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Coupling has emerged as a concept to describe the transition from differentiated populations
to newly evolved species through the strengthening of reproductive isolation. However, the
term has been used in multiple ways, and relevant processes have sometimes not been clearly
distinguished. Here, we synthesize existing uses of the concept of coupling and find three
main perspectives: (1) coupling as the build-up of linkage disequilibrium among loci under-
lying barriers to gene exchange, (2) coupling as the build-up of genome-wide linkage dis-
equilibrium, and (3) coupling as the process generating a coincidence of distinct barrier
effects. We compare and contrast these views, show the diverse processes involved and
the complexity of the relationships among recombination, linkage disequilibrium, and repro-
ductive isolation, and, finally, we emphasize how each perspective can guide new directions
in speciation research. Although the importance of coupling for evolutionary divergence and
speciation is well established, many theoretical and empirical questions remain unanswered.

or many biologists, the evolution of barriers

to gene exchange (see Table 1 for definitions
of terms in bold) is the major process by which
boundaries form between newly emerging spe-
cies (Coyne and Orr 1998; Harrison 1998). An
analysis of such barriers—their causes, order of
appearance, and relative strength both individu-
ally and collectively—should therefore provide
fundamental insights into the process of specia-

tion. Barriers arise first within species, for exam-
ple, due to local adaptation, and are likely to in-
fluence gene flow only in specific regions of the
genome (Wu et al. 2001). At the completion of
speciation, barriers prevent gene exchange
throughout the genome, potentially becoming
irreversible. In between, there may be an extend-
ed period during which the extent of gene flow
varies across the genome, even when reproduc-
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Table 1. Definition of terms

Term

Definition

References

Barrier effect

Barrier locus

Barrier to gene
exchange

Barrier trait

Coupling coefficient

Linkage
disequilibrium
Magic trait

Multiple-effect trait

One-allele
mechanism

Pleiotropy

Reinforcement

Reproductive
isolation (RI)

The contribution that a barrier locus or trait, or some
combination of barrier loci or traits, makes to the barrier to
gene exchange between two populations, also known as a
“component of isolation”

Any locus that contributes, alone or in combination with other
loci, to the barrier to gene exchange between two
populations

A reduction in gene flow between two diverging populations
relative to the gene flow expected between two populations
of the same species that have a similar spatial arrangement;
the barrier is expected to be locus-specific, but the barrier
experienced by neutral loci that are not closely linked to
barrier loci is sometimes used as a proxy for the overall
barrier effect

Any trait that contributes, alone or in combination with other
traits, to the barrier to gene exchange between two
populations

The ratio of total selection to total recombination; a critical
value of this ratio is associated with a transition from locus-
specific barriers to gene exchange to a genome-wide barrier

Nonrandom association of alleles at different loci, regardless of
whether those loci are physically linked or not

A trait, or a set of traits with at least a partly shared genetic
basis, which contributes to more than one barrier effect (or
component of RI); encompasses both barrier traits that are
connected by pleiotropy (partially or completely) and
multiple barrier effects that are connected via a single
underlying trait

A phenotypic trait that contributes to more than one barrier
effect

A contribution to reproductive isolation that results from
evolution of a trait in the same direction, or substitution of
the same allele(s), in two populations

The case where a single allelic substitution causes changes in
more than one phenotypic trait

Origin or strengthening of a barrier effect in response to costs
associated with existing barrier effects; the classic example is
the strengthening of behavioral, prezygotic isolation in
response to reduced fitness of hybrids

Either the reduction in successful interbreeding between
diverging populations (organismal view) or the reduction in
gene flow caused by genetic differences between diverging
populations (genetic view)

Butlin and Smadja 2018

Westram et al. 2022 and
associated commentaries

Barton 1983

Servedio et al. 2011; Maan and
Seehausen 2012

Smadja and Butlin 2011

Felsenstein 1981; Butlin et al.
2021

Smadja and Butlin 2011
Servedio and Noor 2003;

Butlin and Smadja 2018

Westram et al. 2022 and
associated commentaries

Two-allele A contribution to reproductive isolation that results from Felsenstein 1981; Butlin et al.
mechanism evolution of a trait in different directions, or substitution of 2021
different allele(s), in two populations
2 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041432
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tive isolation is strong enough to allow popula-
tions to coexist. Modern genomic data have given
unprecedented insights into these patterns of
gene exchange.

Newly evolved species in nature can rarely, if
ever, be characterized by the divergence of a sin-
glebarrier trait or the existence ofa single barrier
to gene exchange. It seems logical that an accu-
mulation of multiple barriers should make for
stronger reproductive isolation and thus move-
ment toward the completion of speciation, pro-
vided different barriers somehow work together.
Completion of speciation is hard to define, but
here we take it to mean the complete (or nearly
complete) cessation of gene flow throughout the
genome, without reference towhether isolation is
reversible (Stankowski and Ravinet 2021) or the
new species persist and coexist (Germain et al.
2021). From a genetic perspective, many regard
genome-wide divergence to signify that the spe-
ciation process has passed a “tipping point” to-
ward strong reproductive isolation (Flaxman
etal. 2014; Nosil etal. 2017). Thus, it is tempting
to hypothesize that the evolution of multiple bar-
riers to gene exchange is often required to com-
plete speciation and is necessary to prevent spe-
cies collapse when nascent boundaries around
divergent populations are challenged, for exam-
ple by secondary contact.

Coupling, described generally as any process
causing different barrier traits, barrier loci, or
barrier effects to operate together in ways that
generate a stronger overall barrier to gene ex-
change, has emerged as a concept to describe
the transition from differentiated populations
to newly evolved species through the build-up
of reproductive isolation (Fig. 1). What influ-
ences whether coupling will occur? To answer
this question, we must keep in mind that barriers
arise within species under the influence of well-
known evolutionary forces. For example, selec-
tion may drive a change in phenotype to different
local optima in different populations, due to
varying fitness across ecological, sexual, or geno-
mic environments (Endler 1986; Schneemann
et al. 2023). The physical organization of ge-
nomes creates evolutionary constraints on the
origin and fate of genetic variation, rates of re-
combination, and the genetic architectures un-

Coupling Barriers to Gene Exchange

derlying phenotypic variation, all of which have
consequences for multilocus structures (Lynch
and Walsh 2007; Seehausen et al. 2014; Mérot
et al. 2020). In addition, demographic history
injects chance associations of variation across
the genome (Slatkin 2008). All of these features
of organisms and populations influence both the
strengthening (or weakening) of individual bar-
riers to gene exchange, as well as the tendency of
different barriers to operate together. Tackling
these two ingredients of speciation, both theoret-
icallyand empirically, is necessary to understand
how strong reproductive isolation evolves and
speciation is completed (Kulmuni et al. 2020).

Perhaps due to the intriguing centrality of
“coupling” in understanding evolutionary diver-
gence and speciation, multiple uses of the term
have arisen in the literature, and at the same time
relevant processes have sometimes been dis-
cussed but not specifically called coupling.
Here, we aim to consolidate and explain the his-
torical and contemporary uses of the concept of
coupling, discuss the range of processes that fall
under this umbrella, highlight their specific and
complementary aspects, and emphasize how
these alternative views can help to guide future
directions in speciation research.

THREE VIEWS OF COUPLING

We identified three main perspectives on the con-
cept of “coupling” represented in the literature
(Fig. 2). Perspective 1 derives from Felsenstein’s
3-locus model (1981) that considers coupling as a
process that builds linkage disequilibrium (LD)
among loci underlying specific barrier traits. Per-
spective 2, influenced by Barton’s work on multi-
locus cline analysis (Barton 1983) and increasing
access to genome-wide differentiation data, ex-
tends coupling to the build-up of genome-wide
LD acrossboth barrierand nonbarrierloci. Finally,
Perspective 3 considers coupling as any process
generating a coincidence of barrier effects, where-
by coincidence can be considered at either the
phenotypic/organismal or genetic level, with or
withoutbuild-up of LD (Butlin and Smadja2018).

As these brief descriptions make clear, there
are diverse ways to think about the concept of
coupling. Although coupling is predominantly
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Figure 1. Barrier traits, barrier effects, degrees of coupling, and genomic consequences. (A) Phenotypic divergence of
barrier trait 1 (color) from local adaptation leads to reduced fitness in hybrid offspring. Phenotypic divergence of barrier
trait 2 (shape) leads to positive assortative mating and partial sexual isolation between individuals differing in mating
traits. (B) Traits and barrier effects may be uncoupled (left) or coupled (right) tovarious degrees with each barrier defining
a pair of populations. Coupled barriers (right) have coincident boundaries and define the same two populations ([, vs.
[&.), whereas uncoupled barriers (left) have non-coincident boundaries and define two different population pairs
(barrier trait 1: yellow vs. blue populations; barrier trait 2: arrow vs. circle populations). Because they form barriers to
gene flow between the same population pair, coincident barriers are predicted to lead to stronger overall reproductive
isolation. (C) Coupling can be used to describe the build-up (or maintenance) of LD among multiple barrier loci that
enhances both differentiation at those loci and the barrier to gene flow in the rest of the genome. However, the
consequences of increased LD among barrier loci on gene flow can be counterintuitive and may depend on the specific
effect of the barrier loci (e.g., assortative mating vs. local adaptation) (see Fig. 5 and the section The Role of Recombi-
nation and Genetic Architectures). Whether coupling of different barrier effects increases overall levels of reproductive
isolation and genetic differentiation compared to uncoupled situations is therefore a hypothesis that should be tested
(Box 1).
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coincidence of barrier effects
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Figure 2. The three main perspectives on the concept of “coupling” identified in the literature. Perspective 1
considers coupling as the build-up of linkage disequilibrium (LD) among loci underlying specific barrier traits.
Perspective 2 extends coupling to the build-up of genome-wide LD across both barrier and nonbarrier loci. While
the first two perspectives consider coupling at the genetic level only, with a focus on LD among barrier loci,
Perspective 3 encompasses these aspects while extending the concept of coupling further, to any process generating
a coincidence of barrier effects, whereby coincidence can be considered at either the genetic or phenotypic/
organismal level, with or without build-up of LD. Symbols used for Perspective 3 are explained in Figure 1.

studied at the genetic level (all perspectives), bar-
rier effects reduce the production or fitness of
hybrids at the organismal level of organization
(Perspective 3). The genomic scale at which cou-
plingisaddressed alsovaries, from arestricted set
of individual genes and traits (Perspective 1) to
multipleloci, entire genomes, and manifold phe-
notypic differences (Perspectives 2 and 3). Final-
ly, although discussions of coupling primarily
focus on the association of different barrier ef-
fects and their underlyingloci, the concept can be
fruitfully extended to include coupling among
barrier loci underlying a single barrier trait or
effect (e.g., local adaptation) (Perspective 1, im-
plicit in Perspective 2; see also Butlin and Ritchie
1989; Sachdeva 2022) or coupling among barrier
and nonbarrier loci (Perspective 2).

Despite their differences, the three perspec-
tives are not mutually exclusive and have many
commonalities, as all aim to characterize the na-
ture of barrier accumulation during speciation.
One uniting aspect is that coupling has been re-
garded as both a pattern and a process across all
perspectives. Coupling can describe the associa-
tion between barriers present at a given phase in
their accumulation, for example, the extent to
which barrier loci act nonindependently and in-
fluence nonbarrier loci at a point in time, a par-
ticular pattern of physical linkage among barrier
loci, or the magnitude of correlation between dis-
tinct barrier traits. Alternatively, coupling can be
used to describe the process by which LD builds
up and/or is maintained or how barrier effects
become coincident. As is commonly the case
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when investigating long-term evolutionary phe-
nomena, the empirical studies we surveyed tend-
ed to document patterns of coupling and infer
process indirectly, whereas the theoretical studies
tended to deal specifically with the combination
of factors potentially responsible for the process
of coupling (e.g., number of barrier loci, selection
strength, recombination rate).

We do not wish to argue that one of the three
perspectives on coupling discussed here is gen-
erally preferable over the others. In common
with other terms in the language of speciation
(Harrison 2012), “coupling” can have subtly var-
iable technical uses. Whatis important is that this
flexibility is recognized and that authors make
their specific meaning clear when they use the
term.

Perspective 1: Coupling as the Build-Up of
Linkage Disequilibrium among Barrier Loci

The view of coupling as the build-up of LD
among barrier loci underlying specific barrier
traits has been the basis for some in-depth theo-
retical investigations into the importance of var-
ious factors in the evolution of reproductive iso-
lation, and for the interpretation of empirical
patterns (Fig. 2). Early conceptual development
came from a highly influential theoretical paper
by Felsenstein (1981), although coupling as a
term was not used or discussed in this context
until several decades after its publication.

Influence of Felsenstein’s Model and Its
Extensions

The nonrandom association of alleles at differ-
ent loci (LD) is an integral part of most speci-
ation models because it captures the degree to
which gene pools separate into different groups,
anecessary component for the evolution of new
species. LD can build up in many ways (Charles-
worth and Charlesworth 2010, Chap. 8). Allop-
atry creates LD among loci that diverge in fre-
quency between populations, selection for local
adaptation can generate LD among locally fa-
vored alleles, and assortative mating generates
LD between signal and preference loci. Howev-
er, Felsenstein (1981) was the first to emphasize,

explicitly, how progress toward speciation could
be shown by the build-up of LD between barrier
loci: two reducing fitness in hybrids (resulting
from extrinsic incompatibilities due to local ad-
aptation, loci B and C) and one for assortative
mating (locus A). By doing so, he highlighted
key factors influencing this process. First, a
combination of migration and direct selection
on the two local adaptation loci generates some
LD between them. Second, indirect selection on
the assortative mating locus due to initial LD
with the local adaptation loci reinforces as-
sortative mating. In turn, this enhances LD be-
tween local adaptation and assortative mating
loci.

As further evolution of prezygotic isolation
and LD among barrier loci depends on the bal-
ance between the selection coefficient at the eco-
logical loci and recombination rates in the sys-
tem, this work also clarified the role of favorable
genetic architectures of barrier traits to minimize
the influence of recombination on LD between
post- and prezygotic barrier loci. Over the sub-
sequent decades, Felsenstein’s model had wide-
spread influence on theoretical and empirical de-
velopments, including theoretical models and
empirical studies of reinforcement, studies ad-
dressing the genetic basis and architecture of bar-
rier traits, and the role of reduced recombination
(for review, see Butlin et al. 2021).

Although neither Felsenstein nor most later
developers adopted the term “coupling,” Barton
and de Cara (2009) and later Butlin and Smadja
(2018) made explicit links between the build-up
of LD among post- and prezygotic barrier loci
and what they referred to as coupling processes.
Barton and de Cara (2009) first expanded this
view by showing that coupling of existing two-
allele barrier effects enhances mean fitness in a
very general way in unstructured populations, for
any form of barrier effect, in any combination.
Butlin and Smadja (2018) classified this and oth-
er types of reinforcement (classical or extended
views [Felsenstein 1981; Kirkpatrick and Serve-
dio 1999; Servedio 2009]) as “adaptive coupling”
where the coincidence of barrier effects (and
most of the time LD among barrier loci) is fa-
vored by selection (Fig. 3), but they extended
the coupling framework further by arguing that
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Figure 3. Coupling mechanisms enhancing linkage disequilibrium (LD). (A) Long-term discontinuities in the
distribution range such as allopatry contribute to the creation of distinct gene pools that, when mixed through
erosion of the discontinuity, creates LD between loci involved in reproductive isolation. Symbols are explained in
Figure 1. (B) Transient changes in the distribution range can bring together genetic traits originating in different
parts of a species distribution, for example, through extinction and recolonization (not shown) or range expansion,
thereby creating LD between loci including those underlying distinct barrier effects. (C) Selection can favor the
coincidence of distinct barrier effects by reinforcement in which indirect selection on assortative mating (shape)
duetoinitial LD with hybrid unfitness (color) strengthens LD between hybrid unfitness and assortative matingloci.
More generally, LD will be favored among any combination of distinct barrier loci that show positive fitness
epistasis.
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coincidence and the build-up of LD can evolve as
a by-product of other processes (Figs. 3 and 4).
Coupling viewed as the build-up of LD among
barrier loci can therefore include nonadaptive
scenarios and any possible associations among
barrier loci underlying the same or different bar-
rier effects, and among barrier loci underlying
the same or different barrier traits of any type.

Deterministic and Incidental Factors Favoring
the Build-Up of LD among Barrier Loci

Support for certain components of adaptive cou-
pling has been found in natural systems. Coinci-
dence of post- and prezygotic barriers at the phe-
notypic level has been documented, specifically
in areas where selection against hybridization is
acting (i.e., reinforcement cases, Fig. 3C; for re-
views, see Servedio and Noor 2003; Hopkins
2013; Butlinand Smadja 2018). However, studies
investigating LD between post- and prezygotic
barrier loci and the effect of indirect reinforcing
selection on prezygotic barrier lociin a reinforce-
ment scenario remain rare (but see in Phlox,
Hopkins and Rausher 2012 or house mice,
Smadja et al. 2022). Interesting parallels occur
in the context of spatial clines, where enhance-
ment of LD among barrier loci may evolve in
response to indirect selection. In hybrid zones,
theory predicts that overlapping clines of two
barrier loci will tend to attract one another (Slat-
kin 1975; Barton 1983; Bierneetal. 2011). Attrac-
tion occurs because dispersal produces LD where
clines overlap, which in turn generates indirect
selection on the two loci and the further build-up
of their LD. The effect is spatially asymmetric,
making the clines move toward one another until
their centers are coincident (e.g., Figure 2 of But-
lin and Smadja 2018). Cline attraction, therefore,
reflects a process of coupling through the build-
up of LD among barrier loci due to indirect
selection. In line with Barton and de Cara’s
predictions, any combination of barrier loci
(prezygotic, postzygotic, intrinsic, extrinsic)
can become spatially “coupled” (Bierne et al.
2011). We do not see “spatial coupling” as dis-
tinct from other forms of coupling, but we do
encourage authors to distinguish clearly between
LD within demes and LD among demes.

LD among barrier loci can also build up asa
by-product of other, nonadaptive processes
(“by-product coupling,” Butlin and Smadja
2018). In reinforcement, for example, the need
in some scenarios for initial LD between post-
and prezygotic loci to drive further LD high-
lights the importance of generally understand-
ing diverse processes generating LD, beyond
adaptive responses (discussed further in Per-
spective 3). Allopatric divergence followed by
the mixing of the divergent populations is one
such process (Fig. 3A; Barton and Hewitt 1985).
More generally, long-term discontinuities in
the distribution range (allopatry but also tem-
poral disjunctions, partial extrinsic barriers, ar-
eas of low densities, or any source of population
structure) delay the spread of new mutations
and therefore contribute to the creation of dis-
tinct allelic pools (Mallet et al. 2009). The mix-
ing of these populations, through dispersal or
erosion of the discontinuity, will then create LD
between divergent loci, including potential loci
involved in reproductive isolation. More tran-
sient changes in the distribution range can also
bring together alleles that originate in different
parts ofadistribution (e.g., by human-mediated
transport or habitat alteration; see Alund et al.
2023), hence generating LD (Fig. 3B; Hewitt
1989; Lucek and Willi 2021). In all geographic
contexts, a variety of processes within popula-
tions such as the stochastic effects of mutation
and genetic drift, the effects of selection, mating
system, and nonrandom mating can also create
some degree of LD that can affect barrier loci
incidentally (Kirkpatrick 1982; Ohta 1982;
Barton 1995). Different regimes of such with-
in-population processes operating indepen-
dently in different populations may therefore
create LD among barrier loci if populations
mix. This includes divergent selection regimes
acting independently on different barrier traits
or loci but at coincident environmental bound-
aries, generating LD among barrier loci and re-
sulting in a stronger overall barrier than would
be caused by selection on any single trait or
locus in isolation (Rice and Hostert 1993; Nosil
et al. 2009; Nosil 2012 [“multifarious selec-
tion”], but see White and Butlin 2021). Howev-
er, the full range of these processes generating
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Figure 4. Non-linkage disequilibrium (LD) mechanisms of coupling. (A) Coincidence due to pleiotropy occurs
when an allele alters multiple barrier traits (color, shape), thereby influencing multiple barrier effects (hybrid
unfitness, sexual isolation). Symbols are explained in Figure 1. (B) Coincidence occurs as a simple consequence of
divergence in a single trait (barrier trait 3, external color) influencing multiple barrier effects. Both A and B can be
considered instances of “magic trait” evolution. (C) For one-allele mechanisms, a barrier effect results from the
evolution of the same phenotype across diverging populations. For example, evolution of greater philopatry
(barrier trait 4, bold external color) in each of two populations will decrease gene exchange between them,
strengthening existing barrier effects (barrier trait 1) by reinforcement.
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LD has not been investigated systematically in
the context of reproductive isolation.
Empirically, LD among barrier loci can only
be confirmed once barrier loci have been identi-
fied. Approaches such as QTL, GWAS, genetic
mapping, and genome scans of differentiation
have been used to assess the genetic basis of spe-
cific barrier traits, although the identification of
the causative genes and variants remains chal-
lenging (e.g., Wu and Ting 2004; Wolf et al.
2010; Kitano et al. 2022; Merrill et al. 2023). Still,
to document LD among barrier loci and under-
stand the factors favoring (or allowing) it, an ef-
fort to characterize them is essential. For at least
one barrier effect, positive assortative mating,
gene identification can potentially be facilitated
by the coupling process itself because LD is ex-
pected to build at the loci underlying assortment
(Kirkpatrick 1982), allowing for a “genome scan
of assortative mating” (Unbehend et al. 2021). A
nice example of such resolution is provided by
pheromone blend and pheromone response loci
in the European corn borer moth, Ostrinia nubi-
lalis, which are in strong LD between E- and Z-
race populations despite being on different chro-
mosomes, probably due to nonrandom mating
(Unbehend et al. 2021). Similar patterns of long-
range LD are found in reef fish for chromosomal
intervals associated with visual-based nonran-
dom mating (Hench et al. 2019). In the corn
borer moth system, Kunerth et al. (2022) also
found elevated LD between unlinked loci under-
lying two different barrier effects, temporal and
sexual isolation, when the two barriers coincide
in space compared to when they do not. More
studies estimating LD among barrier loci across
varying geographic conditions within species
ranges are needed to gain insight into the factors
promoting the build-up of LD in natural systems.

The Role of Recombination and Genetic
Architectures: Enhancement of LD Is Not
Universal

Although LD among barrier loci does not require
physical linkage (Barton and de Cara 2009), the
rate at which it builds up or is maintained in the
presence of gene flow depends on recombina-
tion, as is discussed above. Many studies have

thus explored how specific genetic architectures
and recombination patterns—from pleiotropy
through close physical linkage to large regions
of reduced recombination—can facilitate cou-
pling and whether selection favors modifiers of
these patterns. Cases of pleiotropy, in the context
of speciation, can correspond to situations where
one allele affects more than one barrier trait, at
least partly removing the necessity of building up
LD among different barrier loci (Barton et al.
2007; Smadja and Butlin 2011; Ritchie and Butlin
2023). Magic traits (Gavrilets 2004; Servedio et al.
2011;Maanand Seehausen 2012), multiple-effect
traits (Smadja and Butlin 2011), and one-allele
mechanisms (Felsenstein 1981) can also reduce
or remove the role of LD in promoting reproduc-
tive isolation at equilibrium; they are discussed
below (Perspective 3) (Fig. 4). Here, we focus on
cases of two-allele barrier traits that have distinct
genetic bases, even if empirically it can be difficult
to distinguish strict cases of pleiotropy from very
tight physical linkage (e.g., Ritchie and Butlin
2023).

Tight physical linkage and other mecha-
nisms, such as inversions, that reduce recombi-
nation between loci contributing to components
of reproductive isolation, have been found to pro-
mote speciation in certain contexts (Kirkpatrick
and Barton 2006; Yeaman and Whitlock 2011;
Ortiz-Barrientos et al. 2016; Schuldiner-Harpaz
etal. 2022). In line with these theoretical predic-
tions, some evidence has been found, via QTL or
genomic approaches, for tight physical linkage
among loci underlying different types of barrier
effects, for example, between loci underlying lo-
cal adaptation and mate preference (e.g., Helico-
nius: Merrill et al. 2011, 2019; Gasterosteus acu-
leatus: Bay et al. 2017) or habitat choice and local
adaptation (e.g., pea aphids: Hawthorne and Via
2001). While some level of LD between mating
trait and mate preference loci will arise as a con-
sequence of nonrandom mating itself (Kirkpat-
rick 1982) and does not require physical linkage
(e.g., Unbehend et al. 2021), tight linkage is
sometimes found between trait and preference
loci (e.g., Laupala crickets: Xu and Shaw 2019).
Finally, tight linkage is also found among loci
underlying a single barrier trait (local adapta-
tion: e.g., Roda et al. 2017; mating signal: e.g.,
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Figure 5. Contrasting effects of recombination rate. Numerical iterations of the model of Felsenstein (1981) show
the contrasting effects of increasing the recombination rate (rzc) between the local adaptation loci that lead to
extrinsic hybrid incompatibility (B,C). More recombination produces more hybrids, the source of selection for
reinforcement and the build-up of LD between the assortative mating and local adaptation loci, which is Felsen-
stein’s criterion for progress toward speciation. Specifically, greater rpc lowers the threshold level of assortative
mating necessary for the build-up of linkage disequilibrium (LD) between the assortative mating and local
adaptation loci (dashed line), in contrast to the effect of greater 45, which increases this threshold (not shown).
Greater recombination between loci B and C has contrasting effects on the LD in the system, lowering the LD
between B and C themselves (red line) but increasing the LD between the assortative mating locus A and the local
adaptation loci (blue line). In other words, the LD between A and B, considered by Felsenstein as progress toward
speciation, increases under the same conditions where the LD between the locally adaptation loci, which some
would also consider progress toward speciation through coupling, decreases. It is therefore clear that some care
must be taken in the interpretation of coupling between these various sets of loci, the role of recombination,
and whether speciation is occurring. Norm. Dgc and Norm. D4 are normalized measures of LD (between
the B and C, and A and B loci, respectively), calculated by dividing the LD by the maximum LD possible at
the current allele frequencies (e.g., Norm. LD = LD/LD,,,.x, where, for example, LD,,,,, between B and C is min
{ps(1 = po), (1 - pp)pc} where pg ( pc) is the frequency of allele B (C); from Lewontin 1964). Qualitatively similar
resultsare obtained when LD is not normalized. Details of the model can be found in Felsenstein (1981). Parameters
are r,p=0.5, the migration rate m=0.01, the selection coefficient s=1, and for the red and blue lines, the
strength of assortment d=0.8.

Heliconius: Byers etal. 2021; Laupala crickets: Xu
and Shaw 2021; mate preferences, house mice:
Smadja etal. 2022; pollinator syndrome, Petunia:
Hermann etal. 2013), suggesting that coupling at
this level might also be important to consider.
QTL for multiple barrier traits map to inversions
in some taxa, such as Mimulus (Lowry and Willis
2010), Helianthus (Huang et al. 2020), and Lit-
torina (Koch et al. 2022; see also Berdan et al.
2023 on chromosomal speciation).

Although Felsenstein stressed the role of re-
combination in hindering speciation in his 1981
model, a closer look reveals that the effects of
recombination on LD depend on the loci being
compared (Fig. 5). Recombination between as-
sortative mating and local adaptation loci does

hinder the build-up of LD between them (D 43),
thus opposing “progress” toward speciation.
However, recombination between the two local
adaptation loci, while eroding their LD (Dpc),
increases the production of low fitness geno-
types, the necessary source of selection for rein-
forcement and therefore the build-up of even
greater LD between assortative mating and local
adaptation loci (Dp, Fig. 5). Therefore, the
build-up of LD between barrier loci does not al-
ways equate with more reproductive isolation,
and recombination does not always work against
speciation because the consequences of coupling
(if defined as LD among barrier loci) depend on
the function of the barrier locus. An erosion of
LD between certain barrier loci (reduced cou-
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pling) may be required for greater LD (enhanced
coupling) between others.

Other models exploring the effects of recom-
bination between loci involved in reproductive
isolation have come to similarly inconsistent
conclusions, both regarding the evolution of di-
vergent allele frequencies between populations
and the amount of LD maintained between
them. A curve describing the equilibrium values
of LD between genes controlling mating prefer-
ences and magic traits, for example, does not
change with a decreasing recombination rate in
a two-island model (Servedio and Biirger 2018).
In contrast, under the same geographic assump-
tions, tighter physical linkage between ecological
and mating trait loci directly increases LD be-
tween them at equilibrium, causing tightly linked
sets of such loci to mimic magic traits in their
effects on population divergence. Furthermore,
Aubier et al. (2023a) found that intermediate
rates of recombination between such ecological
and mating traits promoted the evolution of the
strongest choosiness in a female choice model,
provided that the allele for stronger choosiness
is also physically linked to the mating trait locus.
Finally, Aubier et al. (2023b) find that tighter
physical linkage between components of differ-
ent sets of preference and trait loci that each,
independently, lead to premating isolation, has
mixed effects on equilibrium levels of LD. In fact,
when physical linkage between functionally dif-
ferent preferences and between functionally dif-
ferent traits is very tight, LD between the prefer-
ences and LD between the traits can evolve to be
negative, due to complicated interactions that
lead to recombinant males having the highest
mating success. Because Shuldiner-Harpaz et
al. (2022) find, in a separate study, that reduced
recombination between mating preferences and
ecological traits is expected to evolve under some
conditions, we might expect these counterintui-
tive effects on coupling to occur not uncommon-
ly in natural systems. Reduced recombination
can therefore both promote and inhibit the
build-up of LD depending on the particulars,
making this area open for further research.

Inversions, which reduce recombination
among loci that they capture, have been argued
to promote the maintenance of LD among bar-

rier loci (e.g., Noor et al. 2001; Rieseberg 2001;
Butlin 2005; Kirkpatrick and Barton 2006; Feder
and Nosil 2009). Trickett and Butlin (1994) ex-
amined the spread of an inversion capturing eco-
logical and mating loci using a modification of
Felsenstein’s (1981) model, and found that phys-
ical linkage in an inversion will lead to a lower
strength of assortative mating necessary to estab-
lish stable LD between the loci in the system (in
this case three-way LD). Feder and Nosil’s (2009)
simulation study found that only inversions that
allow forexceedingly low recombination rates are
particularly effective in promoting divergence in
the frequency of alleles between populations, al-
though Rafajlovi¢ et al. (2021) found that intro-
ducing genetic drift allowed substantial diver-
gence to persist.

Aside from these static influences of recom-
bination, several studies have found that the pro-
cess of divergence or speciation with gene flow
actually selects for modifiers of recombination
through colocalization, either by pleiotropy or
tight linkage, of loci underlying barrier traits.
An evolutionary lowering of the recombination
rate is expected between locally adapted pairs of
loci under broad conditions (Lenormand and
Otto 2000; in the context of speciation this would
follow the “adaptive-extrinsic” model of recom-
bination reduction, sensu Butlin 2005). The evo-
lution of reduced recombination rates can occur
in different ways, including the spread of linked
or unlinked modifiers (e.g., Nei 1967) or the
spread of inversions that capture the genes of
interest. Models of local adaptation also show
that clustering of locally favorable alleles may
arise due to the physical transposition of loci
from one chromosomal position to another
(Yeaman 2013; Ortiz-Barrientos et al. 2016) or
by changesin gene order following chromosomal
rearrangements (Ortiz-Barrientos et al. 2016).
The spread of an inversion that captures the
genes of interest has been examined extensively
inaspeciation context when such inversions cap-
ture pairs of genes causing hybrid inviability or
sterility (Noor et al. 2001; Feder and Nosil 2009)
and when they capture sets of loci that lead to
local adaptation (Trickett and Butlin 1994;
Rieseberg 2001; Kirkpatrick and Barton 2006;
Feder and Nosil 2009; Biirger and Akerman
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2011; Charlesworth and Barton 2018; Mackintosh
et al. 2022; for general review, see Butlin 2005).

Perspective 1: Concluding Remarks

Perspective 1 specifically introduces a dichot-
omy between adaptive coupling, where nonran-
dom associations of barrier loci enhance fitness,
and by-product coupling where LD increases as
a consequence of any nonadaptive process (di-
vergence in allopatry, migration and hybridiza-
tion, population range shifts, recombination
suppression, etc.). The main goal of recent stud-
ies has been empirically characterizing LD
among barrier loci, and elucidating, often by
mathematical modeling, the numerous factors
initiating, maintaining, and enhancing LD, but
the focus, thus far, has been on selective pro-
cesses. As our review makes clear, neither cou-
pling nor the effects of low recombination rates
have been examined systematically, in terms of
the types of loci involved and the geography of
speciation. Low recombination does not always
lead to high LD and low LD between one pair of
barrier loci can correlate with stronger LD be-
tween other pairs of barrier loci. Evolutionary
change in the overall barrier to gene exchange is
then hard to predict. The simple view that cou-
pling and LD are equivalent and that greater
coupling leads to stronger reproductive isola-
tion may need to be modified. As more than
one coupling process may generally be at play,
a strength of this perspective on coupling is that
it allows the dissection of the myriad processes
potentially responsible for the build-up of LD
among specific barrier loci, traits, or effects.
Such in-depth investigation can come at a
cost, however, as it may not be possible to inves-
tigate all levels of LD (Smadja and Butlin 2011)
or the full complement of barrier effects in a
given system or theoretical model. A careful
analysis of organismal life history can help
guide study of the strongest and/or most impor-
tant barrier effects (Perspective 3), but a geno-
micanalysis ofbarrier couplingisalsonecessary
to understand how barrier effects influence the
build-up of LD at nonbarrier loci (Perspective
2) (e.g., see Figures 7 and 8 in Kunerth et al.
2022).

Coupling Barriers to Gene Exchange

Perspective 2: Coupling as the Build-Up of
Genome-Wide Linkage Disequilibrium

The second perspective from which coupling has
been considered is as a build-up of genome-wide
LD, which affects both barrier and nonbarrier
loci (Fig. 2). We see this view as an extension of
Perspective 1. Specifically, the effects of selection
and recombination described above are envi-
sioned to apply across many barrier loci, leading
to patterns of coupling at genome-wide scales.

Factors Driving the Build-Up of
Genome-Wide LD

In 1983, Barton argued that multilocus behavior in
hybrid zones depended on a parameter called the
“coupling coefficient,” which describes the condi-
tions under which all barrier loci actindependent-
lyor tend to act together and affect gene flowat loci
throughout the genome (Barton 1983). Eitherina
two-population model or in continuous space, a
single barrier locus only impedes gene exchange at
very closely linked neutralloci (r < s, where risthe
recombination rate between the neutral and the
selected locus and s is the fitness reduction in a
foreign environment or a foreign genetic back-
ground). When there are many barrier loci, the
effect on gene flow at neutral loci depends on the
ratio of total selection to recombination (the cou-
pling coefficient 6 = S/R, where S=nsand R=nr
for n barrier loci and r is now the recombination
rate between adjacent barrier loci; Barton and
Bengtsson 1986). Thereisacritical value of O above
which all barrier loci are in strong LD and so tend
to act together and below which they act indepen-
dently. In continuous space, the transition from
independent to “coupled” behavior results in the
formation of stepped clines in allele frequency in
which the steep central portion occurs because
each locus experiences the total selection, S, rather
the locus-specific selection, s. When coupling is
strong, neutral loci also experience substantial in-
direct selection. However, the barrier experienced
by neutral loci increases more continuously as 6
increases (Barton 1983; Barton and Bengtsson
1986).

Multilocus cline theory was developed in the
context of secondary contact where all of the bar-

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041432 13


http://cshperspectives.cshlp.org/

fggﬁﬁ) Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Downloaded from http://cshperspectives.cshlp.org/ at TUFTS UNIV on January 9, 2024 - Published by Cold Spring Harbor

www.cshperspectives.org

Laboratory Press

E.B. Dopman etal.

rier loci considered have alleles in population 1
that reduce fitness in population 2 for some rea-
son (maladaptation, incompatibility with the lo-
cal genetic background, difficulty in finding ma-
tes). In effect, initial strong LD amongbarrier loci
was assumed as a result of divergence in allopatry
followed by admixture, and coupling describes
the process by which LD induces indirect selec-
tion on each barrier locus in addition to direct
selection, leading to stronger overall selection.
Critically, since initial LD is assumed, all process-
es that result in the original formation of these
associations at barrier and at nonbarrier loci (see
Perspectives 1 and 3) could also be considered as
part of the coupling process.

The development of “genome scan” ap-
proaches to document the genomic distribution
of barrier effects (for review, see Ravinet et al.
2017), combined with Wu’s (2001) “genic view”
of speciation and a shift in focus toward diver-
gencewith gene flow, led to the creation of a related
but distinct terminology and to a series of simu-
lation studies that also address how the number of
barrierlociin LD canincrease and soinfluence the
overall barrier to gene flow throughout the ge-
nome (Feder et al. 2012). “Divergence hitchhik-
ing” describes the local barrier effect around one,
or a few closely linked barrier loci that results in a
peak of differentiation relative to the genetic back-
ground (an “island of differentiation”; Dopman
et al. 2005; Turner et al. 2005; Via and West
2008). Theoretical expectations for a single locus
(Charlesworth et al. 1997) were extended using
simulations to situations with many loci (Feder
andNosil 2010). With enough loci and sufficiently
strong selection, Feder and Nosil observed ge-
nome-wide barrier effects, which they dubbed
“genomic hitchhiking.” Further theoretical devel-
opments investigated the mechanisms favoring
the formation of islands of differentiation and
the spread of barrier loci (Yeaman 2013, Yeaman
etal. 2016). The term “coupling” was not used in
any of this work, but it could be applied to either
the process of genomic hitchhiking or the process
of recruitment of new barrier loci from divergence
hitchhiking mechanisms up to genomic hitchhik-
ing mechanisms.

Flaxman et al. (2014) also investigated the
dynamics of genomic differentiation over the

course of a speciation process. They modeled di-
vergence in a two-deme system with divergent
selection and many loci that could mutate to lo-
cally beneficial alleles, thereby allowing for an
increasing number of barrier loci. Divergence
was initially gradual but could undergo a transi-
tion to much more rapid divergence across the
genome implying that a critical threshold value
of Barton and Bengtsson’s (1986) 0 was reached.
This coupling required LD among sets of diver-
gently selected alleles but it could occur without
physical linkage of barrier loci on chromosomes,
and it was marked by a rapid increase in genome-
wide LD. Nosil etal. (2017) found that “bi-stabil-
ity” might occur in some parts of parameter
space, which would allow external factors such
as brief interruptions to migration to precipitate
rapid switches from independent to coupled be-
havior. Flaxman et al. (2014) called the transition
“genome-wide congealing” but it has also been
called “coupling” (Flaxman et al. 2013; Schilling
et al. 2018). Schilling et al. (2018) emphasize a
distinction in behavior between selected loci, for
which they observed a sharp transition, and neu-
tral loci, which experienced a relatively smooth
decrease in effective migration, again reflecting
the earlier predictions of Barton and Bengtsson
(Barton 1983; Barton and Bengtsson 1986).

In all of these scenarios, coupling can be used
to describe the build-up (or maintenance) of LD
among multiple barrier loci that enhances both
differentiation at those loci and the barrier to
gene flow in the rest of the genome (Fig. 1C).
This is the general sense in which “coupling” is
used by Nosil et al. (2021). Like some other au-
thors, they use “genomic coupling” or “genome-
wide coupling” when the effect encompasses loci
throughout the genome. In some cases, a sharp
transition in divergence behavior of barrier lociis
expected as the coupling coefficient, 0, passes a
critical value. Before this transition, coupling
may be evident as associations of barrier loci in
LD and associated genomic regions with elevated
neutral differentiation. Beyond this transition,
the barrier to gene flow at neutral loci is expected
to be much more genomically widespread
but this may not be immediately apparent in
the genome-wide level of differentiation at neu-
tral loci.
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Evidence for the Build-Up of
Genome-Wide LD

LD among multiple barrier loci is undoubtedly
common in nature. It is expected, and observed,
following secondary contact (Barton and Hewitt
1985). Hybrid zones formed in this way provide
an opportunity to ask whether LD is maintained
or whether it breaks down when the opportunity
for gene flow and recombination occurs (evi-
dence from hybrid zones is reviewed by Firneno
etal. 2023). Similarly, studies of local adaptation
frequently imply roles for multiple traits, and
multiple loci per trait, that are differentiated be-
tween populations living in different environ-
ments, and so are in LD species-wide, as well as
within populations that are connected by migra-
tion (see Table 1 in Bierne et al. 2011). This LD
may have been generated by divergence in allop-
atry (as in many hybrid zones) or may have been
built up by selection in situ (e.g., Gasterosteus
lake-stream sticklebacks, Marques et al. 2016;
Senecio, James et al. 2021), perhaps aided by
gene flow (e.g., marine-freshwater sticklebacks,
Jones et al. 2012) or introgression (e.g., Helico-
nius, The Heliconius Genome Consortium
2012). Rather few of these patterns have been
resolved to causal loci and this is likely to be dif-
ficult where there are many barrier loci.

Some empirical evidence for sharp transi-
tions from largely independent behavior of bar-
rier loci to genome-wide coupling is also avail-
able. Hybrid zones typically have broadly
coincident allele frequency clines at many diver-
gentlociasaresult of secondary contact, physical
barriers or steep environmental transitions
(Barton and Hewitt 1985). However, these clines
may be sigmoid and vary in width and precise
geographical location, suggesting that they are
responding independently to direct selection or
selection on nearbyloci. Alternatively, clines may
be stepped (i.e., steeper nearer the center) and
concordant (i.e., centered at the same place and
of the same width), suggesting genome-wide
coupling. Classic examples are the hybrid zones
in mouse (Mus musculus and Mus musculus do-
mesticus, Janou$ek et al. 2012) and in toads
(Bombina bombina and Bombina variegata, Szy-
mura and Barton 1986), respectively, but the dis-

Coupling Barriers to Gene Exchange

tinction is not always clear-cut (e.g., Vines et al.
2016). In principle, coupling may apply only to a
subset of loci, but this pattern has rarely been
reported (Hippocampus seahorses, Riquet et al.
2019; Anopheles mosquitoes, The Anopheles
gambiae 1000 Genomes Consortium 2017; and
see above for effects of chromosomal rearrange-
ments). Bimodality of phenotypes in the central
parts of hybrid zones implies strong LD, and also
indicates strong isolation, perhaps where behav-
ioral isolation is coupled with selection against
hybrids (Jiggins and Mallet 2000).

Nosil et al. (2017) argued that the threshold
transitions seen in multilocus models (Barton
1983; Barton and Bengtsson 1986; Flaxman
et al. 2014) should be reflected in observed pat-
terns of genome-wide divergence: either popula-
tions should show generally low divergence, per-
haps with some islands of differentiation, or they
should show high levels of divergence genome-
wide, but intermediate patterns will be rare or
absent. Firneno et al. (2023) test this expectation
in a hybrid zone context. A survey of >100 pop-
ulations from 11 species of walking stick uncov-
ered patterns consistent with this prediction
(Riesch et al. 2017): genome-wide average Fgr
fell either below 0.3 or above 0.6 but not in be-
tween, and strong differentiation was associated
with coupling of polygenically controlled prezy-
goticisolation, rather than simply the build-up of
local adaptation.

Perspective 2: Concluding Remarks

Coupling viewed as the build-up of genome-wide
LD introduces the importance of understanding
how LD among multiple barrier loci impacts the
total barrier to gene flow and the parts of the
genome notdirectly involved in reproductiveiso-
lation. Importantly, this view hypothesizes that
indirect selection, as an emergent property of
nonrandom associations among selected barrier
loci, creates a threshold or tipping point leading
to two alternative stable states, motivating new
research directions on the dynamics of coupling
processes and conditions favorable to either
gradual or sudden transitions to genome-wide
independence. Pursuing the effort of estimating
genome-wide LD/differentiation, the coupling
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coefficient, and cline shapes in empirical cases
reflecting various stages in the speciation process
will certainly help to clarify these conditions.
However, a full understanding of coupling at
large genomic scales also requires connecting ge-
nome-wide patterns of LD with the number and
nature of the barrier traits involved, which is still
rarely achieved (Perspectives 1 and 3). Where a
strong overall barrier influences the whole ge-
nome, it may be hard to distinguish loci directly
involved in reproductive isolation from loci ex-
periencing genome-wide barrier effects, imply-
ing that the capacity to distinguish coupling pro-
cesses diminishes as speciation progresses. In
contrast, intermediate cases, where some loci
show strong differentiation or stepped clines
whereas others do not, open the opportunity to
identify individual barrier loci, the extent of
coupling between them, and potentially the as-
sociated phenotypes. Combining, in the same
biological system, phenotypic and genetic char-
acterization of barrier traits with genome-wide
analyses will further help in bridging this gap
(Perspectives 1 and 3).

Perspective 3: Coupling as Any Process
Generating Coincidence of Barrier Effects

The first two views consider coupling at the ge-
neticlevel only, with a focus on LD amongbarrier
loci. We identified a third view that encompasses
these aspects while extending the concept of cou-
pling beyond LD and the geniclevel to the organ-
ismal and phenotypic level (Fig. 2). Butlin and
Smadja (2018) defined coupling as any process
generating coincidence of distinct barrier effects.
If any given barrier effect can be considered to
define two populations that experience a reduc-
tion in gene flow, then “coincidence” means that
two or more barrier effects define the same pairs
of populations (in geographic or niche space orin
time). This perspective includes cases where the
coincidence between barrier effects occurs
through the build-up of LD among barrier loci
but also cases where coincidence occurs without
requiring LD (see section A Phenotypic Focus).
The focus on the coincidence between distinct
barrier effects (with or without LD) excludes cou-
pling scenarios between distinct traits generating

a single barrier effect (e.g., Alexander 1962;
Ritchie and Butlin 2023) or between barrier loci
underlyinga single barrier trait. Finally, this third
perspective emphasizes the importance of un-
derstanding the processes initiating coincidence
(see section Population Processes and Initial
LD).

A Phenotypic Focus

With its unique emphasis on the phenotypes
(barrier effects) that help keep populations dis-
tinct, this view is able to make meaningful infer-
ences about speciation by documenting patterns
of barrier coincidence (e.g., Dopman et al. 2010;
Table 1 in Bierne etal. 2011; Sanchez-Guillén et al.
2014; Karrenberg et al. 2019), without knowledge
ofthe underlying genotypes. A phenotypicfocusis
valuable because there are at least three forms of
barrier coincidence that strengthen the overall bar-
rier without leaving a detectable change in LD at
causal barrier loci, the main signature of coupling
“progress” adopted by the first two views. Multi-
ple-effect traits (Smadja and Butlin 2011) are cases
wherea single phenotypic trait influences multiple
components of isolation (Fig. 4B). Thus, coinci-
dence of barrier effects is a simple consequence of
divergence in a single trait contributing to any
combination of barrier effects. Convincing exam-
plesinclude temporal isolation arising from diver-
gent selection on diapause phenology in insects
(Kozak et al. 2019; Inskeep et al. 2022), ecological
and mating isolation arising from mimetic selec-
tion and mate signaling divergence in wing color
pattern in Heliconius butterflies (Kronforst et al.
2006; Chamberlain etal. 2009), and ecological and
mating isolation arising from body size divergence
in an experimental selection study of body size
evolution in feather lice (Villa et al. 2019).
Coincidence can also occur without requir-
ing LD ifan allele has pleiotropic effects on two or
more barrier traits, each contributing to a differ-
ent barrier effect (Fig. 4A). Possible examples of
pleiotropy include loci that influence both male
and female body size in fish or both daily and
seasonal mating time in insects, but discriminat-
ing pleiotropy from tight linkage is an empirical
challenge that may require confirmation by
genetic modification of candidate genes (see
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Ritchie and Butlin 2023). Differentiating multi-
ple-effect traits from pleiotropic effects is useful
because the two may differ in their propensity for
coupling under spontaneous mutation. The mu-
tation of any gene underlying a multiple-effect
trait will alter all barrier components influenced
by the trait and therefore each genetic mutation
will contribute to coupling. In contrast, coupling
of barrier effects will only increase due to pleiot-
ropy for the subset of substitutions in genes un-
derlying the traits that have pleiotropic effects.
This potential for a larger mutational target size
for direct coupling could make multiple-effect
traits common contributors to speciation.

The idea of magic traits encompasses both
multiple traits that are connected by pleiotropy
(partially or completely) and multiple barrier
effects that are connected via underlying traits
(Servedio et al. 2011; Maan and Seehausen
2012). Although originally applied to the combi-
nation of pre- and postzygotic isolation, it can be
applied more generally. For many theoretical
purposes, pleiotropy can be considered as equiv-
alent to zero recombination between loci in-
volved in different barriers, and it may not be
necessary to specify the phenotypic traits that
link genes to barrier effects. Therefore, the dis-
tinction between pleiotropy and multiple-effect
traits assumes less importance.

Finally, enhanced coincidence of barrier ef-
fects can occur without increased LD, at least at
the end of the process, through a one-allele
mechanism (Felsenstein 1981, and see discus-
sion in Butlin et al. 2021). In this case, a barrier
effect results from evolution of the same pheno-
type in both diverging populations (Fig. 4C). For
example, evolution of greater philopatry in each
of two populations will decrease gene exchange
between them. However, since there is no diver-
gence in this trait (i.e., greater philopatry evolves
in both populations), no LD accrues between this
trait and others. In many cases, one-allele effects
canbeseen as modifiers of existing barrier effects,
which falls outside a strict interpretation of cou-
plingasthe coincidence of distinct barrier effects.
Nevertheless, these modifier effects can be criti-
cal for the development of strong reproductive
isolation, asin, for example, increased choosiness
in mate preference or evolved imprinting mech-

Coupling Barriers to Gene Exchange

anisms (Kopp et al. 2018), or where habitat
choice arises in response to local adaptation
(Berner and Thibert-Plante 2015). The plausibil-
ity of one-allele effects is strongly supported by
theory (e.g., Kelly and Noor 1996; Kirkpatrick
2000; Servedio 2000) and while numerous possi-
ble examples have been described (Butlin and
Smadja 2018; Kopp et al. 2018), few candidate
one-allele genes have been identified (e.g., Ortiz-
Barrientos and Noor 2005, a case where the one-
allele effect might be considered a modifier of an
existing component of behavioral isolation).

Population Processes and Initial LD

The theoretical models guiding research under
the previous two perspectives often assume ini-
tial LD among barrier loci (Felsenstein 1981;
Barton 1983). Perspective 3 specifically empha-
sizes how such associations may originally form
asa by-product of population processes. In 1989,
Hewitt convincingly argued that adaptive cou-
pling, even within the context of hybrid zones,
will be subsequent and secondary to any distri-
bution range shifts that bring together spatially
scattered barriers (Hewitt 1989). For example,
extended periods of allopatry (e.g., on islands)
allow modes of evolution rarely important in hy-
brid zones or in sympatry but which may help
explain the initial origins of LD when popula-
tions meet. Foremost are situations of uniform
selection (mutation order, Mani and Clarke
1990; Schluter 2009) or drift within isolated pop-
ulations. Drift has limited empirical support for
the evolution of barrier effects (Rice and Hostert
1993), but a wide range of conditions appear to
facilitate the evolution of barriers to gene flow
under uniform selection (Nosil and Flaxman
2011) and at least some ecologically similar spe-
cies pairs are thought to evolve by mutation-or-
der processes (birds, Price 2007; Senecio wild-
flowers, Melo et al. 2019; vertebrates, Anderson
and Weir 2022).

Information on the history of divergence and
gene flow (e.g., Green et al. 2010; Sousa and Hey
2013) can indirectly inform us about the likeli-
hood of coupling as a consequence of long-term
allopatry or as an adaptive response, since adap-
tive coupling requires hybridization and recom-
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bination to expose alternative allele combina-
tions to selection. Accumulating examples of di-
vergence with gene flow in empirical systems sug-
gest that conditions for adaptive coupling might
be somewhat common (e.g., Roux et al. 2016).
However, the possibility of periodic phases of
allopatry probably cannot easily be discounted.
Such transient changes to the distribution range
might be one of the most probable forms of by-
product coupling, considering theory suggests
different barriers will likely have arisen in differ-
entplaces (Barton and Hewitt 1981, 1985; Hewitt
1989; Coyne and Orr 2004) and both palaeocli-
matic evidence and contemporary observation
show that changes in distribution range are com-
monplace over time (Hewitt 2000; Capinha et al.
2015; Sardain et al. 2019). Global cycles of cli-
mate fluctuation over the last 2.4 million years
almost certainly resulted in population contrac-
tions and expansions that helped establish con-
temporary patterns of genetic structure and like-
ly initial coincidence of barriers that originally
evolved in separate populations (Searle 1993;
Hewitt 1996, 2000). A recent theoretical study
of speciation with periodic gene flow (Linck
and Battey 2019; “MIM” model of He et al.
2019) emulated cycles of population expansion
and contraction under Pleistocene glacial cycles
and showed that speciation via DMIs occurred at
rates that approached strictly allopatric specia-
tion. More simulations of this type are needed,
as it is unclear how other barrier effects (local
adaptation, assortment, one- vs. two-allele
mechanisms) or coupling processes (reinforce-
ment, introgression) might alter coupling dy-
namics.

If barriers do often arise in different places,
for example from local adaptation and/or spatial
discontinuities that slow the spread of mutations,
populations separated by greater geographic or
ecological distance are predicted to show stron-
ger divergence for individual barrier traits/effects
as well as greater correlations across distinct bar-
rier traits/effects. Patterns of isolation-by-dis-
tance are common for neutral loci, and the
same ought to be true for locally advantageous
mutations and mutations whose spread islimited
(Barton 2013). However, rather few studies have
investigated these a priori expectations for barri-

ers, such as a general increase in reproductive
isolation with distance between populations
(Edmands 2002). One rare case found this pat-
tern for ethological isolation in a classic study of
salamanders, Desmognathus ochrophaeus (Tilley
etal. 1990). Developing the capacity to detect this
and other coupling processes is an area in need of
further research. Overall, broadening our under-
standing of the geographic distribution of barrier
traits, effects, or loci should help explain the ini-
tial source of LD among barrier loci, a key as-
sumption of many speciation models.

Perspective 3: Concluding Remarks

Coupling as the coincidence of distinct barrier
effects between the same populations empha-
sizes important ways that coupling can occur
without the build-up of LD and as a by-product
of population processes. As our review indi-
cates, distinguishing why coupling occurs in
nature will usually require information on
both barrier traits and effects (distinguishing
multiple-effect traits, pleiotropy, one- vs. two-
allele mechanisms) and their geographic distri-
bution as well as population history. This infor-
mation is still quite rare in hybrid zone studies,
where genomic patterns across geography, not
barrier effects, are emphasized, butitisalso rare
in “components of isolation” studies that docu-
ment barrier effects and coincidence but rarely
(geographic) variation in barrier interaction.
Both of these empirical frameworks represent
astrong base upon which todocument variation
inlevels of barrier coincidence across the distri-
bution of interacting taxa. By combining geno-
mic analyses in these expanded systems, along
with environmental and biogeographic data,
adaptive (e.g., reinforcement, attraction of over-
lapping clines) and by-product (e.g., range
shift, simultaneous evolution) hypotheses of
coupling processes responsible for strengthen-
ing the overall barrier can be evaluated. Never-
theless, Perspective 3 excludes some levels of
analysis of coupling (among loci underlying a
single barrier trait, among loci underlying dif-
ferent traits affecting a single barrier effect) that
might still be of importance to the speciation
process (see Perspectives 1 and 2).
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GENERAL CONCLUSIONS AND OUTLOOK

General agreement exists between theoretical
predictions and empirical evidence for coupling.
However, few studies have managed to identify
and establish the relative roles of the various fac-
tors generating LD in an empirical system, and
gaps remain for empirical support of certain as-
pects oftheory. Forexample, more empirical tests
are needed for by-product coupling, and for
forms of adaptive coupling other than classic re-
inforcement. Examples of barrier effect coinci-
dence or lack of coincidence (Fig. 1B) need to be
combined with tests of predictions at the genetic
level (Fig. 1C) (as in the mouse and Phlox exam-
ples, and in Kunerth et al. 2022). An alternative
approach is to test the prediction that recombi-
nation rate variation around the genome will in-
fluence the pattern of introgression for polygenic
barriers because the coupling of multiple barrier

Coupling Barriers to Gene Exchange

loci in regions of low recombination will impede
introgression. There is evidence for this pattern
in Heliconius butterflies (Martin et al. 2019), in
Xiphophorus swordtail fish, and in humans
(Schumer et al. 2018).

Gaps also remain for theoretical conditions
favoring coupling. New opportunities exist to es-
tablish the likelihood and existence of additional
forms of coupling under the “extended view” of
reinforcement (e.g., a postzygotic barrier evolv-
ing in response to an existing premating barrier)
(see Figure 3 in Butlin and Smadja 2018), and the
complex relationships between recombination,
LD, and barriers to gene flow need to be explored
systematically. Finally, in addition to establishing
its mechanisms, uncertainties persist about cou-
pling’s pace, particularly the possibility of rapid
transitions between states.

We provide further ideas for future work
in Box 1. These and other studies of coupling

BOX 1. APPROACHES TO ADVANCE UNDERSTANDING OF COUPLING

Approach Description Perspective Example studies
Theory and Expectations and potential All Felsenstein 1981; Ortiz-
simulation unique predictions of Barrientos et al. 2016;

coupling via selection,
population contraction/
expansion, and range
expansion; conditions

favoring reinforcement under
the expanded view; thorough

analyses of the role of
recombination rate in
coupling, including
interactions with initial
conditions (e.g., geographic
history) during coupling;
systematic analysis of the
effects on linkage

disequilibrium (LD) between

different functional types of
loci (premating isolation,
local adaptation, postzygotic

isolation, etc.) on build-up of

reproductive isolation (RI);

assessment of conditions that

lead to positive vs. negative

Schuldiner-Harpaz et al.
2022; Aubier et al. 2023b

Continued
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Description

Perspective

Example studies

Approach
Documenting
barriers and
levels of
coincidence
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Landscape
genetics

LD between different sets of
loci during the speciation
process, and how these relate
to the overall build-up of LD
and RI.

Documenting barriers and
levels of coincidence over
distributions of interacting
taxa (e.g., “components of
RI” and hybrid zone studies,
taxa experiencing recent/
ongoing altered habitats
or human-mediated
movement), across a wide
range of taxa, geographic
regions and relationships
among populations,
population histories and
levels of divergence. Ideally,
combined analysis of barrier
traits, barrier loci, and barrier
effects and how levels of
barrier coincidence
(uncoupled to fully coupled)
and types of barrier effects
(premating, local adaptation,
postzygotic isolation, etc.)
influence overall RI
(measured under organismal
or genetic views). Future
empirical and theoretical
studies could also more
explicitly address and
compare different “levels” of
coupling and their interplay
(coupling among barrier loci
underlying a single barrier
trait; coupling among loci
underlying different traits
generating a single barrier
effect; coupling among loci
underlying different barrier
effects).

Analysis of whole-genome data
and fine-scale
documentation of barrier
traits or barrier effects across
distributions to study the role

Primarily 1 and 3 but
hybrid zone studies
also relate to 2

Primarily 2 but adding
barrier traits
implicates 1 and 3

Karrenberg et al. 2019;
Perini et al. 2020;
Kunerth et al. 2022;
Alund et al. 2023;
Firneno et al. 2023;
Guevara Andino et al.
2023

Edmands 2002; Safran et al.
2016; Coates et al. 2019

Continued
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Approach

Description

Perspective

Example studies

Barrier gene
identification

of geographic separation and
degree of barrier coincidence
on genomic structure of
populations. Some studies are
doing this using phenotypic
measures; more direct
estimates of coupling by LD
of identified barrier loci are
needed.

Analysis of functional and

linked genetic variation at
experimentally verified genes
to identify and establish the
relative roles of coupling
mechanisms, including
population processes,
genomic architecture
(rearrangement,
recombination rate,
pleiotropy, multiple-effect,
one-allele, etc.), and adaptive
coupling (see Experimental
Manipulation below). Of
particular importance is the
identification of one-allele
mechanisms at the genetic
level (contrasting populations
where the allele is under
selection vs. not under
selection [e.g., sympatric vs.
allopatric populations in
reinforcement scenarios after
secondary contact]).
Identifying genes is critical
for discriminating between
barrier loci and nonbarrier
loci in hybrid zone or genome
scan contexts, as otherwise
cannot distinguish cause/
effect and loci under direct
selection vs. indirect
selection. Combined with
environmental information
(see Landscape Genetics
above) to test possible drivers
(e.g., coupling from common
drivers or from cline
attraction).

Primarily 1, but also 3
especially where loci
underlying multiple-
effect traits and one-
allele barrier effects
can be included

Distinct barriers (Merrill
et al. 2011; Kozak et al.
2019; Kautt et al. 2020;
Unbehend et al. 2021);
local adaptation (Roda
etal. 2017); mating signal
(Byers et al. 2021; Ritchie
and Butlin 2023); mate
preferences (Hench et al.
2019; Smadja et al. 2022);
pollinator syndrome
(Hermann et al. 2013)

Continued
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BOX 1. Continued

Approach Description

Perspective Example studies

Particularly where large-effect
barrier loci cannot be
identified, predictions about
genomic patterns of
divergence and gene flow
need to be made and tested.

Genomic patterns

Quantitative genetics
approaches can be used to
document the genomic
distribution of loci
underlying barrier traits or
effects. Statistics like ancestry
heterozygosity can be used to
make inferences about
barriers. Relationships
between recombination and
divergence can be used to test
predictions about genomic

architecture.
Experimental Experimental manipulations to
manipulation test which trait/gene

combinations are favored
(individual fitnesses), and
how selection might
strengthen combined barrier
effects through coupling, as
suggested by theory and
indirectly by empirical
patterns (e.g.,
reinforcement). Allows
determination of whether
coupled barrier effects are
directly selected or whether
they might be coupled by
indirect selection, and of how
LD with directly selected loci
arose.

Riesch et al. 2017; Schumer
et al 2018; Martin et al.
2019; Kautt et al. 2020;
Thompson et al. 2022,
2023; Firneno et al. 2023

Primarily 2

Rice and Hostert 1993; Villa
et al. 2019; White et al.
2020; Tusso et al. 2021

Primarily 1

promise to bring us closer to an understanding
of the origin of new species when strong repro-
ductive isolation requires the evolution of
multiple barriers to gene exchange. Although
the importance of coupling for the speciation
process seems well-established today the spe-
ciation community’s view has only recently
changed in the last decades as it has become

clear that no single barrier is likely to lead to
complete isolation and the coincidence of bar-
riers is no longer seen as inevitable (as it is
under strictly allopatric speciation). A greater
emphasis on the dynamics of coupling during
later-stage speciation therefore represents an
exciting new area of growth for the field of spe-
ciation biology.
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