembly
in which all subunit interactions were identical (64-66, 69,
70), but is analogous to models of capsid assembly in which
subunit interactions followed CK rules (68, 71-84). The second
and third terms in eq. (2) describe the energy cost of edge
stretching and bending, respectively, where Zi? and (95;)) are the
target values for edge ij, as determined from the geometrical
embedding of Py, Dy and Gr (e.g. as shown for Gs in Fig. 3).
The respective moduli for edge stretching and dihedral bending
between bound faces are given by k£ and . To consider the
influence of these distinct elastic modes on assembly behavior,
we introduce the dimensionless ratios relative to binding,

M = K(|631%) /evina; Mo = #/€vina 8]

where (|€E?) |2} is the mean-square target edge length.

To model near-equilibrium assembly behavior, we perform
grand canonical Monte Carlo simulations (see Methods), which
consider a single cluster of bound, triangular units held at fixed
chemical potential with respect to a population of free subunits
(i.e. monomers) composed of a mixture of all the triangular
species needed to assemble a given triply-periodic polyhedron.
To test the efficiency and quality of targeted assembly, an initial
seed of the preassembled structure is prepared, and the MC
algorithm considers three types of moves: 1) addition/removal
of free subunits to an appropriately unbound triangle edge of
the cluster; 2) vertex displacement of assembled particles; and
3) fission/fusion of edges between bound/unbound edges of the
assembled cluster. Moves are accepted with the Boltzmann-
weighted probability according to the change in energy, Eq.
(2), and chemical potential p for free monomer addition at
fixed temperature. Example simulation trajectories are shown
for T' = 3 structures in Supporting Movies S1-3.

To consider the role of geometric specificity, we choose
€bind = —6.5kpT" and chemical potential p = —4.5kgT and
vary the elastic/binding ratios. We introduce Niotal, the av-
erage number of assembled units in the particle cluster, as a
measure of assembly efficiency. To capture the fidelity of the
assembly we quantify the mean-quadratic strain

== ([ — L)V IEP P + (16:5 — 017, [4]

which is computed from the elastic ground-state of the ul-
timate structure to remove the influence of thermal fluctua-
tions. We terminated simulations at 50 x 10 MC sweeps, or
when Niotal = 5000. We simulated assembly trajectories for
P, G, and D structures for a range of T-numbers and vary-
ing the elastic/binding ratios over four orders of magnitude:
ns € [1072,10%] and ny, € [1072,107].

Fig. 4B and C show simulation results for the dependence
of Niota) and Z on 7y, and 7s for G7 assemblies. They show that
Niotal decreases with both stretching and bending stiffness,
with the efficiency near zero outside of the region ns < 10 and
7 < 1. In contrast, the high-flexibility regime is the regime
of low fidelity as indicated by the large, non-zero residual
strain values Z. These Z > 0 values are evidence of assemblies
that form with the correct edge matching specificity, but
nevertheless have a topology that is incompatible with the
target edge lengths and dihedral angles. In other words, while
assembly is rapid when subunits are flexible, s < 1 or n, < 1

6 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

result in highly defective, “off-target” structures, as shown for
a structure like Fig. 4i. In the opposite limit of s > 1 or
7N > 1, while bonds form the correct geometry so that = ~ 0,
the assembly efficiency is low due to the small rate of new
subunits joining to a free edge. This results in a structure
like Fig. 4iii, with few if any additional subunits bound to
the seed. However, at intermediate flexibility — approximately
5<Sms £ 10 and 5 < mp, S 10 — assembly achieves both
significant yield (i.e. Niotar 2 102) and high fidelity (i.e.
= ~ 0), indicating productive and defect-free assembly of the
target crystalline structure (Fig. 4ii).

The smaller panels of Fig. 4B and C compare the assembly
efficiency, Niotal, and fidelity, =, for all three Pr, Gr, and
Dr structures and for sequences of increasing target sizes,
corresponding to T' = 1,3, and 7. All cases show the same
qualitative dependence on angular and length flexibility of
bound subunits: rapid yet off-target assembly at high flexibil-
ity, on-target yet sluggish assembly for stiff structures, and a
regime of productive, on-target assembly in the intermediate
flexibility regime. These overall trends reveal that interaction
specificity alone is not sufficient for reaching target assemblies.
This is indeed consistent with the fact that Pr, Gr and Dr
have an identical interaction matrix for each given T, but
differ in terms of the target edge lengths and dihedral angles.

It is instructive to compare these observations to results of
models for positive curvature capsids. While we find that in-
teraction specificity (edge-type binding specificity) is essential
for assembly of target triply-periodic polyhedral structures,
small capsid structures can assemble without interaction speci-
ficity, i.e. from systems of identical subunits, within certain
ranges of bending and stretching moduli (64-66, 69). However,
to form larger (T° > 7) capsids with icosahedral symmetry,
interaction specificity (42) or templating (42, 65) is essen-
tial, and interaction specificity significantly increases target
yields and robustness to parameter variations for smaller cap-
sids (68). Our observation that, in addition to interaction
specificity, a minimal level of geometric specificity is essential
to form a target triply-periodic polyhedral structure is also
consistent with capsids. Even when interaction specificity
allows for only a single ground state capsid structure, mal-
formed structures assemble under conditions of low geometric
specificity and/or strong interactions because mis-bound sub-
units do not have time to anneal before becoming trapped
in the assembly (68, 71-86). On the other hand, too much
geometric specificity leads to low kinetic cross-sections and
thus slow assembly (72, 78). These relative assembly kinetics
are also borne out by variable temperature simulations (at
fixed monomer concentration) of G7 in Fig. S7, which show
that changing temperature for the triply-periodic polyhedra
has analogous effects as in other self-assembly systems. For
intermediate and stiff binding (ii and iii in Fig. 4), which
respectively exhibit productive reversible assembly or unpro-
ductive slow assembly at the default temperature, increasing
temperature decreases growth rates due to the increased en-
tropic cost of binding. Growth eventually goes to zero above
a melting temperature that decreases with increasing stiffness.
In contrast, the highly flexible binding case (i in Fig. 4), which
exhibits overly rapid, nearly irreversible, defective assembly at
the default temperature, has a nonmonotonic growth rate over
the range of temperatures studied. Increasing temperature
initially facilitates growth by enabling more reversible, less
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defective assembly which favors further growth. The increased
reversibility is reflected in a decreasing residual strain. Growth
rates ultimately decrease with increasing temperature due to
the entropic cost for binding.

Briefly, we note that while we have focused on growth of pre-
seeded structures as a primary metric of efficiency of assembly,
the dependence of nucleation rates on the geometric specificity
of binding is consistent with our observations on growth rates
(8). Fig. S8 compares unseeded simulation trajectories of
G~ structures for high- and intermediate binding flexibilties,
i.e. conditions (i) and (ii) in Fig. 4, while the stiffest case
(iii) was not observed to nucleate on the time scale of the
simulation (10° MC sweeps). Mean nucleation times increase
with stiffness, implying a qualitatively similar trend to the
decreasing growth rates with increased stiffness observed in
Fig. 4.

Defect-mediated mis-assembly

In our model of triply-periodic polyhedra, bound subunits
have perfect type-specificity, and hence, off-target assemblies
must have the same local network of subunits but the wrong
global geometry. Here, we show that the primary mechanism
of mis-assembly derives from topological defects of the quasi-
2D crystalline assembly. These defects take the form of point
disclinations, defined relative to the target polyhedral assembly
(see Fig. 5A), with an angular wedge of the triangular mesh
removed or added relative to its ideal geometry as one encircles
a vertex. As in the standard convention for wedge disclinations
in 2D crystals (87), we associate the topological charge s of
a disclination to the excess degree of bond rotation around
a vertex relative to the target structure. This charge can
be defined and measured at any given vertex (see Methods
and Supporting Fig. S9). As edge binding only takes place
between complementary edge-types, such disclinations are
only possible at vertices of rotational symmetry in the target
assembly, i.e. at vertices located at Wyckoff positions in the
target assembly. This means, for example for the ITa3d space
group of the G structure, the 3 symmetry of the 16a position
supports s = 427 /3 disclinations, while the 4 symmetry of
the 24d position supports s = £ disclinations (5A) 8.

Fig. 5B shows the average number of defects per unit cell
n(s) for different disclination types in simulations of T = 7
assemblies, for the same range of flexibilities considered in
Fig. 4. Notably, these defects appear when bonds are flexible,
coincident with the regime of large residual strains = in off-
target assembly, indicating that disclination formation is the
primary mechanism of mis-assembly. Surprisingly, this defect
population is biased in the sign of topological charge. That
is, defects with either s = +27/3 or +7 charge form at finite
density, corresponding to patches with wedges remowved relative
to the stress-free target geometry, but the negatively-charged
variants of these defects do not form at significant densities
even in highly bendable or stretchable assemblies for these
parameters . This same bias is also observe for P, G and D

§Along with this purely topological notion of defects, one can also define a notion of “geometric de-
fects” that is standard to notions of order embedded in curved manifolds (88), and can be related to
discrete measures of Gaussian curvature in triangular meshes, namely the excess/deficit of sum of
interior angles meeting a vertices (89). Hence, the target (stress free) state of triply-periodic poly-
hedra exhibits spatially distributed Gaussian curvature both due to the presence of 8-coordinated
vertices as well as variable edge lengths in the target mesh.

qTOur definition of disclination charge accounts for the effective negative Gaussian curvature of the

target crystal, but defines excess bond rotation relative to a target bond coordination that may be
larger than 6 (e.g. the 8-coordinated vertex at position 24d of G structures).
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assemblies for variable T numbers, as shown in Supporting
Fig. S10. Similarities between the local elastic energies of
positive and negative disclination types in Supporting Fig.
S11A suggest that this imbalance is not driven by differences
in strains generated by these defects types. Instead, we find by
simulation of variable excluded volume sizes (Supporting Fig.
S11B) that the bias towards s = +27/3 or + relative to their
negative counterparts is a feature of steric interactions between
triangular units: volume exclusion tends to penalize crowding
excess triangular units around a shared vertex required by
s < 0 defects.

Finally, we note that the residual net topological charge
of defects has consequences for the gross morphology of off-
target assemblies. In a 2D crystal that grows isotropically,
a finite disclination charge density would tend to generate
elastic energies that grow superextensively, i.e. faster than
the number of subunits (87). Instead, we find a morphological
transition in defective assemblies that mitigates growth of
elastic energy with assembly. Fig. 5C compares the graph
distance dp of vertices to a free boundary in the assembly
for the conditions corresponding to off-target vs. on-target
assembly in Fig.4, points (i) and (ii) respectively. Notably,
off-target mis-assembly results in narrow, stringy structures
(ds < 2), while on-target assembly of sufficiently rigid subunits
results in bulk 2D assembly with the free boundary extending
far away from interior subunits. The stringy morphology of off-
target mis-assembly has the important effect of reducing the
far-field elastic cost of disclinations, as the long-range effects
of defects are screened by the presence of free boundaries (70,
90). Hence, analogous to the anisotropic domain growth in
curvature-frustrated 2D crystals (91-93) or filaments (94),
we argue that this narrow, strip-like morphology eludes the
superextensive costs that would be otherwise be generated by
finite disclination charge densities in isotropically growing 2D
crystals.

In Fig. S12 we show results for much longer simulation
times for Gz for the cases of low and intermediate flexibility
shown in Fig. 4, (i and ii, respectively), to test the ability to
assemble large, multi-unit-cell crystals. These results show
that running upwards of ~ 108 MC sweeps leads to assemblies
of Niotal ~ 10® — 10* subunits, an order of magnitude larger
than the 336 subunits per cubic repeat of G7. Notably, large
crystals formed at intermediate flexibility exhibit only nominal
residual strains, consistent with a low density of defects, and
bulk-like morphologies, in contrast to the quasi-1D, highly-
defective assemblies formed by flexible subunits.

Discussion

In summary, we have extended the economical design princi-
ples of the CK construction of closed shells to triply-periodic,
negative curvature programmable assembly. In both cases,
economy derives from the commensurabilty of the symme-
tries of a subtriangulation with the symmetry elements of
the target structure. For triply-periodic polyhedra, this re-
quires constraining the vertices and centers of the base tile to
the Wyckoff sites of appropriate symmetry. Preserving these
symmetries in the sub-triangulation guarantees that the sub-
triangulation is composed of “redundant” copies of relatively
few symmetry-inequivalent particles.

However, while the high-symmetry is necessary for design
economy, it is also the source of off-target misassembly. No-
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Fig. 5. Disclination pathways to off-target assembly. (A) Positive and negative topological defects compatible with the self-assembly matching rules of a G7
structure, corresponding respectively to fractional edge removed or added from the target assembly, extending from a high-symmetry vertex. Here, possible defects are
constructed by a Volterra-like construction on defectless patches centered at the Wyckoff sites 16a and 24d, where the topological charge s quantifies the excess/defective of
rotation angle around the disclination. Each defective patch is colored with respect to the unique triangle species as shown on the left patches as well as their length strain
(faces) and angle strain (edges) as shown on the right patches. The snapshot sequence on the bottom shows a possible assembly pathway of a topological defect with charge
s = +2m /3. (B) Number of disclinations formed per primitive cell, n(s), as a function of dimensionless ratios ns and 7y, for each of the defect types labeled from (i) to (iv) for
simulated G assembly. (C) Blue (Yellow): probability of a vertex to have a graph distance, dg, to the boundary of a structure exhibiting on-target (off-target) assembly. The
structure snapshots on the right (left) column show different views of the on-target (off-target) structures. The enlarged box shows different examples of vertices having a graph

distance dg = 0 and dg = 1. Off- and on-target assembly correspond to points (i) and (ii) in Fig. 4, respectively.

tably, the very same rotational symmetries that anchor the
sub-tilings of Pr, D7 and G are sites where disclinations are
possible, and these disclinations proliferate if the geometric
specificity of the binding between subunits is too low. Indeed,
as the example in Supporting Fig. S13 illustrates, certain 7'
values (T = 4, 12, 16,...) lead to an additional set of (2-fold)
Wyckoff positions, enabling the formation of a third set of nxw
disclinations and thus more assembly errors. This trade-off
between design economy and the propensity for misassembly
is unavoidable. It leads to narrowly defined regimes where
assembly is flexible enough to occur at reasonable rates, but
specific enough to suppress disclinations. The design criteria
for efficient and high-fidelity assembly (i.e. 5 < ns < 10 and
5 < mp < 10) are thus critical for the experimental design
and realization of size-controlled crystals. In the context of
programmable DNA triangles, experimental yields of off-target

8 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

tubule assembly suggest a range of bending stiffness to binding
ratio in the range n, ~ 0.1 — 1, and dimensional arguments
suggest 7s to be in a similar range, which is notably in the
range of productive and high-fidelity assembly of our physical
model (44).

These estimates suggest this system may be ideal for har-
nessing the economy of Pr, Dy and Gr for programmed as-
sembly of crystal structures with unit cells that are tunable to
dimensions larger than those of the subunits, which is currently
a challenge with assembly of colloidal or supramolecular build-
ing blocks. This limitation applies to current approaches to
program the assembly of complex crystals of DNA functional-
ized particles (34, 35), as well as DNA origami “voxels” (36, 37).
Notably, the nanometric size of programmable building blocks
typically puts the photonic bandgap behavior far outside of the
range of the optical regime for DNA-programmable crystals,
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as unit cells sizes have been typically limited to within a few
times the subunit size. Hence it would be advantageous to use
Pr, Dr and Gr assemblies as platforms for bottom-up design
of photonic materials, with wavelength tunable via 7. For
example, taking computed bandgaps for gyroidal crystals (12)
and using the ~ 50 nm size of DNA origami triangles (42),
suggests that photonic behavior occurs in the visible range for
T=4-9.

We note that the photonic structures appearing in bio-
logical structures have slightly different symmetries than the
TPMS structures we have studied here. That is, while TPMS
symmetries correspond to so-called “double network” archi-
tectures (e.g. Ia3d spacegroup for G) and such structures
are observed in membranous biological assemblies (95, 96),
photonic bandgap nanostructures formed in butterflies and
beetles (12, 14) correspond to “single network” architectures
which break the symmetry between the two-interpenetrating
channels (e.g. I4132 for single-gyroids). It is, of course,
straightforward to generalize the design scheme studied here
for TPMS derived structures to assemblies that target these
lower-symmetry analogs, for example by projection of sub-
triangulated vertex positions onto constant-mean curvature
variants of TPMS (97, 98). In the context of design economy,
this symmetry reduction (i.e. reducing 3 symmetry at the
center of the hexagonal base to 3-fold rotation) would come at
the notable cost of doubling the number of required subunits
relative to the higher symmetry double-network structures.

Finally, we note that recent approaches to synthetic protein
design have assembled icosohedral shells of highly-modular
size and structure, realizing CK structures in the range of T' =
4—100 (99). Thus, we anticipate that our “inverted CK” design
principles could be a template for engineering new classes
of triply-periodic, protein-based mesoporous frameworks of
controllable periodicity and symmetry.

Supporting Information Appendix (SI)

Supporting Information Appendix (Sl). Supporting text appen-
dices are provided to detail the construction algorithm for P,
Gr and Dr assemblies, simulation methods, and analysis of
defects and off-target assembly.

Sl Movies. Supporting Movie S1 (P3.avi) Supporting Movie S2
(G3.avi) Supporting Movie S3 (D3.avi) Supporting Movie S4
(G7_i.avi) Supporting Movie S5 (G7_ii.avi) Supporting Movie
S6 (G7_iii.avi)

Materials and Methods

Triply-periodic triangulations and interaction rules. Our construction
of triangulations of P, G and D are based on projecting portions of
planar triangular graphs on the level-set models of these minimal
surfaces, in a way the preserves the symmetries of the *246 tiling
of the H? in the respective cubic space groups of E3 (59). In
brief, this construction begins with a triangular base, 1/6 of the
hexagonal patch. The vertices this triangular base, denoted a, b and
c, are constrained to lie on Wyckoff site positions with appropriate
rotoinversion symmetries to embedded the *246 tiling. As shown in
Table 1, a is placed at the 3 center of hexagonal patch, while b and ¢
lie on 4 points, corresponding to vertex where four hexagonal patches
meet. Last, we note that inversion “flips” the normal to triangular
particles, so that this hexagonal base is therefore constructed by
a single symmetry equivalent unit. This base triangle itself, when
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TPMS | a | bec
P (Im3m) 8c 12d
G(Ia3d) | 16a | 24d

D (Pn3m) | 4c 6d

Table 1. Wyckoff site symmetries and locations for the vertices the
base triangulation tile (i.e. 1/6 of the fundamental hexagon). Notice
that vertices b and c share the same Wyckoff site symmetry.

embedded into the respective Im3m, Ia3d and Pn3m space groups
thus constitutes the 7" = 1 triangulation of P, G and D.

Higher T' number triangulations follow from a procedure (de-
scribed in detail in SI Text Sec. 1) where by the planar base triangle
a, b, ¢, is subtriangulated according the identical construction as
CK, followed by a projection of the vertex positions from the planar
bases (arranged according to the space group symmetries) onto a
level set model of P, G or D via simple gradient flow.

This procedure, in general, results in distortions of the dihedral
angles between edge-sharing triangular faces, as well as lengths
of edges, geometric information which we then record and define
to set the target values on triangular subunits and their selective
interactions (see SI Text Sec. 2).

Grand Canonical MC simulation. For the assembly simulations, we
use a model previously developed for icosahedral shell self assembly
(45, 64, 100, 101) and then adapted by us for arbitrary triangle
design (43, 63). Subunits in the model are flexible triangles which
can bind to each other along an edge. The local preferred curvature
is modelled by preferred dihedral angles between neighboring faces
sharing a bond (edge) and any deviation from the preferred dihe-
dral angle has a corresponding bending energy cost. The energy
associated to triangle-triangle binding, edge stretching and dihedral
change (bending) are shown in Eq. 2.

Each triangular subunit consists of 3 edges, each of which may
be of distinct interaction type. The interaction matrix defines which
type is allowed to bind to which type. If there are ngs subunit species
in the simulation, there are at most 3ns edge types with (an)2
different interactions, i.e. binding energies, bending moduli and
dihedral angles. In addition, each of the 3ns edge types may have
their own stretching moduli and rest lengths. In the simulations
presented in the main text, we fixed the binding energies for all
allowed edge pair types to the same value. Similarly, bending moduli
for all pairs and stretching moduli for all edge types are also set to
the same value. Moreover, each allowed edge type pair has its own
dihedral angle.

The simulation follows the growth of a single structure in the
grand canonical ensemble, i.e. the structure is immersed in a bath of
freely diffusing subunits held at fixed concentration. Concentrations
(or, equivalently, the chemical potentials) for all species are set to be
equal. The dynamics is governed by a series of Monte Carlo moves
with fixed relative rates. The moves allow for subunit exchange
between the structure and the bath, internal binding and unbinding
of edges and thermal fluctuation of vertices with no change in
topology. There are a total number of 11 moves and each move is
carefully designed to satisfy detailed balance with its reverse move
(63).

Calculation of defect charges. Given a structure assembled with
the matching rules of triply-periodic polyhedra, we can determine
disclination charges by considering closed paths around encircling
the disclinations like the one shown on the Supporting Fig. S9.
Each path can be in general seen as a series of steps in which
each individual step consists of a composition of two rotations: an
initial rotation of angle ¢;; corresponding to the angle between
two consecutive edges F; and E; and a second rotation of angle
0; corresponding to the dihedral angle associated with the edge
E; (s). This approach closely follows the formalism introduced by
belcastro and Hull in which origami folding patterns are viewed
as collections of affine transformations around the internal vertices
of the patterns (102). Furthermore, moving around the vertex or
rotating the surface around the vertex are analogous operations
so we can perform all the ¢ and 6 rotations around axes passing
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through the enclosed vertex and parallel to z and X respectively.
One full rotation amounts then to the composition of rotation
operations (from right to left) R,(®,n):

R (60, %) R(¢no, 2) . .-
R (02, %) R (412, 2) R (61, %) R (b01,2), [5]

where @ is the desired angle around disclination vertex v whose abso-
lute value can be found can be determined as |®| = arccos[(Tr(Ry)—
1)/2]. With the rotation angle ® the disclination charge of a defect
is defined as the angle deficit s = 27 — |®|.

Ry(®,n) =
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Supporting Information Text
1. Extension of Caspar Klug construction to P,G,D triangulations

The construction of Caspar and Klug is a procedure to create structures with increasing number of subunits proportional to the
triangulation number 7" while preserving icosahedral symmetry (1). The extension of this construction to the structures studied
here was formulated previously (2), considering the dual problem of packing spheres on the surface with packing deriving from
hexagonal packing of the plane. Here, we give an explicit procedure for deriving the sub-triangulations (7 > 1) derived from
base triangulations (7" = 1) of the P,G, and D surfaces based on the principles of Caspar and Klug. In each case, the vertices of
the base triangulations are identified with vertices and centers of the hexagonal base tiles associated with each structure.

The steps of the construction are outlined in Fig S14, yielding explicit coordinates for vertices of each triangle in the cubic
unit cell. The T' = 1 structure is taken as a starting point, which is then sub-divided to the desired triangulation number.
Finally, each vertex is translated by gradient flow along an objective function to arrive closer to an approximation of the target
surface.

From the T" = 1 structure, both the coordinates of each triangle’s vertices in the unit cell is known and also an indexing of
each triangle’s neighbors is derived by identifying which edges are shared by which triangles. The extended construction is to
then identify a part of the planar triangular lattice with each triangles of T'= 1 by an orthogonal projection: each edge of the
T = 1 structure corresponds to a vector L = ha; + kas of the planar structure with standard triangular lattice vectors a1, az.
The triangulation indices h, k are integers that enumerate different triangulation numbers via the relation T' = h? + k? + hk that
derives from the area of the equilateral triangle with edge L expressed in units of the original triangular lattice vectors’ length.

Adjacent edges on the T' = 1 structure are identified with vectors in the planar diagram L, U; = —ka; + (h + k)az and
U, = (h+ k)ai + —has. Each vertex contained in the triangle with edges L, U1 can be expressed as iai + jaz, and equivalently
as = (i(h+k) + jk)L 4+ % (jh — ik)Uy. This mapping of vertices is an orthographic projection, so that while the triangulation
of the icosahedron in this manner will yield equilateral triangles, here isosceles triangles are found due to the isosceles triangles
of T =1 deriving from the asymmetric units of P,G and D. The edges of the (T > 1) triangulation follow from the mapping
identifying L, U; and the additional identification of Uy wherever an edge of the planar diagram crosses over the vector L.

The resulting sub-triangulations are planar except for triangles near the boundary. In the final step to construct the explicit
coordinates of the T' > 1 triangulation, in the spirit of quasi-equivalence, vertices of the sub-triangulation are each translated
by gradient flow along the function f* (i = P,G, D) to the nodal approximation of the target surface f = 0 while minimizing
the distance that each vertex is translated from its initial value. This is performed by using Mathematica software to minimize
lx — xo||* subject to the constraint f(x) = 0. While the vertices are transformed, the edge topology is kept the same by
preserving the edge data according to indexing of each vertex before and after the gradient flow. This final step preserves the
symmetries of the structure because each f(z,y, z) has the targeted symmetries.

2. Derivation of matching rules and geometric parameters for simulation

With the cubic unit cell of structures derived using the construction of the previous section, we next consider the matching rules
for building blocks that exactly address the target structure in the rigid limit, of zero compliance in either bending or stretching.
We consider the minimal number of subunit types required where each subunit has three edges, each edge has a single length,
dihedral angle with respect to its neighbor, and only binds with exactly one subunit type and a single corresponding edge index
(see figure 2). When comparing to triangulations of icosahedral shells and other deltahedral shells, we further allow a triangle to
adopt three-fold symmetry, so that each of its three edges have the same lengths, dihedrals, and bind to a single edge identity.

The types and matching rules may be identified in the unit cell directly from the identifications found by applying the
discrete symmetries of the corresponding target surface. For the purpose of generating matching rules for the simulations,
we only use the translational and rotational symmetries (no inversion or mirror symmetry), resulting in twice the number of
subunit species with distinct species that are related by the additional symmetries not considered. Taking advantange of the
rotoinversion symmetries of the ultimate triangulations in E? then allows us further to identify “flipped" triangle pairs, as a
single sub unit type.

In principle, the explicit construction detailed above in the previous section will preserve these symmetries from the original
structure, since we are applying orthogonal projection of a three-fold symmetric structure onto the the 1" = 1 structure and
gradient flow according to a function that has the same symmetry. We have developed a method to check whether the numerical
procedure for construction preserves symmetry by re-deriving type and matching rule assignment from a given triangulation
with vertex coordinates and indexing of triangle neighbors. The procedure is an exhaustive search of all possible assignments,
made simpler by the method of constraint propagation: successive sub-symmetries are found by attempting to identify pairs of
triangles and their orientations, and propagating the additional identifications that are necessary for such a structure.

The constraint propagation of an identification follows from recursive evaluations of local matches on the collection of
triangles {¢;} of the explicit triangulation of the unit cell. A list of proposed type assignments is maintained, with each ¢;
having a type and a rotation relative to other members of the type. Each type has an additional Boolean value assigning
three-fold symmetry. At each recursion, a proposed match is t, and ¢, and a rotation r that identifies side j of ¢, with side
j + rmod3 of ¢,. The recursion consists of the following:

1. For all three sides j = 1..3, check that corresponding side lengths and dihedrals match.

2. If this local match fails, the entire propagation terminates and the type assignment is rejected.

2 of 3Zarlos M. Duque, Douglas M. Hall, Botond Tyukodi, Michael F. Hagan, Christian D. Santangelo, and Gregory M. Grason



74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

109

110

111
112
13
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131

3. If the local match succeeds but has been previously identified, no additional matching is required (this is the base case to
the recursion).

4. If the local match succeeds but t, and t, were previously identified to be the same type but with a different rotation, and
furthermore no threefold symmetry was previously identified, then threefold symmetry is proposed for this type. Two recursive
calls are made to identify j =1 j =2 and j = 1 j = 3 neighbors of ¢,, with rotations such that the corresponding edges shared
with t, are identified.

5. If the match succeeds and t, and t, are different types, then the proposed type assignments is updated to reflect their
proposed identification. All triangles of the same type as t;, are assigned the same type as t, and their relative rotations with
respect to t, follow from the their relation to ¢, and the new proposed rotation r from ¢, to t,. Three recursive calls are made
to identify neighbor j of t, with neighbor j + rmod3 of ¢, with the appropriate rotations that derive from the identifications of
the sides of t, and t», starting again at step 1 each time.

The result of applying this matching algorithm for all possible pairs and possible rotations is that a minimal number of
types is identified. The appropriate side lengths and dihedrals for each type can be found from any triangle that has that type,
and the matching rules are found from the types of each neighbor. This algorithm was implemented in Mathematica, which is
included as supplementary information.

3. Ground state energies of topological defects and effect of excluder size

To show that the overabundance of positive defects cannot be readily attributed to some elastic favorability of positive defects,
we calculated the ratio E(+|s|)/E(—|s|), where E(%|s|) are the ground state elastic energies of defect patches of charge +|s|.
We performed energy minimization as a function of the ratio ns/ny ~ k/k, with k and k being the moduli for stretching and
dihedral bending respectively. We considered defect patches for the charges s = +27/3 and s = £7 for Gr using the patch
topologies shown on Fig. 5A. Each energy minimization was performed in Mathematica with a conjugate gradient algorithm
and using the geometry of the patches of Fig. 5A as initial conditions. In Fig. S11A we show the ratios for charge magnitudes
|s| = 27/3 and |s| = 7. In general, we do not observe a regime in which positive defects have a much smaller elastic cost than
negative defects. On one hand, positive defects appear to have a higher elastic energy cost than their negative counterparts for
ns/mb < 10. On the other hand, the positive to negative elastic cost becomes comparable for 7s/m, = 10. These results suggest
then the necessity of a different mechanism in order to rationalize the excess of positive charges.

In Fig. S11B we investigate how steric interactions affect the overall excess of positive charges for the case of G7 structures.
We probe the defect imbalance by measuring the quantities ny and n_ of a given structure which are defined as the total
number of charges of positive and negative sign respectively. Defining n¢otal = n4+ + n— and An = n4 — n_, we measure the
mean relative counts difference between positive and negative charges, (An/niota1), and explore how it varies as the size of the
normalized excluder radius between adjacent subunits, Rexc/{fo), is increased. We fixed the chemical potential, u = —4.5ksT,
and considered three different values for binding affinity between subunits, Epina. To calculate the mean values 10 independent
realizations per point were considered. Simulations were run for 50 x 10° Monte Carlo steps or until the number of assembled
subunits was at least Niota1 = 5000. For each Fhina we found that as Rexc/(fo) increases, (An/niotal) tends to saturate to
values ~ 1, which we interpret as a clear signature of the fact that negative defects tend to be suppressed as the excluder radius
increases. In other words, the allowed configurations of multiple subunits around a given vertex is considerably affected by the
size of the excluder radius of neighboring subunits.

4. Preclosure bias and origin of stringy structures

In Fig. S11C we further explore the bias for defect preclosure and calculate (n(s)uc), the mean total number of defects with
charge s per unit-cell and study how (n(s)uc) varies with increasing binding affinity epina. We work again with G7 and fix the
chemical potential and excluder radius to p = —4.5kgT and Rexc/(fo) = 0.26 respectively. Furthermore, we set ns = 1 and
7, = 0.01 and solved for the elastic moduli k and s by normalizing with respect to the binding affinity value, epina = —6.5k57T,
used throughout the main text. We used the same stopping criteria of the previous section and considered 50 independent
Monte Carlo realizations. As enina/ksT grows large and edge binding moves become more favorable the amounts of positively
charged defects, namely s = +27/3, 4+, increase while the amounts of negatively charged defect types hardly experience any
increment. Only for s = —27 we see an increase past €pina/ks7" 2 6.5. This type of charge is compatible by any vertex whether
or not they exhibit any n-fold rotational symmetry. This can be realized by adding twice as much subunits around the vertex
before closure. The results hint that rapid “off-target” assembly induced by large edge binding is reflected on an overabundance
of topological defects. The steric interactions due to excluders introduce an additional bias for the selection of positive defects.

In Fig. S11D we show the dependence of mean graph distance to the boundary, (dg), with respect to the binding affinity.
We perform this calculation by measuring the graph geodesic of all the vertices composing a structure to the nearest vertex
located at the boundary of the structure. In order to avoid any bias coming from the starting seed, we do not include the
graph distance of vertices belonging to the seed. We additionally considered the zero, dg = 0, distance contributions of all
the vertices located at the boundary of the structure. As the binding affinity increases we observe that (dg) increases with
€bind- In general, we observe that in order to accommodate the increasing number of defects, the structures adopt “stringy”
morphologies like in Fig. 5C in which defects are located near the boundaries of the structure. We noticed that dg < 1 for
small €ping while dg < 3 for larger values of eninga. Even for large epina, however, we observe that (dg) < 1 which suggests, at
least for the binding affinity range we considered, that vertices located at the boundary of the structure tend to skew (dg)
towards smaller values regardless of the strength of the binding affinity.
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(A)

(B)

)(100)

Fig. S1. (A) T=3 triangulation projected onto HZ. The triangles are colored following the ID labels assigned to triangular subunits of T=3 triply-periodic polyhedra. The thick
black lines correspond to the lines of the {6, 4} hyperbolic tessellation which can be further subdivided using a single non-Euclidean triangular mono-tile with internal angles
{m/3,m/4,w/4} corresponding to the T=1 case. The vertices marked with glyphs are points that map to Wyckoff sites associated to the space groups of the different TPMS.
(B) Planar template illustrating how the sides of 4 hexagonal T=3 tiles should be identified in order to perform a folding and distorting procedure leading to the E* arrangement
shown on (C) for the G case in which they all meet at a single vertex of 4 symmetry.
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(12d : 42m) (24h : mm?2)

(16a : 3)

Fig. S2. Wyckoff sites of triply-periodic polyhedral crystals. (A-C) Wyckoff sites of different symmetry are present on the fundamental hexagonal patches of P, Gt and D
respectively. The symmetry of each Wyckoff site is encoded by one of the glyphs shown on the right panels. Notice that sites with symmetries 8c, 16a, and 4c as well as 12d,
24d, and 6d are present for all shown 7" numbers of P, G and D respectively. Among these, P4, G4, and D4 respectively, lead to an addition family of 2-fold symmetric
vertices at 24h, 48g, and 12f.
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Fig. S3. (A-B) Interaction matrix for T=1 and T=3 structures respectively. Each colored block represents a valid edge-pairing in which the lower (upper) half color of each
colored-block in the matrix represents the target length (dihedral angle) of a valid edge-pairing. Notice that the matrix “topologies” for a given triangulation number T are the
same and we only need to specify the geometric data of each structure.
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target length (dihedral angle) of a valid edge-pairing.
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Fig. S7. Results from simulations performed at varied temperatures. (A) G Snapshots corresponding to simulations using the conditions of the intermediate flexibility
regime (ii) of Fig. 4, corresponding to parameter values indicated in (C). (B) Mean quadratic strain, (Z), as a function of increasing kgT"/|epina|. Black, red, and blue points
respectively correspond to the simulation parameters of cases i, ii, and iii of Fig. 4. (C) Mean number of assembled triangles, (Notal}, for the same temperature range and
simulation parameters used in (B). Each labeled point for case ii matches the simulation conditions of the snapshots shown in (A). Each data point in (B) and (C) was calculated
with respect to 5 independent realizations. All simulations were performed at fixed bath concentration 1 /kgT = 4.5. Simulations were ended either when Ao = 5000 or
when 50 x 10° MC sweeps were reached. In order to allow for melting, the triangles composing the seed structure are also allowed to disassemble.
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Fig. S8. Results from unseeded simulations to investigate nucleation. (A) Top (bottom): Sequence of snapshots showing a nucleation pathway for a small G7 structure
using the simulation parameters of i (ii) of Fig. 4. In both cases, the size of the rightmost structures is 336 triangles (i.e. the seed size of G7). (B) Number of assembled
subunits, Nital, as a function of the number of MC steps for unseeded structures using the simulation parameters of cases i (black), ii (red), and iii (blue) of Fig. 4. We show
time traces of 10 independent realizations for each of the simulated regimes. Simulations were ended either when A = 336 or when 10° MC sweeps were reached.
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Fig. S9. lllustration of the topological charge calculation procedure: given a closed path of subunits around a vertex we can move across the anticlockwise-ordered edges, E;,
meeting at the vertex in order to determine the charge. Moving between two edges E; and E» an angular contribution ¢¢1 is picked up. As we move to the neighboring
subunit and angle contribution corresponding to the dihedral angle is picked up as well. The process is continued until we are back at the starting subunit. Using the collection
of ordered angles ¢o1, 01, ¢12, 02, ... allows us to build the rotation composition of Eq. 2. Notice that in order to find the “true” effective rotational angle ® we need to use

the ¢ and 6 angles of the “target” geometry instead of the “current” geometry.
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Fig. S10. Defect population per unit cell, n(s), as a function of dimensionless ratios 7 and 7y, for each of the defect types. Panels (i) to (vi) respectively correspond to charges
+27/3, +m, —2m/3, —m, +n’, and —7’.
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Fig. S11. (A) Elastic energy ratio E(+|s|)/E(—|s|) for |s| = 27 /3 (solid line) and |s| = = (dashed line) as a function of ns /n,. (B) Mean relative counts difference
between positive and negative charges, (An /nial), for increasing excluder radius size. The black, red, and blue points correspond to fixed binding affinity values Eping = 3.5,
4.5, and 6.5 respectively. (C) Mean defect type population per unit cell, (n(s)uc), for a G structure for increasing binding affinity, eping. The elastic moduli are fixed for all
points and calculated using ns = 1 and ns = 0.01 with a reference value Eying = 6.5kgT". The chemical potential, © = —4.5kgT, is also fixed for all points. Each point is
computed as the mean of 50 independent realizations. (D) Mean graph distance, {dg), for increasing binding affinity and same simulations parameters of (C).
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Fig. S12. Long simulations demonstrating the growth of structures that are much larger than the subunit scale. (A-B) Mean quadratic strain, (), and mean total
number of defects (per unit cell) , (n(s))uc, as a function of the number MC steps. Simulations are shown for the simulation conditions of i (black) and ii (red) of Fig. 4. The
insets of both (A) and B) show log-log plots of the same quantities. (C) Mean number of assembled subunits, (N}, for the cases i and ii of Fig. 4 as a function of MC steps.
The largest (Notal) Values for case ii case show that the intermediate flexibility structures grown to sizes up to ~ 6000 subunits (roughly 18 times bigger than the starting seed
size). (D) Probability of a vertex to have a graph distance, dg, to the boundary with respect to the cases i and ii. The probabilities were calculated using the terminal (largest)
structures for both i and ii cases. (E) Sequence of snapshots showing a sample pathway for a single case of intermediate flexibility ii. The different assembly stages correspond
to the labeled points of (C). We used 10 independent realizations for each of the simulated regimes. The simulations for regime i (i) were performed to 2 107 (= 10%) MC
sweeps.
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Fig. S13. For a subset of T values additional Wyckoff sites with a 2-fold symmetry can be found. The triangulation on top shows a defectless patch exhibiting a Wyckoff site
489 present in G4 structures. Defects of charge s = £ are generated through a Volterra construction on the defectless patch. The charges are primed to distingish them
from the defects obtained through the Wyckoff sites 24d. Each defective patch is colored with respect to the unique triangle ID label as shown on the left patches as well as their
length strain (faces) and angle strain (edges) as shown on the right patches.
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(©)

(D)

Fig. S14. Construction of triangulation for given T" from T" = 1 triangulation. (A) A planar construction defines the vectors L, U, U5 in terms of the triangular lattice vectors
ai, az. The lattice triangles contained in the larger triangle with edges L, U; (blue) will be mapped to each face and the lattice triangles that contain the line segment L
(orange) will be mapped to each edge of the base (1" = 1) triangulation. Here, the construction is illustrated for (h, k) = (4, 1). (B) The base triangulation is a set of triangles
so that each triangle has three neighbors and a consistent orientation can be assigned to the triangulation. Here, the unit cell of the 7" = 1 triangulation associated with the
gyroid surface is shown, deriving from the surface’s asymmetric units. (C) The triangles of the planar construction are mapped to the base triangulation by identifying each
edge with the triangulation vector L and associated neighboring edges U1, Us. (D) Finally, the vertices are translated closer to the surface while maintaining the targeted
symmetries of the structures.
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5. The model

In this section we provide additional details about the model and Monte Carlo simulation that we used to generate the results
in the main text. The model and algorithm have been presented in ref. (3-5). In particular, we consider flexible triangular
subunits which can bind to each other along edges with a set of preferred dihedral angles that set the preferred curvatures
of the assembling sheet. Monte Carlo simulations are performed in the grand canonical ensemble at fixed uV'T', with u the
chemical potential of subunits in the bath. Each Monte Carlo simulation involves a single cluster undergoing assembly and
disassembly, with subunits taken from or returned to the bath respectively, as well as structural relaxation moves. We describe
specific differences with respect to the RG model below.

A. Energies. Each three edges of the triangular subunits may be of different types, t(p) = 1,2, 3, for edge index p and whether
a given type can bind to another type is given by the matching rules.
The total energy of the system is given by

3ng

1
E= Z E:tretch + 5 Z (Elfgnd + El;;?nd) [1}
p

(pa)

where the first sum goes over all edges, with ns the number of subunits in the cluster. The second sum only goes over bound
edges (i.e. non-boundary, adjacent edges, so there are 2ny, terms in the sum, with ny as the number of bonds). The 1/2 factor
corrects for double counting.

The stretching energy is defined as:

1P —1p)?
E ftretch = & (70) [2}
b 2

where € is the stretching modulus, [P is the instantaneous length, and [y is the stress-free (rest) length of an edge. For the
tubule model we set the stretching modulus and rest length equal for all edges.

The bending energy is quadratic in deviations from the preferred dihedral angle:

(gpq _ gé(P)t(q)) 2

Prq —
Ebend = kb 2

3]
with p and ¢ adjacent edges and t(p), t(q) the edge types. kb is the bending modulus and is set equal for all edge types. 93(p>t(q>
is the preferred dihedral angle between edges with types ¢(p) and t(gq).

Binding energies corresponding to all matching edge pairs are set equal, to EFZ | = ep.

In addition to the above terms, each subunit has at its center of mass a spherical excluder of radius 0.2lp to prevent subunit
overlaps. Finally, to prevent extreme distortions of subunits, maximum edge length fluctuations are limited to lo/2 < I < 3lo/2.

B. Coarse-graining. Our model is motivated by the triangular DNA origami subunits developed in Sigl et al.(6), in which
subunits bind through lock-and-key ‘patches’ along subunit edges in which attractive interactions are generated through
blunt-end stacking of unsatisfied nucleotides. Therefore, in our model we define attractive bonds along subunit edges (rather
than at vertices as in the RG model). In particular, attractive bonds occur at each shared pair of subunit edges with the same
type. Because the interactions in the experimental system are driven by nucleotide stacking, they are extremely short-ranged
in comparison to the subunit size (the subunit edge lengths are approximately 60 nm). Therefore, in our simulations we
avoid resolving the short length scale fluctuations in separation distance between bound edges and their associated vertices by
coarse-graining as follows.

A microstate i is defined as the position of all the 3ns vertices of ns subunits: i — (&1, Z2,...F3n,) The grand canonical
probability density of finding the system around state i is

f(Z) . P(f1,f1 + d¥1; ... T, Ty —|—d1_3'ng) 1 efnst _BE;

= = e
dfld‘fQ...d:fgns ZQ )\97”5

[4]

where 1 is the chemical potential and A? is the standard state volume. This probability density has the dimensions of
l/volume3"5 corresponding to all the 3ng vertices of the subunits. Due to bonds, however, some pairs of vertices are confined
within a binding volume v,. We consider a square-well potential so that the binding energy is constant within this volume.
Analogous to Ref. (7), we can then coarse-grain to avoid resolving intra-bond fluctuations. We assume that fluctuations of
bound edges are sufficiently small that each pair of vertices at either end of a bound edge pair are constrained within a binding
volume v,. Note that we constrain vertices rather than edges so that the coarse-grained microstate can be represented in terms
of positions of vertices rather than edges, which is easier to implement computationally. In the coarse-grained system, a coarse
microstate is specified by the coordinates corresponding to the independent vertex degrees of freedom (with 1 degree of freedom
for each bound vertex group and unbound vertex): I' — (&1, &2, ...Zn, ), where ny is the number of independent bound vertex
groups and free vertices. The probability of such a coarse-grained state is given by the net weight of all the corresponding
fine-grained microstates:
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p() = (i)d"ve i 5]
{va}
where nyp is the number of vertex-bonds and is given by nys = 3ns — n,. For simplicity, we take the limit in which /v, is
small in comparison to the length scale over which the elastic energy varies, so that the energy is constant within the bound
volume v,. Then f(7) is a constant, and the probability density is given by

1 - ebnsu

(L) = vl ¥ e 0

where Er is the total energy of state I’ (including stretching, bending and binding energies). The coarse graining process is
illustrated in Fig. S15.

C. Implementation and data structure. The simulation is implemented on top of the OpenMesh library (8). Subunits are
implemented as triangular mesh elements. OpenMesh uses the halfedge data structure which is suitable to implement triangles
with directed normals (Fig S16). The directed halfedges allow for a clockwise iteration through the boundary of a triangle,
which makes the two faces of the triangles distinguishable. Only halfedges with opposite orientations can bind together, making
it impossible to form a Mobius strip, for example. The data structure and the resulting iterators in OpenMesh allow for an
easy and efficient iteration over the neighborhood of mesh elements (vertices, edges and faces). The implementation of mesh
element rearrangements is less straightforward, but we implemented it via the insertion and removal of virtual triangles. In
addition, OpenMesh allows for the storage of various properties on mesh elements, allowing storage of edge types and face
types stored on the elements. To improve readability in the upcoming sections, we will not represent halfedges separately.

6. The Monte Carlo moves

In this section we detail the Monte Carlo moves of the simulation. Our algorithm has 11 moves: vertex displacement, simple
subunit insertion/deletion, wedge insertion/deletion, wedge fusion/fission, crack fusion/fission, and edge fusion/fission.
Detailed balance. For the transition between state I' and I detailed balance corresponds to (7, 9):

P(T) x a(T = I') X pace(T = T') = P(I') x a(T” = T) X pace(I” — T) 7]

where a(T" — I) is the probability of generating a I' — I move attempt (trial), pacc(I' — I"') is the probability of accepting
the move, and P(T") = p(I)d™ D is the equilibrium probability of finding a system in a voxel of volume d* )z,

Next, we use Eq. Eq. (7) to define the acceptance criteria for each MC move. The acceptance criteria are derived in detail
for the wedge fusion/fission move; the steps to follow are the same for all other moves.

A. Vertex displacement. In this move, a vertex is randomly selected, a random uniform displacement is drawn, and the vertex
is displaced to its new position according to:

r — T+ u(fdma)u dmax) [8]
Yy = Y+ U(—dmax; dmax) (9]
z — Z +u(_dmaX7dmax) [10]

with dmax the maximum displacement. The move is accepted with a probability pacc = exp(—AE/ksT) where AFE is the
(bending plus stretching) energy change due to the displacement. The parameter dmax can be adjusted during a burn-in
period to optimize convergence to equilibrium. Generally optimal values are on the order of the typical length scale of thermal
fluctuations dictated by the elastic energy, leading to acceptance probabilities on the order of 50%. In our simulations typical
values are between dmax = [0.01lp,0.1lp]. The vertex displacement move is illustrated in Fig S17: the number of subunits ns,
number of vertices n., number of vertex bonds nyp and number of bonds ny, remains unchanged during this move.

B. Simple insertion / removal.

B.1. Simple insertion. In this move, an edge is randomly selected from the set of all boundary edges, where a new subunit will be
attached. The number of such boundary edges is ne. Subunits can be inserted in n, different rotations, where n, is the number
of distinct rotational states for a subunit which has one edge aligned with the edge of a neighboring subunit. For our triangular
subunits with three distinct edge types, n, = 3. In our algorithm, during insertion of a subunit its rotational state is chosen
randomly from the set of three possibilities. If the aligned edge is not complementary to the type of the boundary edge, then
the move is rejected. In this work, the two edges must be of the same type to be complementary.

The positions of two of the new subunit’s vertices (those at either end of the edge being bound) are set equal to the positions
of the corresponding vertices of the boundary edge to which it is binding. The third vertex position is randomly chosen from
within a volume v,44 centered at the equilibrium position of the new vertex.

Thus, the attempt probability for a simple insertion is given by:

1

ai = J) = nekitng X ———.
( ]) NeNr (Uadd/dx)

[11]
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Fig. S15. Coarse-graining of an example cluster configuration. In this configuration, the number of subunits is ns = 5, the number of initial (before coarse-graining) vertices is
3ns = 15, and the number of vertices after coarse-graining is ny, = 7. The red circles indicate bound vertex groups, and the number of vertex degrees of freedom that

have been eliminated by coarse-graining in this configuration is nyg = 1 4+ 3 + 2 + 2 = 8 = 3ns — n,. Motivated by DNA origami subunits in Sigl et al. (6), the attractive
interactions (i.e. ‘bonds’) in this model occur along edge-pairs of the same type shared by two subunits. In this configuration there are np, = 4 bonds.
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Fig. S16. The halfedge data structure used by OpenMesh. Each edge is represented by two directed edges. Boundary edges are no exception and thus are represented by a
non-boundary halfedge and a boundary halfedge (in green). This latter is irrelevant for our model. Directed edges allow for the unambiguous definition of face normals, for
efficient iterations of the element’s neighborhood as well as boundary iterations.
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Fig. S17. Vertex move. A vertex is randomly displaced and the move is accepted according to the usual Metropolis probability.
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Then, applying Eq. Eq. (7) and the attempt probability for the reverse move (simple deletion, presented next, Eq. Eq. (13)),
the acceptance probabilities for a simple insertion is

2
VaVadd

A9

Pace(i — j) = min |1, exp[—(AE;—; — p)/ksT]| . [12]

AFE;_,; is the energy change due to the move and includes the stretching energy of the newly inserted subunit, its bending
energy along the shared edge, and the binding energy due to the creation of an extra bond. During this move, one new (edge)
bond and two new vertex bonds are created; i.e. n, — n, + 1 and nyp — nyp + 2. Moreover, the number of vertices in the
structure increases by one, ny — ny + 1.

B.2. Simple removal. The reverse move to simple insertion is simple removal. Subunits that can be deleted with this move are
those with two boundary edges. The number of simply removable subunits is ns;. One of these is selected randomly, so the
attempt probability is

1
a(j — 1) = nekiT X - [13]
and, using Eq. Eq. (7) and Eq. Eq. (11), the acceptance probability is
)\9
pacc(j — Z) = min 17 2 eXp[i(AEJ‘” + ,LL)/kBT] [14]

VaVadd

During this move, the structure loses one (edge) bond and two vertex bonds; nyp — np — 1 and nyg — nys — 2. The number of
vertices in the structure decreases by one, ny, — n, — 1.

If there are multiple species with chemical potentials py, detailed balance must be satisfied for each species, individually.
Moreover, each species can have different insertion rates kF.

To keep a < 1, we ensure that the insertion rate k; constrained by

nekitn, <1 [15]
nsrki’r <1 [16]

In equilibrium, one can use adaptive rates, i.e. reduce k; on the run if the above condition is not satisfied. In that case,
sampling is not taken for the ensuing several time steps. Alternatively, the rates may be set to a low enough value from the
beginning and only tested on the run to ensure that the o < 1 condition is satisfied. This latter technique is appropriate for
dynamical runs as it keeps the rates constant throughout the simulation.

Moreover, we must ensure that v.qq is large enough so that the vertex does not leave the v,q4 volume during structural
relaxation moves; otherwise the insertion/deletion moves would not be reversible and the detailed balance would be violated.
For a better convergence, one could choose a gaussian distribution A/(¥) for the position of the new vertex instead of a uniform
distribution 1/vadqq. In this case, this distribution has to be accounted for in the acceptance probabilities pacc(i — j) and

Pacc (.7 — 'L)
C. Wedge insertion/removal.

C.1. Wedge insertion. Wedges are positions in the structure where a triangle can be inserted via attaching to two edges (Fig. S19).
In a wedge move, we pick randomly from the set of available wedge positions in the structure, and pick a random orientation
for the new subunit. Denoting the number of wedge positions in a given structure as n., the attempt probability for a wedge
move is

a(i = j) = nwkitn: x [17]

NNy
In contrast to the simple insertion move, there is no need for random vertex displacement in a wedge move because all three
vertices of the new subunit are fixed by the three vertices of the wedge position. Combining Eq. Eq. (17) and the attempt
probability for wedge removal (Eq. Eq. (19)), The acceptance probability for a wedge insertion is

3
Pace(i = j) = min |1, 55 expl—(AEis; — ) /keT| . [18]

During a wedge insertion, two edge bonds and three vertex bonds are created; i.e., np — np + 2 and nvs — nys + 3, but
the number of vertices is unchanged, ny — n,. AF,_,; includes the binding energy of the two newly formed bonds, the two
bending energies along the two newly bound edges and the stretching energy of the newly inserted subunit.
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Fig. S18. Simple insertion and removal.
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C.2. Wedge removal. The reverse move of wedge insertion is wedge removal. In a wedge removal, we randomly choose one of the
removable wedges from a given structure. With the number of removable wedges as ny:, the attempt probability is
1

a(j = 1) = nwrkiT X . [19]
nWI’

Using Eq. Eq. (17), the acceptance probability for a wedge removal is then
)\9
Pace(j — 1) = min |1, e exp[—(AFE;5: + p)/ksT]| . [20]

a
We have the following constraints on rates k; for wedge insertion/removal:

nwkitn: <1 [21]
NwrkiT < 1 [22]

As for simple insertion and removal, in the case of multiple species, detailed balance is satisfied for each species separately
for wedge insertion/removal.

D. Wedge fusion / fission.

D.1. Wedge fusion. In this move, a fusable wedge is closed, without inserting a new subunit (Fig S20). That is, the two vertices
on either side of the wedge opening are merged into a single vertex. Fusable wedges are vertex pairs that i) form a wedge (as in
the case of wedge insertion) and ii) are within a separation distance of lfuse.

Denoting the number of fusible wedge positions as n., in each MC step, a wedge fusion is attempted with probability
NwkwtT, Where kyws is an adjustable parameter controlling the relative probability of attempting wedge fusion. Then, a wedge
position is selected randomly from the set of all ny, fusible wedges. The attempt probability is thus

a(i = 7) = nwkwtT X ni [23]

Using Egs. Eq. (23) and Eq. (25), the acceptance probability for fusion moves is

Pace(i = §) = min [1, Y exp(—AEi, /kBT)} [24]
Vfuse

where vfuge = (47l'/3)(lfusc/2)3 is the volume of a sphere with diameter lfuse, and AFE;_,; is the energy change due to the fusion,

including changes in bending, stretching, and binding energies. A fusion move increases the number of edge bonds and vertex

bonds by one, n, — ny + 1 and nys — nvs + 1; the factor of v, appears in Eq. Eq. (24) to account for the latter.

D.2. Wedge fission. Wedge fission, in which a wedge is opened, is the reverse of the wedge fusion move. Fissionable edges are
those edges that can be split along their boundary vertex to obtain a wedge. Denoting the number of such edges as n¢, the
probability of attempting a wedge fission move during an MC step is ntkwe7. If a fission move is attempted, then an edge is
selected randomly from the ny fissionable edges. The position of one of the new vertices is selected randomly within the sphere
of volume vgyse centered at the original position of the merged vertices, and the other new vertex is placed in the opposite
direction from the original position, at the same distance. Thus, the attempt generation probability is

1

| — 1) = neky _— 25
a(j = 1) = nekwer X (o) [25]
and the acceptance probability is
Pace(j — 7) = min [1, % eXp(—AEjai/kBT)} [26]
We verify that detailed balance holds between wedge fusion and fission as follows. There are two cases to consider:
1. (Vtuse/va) exp(—AE ;i /ksT) < 1 < (va/Vtuse) exp(—AFE;; /ksT) > 1
In this case, pacc(i — j) = 1 and pacc(j — 7) = (Vtuse/Va) eXp(—AE;;/ksT). Then
Poxali = §) X paeeli = §) = vl expl— (i - uns,i)/kBT]% X A" E X g7 27]
fe) 8,4
and
. . - - 1 MnVB,j 1 Ny i =
Pixa(j = i) X pace(i = i) = o™ expl—(Bj — pma;) [T sy x A3 [28]
Q s
X kwiTdZ/Viuse X (Vtuse/Va) exp(—AFE;—;/ksT)
29]

Using: AE;_; = E; — Ej, ns; = ns,; (because the move leaves the subunit number unchanged), nvg,; = nvs,; — 1 (one
vertex bond is broken upon fission) and n,,; = n,,; + 1 (an extra vertex is being born upon fission), we see that the two
are equal and detailed balance holds.
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Fig. $19. Wedge insertion and removal.

26 of Tarlos M. Duque, Douglas M. Hall, Botond Tyukodi, Michael F. Hagan, Christian D. Santangelo, and Gregory M. Grason



3

@

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

2. (Vtuse/Va) exp(—AE;i/ksT) > 1 & (va/Viuse) exp(—AF; -, /ksT) < 1
In this case, pacc(i — j) = (Va/Vtuse) €Xp(—AFE;—;/ksT) and pacc(j — ¢) = 1. Then

Py x ali — ) X paceli — j) = ZLQDZ;VBJ exp|—(E; — ,uns,i)/kBT]ﬁ X d™AF X T [30]
X (va/Vtuse) exp(—AE;—; /ksT) [31]

and
Py x alj = i) X pacc(j = i) = ZLQUZVBJ exp|—(E; — uns,j)/kBT]ﬁ X d™I g 32]

X kaTd:f/ Vfuse
(33]

Using again AFE;_; = E; — Ej, ns,i = Ns,j, NvB,; = NvB,; — 1 and ny,; = ne,; + 1, detailed balance holds.

Note that detailed balance is satisfied regardless of the values of kw7 or vse, but as with all of the move frequencies
these parameters can be optimized during burn-in to accelerate convergence to the equilibrium distribution P(3). In our
simulations, we find that the optimal value of viyse is on the order of the optimal value of dmax for analogous reasons: if veyse is
too small there will be very few vertex pairs identified as fusable, so ny will be low. If vgyse is too large, there will be many
fusion candidates but most fusion attempts will be rejected due to the large elastic energy change necessary for the merging
deformation.

Most importantly, we note the constraint on the parameters ky¢7 to ensure that generation probabilities do not become
larger than unity. Because each attempt is generated as a three step process, using three probabilities, one has to ensure that
all those probabilities are less than 1. Specifically,

NwkweT < 1 (34]
nekweT < 1. [35]

E. Crack fusion / fission.

E.1. Crack fusion. Crack fusion closes a crack within the structure; i.e., two adjacent pairs of edges are merged (Fig. S21). Cracks
are identified as 4-edge-length holes inside the structure. If the vertices of the hole are labeled A, B, C, D then the polygon
ABCD forms a closed loop (see Fig. S21). The crack can be closed by either merging vertices A and C (and correspondingly
edges CD to DA and AB to BC) or by merging vertices B and D (and correspondingly edges AD to AB and CD to CB). Each
4-edge-length loop thus defines two potential fusable cracks. However, an additional condition for a crack to be fusable is that
its merging vertices must be within a distance lfuse (A and C or D and B in this example). In this work, we have set the crack
fusion volume to be the same as that for wedge fusion to reduce the number of parameters, but it is not necessary that they be
the same.and the acceptance probability is

Pace(i = §) = min [1, Ya exp(—AEHj/kBT)} [36]

Vfuse

There are two edge bonds and one vertex bond formed during a crack fusion.

E.2. Crack fission. The reverse move for crack fusion is crack fission. With the number of potential cracks as ncs:

1
] i) = Ne kc TN
a(j — i) = netkerT X rer(Oreee A7) [37]
pacc(j — 'l) = min |:1, L’fuuse exp(—AE]_”/kBT)} [38]

As for the case of wedge fusion/fission, the crack fusion attempt frequency parameter ke is constrained by the conditions
maintaining probabilities smaller than unity:

nekeT < 1 (39]
NegherT < 1 [40]
[41]

F. Edge fusion / fission.
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Fig. $20. Wedge fusion and fission.
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Fig. S21. Crack fusion and fission.
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F.1. Edge fusion. During this move two non-neighbor edges are fused (Fig. S22). Fusable edges are non-neighboring edge pairs
whose corresponding vertices are within a separation distance lsuse. Since edges are directed, they can only fuse such that, after
fusion, they point in the opposite direction. Assuming the edges to be fused are A — B and C — D (see Fig. S22), vertex A
will merge into vertex D and vertex B will merge into vertex C'. Edges are counted as fusable if A is within a distance lfyse to
D and B is also within a distance lfyse to C. The attempt probability is analogous to that for wedge and crack fusion/fission,

1
a(i = j) = nekesT X o [42]

with ne the number of fusable edges and ker the edge fusion frequency parameter. The acceptance probability is

Ua )2 exp(—AE;_,; /ksT) [43]

Pace(t — J) = min [1, (
Ufuse

During edge fusion, one edge bond and two vertex bonds are created.

F.2. Edge fission. Edge fission is the reverse move of edge fusion. ner is the number of breakable edges, that is, those edges that
have both vertices on the boundary and which would not result in breaking the structure apart.

1

nef(vfuse/df)2 [44}

a(j — 1) = netkerT X
The factor 1/(veuse)? arises because we must select a random position for each pair of vertices, independently. The acceptance
probability is then
Vtuse

)2 exp(=AE; i /ksT)| . 145]

Va

pacc(j — ’L) = min |:17 (
To maintain probabilities within unity, the edge fusion frequency parameter ker is constrained by

NekerT < 1 [46]
NefkefT < 1. [47}
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Fig. S22. Edge fusion and fission.
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Movie S1. (P3.avi) Self-assembly trajectory for a P3 structure in the on-target regime with n; = 10, n, = 5,
u = —4.5kgT, and €epina = —6.5kBT The yellow subunits form a minimal translational simple cubic unit-cell
which we use as the seed for self-assembly.

Movie S2. (G3.avi) Self-assembly trajectory for a Gs structure in the on-target regime with n, = 10, n, = 5,
w=—4.5kT, and €binda = —6.5kBT The yellow subunits form a minimal translational bcc unit-cell which we use
as the seed for self-assembly.

Movie S3. (D3.avi) Self-assembly trajectory for a D3 structure in the on-target regime with n, = 10, n, = 5,
w=—4.5kT, and €pina = —6.5kBT The yellow subunits form a minimal translational fcc unit-cell which we use
as the seed for self-assembly.

Movie S4. (G7_i.avi) Self-assembly trajectory for a G structure in the off-target regime corresponding to
the structure shown on Fig. 4i with ns = 0.1, n, = 0.01, p = —4.5kBT, and €pina = —6.5kBT The yellow subunits
form a minimal translational bcc unit-cell which we use as the seed for self-assembly.

Movie S5. (G7_i.avi) Self-assembly trajectory for a G structure in the on-target regime corresponding to
the structure shown on Fig. 4ii with ns =5, n, =5, u = —4.5kBT, and €pina = —6.5kBT The yellow subunits form
a minimal translational bcc unit-cell which we use as the seed for self-assembly.

Movie S6. (G7__iii.avi) Self-assembly trajectory for a G; structure in the unefficient regime corresponding to
the structure shown on Fig. 4iii with ns = 50, n, = 10, p = —4.5kgT, and €bina = —6.5k87T The yellow subunits
form a minimal translational bcc unit-cell which we use as the seed for self-assembly.
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