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1  |  INTRODUC TION

The study of microbial communities across host species and environ-
ments (hereafter the ‘microbiome’) is a major focus of research in the 
field of molecular ecology. As such, Molecular Ecology and Molecular 
Ecology Resources regularly publish papers and special issues in the 
field. Molecular Ecology is at the forefront of publishing research on 

the importance of microbiomes across ecosystems, from increasing 
our understanding of host–pathogen (Bergner et al., 2020; Wille 
et al., 2018) and host–symbiont interactions (Rubin et al., 2019) to in-
vestigating the impact of climate and other environmental factors on 
microbial populations (Santos-Júnior et al., 2022; Wu et al., 2022). 
Complementing these efforts, Molecular Ecology Resources publishes 
significant methodological advances that continue to shape the field 
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Abstract
The study of microbiomes across organisms and environments has become a promi-
nent focus in molecular ecology. This perspective article explores common challenges, 
methodological	advancements,	and	future	directions	in	the	field.	Key	research	areas	
include understanding the drivers of microbiome community assembly, linking micro-
biome composition to host genetics, exploring microbial functions, transience and 
spatial partitioning, and disentangling non-bacterial components of the microbiome. 
Methodological	advancements,	 such	as	quantifying	absolute	abundances,	 sequenc-
ing complete genomes, and utilizing novel statistical approaches, are also useful tools 
for understanding complex microbial diversity patterns. Our aims are to encourage 
robust practices in microbiome studies and inspire researchers to explore the next 
frontier of this rapidly changing field.

K E Y W O R D S
bioinformatics,	eDNA,	host-parasite	interactions,	microbial	communities,	statistics

www.wileyonlinelibrary.com/journal/mec
www.https://doi.org/10.1111/mec.17223
mailto:
https://orcid.org/0000-0001-9248-8493
https://orcid.org/0000-0002-2685-6478
https://orcid.org/0000-0002-3400-5825
https://orcid.org/0000-0002-4356-3837
https://orcid.org/0000-0002-9998-3689
mailto:nfountainjones@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmec.17223&domain=pdf&date_stamp=2023-11-28


2 of 10  |     FOUNTAIN҃JONES et al.

(Harrison et al., 2020; Schnell et al., 2015; Stothart et al., 2021). 
Based on our collective experience as subject editors at Molecular 
Ecology and Molecular Ecology Resources, here we discuss some of 
the best practices and advances across the discipline for analysing 
microbiomes, from study design to data analysis, and highlight an-
ticipated future directions in the field. With this article, we hope to 
inspire and encourage researchers to obtain more robust insights 
from microbiome data, which will enable the field to advance and 
tackle the new horizons enabled by recent advances in technology.

2  |  STUDY DESIGN

As in any study, the sampling or experimental design of microbiome 
studies should include sufficient independent replicates, avoiding 
confounding effects as much as possible, with the samples repre-
senting appropriate ecological scales given the processes investi-
gated.	Microbiome	sampling	design	must	also	be	well-planned	and	
appropriate to the specific hypothesis that is being tested. When 
testing hypotheses pertaining to the impact of outlier external driv-
ers (e.g. fire, pollution events, natural disasters), studies would ide-
ally feature samples that were collected both before and after the 
event, that are not confounded by habitat type, geography or phys-
icochemistry. Before embarking on microbiome studies in the wild, 
particularly those of which are opportunistic (i.e. with samples origi-
nally collected for other purposes), researchers should carefully con-
sider if autocorrelation of factors beyond their control could impede 
the interpretation of results. In other words, researchers must be 
realistic about what can be accomplished with limited sample sets, 
since rigorous hypothesis testing requires equally rigorous sampling 
protocols and study design.

In addition, the sampling of microbial communities should 
take into account their high heterogeneity at small spatial scales 
due to micro/mesoscale heterogeneity of their environment 
(Vos et al., 2013; Zhang et al., 2014) or neutral assembly dynam-
ics (Woodcock et al., 2007).	 For	 example,	 composite	 samples	 (i.e.	
pooled individual samples) can be combined prior to homogeniza-
tion and sub-sampling, in order to reduce the local, micro-scale het-
erogeneity	if	it	is	irrelevant	to	the	questions	being	studied	(George	
et al., 2019). Here, knowledge of how, and at what scale, the target 
community responds to external drivers will inform adequate sam-
pling	design.	For	example,	 a	 composite	0.2 mg	 sediment	 sample	 is	
likely to be representative of the bacterial, archaeal and microbial 
eukaryotic biospheres, but not for metazoan communities, due to is-
sues	of	biological	scale	and	heterogeneous	distribution	(Nascimento	
et al., 2018).	 Over	 14 g	 of	 homogenized	 sediment	 was	 needed	 to	
achieve adequate beta diversity measurements for meiofauna spe-
cies	 (Nascimento	 et	 al.,	2018). Smaller samples will contain some 
microscopic	taxa	and	trace	environmental	DNA	but	they	are	inade-
quate at representing the underlying meio- and macro-faunal com-
munities. As the target organisms grow in size, the sample volume 
and spatial extent of the studied area should be correspondingly ex-
panded, although we note that extraction protocols and tissue type 

are also important factors. We encourage readers to refer to taxon- 
or study-specific guides for more granular information about study 
design (e.g. diet: Johnson et al., 2020; host-associated microbiomes: 
Kohl,	2017; fungi: Tedersoo et al., 2022).

3  |  SAMPLE PREPAR ATION AND 
WORKFLOW

In addition to the above considerations, the study design needs 
to account for the sensitivity and error-prone nature of many 
molecular-based approaches. Both shotgun metagenomics and 
DNA	metabarcoding	(i.e.	amplicon	sequencing	of	marker	genes)	in-
clude numerous opportunities for introducing false negatives and 
positives during the data generation process, starting from sam-
ple collection to the laboratory, sequencing, bioinformatics and 
data analyses. Details of these issues are already largely covered 
in a Molecular Ecology editorial (Zinger et al., 2019), but to summa-
rize briefly, some possible pitfalls include sample contamination 
stemming	 from	 the	 field	 or	 laboratory	 environment	 (de	 Goffau	
et al., 2018; Salter et al., 2014),	 extraction/PCR	 amplification	 bi-
ases	 and	 errors	 generated	 during	PCR	 and	 sequencing.	 Technical	
considerations, such as sample volume and choice of laboratory 
reagents, are, in many cases, the result of a compromise between 
the research question, logistical feasibility, time and available funds 
(Taberlet et al., 2018). However, any compromise of the protocol 
should still allow one to appropriately address the research ques-
tion. In addition, we want to re-emphasize the importance of ad-
equately describing the whole data production workflow in the 
methods section of manuscripts (e.g. primer sequences, polymer-
ase, molecular labelling/indexing strategy).

Environmental or laboratory contamination is a particularly 
large problem for samples with low microbial biomass (Eisenhofer 
et al., 2019), and the collection of such samples cannot be avoided 
in many study designs (e.g. host-associated microbiomes of small or-
ganisms or depauperate environmental habitats). The sequencing of 
negative	controls	including	DNA	extraction	blanks	and	PCR	negative	
controls (and potentially also positive controls and technical repli-
cates) alongside experimental samples is important for quantifying 
errors and artefacts (Davis et al., 2018), and can improve data cura-
tion procedures through tuned, experiment-specific criteria, includ-
ing for samples with low microbial biomass. While there is more than 
one way to implement such efforts, a thorough description of the 
controls, a rationale for including them, and the ways they are inte-
grated into data analysis, are essential practices of good microbiome 
science (Hakimzadeh et al., 2023).

One overlooked problem in microbiome studies is cross-con-
tamination between samples during library preparation procedures 
(Kim	et	al.,	2017; Zinger et al., 2019), which can result in an artificial 
reduction in beta diversity (i.e. compositional differences between 
samples) and an increase in alpha diversity. Such cross-contamina-
tion	can	occur	during	the	PCR	plate	preparation	process	through	pi-
petting errors or aerosol production. Random positioning of samples 
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in	 the	PCR	plates	provides	 a	 relatively	 simple	 approach	 to	 reduce	
this	problem	(Minich	et	al.,	2019; Taberlet et al., 2018).	More	often	–	
and	insidiously	–	cross-contamination	can	occur	during	the	PCR	cy-
cles, a bias referred to as tag-switches (Carlsen et al., 2012; Esling 
et al., 2015), tag-jumps (Schnell et al., 2015), or, more recently in the 
microbiome literature, cross-talks (Edgar, 2018;	Minich	et	al.,	2019). 
During this laboratory step, amplicon molecules from different sam-
ples can recombine within conserved primer sequences, resulting 
in	 the	 production	 of	 new	molecules	 containing	 the	 genuine	DNA	
sequence, but the wrong sample/barcode label. As a consequence, 
the most abundant taxa will be detected in many samples, includ-
ing the negative controls (Esling et al., 2015;	Minich	 et	 al.,	2019; 
Taberlet et al., 2018), preventing simple removal of all taxa occurring 
in controls as a fix for field and laboratory contamination. Alleviating 
the problem of tag-switches can be achieved with modified library 
preparation protocols (Carøe & Bohmann, 2020), appropriate sam-
ple labelling strategies and a posteriori using the information con-
tained in both samples and negative controls (Bohmann et al., 2022; 
Hakimzadeh et al., 2023).

One	 limitation	 in	 microbiome	 studies,	 using	 either	 DNA	 me-
tabarcoding or metagenomics, is the compositional nature of the 
sequence data (i.e. described as proportions, not absolute number 
of molecules). Like other count-based sequencing approaches, this 
limitation arises because the total number of reads in high-through-
put	 sequencing	platforms	 is	 uninformative	 (Gloor	 et	 al.,	2017). As 
a result, we are unable to obtain data on absolute abundances and 
biomass for the different microbial members of the community. 
However, exciting new developments are emerging to overcome 
these	 limitations,	 relying	 on	 known	 reference	 values	 of	 DNA	 se-
quence abundances, allowing simple conversion of relative abun-
dance into absolute values. Two broad classes of methods based 
on this approach have emerged: (i) quantification of target markers 
using	q/ddPCR	(quantitative/digital	droplet	PCR)	prior	 to	metabar-
coding (Barlow et al., 2020; Callahan et al., 2019; Ji et al., 2019) and 
(ii)	introduction	of	exogenous	DNA	spike-ins	(i.e.	DNA	molecules	of	
known sequence and quantity to calibrate measurements) (Harrison 
et al., 2020).	Related	to	the	latter,	a	host-associated	microbiome	PCR	
approach	 (HamPCR,	Lundberg	et	al.,	2021) represents a promising 
method to assess the ratio of the microbial population size relative 
to the amount of host tissue (i.e. microbial load). If these approaches 
are unavailable, log-ratio transformations of the data may be a useful 
method to reveal abundance changes in microbial composition (see 
Greenacre	et	al.,	2021;	Morton	et	al.,	2019).

Despite obtaining a better estimate of the absolute number of 
molecules in a sample, it is still challenging to convert this number 
into the actual number of microbial cells. The calculation is often 
difficult because most gold-standard barcoding genes used for bac-
teria, fungi, and protists have multiple copies in the genome, with 
precise numbers varying across taxa and in unpredictable ways 
(Louca et al., 2018). Another problem is that some of the retrieved 
molecules	can	be	derived	from	extracellular	DNA	or	DNA	adsorbed	
on cell debris or particles, that is, correspond to non-living organ-
isms (Torti et al., 2015).	The	proportion	of	extracellular	DNA	in	the	

environment is often not known but can be estimated with different 
approaches	(reviewed	by	Nagler	et	al.,	2022).	Further,	because	ex-
tracellular	DNA	is	often	degraded,	approaches	 including	 long-read	
sequencing targeting larger genomic regions will likely overcome this 
issue. Approaches that are able to quantify or eliminate extracellular 
DNA	can	prove	useful	when	having	correct	snapshots	of	the	micro-
bial community is crucial (e.g. when studying short-term processes 
with repeated observations capturing microbiome variation within 
host individuals) but are likely less relevant when studying processes 
operating at larger temporal scales (e.g. microbiome response to cli-
mate change).

Lastly, incorporating site-occupancy modelling in microbiome 
studies presents an exciting avenue to quantify measurement uncer-
tainty	and	to	account	for	imperfect	detection	(Ficetola	et	al.,	2015; 
McClenaghan	et	al.,	2020; Willoughby et al., 2016). Site-occupancy 
models use data collected over multiple visits to sites (or across mul-
tiple technical/biological replicates) to quantify how likely it is to 
detect	a	taxon	when	it	is	present.	For	microbiome	studies,	including	
both	biological	and	technical	PCR	replicates	can	enable	rigorous	sta-
tistical predictions regarding the true or false positive detection of 
microbial	species	within	the	community.	Further,	these	predictions	
can be utilized to improve study design and provide increased confi-
dence in metabarcoding datasets used for biodiversity assessments 
and	monitoring	(Fukaya	et	al.,	2022;	McClenaghan	et	al.,	2020). How 
many replicates of each type are required is an open question, al-
though biological replicates may improve detection probabilities 
(Willoughby et al., 2016).

4  |  BE YOND ESTIMATING DIVERSIT Y: 
E XCITING ADVANCES IN STATISTIC S

Modelling	advances	in	community	ecology	offer	exciting	opportuni-
ties to understand the complex patterns in microbial diversity and 
complement	robust	sampling	designs	(Grantham	et	al.,	2020; Trego 
et al., 2022). In addition, novel methods for analysing amplicon se-
quencing data are continuously emerging, primarily focused on the 
human gut microbiome but adaptable to other microbial ecology 
fields with suitable study designs and datasets (Trego et al., 2022). 
These tools tackle a broad range of ecological and evolutionary 
questions from quantifying community assembly processes, map-
ping occurrence networks, capturing spatial/temporal dynamics, 
integrating multi-omics, identifying differentially abundant taxa, 
finding species-environment associations and predicting functional 
patterns (Trego et al., 2022). However, despite the frequent use of 
high-throughput sequencing, there has been a slow uptake of these 
new analytical techniques, and many studies do not go much beyond 
basic comparisons of alpha and beta diversity estimates across sam-
ples. While important inferences can be made by examining overall 
patterns	of	composition	and	diversity	 (Grosser	et	al.,	2019;	Motta	
et al., 2018), they offer only a starting point towards having a more 
mechanistic understanding of the ecological drivers of microbiome 
variation (Shade, 2017).
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Methods	 used	 to	 understand	 microbiome	 variation	 can	 be	
broadly classified as distance-based (i.e. model pair-wise distances 
between samples), model-based (i.e. combining univariate mod-
els of each taxon into a community-wide model) and differential 
abundance models (i.e. models estimating which taxa are signifi-
cantly	more	abundant	than	others).	For	brevity,	we	will	not	discuss	
differential	 abundance	 methods	 but	 see,	 for	 example,	 Nearing	
et al. (2022) for a comparison of methods. Common distance-based 
approaches to quantify differences in beta diversity across mi-
crobiome samples, such as the permutational multivariate anal-
ysis	of	variance	 (PERMANOVA),	are	algorithmic	 (i.e.	not	based	on	
a statistical model) and do not explicitly account for uncertainty 
in ecological data (Björk et al., 2018; Warton et al., 2012, 2015). 
Importantly, making inferences about microbiome variation is 
often difficult using algorithmic distance-based approaches (Björk 
et al., 2018; Warton et al., 2012).	Model-based	 approaches	 such	
as	 joint	 species	 distribution	 models	 (JSDMs)	 or	 stacked	 models	
(Powell-Romero	et	al.,	2023) are multi-response extensions of gen-
eralized	linear	mixed	models	(GLMMs)	that	can	overcome	some	of	
the limitations of the algorithmic distance-based methods to eluci-
date patterns of microbiome variation (Björk et al., 2018;	Grantham	
et al., 2020).	Often	 using	 a	Bayesian	 framework,	 JSDMs	 simulta-
neously analyse multiple species and environmental variables, 
allowing for the assessment of community-level responses to envi-
ronmental change and host effects (Björk et al., 2018; Ovaskainen 
et al., 2017;	Pollock	et	al.,	2014).	 JSDMs	can	 (i)	 incorporate	 infor-
mation on species traits and phylogenetic relatedness, improving 
estimation accuracy and power when there is a phylogenetic signal 
(Ovaskainen et al., 2017), and (ii) analyse patterns of taxon covari-
ance to infer microbial co-occurrence networks (Björk et al., 2018; 
Fountain-Jones	 et	 al.,	 2020, 2023).	 Microbial	 co-occurrence	 net-
works are valuable tools in microbiome science, as they offer in-
sights (but see Current gaps and future directions below) into the 
associations among microbial taxa, enhancing our understanding 

of	 microbial	 community	 dynamics	 and	 functioning.	 JSDM-based	
co-occurrence networks have an added advantage of interpreta-
tion as the major environmental and host effects shaping microbial 
presences are controlled for (i.e. an inferred association between 
microbes is then not likely a mere product of a shared environmen-
tal	 response).	 However,	 GLMM-based	 JSDM	 co-occurrence	 net-
works cannot untangle the relative roles of taxa associations, and 
environmental or host effects (Clark et al., 2018;	 Fountain-Jones	
et al., 2020)	and	tend	to	not	scale	well	with	large	datasets	(Pichler	&	
Hartig, 2021).	Approaches	such	as	conditional	random	fields	(CRF,	
Clark et al., 2018), multi-response interpretable machine learning 
(mrIML,	 Fountain-Jones	 et	 al.,	2021),	MIMIX	 (Microbiome	MIXed	
Model,	Grantham	et	al.,	2020)	and	scalable	JSDMs	(sjSDM,	Pichler	
& Hartig, 2021) can overcome these limitations. Importantly, ap-
proaches	 such	 as	 MrIML	 and	 MiMiX	 allow	 for	 predictions	 and	
treatment effects to be extracted for individual taxa, which can be 
useful if researchers have a set of focal taxa. We note that these 
methods	are	not	appropriate	in	all	situations.	For	particularly	large	
datasets (thousands of samples), new distance-based methods such 
as	D-MANOVA	(Chen	&	Zhang,	2021) or multivariate distance ma-
trix	regression	(MDMR,	Zapala	&	Schork,	2012) may be better op-
tions. Boshuizen and te Beest (2023) provided a useful guide of the 
pitfalls in analysing amplicon data. While the tools mentioned here 
represent only a tiny fraction of the potential methods available, we 
encourage readers to go beyond diversity metrics and differentially 
abundant taxa to gain more mechanistic insights into microbiome 
data from wild species.

Incorporating some of the methodological advances in bioinfor-
matics and statistics, coupled with robust study design and rigor-
ous laboratory techniques, will improve current research efforts in 
the field (see Figure 1	 for	a	 summary).	Moreover,	 taking	 into	con-
sideration both the limitations and opportunities of these various 
approaches allow us to open up new exciting avenues in the field of 
microbiome ecology research.

F I G U R E  1 Overview	of	some	of	the	
considerations and techniques that can 
be	employed	across	a	general	DNA-
based microbiome research workflow. 
JSDMs,	Joint	species	distribution	models;	
q/dd	PCR,	quantitative/droplet	digital	
PCR.	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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5  |  CURRENT GAPS AND FUTURE 
DIREC TIONS IN MICROBIOME ECOLOGY 
RESE ARCH

Given	the	above	considerations,	how	do	we	move	the	field	forward?	
Here we outline some applicable research directions that will gener-
ate significant impact, by helping to close some of the most pressing 
knowledge gaps in the near future.

 1. Obtaining a better understanding of the ecological, evolutionary 
and mechanistic drivers of microbiome community assembly. 
A key research gap in microbiome ecology is the need for 
a comprehensive understanding of the drivers of community 
assembly. While significant progress has been made regarding 
microbiomes associated with humans and model organisms (e.g. 
Drosophila or Arabidopsis), further study on non-model organ-
isms and natural environments such as soil is required. Included 
within this goal is the investigation of phylosymbiosis – the 
topological congruence between host phylogenetic distance and 
the compositional similarity patterns of their associated micro-
biota (Brown et al., 2023); a pattern that can arise from both 
ecological	and	evolutionary	processes.	Mechanistic	studies	eluci-
dating the specific processes that govern microbial transmission, 
colonization, competition and succession will help explain the 
presence or absence of phylosymbiosis signals across host species 
or populations, and are more broadly essential for a deeper 
understanding of microbiome assembly (Coyte et al., 2021).	For	
both free-living and host-associated microbiomes, the debate on 
the relative role of stochastic (e.g. dispersal) and deterministic 
processes (e.g. environment) in shaping community assembly 
across	habitats	 remains	a	 fundamental	 research	gap	 (Nemergut	
et al., 2013;	 Zhou	 &	 Ning,	 2017). The model-based methods 
we discuss above provide a useful starting point to quantify-
ing the importance of each community assembly mechanism 
(Ovaskainen et al., 2017).

 2. Linking microbiome composition and host genetics. To gain in-
sights into the ability of hosts to select specific microbes that may 
benefit their health or reproduction, future research should aim to 
link host-associated microbiome composition and diversity with 
genes and genomic regions of hosts. This approach will enable the 
identification of host genetic factors, such as immune genes, that 
are key players in shaping the host microbiome and ultimately 
the resulting host phenotypes. By integrating both host genome 
and microbiome data, researchers can make progress at uncover-
ing host–microbiome interactions (Sutherland et al., 2022; West 
et al., 2023). Incorporation of long-read sequencing and hybrid 
assembly approaches which utilize both short and long reads now 
offer exciting opportunities for advancing this research area.

 3. Linking microbiomes to host traits and phenotypes. 
Understanding	the	connection	between	host-associated	micro-
biomes and host phenotypes is a related and important research 
avenue. Investigating the influence of the microbiome on host 
development, behaviour, metabolism and life-history traits can 

therefore provide valuable insights (Bestion et al., 2017; Wood 
et al., 2022).	For	example,	 some	nematode	species	are	known	
to demonstrate extreme phenotypic plasticity in response to 
environmental	cues	(e.g.	chemical	or	bacterial	stimuli	[Hauquier	
et al., 2017; Sommer et al., 2017]), and one open question is 
whether microbial taxa play an integral role in initiating such 
host developmental switch genes (which are themselves under 
epigenetic control in the case of Pristionchus spp. fig nematodes). 
By integrating microbiota data with detailed trait measurements 
of diverse hosts, researchers will be able to identify host phe-
notypes associated with certain microbiome compositions and 
start to unravel the underlying mechanisms of how certain mi-
crobes can influence the phenotypes of hosts, and vice versa.

 4. Exploring microbial functions within microbiomes. While mi-
crobial community composition and diversity have been ex-
tensively studied in microbiome ecology, there is a significant 
need to explore the functional attributes of whole communities, 
localized populations, and individual microorganisms (genes 
and pangenomes) within a microbiome. Investigating microbial 
functions, such as metabolic pathways and molecular interac-
tions between members of the microbiome and with the host, 
can provide important insights into the contributions of specific 
microbial taxa/consortia and their functional roles in host and 
ecosystem health (Béchade et al., 2023; e.g. Hicks et al., 2018; 
Karmacharya	 et	 al.,	 2019).	 Furthermore,	 isolation	 and	 cultur-
ing of microbial strains can provide complementary information 
not otherwise accessible through community omics alone (e.g. 
physiological profiling of microbial growth rates and chemical/
antibiotic sensitivity), while also paving the way for future ex-
perimental work using such microbial isolates.

	 5.	 Disentangle the role of the non-bacterial components of the 
microbiome. Although bacteria have been the primary focus of 
microbiome ecology research due to their overwhelming abun-
dance, other components such as viruses, fungi or protists can 
play crucial roles in host–microbe interactions and ecosystem 
functioning (Jervis et al., 2021; Raghwani et al., 2023).	Future	
investigations that include these non-bacterial components will 
allow us to more comprehensively understand the dynamics 
of the microbiome as a whole community, its interaction with 
hosts, and its role in the ecosystem.

 6. Elucidate the role of host-associated microbiomes in wildlife 
disease and conservation ecology.	 Understanding	 the	 role	 of	
microbiomes in biological conservation, such as wildlife dis-
ease susceptibility and resistance, is an emerging and timely 
field of research within microbiome ecology. Investigating the 
interactions between host genetics, environmental factors and 
microbial communities can shed light on disease dynamics and 
the mechanisms through which microbiomes modulate host im-
mune responses in wildlife populations (Bozzi et al., 2021;	Gao	
et al., 2021; Jervis et al., 2021). Likewise, studies linking environ-
mental microbiomes with land use, habitat fragmentation and 
climate change can provide important information on how to 
address ecosystem challenges in a changing world.
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 7. Disentangling diet-microbiome associations. Diet is a well-
known driver of microbiome composition in animal hosts, but the 
mechanisms by which components of the diet promote certain 
microbial taxa and ultimately influence host health remain un-
clear. Therefore, the complexity of diet-microbiome associations 
requires	further	investigation	(Kartzinel	et	al.,	2019).	Future	re-
search should aim to unravel the specific dietary components 
that shape microbial communities, how diet diversity is related 
to microbial diversity, and the mechanisms through which these 
interactions ultimately influence host health. Longitudinal stud-
ies and controlled dietary interventions can provide valuable in-
sights into the specifics of diet-microbiome relationships (Couch 
et al., 2021).

 8. Unravelling microbial interactions within the microbiome. 
Elucidating the nature of microbial interactions is crucial to 
understand	the	dynamics	of	microbial	ecosystems.	Patterns	of	
co-occurrence are often used to evaluate microbial interactions 
(e.g. competition), yet doing so can be problematic (Blanchet 
et al., 2020). Interactions are highly scale-dependent, which 
poses unique challenges for microbial communities with fine 
spatial	structuring	(Goberna	&	Verdú,	2022;	Peng	et	al.,	2023). 
Future	 experimental	 and	 observational	 studies	 at	 relevant	
scales, with large numbers of samples across time and robust 
measures of abundance, will be able to better quantify microbial 
interactions (Blanchet et al., 2020). Statistical advances utiliz-
ing generalized Lotka–Volterra models across time-series (Stein 
et al., 2013), or employing conditional probabilities to more di-
rectly capture how taxa relate to each other will also help infer 
interactions (Blanchet et al., 2020).

 9. Determine microbial strain diversity and evolution within hosts. 
Microbial	communities	are	often	highly	heterogeneous	and	dif-
ferent strains of a single microbial species can exhibit significant 
genetic and functional variability (Anderson & Bisanz, 2023; 
Goyal	et	al.,	2022).	For	example,	a	shift	in	Escherichia coli clones 
was documented in the gut microbiome of ageing mice, and these 
were characterized by an increase in bacterial mutations target-
ing stress-response genes (Barreto et al., 2020). Investigating 
microbial genetic diversity and the role of horizontal gene trans-
fer are therefore crucial to better understand the adaptive pro-
cesses and functional implications within a microbiome (Barreto 
&	Gordo,	2023). Integrating high-resolution genomic techniques 
with longitudinal and repeated sampling schemes can capture 
key patterns in temporal variation among microbial communities 
and significantly improve our understanding of how microbes 
evolve within individual hosts or specific environments.

 10. The role of connectedness and dispersal in shaping environ-
mental microbiomes. Connectivity across habitats and microbial 
dispersal is increasingly recognized as important for free-living 
microbiomes in particular (Clarke et al., 2020; Dubey et al., 2021; 
Legeay & Hijri, 2023; Liu et al., 2023; Sessitsch et al., 2023). 
Dispersal limitation and level of connectivity can strongly shape 
microbial	diversity.	For	example,	experimental	approaches	have	
found that highly connected habitats (at a cellular level) can 

promote soil microbial diversity compared to less connected 
habitats (Dubey et al., 2021). The appropriate scale to measure 
connectivity can vary substantially; soil microbiomes can differ 
dramatically	in	the	top	15 cm	of	substrate	(Legeay	&	Hijri,	2023) 
or	 even	 within	 a	 single	 soil	 particle	 (Nemergut	 et	 al.,	 2013), 
yet in oceans, microbiomes can be highly connected from the 
surface	to	1000 m	in	depth	(Liu	et	al.,	2023). However, the de-
gree to which microbiomes are connected, and the mechanics 
of dispersal is unknown for most systems. Increased sampling 
across these heterogenous habitats coupled with increased ge-
netic	resolution	(e.g.	whole-genome	shotgun	sequencing	[Zhou	
et al., 2022]) promises to garner new insights into how microbial 
populations are connected, move and evolve in time and space.

6  |  CONCLUSIONS

We are currently at a major turning point in how we can derive valu-
able insights of the ecological processes shaping non-model and 
environmental microbiomes in the wild. The adoption of robust lab-
oratory and bioinformatic techniques, together with sophisticated 
statistical approaches, enhance our ability to gain deeper insights 
into the factors influencing microbiome variation and the intricate 
relationships among microbial taxa. However, all of these techniques 
rely on robust study designs and appropriate sampling scales to ad-
dress	specific	research	questions.	Ultimately,	this	perspective	piece	
serves as a broad outline of some discussion points that ought to be 
considered in the field of microbiome ecology. Hopefully, with robust 
practices, we can, in turn, start to untangle the complex processes 
acting on these incredibly important but understudied communities.
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