
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uiie21

IISE Transactions

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uiie21

Selection of auto-carrier loading policy in
automobile shipping

Sajeeb Kumar Kirtonia, Yanshuo Sun & Zhi-Long Chen

To cite this article: Sajeeb Kumar Kirtonia, Yanshuo Sun & Zhi-Long Chen (06 Dec 2023):
Selection of auto-carrier loading policy in automobile shipping, IISE Transactions, DOI:
10.1080/24725854.2023.2291469

To link to this article: https://doi.org/10.1080/24725854.2023.2291469

View supplementary material

Published online: 06 Dec 2023.

Submit your article to this journal

Article views: 34

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uiie21
https://www.tandfonline.com/loi/uiie21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2023.2291469
https://doi.org/10.1080/24725854.2023.2291469
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2023.2291469
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2023.2291469
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2023.2291469
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2023.2291469
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2291469&domain=pdf&date_stamp=06 Dec 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2291469&domain=pdf&date_stamp=06 Dec 2023

Selection of auto-carrier loading policy in automobile shipping

Sajeeb Kumar Kirtoniaa , Yanshuo Suna , and Zhi-Long Chenb

aDepartment of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA;
bRobert H. Smith School of Business, University of Maryland, College Park, MD, USA

ABSTRACT
Auto-carriers are widely used to ship automobiles by land from origins to destinations. To enable
the compact storage of multiple automobiles, auto-carriers are specially designed such that auto-
mobiles can only be loaded and unloaded through a common exit of an auto-carrier, which com-
plicates the automobile loading and unloading operations. This study is motivated by the lack of
consensus in the automobile shipping literature regarding whether reloading operations should or
should not be prohibited while auto-carriers are en-route. The impact of a loading policy on auto-
carrier shipping is not well understood in the literature. We thus examine two types of loading
policies (namely reloading prohibited versus allowed), and design network-based optimization
methods for each resulting policy variant. We then conduct extensive numerical experiments
based on the data from the Southeast region of the USA to investigate the impact of a loading
policy on automobile shipping operations through a trade-off analysis between solution quality
and computational burden. We find that two proposed policy variants when reloading is allowed
can achieve a desirable compromise between cost efficiency and computational effort. A full-scale
analysis involving 10 auto-carriers with various capacities further confirms that with these policy
variants, substantial cost savings are achieved with reasonable computation effort. The research
findings from this article are expected to inform the choice of an appropriate auto-carrier loading
policy for automobile transportation companies.

ARTICLE HISTORY
Received 25 April 2022
Accepted 21 November 2023

KEYWORDS
Automobile shipping;
loading optimization; space-
state network; tradeoff
analysis

1. Introduction

Each year, more than 10,000,000 light vehicle units (automo-
biles and light trucks) are sold in the United States (U.S.).
For instance, approximately 15,000,000 light vehicles were
sold in 2021 (Statista, 2022), despite the COVID-19 pan-
demic. Those finished vehicles are shipped from automobile
manufacturers or importers to automobile dealerships by in-
house or third-party logistics providers. Besides the distribu-
tion of new vehicles, preowned vehicles are transported
throughout the U.S. as people relocate from one state to
another for better employment opportunities or more
attractive living conditions. Those individual automobile
shippers rely on automobile shipping companies if they do
not drive or tow their own vehicles long distance. Unlike
finished vehicles, which tend to have clustered origins (e.g.,
automotive assembly plant), preowned vehicles usually have
distinct origins and destinations (e.g., previous or new home
location). For economic reasons, automobiles with similar
destinations and delivery timelines are consolidated and car-
ried by auto-carriers. A general class of decision-making
problems concerned with shipping automobiles from origins
to destinations by auto-carriers is known as the automobile
shipping optimization problem. This problem distinguishes
itself from other distribution problems (Sun et al., 2021),

mainly because of the close interrelation between auto-car-
rier routing and loading decisions, arising from the special
trailer configuration of an auto-carrier (Agbegha et al.,
1998).

An auto-carrier usually has a single exit, which is used
for both automobile loading and unloading. As there are
various automobile types (such as compact cars and mini-
vans), automobiles must be assigned in a limited number of
ways to meet various loading restrictions. For instance, a
small auto-carrier slot cannot hold a large automobile
(referred to as single-car constraints); two automobiles
exceeding a size threshold cannot be in a certain pair of
slots (referred to as pairwise constraints). The single-exit
auto-carrier configuration and its associated loading con-
straints imply that when an automobile is ready to be deliv-
ered, other automobiles obstructing the unloading path of
the destined automobile must be temporarily unloaded and
loaded back afterwards. This operation is called a reload. As
reload operations are very time-consuming, expensive, and
may involve safety risks, reloading should be minimized
from the perspective of loading/unloading only. Nonetheless,
prohibiting reloading can have a negative impact on auto-
carrier routing decisions. Conversely, allowing reloading
may yield significant auto-carrier travel cost savings.
Although this interrelation between loading/unloading and

CONTACT Yanshuo Sun y.sun@eng.famu.fsu.edu
Supplemental data for this article can be accessed online at https://doi.org/10.1080/24725854.2023.2291469.

Copyright � 2024 “IISE”

IISE TRANSACTIONS
https://doi.org/10.1080/24725854.2023.2291469

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2291469&domain=pdf&date_stamp=2024-01-03
http://orcid.org/0000-0003-4825-6454
http://orcid.org/0000-0003-2943-4323
http://orcid.org/0000-0002-9960-0465
https://doi.org/10.1080/24725854.2023.2291469
https://doi.org/10.1080/24725854.2023.2291469
http://www.tandfonline.com

routing is not difficult to describe, it is challenging to
incorporate this interrelation in an optimization model,
because of the additional computation effort needed, which
is clearly dependent on the extent to which reloading is
allowed. This creates a stark contrast between two streams
of studies in the literature: studies where reloading is
allowed while auto-carrier routes are fixed, versus studies
where reloading is prohibited while routes are optimizable
(see more detailed reviews in Section 2). The joint optimiza-
tion of intercorrelated auto-carrier loading/unloading and
routing decisions requires a full understanding of the cost
efficiency (measured by total cost, including number of
reloads and route cost) and computational burden (meas-
ured by total computation time), and how they vary with
the degree to which auto-carrier reloading is allowed.
Unfortunately, there are no such studies in the current lit-
erature. Therefore, this article seeks to enrich the automobile
shipping optimization literature by investigating what spe-
cific auto-carrier loading policy can strike a desirable bal-
ance between solution quality and solution time. Another
research gap this article fills is that in almost all existing
auto-carrier loading optimization studies, including the most
recent work by Bonassa et al. (2023), it was assumed that all
pickups occur at the beginning of an auto-carrier route. In
this study, we examine a general pickup and delivery route
where any stop of the route can be a pickup and/or delivery
location. This is very common in shipping preowned
vehicles for private customers which generally have different
pickup and delivery locations that can be spatially distrib-
uted in a random manner.

We propose a unified solution framework based on what
we call space-state graphs to solve the loading optimization
problem when auto-carrier routes with pickup and delivery
are given. The space-state graph is inspired by the observa-
tion that we essentially seek to optimize how the automo-
bile-to-slot assignment (represented as loading state) should
vary along a predetermined auto-carrier route, i.e., over
space. With this graph, the auto-carrier loading optimization
problem for any given auto-carrier route is converted to
some network flow problem that can be solved efficiently.
Under each loading policy, we customize how the space-
state graph is generated and how the optimal loading/
unloading plan is determined. Next, we conduct numerical
studies using a range of problem instances for an anony-
mized automobile transportation company in Southeast U.S.
and identify the desirable loading policy based on the trade-
off between solution quality and time. We also explore how
a few key inputs influence the performance of a selected
loading policy. Based on the findings from our numerical
studies, we conclude that in automobile shipping, allowing
reloading while considering only a subset of all feasible load-
ing states and state transitions is preferable because it strikes
a desirable balance between cost efficiency and computa-
tional burden.

This article makes the following contributions:

1. We prove that finding even a feasible loading plan for
the loading optimization problem defined by Agbegha

et al. (1998) is strongly NP-complete, when the num-
bers of cars and slots are arbitrarily large. This means
that it is impossible to solve this problem optimally in a
time that is a polynomial function of the numbers of
cars and slots, unless P ¼ NP.

2. The loading optimization framework that we develop
based on space-state graphs is new and differs from the
existing ones in the literature (e.g., Agbegha et al.
1998). Through comparison we find better loading plans
(with fewer reloads) for routes in problem set #3 in
Agbegha et al. (1998), as documented in the online
Appendix B. Our approach is also a unified method
that works for any given loading policies.
Consequentially, this approach provides an efficient and
fair evaluation of alternative loading policies.

3. We fill the literature gap that no studies have explored
how the extent to which reloading is allowed affects the
trade-off between the total automobile shipping cost
and the additional computational time needed for auto-
carrier operators. We are thus the first to derive several
key managerial insights into the choice and impact of
auto-carrier loading policy. For instance, we find that a
proposed loading policy that limits the automobile
reshuffling operations (namely Policy 1b, presented in
Section 4.2) can yield the optimal loading solution in
virtually all randomly generated instances, while requir-
ing less than 25% of the computation time needed by a
brute-force policy that guarantees loading optimality
(i.e., Policy 1a). In addition, we find that with minimum
computation time, a greatly simplified version of Policy
1b (i.e., Policy 1c) can significantly improve the loading
solution quality relative to Policy 0, which prohibits
reloading. Therefore, those key insights into the trade-
off of computation time and cost efficiency can inform
the choice of an appropriate auto-carrier loading policy
when the joint optimization of auto-carrier routing and
loading is pursued in a future study.

The rest of this article is organized as follows. Section 2
reviews the existing literature on loading optimization
involved in automobile and non-automobile shipping prob-
lems. Section 3 defines the auto-carrier loading problem and
presents a computational complexity analysis. Section 4
describes the space-state network-based solution approach
for the loading optimization problem. Section 5 describes
numerical studies and reports major research findings.
Section 6 concludes the article with a summary of manager-
ial insights and future research directions.

2. Literature review

2.1. Auto-carrier loading optimization problem

Agbegha et al. (1998) were the first to define and study the
auto-carrier loading optimization problem. They developed
a quadratic assignment formulation to optimize how auto-
mobiles should be assigned to various auto-carrier slots. In
the predetermined distribution route, all automobiles are

2 S. K. KIRTONIA ET AL.

https://doi.org/10.1080/24725854.2023.2291469

picked up simultaneously at one location and dropped off
possibly at multiple locations, implying the one-to-many dis-
tribution pattern. One shortcoming of this seminal work
(Agbegha et al., 1998) was that it required that reloaded
automobiles must be loaded back to the original slots.
Therefore, the automobile-to-slot assignment was optimized
only once at the beginning of the predetermined route. The
optimization model, with the objective of minimizing the
total number of reloads, was solved with a heuristic based
on a branch-and-bound procedure. Their numerical studies
indicated that it took a few seconds on average to find an
optimized loading plan for a given route, although their
algorithm failed to solve some of their test instances. A few
other studies (Lin, 2010; Chen, 2016) have tried to improve
on Agbegha et al. (1998), for instance, by allowing reloaded
automobiles to be loaded back to any feasible slots after
temporary unloading. A similar formulation, namely quad-
ratic assignment, was used in Lin (2010) and was solved dir-
ectly by a nonlinear programming solver. One clear research
gap is that in all available auto-carrier loading studies, only
one-to-many distribution routes were considered while the
general case with multiple pickup locations and multiple
delivery locations (i.e., a many-to-many demand pattern),
which is common in the shipping of preowned vehicles, was
not considered.

While the above reviewed studies were focused on load-
ing optimization under the assumption that auto-carrier
routes were given, a few other studies optimized auto-carrier
routes considering various levels of auto-carrier loading
complexities. Dell’Amico et al. (2015) were among the ear-
liest researchers to optimize auto-carrier routes while
employing a sophisticated procedure to check whether cer-
tain loading restrictions were satisfied for a given route.
Unlike Agbegha et al. (1998), Dell’Amico et al. (2015) did
not model an auto-carrier trailer as a collection of discrete
slots; they instead considered a continuous loading plane
with length limits, which was considered earlier by Tadei
et al. (2002). The same way of modeling loading capacity
was also used in Tadumadze and Emde (2021). No reloading
was needed in Dell’Amico et al. (2015), as it imposed the
restriction that all automobiles must be loaded and unloaded
in a Last-In-First-Out (LIFO) fashion. Wang et al. (2018)
mainly optimized how automobiles should be assigned to
auto-carriers and how auto-carriers should be routed con-
sidering a so-called downward compatible loading con-
straint. Under this constraint, a large auto-carrier slot can
hold any automobiles whereas a small slot can store only a
small car. Essentially, this was called single-car constraints
in Agbegha et al. (1998). Wang et al. (2018) considered such
loading restrictions when assigning automobiles to auto-car-
riers, but did not optimize loading decisions or explore the
possibility of reloading. In a follow-up study, Chen and
Wang (2020) focused on auto-carrier loading optimization
while simplifying routing optimization by approximating the
actual transportation cost of a route using a simple cost esti-
mation. They considered the same downward compatibility
loading constraint, but did not consider reloading. Ju�arez
P�erez et al. (2019) adopted a two-phase heuristic (routing

first, loading second) for the automobile shipping problem.
In the second phase of the heuristic, they checked the load-
ing feasibility of a route generated in the first phase. They
assumed the LIFO loading policy, which implied reloading
prohibition. In all auto-carrier routing studies including the
most recent one by Bonassa et al. (2023), it was assumed
that automobiles were picked up at the same location, with
the exception that Chen and Wang (2020) allowed multiple
pickup locations prior to any drop-offs. Clearly, all such
routes are only a special case of a general pickup and deliv-
ery route, which is considered in this study. For a more
comprehensive review of the auto-carrier routing and load-
ing optimization studies, see Sun et al. (2021).

The above review also indicates that in the existing stud-
ies, when auto-carrier routes were fixed, reloading was
allowed in optimizing auto-carrier loading decisions; when
routing optimization was involved, reloading was not
allowed. It can be expected that when both routing opti-
mization and reloading are allowed, the computational bur-
den can increase significantly. For instance, for a given
auto-carrier route, if reloading is allowed, it may take only a
second to optimize the loading plan (Agbegha et al. 1998).
However, when there are N auto-carrier routes to evaluate
for the purpose of routing optimization, the total computa-
tion time spent on solving the loading subproblem becomes
N seconds. Clearly, in a practical context, N should be at
least in the order of tens of thousands (Dell’Amico et al.,
2015). Despite the significant computational efforts, allowing
reloading is expected to yield substantial savings in routing
cost, as will be demonstrated in Section 5 of this article.
Thus, it is necessary to fully understand how the degree to
which reloading is allowed affects the trade-off between
solution quality and computational burden, which has not
been explored in any existing study in the literature. In
practice, a full understanding of such a trade-off is essential
in choosing a proper auto-carrier loading policy.

2.2. Loading policies in non-automobile transportation

In transporting non-automobile commodities, different car-
rier configurations presented other loading and unloading
challenges. For instance, Petersen and Madsen (2009) con-
sidered a special truck with multiple independent rows, each
of which was modeled as a LIFO stack. After an item was
assigned to one of the rows, it became inaccessible until it
was at the top of its assigned stack. Battarra et al. (2010)
studied a special Traveling Salesman Problem (TSP) with
additional handling operations. There were two types of
commodities, namely commodities of type a for delivery
only (e.g., functioning bikes) and commodities of type b for
picking up only (e.g., defective bikes). Each customer for
visiting had both types of commodities. As Battarra et al.
(2010) concluded it was too complex to optimize the TSP
tour and vehicle loading decisions, so they introduced three
handling policies to simplify the optimization problem. In
policies 1 and 2, all commodities of type b were stored at
the rear or front of a truck, respectively; the third policy
was a hybrid one. Those handling policies were compared

IISE TRANSACTIONS 3

through extensive numerical experiments in Battarra et al.
(2010). Veenstra et al. (2017) also studied the TSP with han-
dling operations and reported that handling costs were
reduced significantly while a small increase in vehicle dis-
tance was incurred.

In the above reviewed studies, one truck had a single or
multiple independent stacks for loading. In some other
cases, the loading space of a truck can be modeled as a con-
tinuous two-dimensional (2D) or three-dimensional (3D)
space. For instance, Lee et al. (2013) considered height and
width of steel slabs in packing. Bortfeldt and Yi (2020)
assumed that cargos were rectangular shaped, and a truck
had a 3D space with fixed dimensions for cargo storage. In
Bortfeldt and Yi (2020), cargos of each customer can be
freely unloaded without moving cargos of other customers,
because the LIFO loading policy was enforced. Reil et al.
(2018) considered two separate compartments for linehaul
and backhaul with similar 3D loading constraints. Bukchin
and Sarin (2004) modeled a truck with several different
compartments, each of which was allowed to contain a sin-
gle product type.

By contrast, as indicated by Agbegha et al. (1998), an
auto-carrier is characterized by a set of discrete slots and
complex precedence relations, and hence, cannot be
adequately modeled with a single or multiple independent
LIFO stacks. Nor can it be modeled as a 2D or 3D space.
That explains why Agbegha et al. (1998) introduced a loading
network to model the special trailer configuration of an auto-
carrier. In addition, the unique single-car and pairwise load-
ing restrictions must be met when automobiles are loaded,
which are not present in shipping non-automobile cargos.

While in the transportation of non-automobile cargos,
various loading policies were defined and compared in the
literature, the distinct configuration of an auto-carrier
implies that the findings or managerial insights for non-
automobile shipping may not be transferrable to the case of
automobile shipping.

2.3. Research gaps

The literature review yields three research gaps as follows.
First, although the auto-carrier loading optimization was
studied by quite a few researchers, the computational com-
plexity of this problem has not been analyzed. Second, in all
existing studies, except for Wang et al. (2018), a restrictive
route structure where all pickups occur at the beginning of
an auto-carrier route was considered. A more general struc-
ture where pickup and/or delivery can occur at any stop of
the route has not been studied. The third literature gap is
that none of the existing automobile shipping studies have
explored how the trade-off between solution quality and
computational burden varies with the extent to which auto-
mobile reloading is permitted.

3. Problem statement and complexity analysis

We define the auto-carrier loading optimization problem for
a given route precisely and prove that even a very special

case of this problem is strongly NP-complete when the
number of the auto-carrier slots is arbitrary, which means
that unless P ¼ NP, any exact algorithm for this problem
has a worst-case running time exponential in the problem
input length, including the number of slots.

3.1. Description of the auto-carrier loading optimization
problem

Given an auto-carrier and a pickup and delivery route to be
executed by this auto-carrier, the loading optimization prob-
lem is to determine how the automobile orders (or simply
orders) covered by the given route should be loaded and
unloaded at each stop of the route to minimize the total
loading cost (e.g., measured by the number of reloads over
the entire route), subject to various loading constraints asso-
ciated with the auto-carrier. We consider the most general
version of the problem where different orders may or may
not share the same pickup and/or delivery locations (or
auto-carrier stops), which means each auto-carrier stop
could be a pickup and/or delivery location for one or mul-
tiple orders.

Let K denote the set of orders to be picked up and deliv-
ered by the auto-carrier by visiting the given route. The
auto-carrier has a set of available slots I at the beginning of
the route and is associated with loading restrictions. Let R
be the set of stops covered by the given auto-carrier route,
where the stops are denoted as 0, 1, 2, … , jRj in the
sequence visited by the auto-carrier. Except for stop 0 repre-
senting the auto-carrier depot, each stop r from 1 to jRj
could be a pickup location, or a delivery location, or both.
We thus define two sets of orders for each stop r as follows:
a set of orders for pickup, denoted as KP

r � K, and a set of
orders for delivery, denoted as KD

r � K: At least one of these
two sets is nonempty. Picking up or dropping off orders at
a stop may incur a loading cost because some orders on the
auto-carrier may have to be unloaded first to allow other
orders to be loaded or unloaded, and loaded back to the
auto-carrier. The loading optimization problem is to find a
loading solution at each stop of the given route such that
the total loading cost incurred along the route is mimimized
without violating the loading constraints.

Although auto-carriers have various trailer types and
capacities, we follow Agbegha et al. (1998) and model the
trailer configuration of an auto-carrier with a tree-like load-
ing structure, illustrated in Figure 1, where each circle repre-
sents a slot, and each arc from slot i to slot j defines a
precedence relation, namely slot i must be empty before an
automobile in slot j can be unloaded through slot i: When
loading cars to the slots of the auto-carrier, two types of
loading constraints must be satisfied, namely (i) single-car
constraint: certain cars cannot be assigned to certain slots;
(ii) pairwise constraints: there are pairs of slots such that,
for each pair of slots, if a specific car is assigned to one of
these slots, some other specific cars may not be assigned to
the other slot. For instance, slots 3 and 4 of the six-slot
auto-carrier in Figure 1 form such a pair. Both sets of con-
straints are considered by Agbegha et al. (1998) and some

4 S. K. KIRTONIA ET AL.

follow-up studies, e.g., Lin (2010) and Chen (2016). The sin-
gle-car constraint is considered by Wang et al. (2018).

We note that all the loading optimization problems studied
in the literature, as reviewed in Section 2, are special cases of
our problem. For example, in the problems studied by
Agbegha et al. (1998) and Dell’Amico et al. (2015), all orders
are picked up at a common pickup location, and in the prob-
lem considered by Wang et al. (2018), all the orders are picked
up first from several warehouses before being delivered to
dealers. Furthermore, in the problem studied by Agbegha
et al. (1998), it is assumed that when a car is temporarily
unloaded and loaded back, it must go back to its original slot.
This assumption makes reloading more convenient, but limits
the solution space for reloading, and hence, may increase
loading cost. By contrast, in our problem, we do not make
such an assumption, and hence, orders temporarily unloaded
can be loaded back to any slots on the auto-carrier as long as
the loading constraints are not violated.

Furthermore, our problem has a more complex structure
and is likely to have a larger scale than these existing prob-
lems because: (i) in our problem, any stop of the given route
can have pickups and/or deliveries, which makes our prob-
lem dynamic, whereas these existing problems are static (i.e.,
all decisions are made only once at the beginning of a given
route); and (ii) the number of orders involved in these exist-
ing problems is in the same magnitude as the number of
slots, whereas in our problem the number of orders involved
can be much larger than the number of slots.

3.2. Complexity analysis of the auto-carrier loading
optimization problem

Although quite a few studies have considered the loading
optimization problem, the computational complexity of
these problems is not fully analyzed. Agbegha et al. (1998)
show that in the absence of loading constraints (i.e., any car
can be assigned to any slot of the auto-carrier), then their
problem can be solved optimally by a simple car-to-slot
assignment rule, which can be constructed in polynomial
time of the number of slots. However, we are not aware of
any existing results on the complexity of loading

optimization problems when loading constraints are present.
In this section, we clarify the complexity of our problem by
first analyzing the complexity of the problem studied by
Agbegha et al. (1998) where there are loading constraints, as
described in Section 3.1.

As discussed above, in the problem studied by Agbegha
et al. (1998), as well as the problems studied by several other
papers reviewed in Section 2.1, all the pickups are carried
out prior to any deliveries, i.e., all pickups take place at the
first stop or first few stops of the given auto-carrier route,
and no orders are picked up at the subsequent stops of the
route. Denote the number of auto-carrier slots as m. Clearly,
in these problems, the number of orders is no greater than
m, and the number of stops in the given route is no greater
than 2m. When the number of slots m is fixed (hence the
number of cars and number of stops on the given route are
also fixed), these problems can be solved in constant time
because enumerating all feasible solutions takes at most
Oðm!Þ time, which is fixed (i.e., a constant time). However,
when the number of slots m is arbitrary, we show in the fol-
lowing theorem that the problem studied by Agbegha et al.
(1998) becomes intractable.

Theorem 1: When the number of cars to be loaded and the
number of slots available are arbitrary, finding even a feasible
loading plan for the loading problem studied by Agbegha
et al. (1998) is strongly NP-complete.

Proof: We show this by a reduction from a 3-dimensional
matching (3DM) problem, which is known to be strongly
NP-complete (Garey and Johnson, 1979). 3DM can be
described as follows: Given three disjoint sets W, X, and Y ,
each with q elements, i.e., W ¼ fw1, :::,wqg, X ¼
fx1, :::, xqg, and Y ¼ fy1, :::, yqg, and a set of triples M �
W � X � Y , i.e., each element in M is a triple ðwi, xj, ykÞ
where wi 2W, xj 2 X and yk 2 Y: The question asks
whether M contains a matching, i.e., a subset �M � M such
that �Mj j ¼ q and no two elements of �M agree on any
coordinate.

Given any instance of 3DM, for each wi, for i ¼ 1, :::, q,
define the set of tuples, Ti ¼ fðxj, ykÞjðwi, xj, ykÞ 2 Mg, the

4 6

1 3 5

2

EXIT
Slot

i j

71 3 5

EXIT
Slot

i j

Single-level auto-carrier

4 6 7

1 3 5

2

EXIT
Slot

Two-level auto-carrier

71 3 5

EXIT
Slot

9

Four-slot auto-carrier

Five-slot auto-carrier

Six-slot auto-carrier

Seven-slot auto-carrier

Figure 1. Loading structures of auto-carrier trailers.

IISE TRANSACTIONS 5

set of x-coordinates covered by Ti, i.e., Xi ¼ {xj 2 Xj there
is some yk 2 Y such that ðxj, ykÞ 2 Ti}, and the set of y-coor-
dinates covered by Ti, i.e., Yi ¼ {yk 2 Yj there is some xj 2
X such that ðxj, ykÞ 2 Ti}. Furthermore, for each pair of ði, jÞ
with ðwi, xj, ylÞ 2 M for some yl 2 Y , we define the set of
feasible y-coordinates, Yij¼fyk2Yjðwi,xj,ykÞ2Mg: By these
definitions, we can observe that Ti¼fðxj,ykÞjxj2
Xi and yk2Yijg:

We construct a corresponding instance of the loading
problem as follows: There are m ¼ 2q cars to be loaded into
2q slots of an auto-carrier. Divide the cars into q pairs such
that the two cars in each pair have to follow some loading
constraints to be defined below. Index the q pairs of cars as
ðw11,w12Þ, :::, ðwq1,wq2Þ, such that each pair of cars ðwi1,wi2Þ
corresponds to the element wi in W, for i ¼ 1, :::, q: Index
the 2q slots as ðx1, :::, xq; y1, :::, yqÞ, such that the first q slots
correspond to the elements in X and the last q slots corres-
pond to the elements in Y: We construct the following load-
ing constraints that must be satisfied in any feasible
solution:

1. Single-car constraints: For each i ¼ 1, :::, q, the single-
car constraints for the two cars ðwi1,wi2Þ are defined as
follows: car wi1 can only be loaded to slots in Xi, and
cannot be loaded to any slot in ðXnXiÞ [Y; and car wi2

can only be loaded to slots in Yi, and cannot be loaded
to any slot in ðYnYiÞ [X:

2. Pairwise constraints: For each i ¼ 1, :::, q, there are
pairwise constraints for the two cars ðwi1,wi2Þ as fol-
lows: for h ¼ 1, :::, q, if car wi1 is loaded to a slot xh 2
Xi, then car wi2 can only be loaded to slots in Yih and
cannot be loaded to any slot in YinYih:

Observation:
We first observe that for the constructed instance, in any
feasible solution that satisfies the above defined loading con-
straints, each pair of two cars ðwi1,wi2Þ, for i ¼ 1, :::, q,
must be loaded to the two slots corresponding to a tuple in
Ti, respectively. This implies that for every i ¼ 1, :::, q, there
is a one-to-one correspondence between every feasible load-
ing plan for the two cars ðwi1,wi2Þ and a specific triple
ðwi, xj, ykÞ in M:

Clearly, the above instance of the loading problem can be
constructed in polynomial time.

We show in the following that there is a solution to the
constructed instance of the loading problem if and only if
there is a match �M � M such that �Mj j ¼ q and no two ele-
ments of �M agree on any coordinate.

“If part”: If there is a such a match �M � M, then �M ¼
fðwi, x½i�, yhiiÞji ¼ 1, :::, qg, where each x½i� corresponds to a
distinct element in X, and each yhii corresponds to a distinct
element in Y , i.e., fx½i�ji ¼ 1, :::, qg ¼ X and fyhiiji ¼
1, :::, qg ¼ Y: We can constructure a feasible loading plan
for the constructed instance of the loading problem as fol-
lows: load car wi1 to slot x½i� and load car wi2 to slot yhii, for
i ¼ 1, :::, q: Since �M � M, we have: ðx½i�, yhiiÞ 2 Ti, for i ¼
1, :::, q: Thus, by the Observation we made earlier, this is a
feasible loading plan.

“Only if part”: If there is a feasible solution to the con-
structed instance of the loading problem, then in any given
feasible solution, for each pair of two cars ðwi1,wi2Þ, for i ¼
1, :::, q, by constraint 1, car wi1 must be assigned to a slot in
Xi, and we denote this slot as x½i�, and similarly, by con-
straint 2, car wi2 must be assigned to a slot in Yi½i� and we
denote this slot as yhii: The Observation we made earlier
implies that ðx½i�, yhiiÞ 2 Ti, for i ¼ 1, :::, q: Furthermore,
since there are 2q cars and 2q slots, each slot is occupied by
exactly one car in the given solution. Thus, fx½1�, :::, x½q�g ¼
X, and fyh1i, :::, yhqig ¼ Y: Therefore, fðwi, x½i�, yhiiÞji ¼
1, :::, qg is a match for the 3DM instance such that
jfðwi, x½i�, yhiiÞji ¼ 1, :::, qgj ¼ q and no two elements in it
agree on any coordinate.

We note that Theorem 1 means that the time it takes for
any algorithm to find an optimal (or even a feasible) solu-
tion for the problem studied by Agbegha et al. (1998) must
be an exponential function of the length of the problem
input, including m, unless P ¼ NP. This also implies that it
is not possible to solve this problem to optimality in time
that is a polynomial function of m, unless P ¼ NP. Since
our problem is more general than the problem studied by
Agbegha et al. (1998), these same conclusions apply to our
problem as well. It should be noted that although in theory,
the complexity of our problem is similar to that of the prob-
lem studied by Agbegha et al. (1998), due to the more com-
plex structure and more dynamic nature of our problem, as
discussed in Section 3.1, our problem is more difficult to
solve.

One of the algorithms (i.e., Policy 1a) we present in
Section 4 solves our problem to optimality with a running
time that is exponential in the number of auto-carrier slots
m, but polynomial in the number of cars and number of
stops on the given auto-carrier route. Thus, by Theorem 1,
this is the best possible exact algorithm one can have for
our problem from a theoretical point of view.

4. Space-state network-based approach

4.1. A motivating example for the proposed approach

The essence of the auto-carrier loading optimization is to
decide how the loading state of an auto-carrier changes
along the auto-carrier route (i.e., over space), where a load-
ing state specifies what automobiles are on the auto-carrier
and what specific auto-carrier slots these automobiles
occupy. An illustrative instance of the auto-carrier loading
problem is presented to motivate our space-state network-
based solution approach to be presented in Section 4.2. A
three-slot auto-carrier’s route (0, 1, 2, 3) is given in Figure
2. Note that for simplification purposes, a distribution route
is illustrated here. This auto-carrier will pick up three auto-
mobiles (one compact car and two minivans) at the com-
mon origin (denoted as stop 0) and visit customers 1, 2, and
3 (denoted as stops 1, 2, 3, respectively) sequentially.
Customer 3 orders a compact car 3, whereas customers 1
and 2 order minivans 1 and 2, respectively. The exit slot of
the auto-carrier (located at the rear of the auto-carrier) can
hold a compact car, but not a minivan, due to the size limit.

6 S. K. KIRTONIA ET AL.

The other two slots can hold any automobiles. Figure 2
highlights a specific loading plan, which consists of a spe-
cific loading state at each stop of the route. Figure 3 shows
what we call the space-state network, which includes all pos-
sible loading plans for the given auto-carrier route, where a
loading plan consists of one specific loading state at each
stop of the route. Since the exit slot cannot hold minivans,
the compact car ordered by customer 3 must be loaded to
the exit slot to ensure the auto-carrier serves all three cus-
tomers. Thus, there are two possible loading states after the
auto-carrier leaves the origin, i.e., [3,1,2] and [3,2,1], as
shown in Figure 3. Likewise, all possible loading states of
the auto-carrier after visiting each customer can be found.
At the end of the auto-carrier route, all slots are vacant.
Figure 3 essentially shows how the loading states evolve over
space, which is why the network in Figure 3 is referred to as
a space-state network.

To illustrate, we describe the loading plan shown in
Figure 2 using a sequence of loading states generated in
Figure 3. This loading plan starts with the loading state [3,
1, 2] at the origin. When the auto-carrier visits customer 1
next, the compact car must be unloaded and loaded back to
facilitate the unloading of the minivan ordered by customer

1. The resulting loading state becomes [3, -, 2], where the
center slot is empty and marked as “-”. Before the minivan
ordered by customer 2 is delivered, the compact car should
be unloaded and reloaded again. Thus, the loading state
after visiting customer 2 becomes [3, -, -]. Finally, at cus-
tomer 3, the compact car is unloaded and the loading state
becomes [-, -, -]. Thus, a total of two reloads are needed
when the illustrated loading plan is adopted for this given
auto-carrier route under Policy 1. By contrast, this auto-car-
rier route becomes infeasible under Policy 0, because this
policy prohibits reloading, whereas any loading plan shown
in Figure 3 requires at least two reloads.

The network in Figure 3 does not yet show how costly a
transition from one loading state to another is. The cost of
change from state [3,1,2] to [3,-,2], for example, can be
computed as follows. To transition from [3,1,2] to [3,-,2], an
unload of car 3, an unload of minivan 1, and a reload of car
3 are needed sequentially. Since the unloading and reloading
of car 3 are extra handling operations, which are only
needed to enable the delivery of the minivan 1 to customer
1, the transition cost from [3,1,2] to [3,-,2] is evaluated as
one reload. A formal procedure for computing the transi-
tional cost is given in Section 4.2.3.

0

1

2

3
Origin

Customer 1

Customer 3

Customer 2

3 1 2

3 - 2

3 - -

- - -

Reloading

Reloading

Fully loaded

Empty

Loading
State

Loading
State

Figure 2. Example of loading/reloading decisions.

Origin Customer 1 Customer 2
0 1 2 3

3 1 2

3 2 1

- 3 2

3 2 -

- 2 3

3 - 2

- 3 -

- - 3

3 - -

- - -

Space

Lo
ad
in
g
st
at
e

Customer 3

Figure 3. Space-state network for the example given in Figure 1.

IISE TRANSACTIONS 7

4.2. Space-state network-based solution approach

4.2.1. Formulation of auto-carrier loading constraints
To better understand the single-car and pairwise loading
constraints involved in the loading optimization problem,
we first formulate them mathematically. For an automobile
order k 2 K, the set of all feasible slots is denoted as Ik � I:
Let xki be a binary variable, which has a value of one if
automobile k is assigned to slot i 2 Ik: Then, the loading
constraints are formulated as follows:

X

i2Ik
xki ¼ 1, 8k 2 K (1)

X

k2K
xki � 1,8i 2 I (2)

X

k2K
bkxki þ

X

�k2K
b�kx�kj � Bij,8ði, jÞ 2 PI , i < j, k 6¼ �k (3)

xki 2 f0, 1g, 8k 2 K, i 2 Ik (4)

Constraint (1) requires each automobile to be loaded
exactly once. Constraint (2) restricts each auto-carrier slot to
accept at most one automobile. Constraint (3) is used to
incorporate pairwise constraints for a pair of interrelated
slots ði, jÞ, where PI is the set of all such interrelated slot
pairs; bk represents the equivalent size of automobile k; Bij

is the size limit associated with pair ði, jÞ:
Although Agbegha et al. (1998) provided pairwise con-

straints for the example auto-carriers in Figure 1, they did
not formulate those constraints mathematically. We show
that constraint (3) can be used to model the pairwise con-
straints in Agbegha et al. (1998). For the seven-slot auto-car-
rier in Figure 1 and three types of automobiles for loading
(namely Types 1, 2, and 3, or T1, T2, and T3 for brevity),
Agbegha et al. (1998) introduced the following pairwise con-
straint: if an automobile of Type 2 or 3 is assigned to slot 3,
another automobile of Type 3 cannot be assigned to slot 4;
likewise, if a T2 or T3 automobile is assigned to slot 4, a T3
automobile cannot be assigned to slot 3. Essentially, if one
of the two pairing slots (3 and 4) holds a T3 automobile,
the other slot can only hold a T1 automobile. If a T3 auto-
mobile is not involved, slots 3 and 4 can accept other com-
binations of automobiles, such as two T2 automobiles.
Similar pairwise constraints are defined for another pair of
slots, namely slots 5 and 6. To model such restrictions, we
define PI ¼ fð3, 4Þ, ð5, 6Þg: The parameter bk is a proxy for
the size of automobile k: If automobile k is of Type a, we
set bk to be a, where a 2 f1, 2, 3g: The limit Bij can be set
to a value of four, namely B34 ¼ 4 and B56 ¼ 4: Once those
parameters are specified as above, constraint (3) ensures that
the pairwise loading constraints described by Agbegha et al.
(1998) are incorporated. Constraint (4) defines xki to be binary.

Constraints (1)-(4) are checked when generating loading
states (i.e., value of xki) at each auto-carrier stop under any
loading policy, which is described in detail in Section 4.2.2.

It is worth noting that Mahmoudi and Zhou (2016) con-
sidered passenger carrying states in a ridesharing

optimization study. However, those passenger carrying states
are different from the auto-carrier loading states in two not-
able ways. First, in Mahmoudi and Zhou (2016), there are
no single-passenger or pairwise constraints in generating
passenger carrying states. Second, reloading or reshuffling is
irrelevant in Mahmoudi and Zhou (2016), whereas in mak-
ing auto-carrier loading decisions, reloading is essential and
must be considered explicitly.

4.2.2. Space-state graph generation
Following the problem definition given in Section 3, for a
given auto-carrier route, K denotes the set of orders to be
picked up and delivered by an auto-carrier with a set of
available slots I: We use R to denote the set of stops covered
by the given auto-carrier route, where the stops are denoted
as 0, 1, 2, … , jRj in the sequence visited by the auto-carrier.
We use KP

r and KD
r to denote the set of orders to be picked

up and the set of orders to be dropped off at stop r,
respectively. Immediately after visiting stop r, let Kr be the
set of orders that are on the auto-carrier. Given a loading
policy, a corresponding space-state graph can be generated
accordingly. Regardless of which specific policy is used, a
space-state graph can be generated using the general frame-
work described below and where some steps can be custom-
ized for different policies, to be discussed later. In the
procedures described below, Nr denotes the set of feasible
loading states (interchangeably, vertices) generated for the
orders in Kr right after visiting stop r:

Step 0: Create a null loading state at stop 0, denoted as a
vector [-, -, … , -] with dimension jIj, where each “-” repre-
sents an empty slot of the auto-carrier. This null loading
state is designated as the source vertex of the space-state
graph.

Step r : At stop r, for r ¼ 1, :::, jRj − 1, as orders in KP
r

and KD
r are for pickup and drop-off, respectively, set Kr ¼

Kr−1 [KP
r nKD

r : Generate a set of feasible loading states Nr

for the orders in Kr by a procedure determined by the given
policy.

Use a procedure determined by the given policy to add a
directed edge to connect each vertex p 2 Nr−1 at stop r − 1
with all or a subset of the vertices in Nr at stop r:

Step jRj : At stop jRj, create a null loading state, denoted
as a vector [-, -, … , -] with dimension jIj: This null loading
state is intended to be the sink vertex of the space-state
graph. Add a directed edge between each vertex p 2 NjRj−1
and the sink vertex.

Now we describe the specific loading policies we consider
and how the above general framework for space-state graph
generation can be customized for each policy. There are in
general two types of loading policies, namely reloading
prohibited (Policy 0) and allowed (Policy 1). When reload-
ing is allowed, we consider three variants of Policy 1,
namely Policies 1a, 1b, and 1c, which differ in the specific
procedures involved in Step r of the above framework for
space-state graph generation. As described below, Policy 1a
generates all feasible vertices or loading states Nr for each
stop r and all feasible edges, and hence, guarantees an opti-
mal solution for the loading problem, whereas Policies 1b

8 S. K. KIRTONIA ET AL.

and 1c generate a subset of feasible vertices and a subset of
feasible edges only.

For Policy 1a, the following brute-force algorithm is
employed in Step r to generate vertex set Nr and corre-
sponding edges. We start with a single existing loading state
[-, -, … , -] with dimension jIj, and a non-empty set of
automobiles Kr: While Kr 6¼ ;, insert an automobile from
Kr to each unoccupied auto-carrier slot of every existing
loading state to generate new loading states, considering the
loading constraints (1)-(4). All resulting states replace exist-
ing loading states, and a new automobile from Kr is consid-
ered next. When Kr ¼ ;, all existing loading states together
form set Nr: After generating Nr, add a directed edge to
connect each vertex p 2 Nr−1 at stop r − 1 with all the states
in Nr: Essentially, the above procedure generates every feas-
ible solution that satisfies the constraints (1)-(4).

To illustrate, consider an example of an auto-carrier with
four slots available to pickup and deliver orders for four
customers following a given route (2þ,3þ,4þ,1þ,3-,2-,1-,
4-), where “þ” indicates pickup and “-” means drop-off.
Suppose that the single-car constraint restricts that automo-
biles 3 and 4 can only occupy the middle two slots. Figure 4
shows how the space-state graph looks like under Policy 1a
for this example, as well as space-state graphs generated
under other policies. Note that in this illustrative route, at
Stop r, one of KP

r and KD
r is a singleton set; the other is

empty.

Although the brute-force algorithm used in Policy 1a can
ensure solution optimality, the underlying graph may be
extremely dense and thus too time-consuming to build. Our
Policy 1b is thus created to generate a less dense space-state
graph, which can yield a near optimal solution, but requires
significantly less computation time. For Policy 1b, the spe-
cific procedures used in Step r of the space-state graph gen-
eration framework are as follows:

First, generate a set of feasible loading states �Nr for the
orders in Kr−1nKD

r by the following removal procedure:

For each loading state of stop r − 1, denoted as p 2 Nr−1,
remove every k

in KD

r from p and reshuffle any reloaded orders
when they are loaded back as follows: keep the ones not
reloaded in the same slots as in p, and reshuffle the ones that
are reloaded in any feasible way using the remaining slots.
Reshuffling ensures that reloaded orders may be loaded back to
the slots different from the slots they originally occupy in p,
which could avoid or reduce the need for reloading at
subsequent auto-carrier stops. Let �Np

r be the set of all the states
generated. The states in �Np

r are called induced loading states
from state p: The set of the loading states generated for stop r is
thus �Nr ¼ [p2Nr−1

�Np
r :

Note that when KD
r ¼ ;, �Nr ¼ Nr−1:

Second, generate a set of feasible loading states Nr for the
orders in Kr−1nKD

r [KP
r by the following removal procedure:

For each loading state p 2 �Nr , try to insert every order k
!

in
KP
r into each feasible slot in p considering the loading

constraints ((2) and (3)). Let Np
r be the set of the resulting

2 3 4 5 6

Auto-Carrier Route (2+,3+,4+,1+,3-,2-,1-,4-)

Stop

State

Onboard
autos

r
rK

rN

0

[-,-,-,-]

{}

[-,-,2,-]

[-,2,-,-]

[2,-,-,-]

{2}

1

[-,-,3,2]

[-3,-,2]

[-,3,2,-]

[-,2,3,-]

{2,3}

[-,3,4,2]

[2,4,3,-]

[2,3,4,-]

{2,3,4}

[1,4,3,2]

[2,4,3,1]

[1,3,4,2]

[2,3,4,1]

{1,2,3,4}

[-,4,2,1]
[-,2,4,1]
[2,-,4,1]

{1,2,4} {1,4}

[-,-,-,2]

[2,-,3,-]

[2,3,-,-]

[-,4,3,2] [2,4,-,1]
[-,4,1,2]
[2,4,1,-]
[-,1,4,2]
[2,1,4,-]
[1,-,4,2]
[1,4,-,2]
[1,4,2,-]
[1,2,4,-]

[-,-,4,1]

[-,4,-,1]

[-,4,1,-]

[-,1,4,-]

[1,-,4,-]

[1,4,-,-]

7
{4}

[-,-,4,-]

[-,4,-,-]

8
{}

[-,-,-,-]

Policy 1a

State rN [-,-,-,-]
[-,-,2,-]

[-,2,-,-]

[2,-,-,-]

[-,-,3,2]

[-3,-,2]

[-,3,2,-]

[-,2,3,-]

[-,3,4,2]

[2,4,3,-]

[2,3,4,-]

[1,4,3,2]

[2,4,3,1]

[1,3,4,2]

[2,3,4,1]

[-,4,2,1]
[-,2,4,1]
[2,-,4,1]

[-,-,-,2]

[2,-,3,-]

[2,3,-,-]

[-,4,3,2] [2,4,-,1]
[-,4,1,2]
[2,4,1,-]
[-,1,4,2]
[2,1,4,-]
[1,-,4,2]
[1,4,-,2]
[1,4,2,-]
[1,2,4,-]

[-,-,4,1]

[-,4,-,1]

[-,4,1,-]

[-,1,4,-]

[1,-,4,-]

[1,4,-,-]

[-,-,4,-]

[-,4,-,-]
[-,-,-,-]

Policy 1b

State rN [-,-,-,-]
[-,-,2,-]

[-,2,-,-]

[2,-,-,-]

[-,-,3,2]

[-3,-,2]

[-,3,2,-]

[-,2,3,-]

[-,3,4,2]

[2,4,3,-]

[2,3,4,-]

[1,4,3,2]

[2,4,3,1]

[1,3,4,2]

[2,3,4,1]

[-,4,2,1]
[-,2,4,1]
[2,-,4,1]

[-,-,-,2]

[2,-,3,-]

[2,3,-,-]

[-,4,3,2] [2,4,-,1]
[-,4,1,2]
[2,4,1,-]
[-,1,4,2]
[2,1,4,-]
[1,-,4,2]
[1,4,-,2]
[1,4,2,-]
[1,2,4,-]

[-,-,4,1]

[-,4,-,1]

[-,4,1,-]

[-,1,4,-]

[1,-,4,-]

[1,4,-,-]

[-,-,4,-]

[-,4,-,-]
[-,-,-,-]

Policy 1c

Figure 4. Space-state graphs generated under Policies 1a, 1b, and 1c.

IISE TRANSACTIONS 9

loading states for orders in Kr: Those loading states in Np
r are

also referred to as “states induced by loading state p:” The set of
the loading states generated for stop r is thus Nr ¼ [p2Nr−1N

p
r :

Note that when KP
r ¼ ;, Nr ¼ �Nr:

As reloading is permitted, it is possible to transition from
one state to any other state, a directed edge is added to con-
nect each vertex p 2 Nr−1 at stop r − 1 with each of the ver-
tices in Nr at stop r:

The key difference between Policies 1a and 1b lies in how
orders are rearranged after an order is dropped off. Under
Policy 1a, all orders must be reshuffled regardless of whether
they are reloaded ones or not, whereas under Policy 1b,
only reloaded orders are reshuffled with those not for
reloading kept intact. This difference explains why certain
states are not generated at stop 5 under Policy 1b in Figure
4. Note that automobiles 1 and 2 are not reloaded, and thus
are not involved in reshuffling and must remain in their ori-
ginal slots.

Policy 1c is a simplified version of Policy 1b such that it
generates a sparser space-state graph. The procedures for
Step r under Policy 1c differ from those under Policy 1b in
the following two aspects. First, in the above-described
removal procedure in the case of dropping off an order at
stop r, no reshuffling is conducted for the reloaded orders
(i.e., reloaded orders are loaded back to their original slots).
Second, after generating the vertices at stop r, fewer edges
are added as follows: a directed edge is added to connect
each vertex p 2 Nr−1 at stop r − 1 with each of the vertices
in Np

r at stop r (i.e., connect a vertex in Nr−1 to each of its
induced vertex only, rather than all vertices in Nr).

After a space-state graph is generated for a candidate
loading policy, the cost of each edge is specified as the num-
ber of reloads involved, which is described in detail in
Section 4.2.3. In the space-state graph there could be many
paths between the source and sink vertices, each of which
represents how the loading state evolves over space, i.e.,
gives a loading and unloading solution. As the loading/
unloading cost is measured by the number of reloads, the
path between the source and sink vertices with the min-
imum number of reloads should be selected. Thus, the
auto-carrier loading optimization problem under Policy 1
(including 1a, 1b and 1c) is converted to the shortest path
problem in the state-space graph, which can be solved very
efficiently.

Under Policy 0, reloading is prohibited, which means the
space-state graph generation procedure designed for Policy
1a can be modified (i.e., by avoiding the edges with reloads)
to accommodate this restriction. Nonetheless, a much sim-
pler heuristic can be used to solve the loading/unloading
optimization problem under Policy 0. Note that under
Policy 0, the objective is not to find an optimal path with
the minimum number of reloads. Instead, the goal is to find
at least a feasible path from the source vertex to the sink
vertex whose cost is 0 (no reloads). The heuristic is
described as follows:

At each stop r, check whether the unloading path is clear for
every k

in KD

r , i.e., no orders outside of KD
r are in the

unloading path. Remove k

only when the path is clear. For all

permutations of orders in KP
r , insert an order in KP

r to each
possible innermost considering applicable loading constraints. If
the final stop can be reached without incurring any infeasibility,
a feasible path is found.

As the auto-carrier route shown in Figure 4 is infeasible
under Policy 0. Figure 5 shows the generated space-state
graph for another auto-carrier route (different from the one
in Figure 4) using the above heuristic. We can observe from
this example that although a new automobile for loading
can be inserted into multiple slots, it is advantageous to
insert it to the inner most slot under Policy 0. This is
because under Policy 0, all auto-carrier slots that are cur-
rently occupied and those beyond an occupied slot are
unavailable. For instance, if an automobile (say order 1) is
loaded to the exit slot of a four-slot carrier, i.e., resulting in
a loading state of [1,-,-,-], then no additional automobiles
can be loaded until order 1 is delivered. Always loading an
automobile to the inner-most slot thus maximizes the
chance for additional automobiles to be loaded feasibly later.
As in Figure 4 for illustrative purposes, we assume that
either KP

r or KD
r is a singleton set; the other is empty.

4.2.3. Specification of edge costs
For an edge ðp, �pÞ connecting state p 2 Nr−1 at stop r − 1 to
state �p 2 Nr at stop r 2 f1, :::, jRjg, we need to compute the
cost of this edge, namely the number of reloads needed to
transition from p to �p: Essentially, we need to evaluate how
the relative sequence of those onboard orders has changed
from stop r − 1 to stop r:

We start with the case of a single-level auto-carrier. We
denote the sequence of onboard orders in state p with a
tuple Tp: For instance, state [1,2,-,4] yields tuple (1,2,4).
Similarly, another tuple T�p is generated from state �p: To
compute the number of reloads needed to transition from p
to �p, we compare the two tuples Tp and T�p order by order,
however, in reverse sequence (namely from the innermost
slot to the exit slot). If two orders in the same position of
Tp and T�p are identical, then these orders do not need to be
reloaded. If a difference is observed starting from a position,
such as j, all unexamined orders in Tp including the order
in position j are saved in a set Kp, representing all vehicles
to be unloaded; similarly, all unexamined orders in T�p

including the order in position j are saved in a set K�p , rep-
resenting all vehicles to be loaded. Then, the intersection of
Kp and K�p represents all reloaded orders in p and �p,
respectively. The edge cost is thus jKp \ K�p j:

Edge cost computation is more complex for a two-level
auto-carrier, due to two reasons. First, two levels share the
same exit slot. Second, a vehicle may move across levels,
thus creating an additional reload. For instance, Figure 6
shows a state change. If the above described reload compu-
tation method is applied to each level separately, one would
arrive at the wrong conclusion that no reloads are needed.
Nonetheless, the physical configuration of a two-level auto-
carrier determines that one reload is required as an order
moves from the lower level to the upper level. This is
because if an order is moved from the lower level to the
upper level, the exit slot must be emptied so that the loading

10 S. K. KIRTONIA ET AL.

platform of slot 2 (see Figure 1 for slot naming convention)
is lowered to allow order loading to the upper level. In the
case illustrated in Figure 6, order 1 must be first unloaded
and then loaded to slot 2, thus creating one reload.
Similarly, one reload is needed, if an order is moved from
the upper level to the lower level.

We next describe how to compute the edge cost for a
two-level auto-carrier. We use Tp ¼ ðTup

p ,Tlo
p Þ to represent

the relative sequence of onboard orders in state p, where
Tup
p is the tuple for the upper level and Tlo

p is for the lower
level. Since the two levels intersect at the exit slot, if the exit
slot is occupied by some order, then this order is included
in both Tup

p and Tlo
p : In the same way, we use T�p ¼

ðTup
�p ,Tlo

�p Þ to represent the relative sequence of orders in
state �p: Then, we start with the upper level and compare
two tuples Tup

p and Tup
�p order by order in reverse sequence.

If starting from position j, an order number difference is
observed or the order under examination moves across lev-
els, all unexamined orders in Tup

p including the order in pos-
ition j are saved in set Kup

p , representing vehicles for
unloading from the upper level. All unexamined orders in
Tup
�p including the order in position j are saved in set Kup

�p ,
representing vehicles for loading to the upper level. In the
same way, we obtain Klo

p and Klo
�p , representing unloaded

orders from and loaded orders to the lower level. The
unions Kup

p [Klo
p and Kup

�p [Klo
�p thus represent reloaded

orders in p and �p, respectively. The edge cost is
thus ðKup

p [Klo
p Þ \ ðKup

�p [Klo
�p Þ

�� ��:

4.2.4. A labeling approach for concurrent graph gener-
ation and edge cost computation

The above presented loading optimization method for Policy
1 (including 1a, 1b and 1c) first builds the space-state graph
and then specifies the edge cost, before finding the optimal
loading path. It has a few deficiencies. First, the built space-
state graph can be very dense, especially under Policies 1a
and 1b, because under these policies, at each stop
r ¼ 1, :::, jRj − 1, a directed edge is added to connect each

vertex in Nr−1 with each vertex in Nr , creating many edges
between the two stops. Second, many loading paths with the
same optimal cost may be found. Next, we intend to address
the above deficiencies by proposing a labeling procedure
where we build the space-state graph and search for the
optimal path concurrently. The distinction of the labeling
procedure is to optimally select a single vertex in Nr−1 to
connect with a given vertex in Nr, rather than connecting
all vertices in Nr−1 to the given vertex in Nr: Here, the label
of a vertex p is defined as the minimum number of reloads
needed to reach this vertex from the source vertex, and
denoted as Lp:

The labeling procedure is described as follows. At Stop 0,
attach a label with a value of 0 i.e., Lp ¼ 0, to the source
vertex and all generated vertices in N1: At Stop r ¼
1, :::, jRj, an initial label of value 1 is attached to each gen-
erated vertex in Nr: Section 4.2.2 provides more details on
how vertices in Nr are generated. For each vertex �p 2 Nr,
consider all vertices in Nr−1 in a non-decreasing order by
their label values. Depending on the label of each vertex p 2
Nr−1, there are two cases:

1. If the label of vertex p is smaller than the label of vertex
�p, i.e., Lp < L�p , calculate the cost of edge ðp, �pÞ,
denoted as Cðp, �pÞ, using the procedure described in
Section 4.2.3. If Lp þ Cðp, �pÞ < L�p , then update the
label of vertex �p as L�p ¼ Lp þ Cðp, �pÞ:

2. If Lp � L�p , then the label of �p cannot be improved by
a path through vertex p or any remaining vertices with
equally or larger label values. Hence, the remaining
sorted vertices in Nr−1 do not need to be considered,
and any edge between p and �p, as well as any edge
between any remaining vertices in Nr−1 and �p do not
need to be considered.

In the above process, after vertex �p 2 Nr is considered
but before considering the next vertex in Nr, add the edge
ðp�, �pÞ to the space-state graph, where p� is the vertex in

[-,-,-,-] [-,-,-,1] [-,-,2,1] [-,3,2,1] [-,-,2,1] [-,-,-,1]

Stop

{} {1} {1,2} {1,2,3} {1,2} {1} {} {4} {}

[-,-,-,-][-,-,-,-] [-,-,4,-]

0 1 2 3 4 5 6 7 8

Auto-Carrier Route

State

Onboard
autos

(1+,2+,3+,3-,2-,1-,4+,4-)

r
rK

rN

Figure 5. Space-state graph generation under Policy 0.

Figure 6. State change for a two-level auto-carrier.

IISE TRANSACTIONS 11

Nr−1 that gives the final value of the label for �p,
i.e., L�p ¼ Lp� þ Cðp�, �pÞ:

To summarize the labeling procedure, at each stop r, for
each vertex �p 2 Nr , its label is updated if going through
vertex p gives a shorter path from the source vertex to �p,
i.e., if Lp þ Cðp, �pÞ < L�p : Otherwise, going through p or any
remaining vertices in Nr−1 will not create a shorter path,
and hence, those vertices should be skipped. The labeling
procedure creates exactly one direct edge that connects an
optimally selected vertex in Nr−1 and �p: Furthermore, after
this process is completed, it creates a single path from the
source vertex to the sink vertex, which is the shortest path
with the total cost of the path equal to the label of the sink
vertex.

5. Computational experiments

We first lay out the framework for evaluating and compar-
ing different types of loading policies. It is inadequate to
only investigate how different loading policies perform in
the context of the loading optimization problem for a given
vehicle route for the following reason. Suppose that we are
given a vehicle route, and it turns out that this given route
is infeasible under Policy 0, and this can be checked nearly
instantaneously. However, for this same route, it takes
5 seconds to find that the minimum number of reloads is
two under Policy 1a. In such a case, it is difficult to deter-
mine which loading policy, Policy 0 or Policy 1a, is better. If
this given route is highly desirable, i.e., with a high probabil-
ity of being selected for implementation, then Policy 1a out-
performs Policy 0, as it retains the feasibility. If this given
route has almost no chance of being selected, adopting
Policy 0 is likely more favorable. Unfortunately, the
“desirability” of a given route is known only after the overall

shipping optimization problem is solved. This example
implies that we must evaluate how a loading policy impacts
the total cost in the context of the automobile shipping opti-
mization problem which involves many possible routes,
instead of just a single route. To save space, we describe the
automobile shipping optimization problem with a given set
of routes in the online Appendix A, with the purpose of
evaluating the comparative advantages of various loading
policies. As clarified earlier, it is beyond the scope of this
study to jointly optimize auto-carrier routes and loading
decisions.

Next, we describe how loading test instances are gener-
ated. Then, we present the results from the benchmark ana-
lysis assuming a single auto-carrier, followed by the
sensitivity analyses of some key input parameters. Finally,
we evaluate the benefits of the proposed auto-carrier loading
policies through a comprehensive analysis involving multiple
types of auto-carriers.

5.1. Benchmark test instances

Due to the lack of publicly available test instances (Sun
et al., 2021), test instances are created for an anonymized
automobile shipping company based in central Florida,
whose service area consists of those Florida metropolitan
areas with a population of over 100,000 in the 2020U.S.
census. All automobile shipping orders have their own
pickup and drop-off locations in those metropolitan areas.
With this setting, we intend to study the shipping of pre-
owned vehicles rather than finished vehicles, because the lat-
ter ones typically have the same pickup location (i.e.,
automobile manufacturer). Figure 7 shows the population
centroids of all involved metropolitan areas as well as the
auto-carrier depot.

Figure 7. Metro areas with automobile pickup and drop-off locations in the benchmark.

12 S. K. KIRTONIA ET AL.

https://doi.org/10.1080/24725854.2023.2291469

When generating an automobile for shipping, two differ-
ent metropolitan areas at least 50 miles apart are drawn
through weighted random sampling with population as the
weight to represent the areas of origin and destination,
respectively. Then, the pickup and drop-off locations that
are specific for each automobile are randomly selected in
those selected metropolitan areas. For simplicity, when esti-
mating the distance between locations in different metropol-
itan areas, the centroid of each metropolitan area is used.
To be realistic, the distance between two centroids is
obtained from the Distance Matrix API of Google Maps
(Google Maps, 2022). The distance between two locations in
the same area is approximated as 20 miles for convenience.
After generating the pickup and drop-off locations for an
automobile, we further draw one of the three types for this
automobile with the following sampling weights: 1/6 for
Type 1, 1/3 for Type 2, and 1/2 for Type 3.

The six-slot auto-carrier shown in Figure 1 is considered
as the benchmark auto-carrier. Similar single-car and pair-
wise constraints to those in Agbegha et al. (1998) are con-
sidered: Type 2 or Type 3 vehicles cannot be assigned to
slot 6; Type 1 vehicles cannot be assigned to slot 1; if a
Type 2 or 3 is in slot 2 (or slot 4), another vehicle of Type
3 cannot be in slot 4 (or slot 2).

In each random experiment, a set of six automobiles are
first generated as described earlier. The benchmark auto-car-
rier serves these automobiles in a single auto-carrier route.
Given these automobiles, a permutation of the six pickup
and drop-off locations where the pickup precedes drop-off
for each automobile is taken as an auto-carrier route. For
the same set of automobiles, a total of 250 random auto-car-
rier routes are generated. When a different set of six auto-
mobiles are randomly selected, another 250 random routes
are generated in a new experiment. There are in total 100
such experiments in the benchmark analysis, and they are
numbered from bm-exp-1 to bm-exp-100, where “bm”
stands for benchmark and “exp” stands for experiment.

The total shipping cost is measured in auto-carrier miles,
as defined in (5) in the online Appendix A. Each reloading
operation is assumed to be equivalent to 50 auto-carrier
miles in the benchmark. All the analyses are implemented in
Python 3.10 and the integer program was solved by CPLEX
v12.10. All programs run on a personal computer (Intel
Core i7-8700 CPU 3.20GHz, 32GB RAM).

5.2. Benchmark analysis

In all benchmark experiments (bm-exp-1 to bm-exp-100),
the same six-slot auto-carrier is used, while in different
experiments, a different set of automobile shipping orders is
used. In each benchmark experiment, the automobile ship-
ping optimization problem defined in the online Appendix A
becomes trivial to solve, because only one auto-carrier is
involved, and all the 250 randomly generated routes cover
the same set of automobiles. For any given policy, the route
with the least total cost among all the feasible (250 or less)
routes is selected as the optimal solution. To illustrate, we
take the first benchmark experiment, namely bm-exp-1, as

an example. Under Policy 0, the optimal route found is
(2þ, 1þ, 5þ, 5-, 6þ, 3þ, 6-, 3-, 2-, 4þ, 1-, 4-). Figure 8(a)
and (b) shows the resulting space-state graph for this route.
Under Policy 1a, the optimal route found is (2þ, 5þ, 6þ,
6-, 1þ, 2-, 4þ, 5-, 1-, 3þ, 4-, 3). Figure 8(b) shows the
resulting space-state graph for this route. The highlighted
path (in red) in the space-state graph in each figure is the
optimum loading/unloading plan. The comparison shows
that the total cost is 1849.19 (unit: auto-carrier miles or
simply miles) under Policy 1a, significantly lower than the
total cost 2416.06 under Policy 0, even though one reload is
included as part of the total cost under Policy 1a. However,
the substantial cost savings are achieved with extensive
computation efforts, as visualized by the much denser
space-state graph under Policy 1a.

We then show the total computation time in each experi-
ment and the resulting total cost under Policies 0 and 1a for
all 100 benchmark experiments in Figure 9. We find that
the solution time in every experiment under Policy 0 is close
to 0, whereas the solution time in every experiment under
Policy 1a is around 100 seconds. As expected, the majority
of the computation time is spent on generating the dense
space-state graphs. In 52% of the instances, Policy 1a yields
a lower total cost than Policy 0, while they result in the
same total cost in the remaining instances. In the cases
where the two policies have the same total cost, the opti-
mum number of reloads under Policy 1a is zero even
though reloading is allowed. The average cost savings
brought by Policy 1a as compared with Policy 0 in each
instance are 88 miles, while an additional computation time
of about 100 seconds per experiment is needed for Policy 1a
on average.

The above analyses indicate that allowing reloading can
generate significant cost savings at the expense of additional
computation time. Next, all 100 benchmark experiments
(bm-exp-1 to bm-exp-100) are re-conducted under the pro-
posed policy variants, namely Policies 1b and 1c. Results are
shown in Figures 10 and 11 for Policies 1b and 1c, respect-
ively. Figure 10 indicates that Policy 1b yields the same solu-
tion as Policy 1a in all 100 experiments, although Policy 1b
needs only 23.5% of the solution time used by Policy 1a
when the labeling algorithm described in Section 3.3.4 is
implemented. Figure 11 indicates that with a minimum
solution time (less than 5 seconds), Policy 1c yields a smaller
total cost than Policy 0 (on average 11.2% smaller) for 50%
of the 100 experiments; for the other half, Policy 1c has the
same total cost as Policy 0. As discussed earlier, Policy 1a
yields cost savings for 52% of the 100 experiments, com-
pared with Policy 0. This implies that for two of the 100
experiments, Policy 1a yields cost savings while Policy 1c
does not. When Policy 1c is directly compared with Policy
1a, Policy 1c yields the same total cost as Policy 1a for 89
experiments. In summary, we conclude that Policy 1b can
achieve the same solution quality for all the 100 randomly
generated experiments as Policy 1a, while requiring less than
25% of the solution time. Policy 1c requires little computa-
tion time while compared to Policy 0, it can reduce the total

IISE TRANSACTIONS 13

https://doi.org/10.1080/24725854.2023.2291469
https://doi.org/10.1080/24725854.2023.2291469

cost by approximately 10% on average for instances where
reloading is necessary.

We note that although for all the 100 benchmark experi-
ments conducted, Policy 1b yields the same solution as Policy

1a, Policy 1b could yield suboptimal solutions in rare cases.
For instance, Figure 12 compares the space-state graphs gen-
erated under Policies 1a and 1b for a four-slot auto-carrier
covering a given route (2þ, 3þ, 4þ, 1þ, 3-, 2-, 1-, 4-). Here a

Figure 8. Comparisons of optimization results under Policies 0 and 1a in bm-exp-1.

Figure 9. Trade-offs of total cost and solution time in 100 benchmark experiments.

14 S. K. KIRTONIA ET AL.

four-slot auto-carrier is used for ease of visualization. The
optimal loading plan under Policy 1a is not generated under
Policy 1b, because Policy 1b misses some possible loading
states, evidenced by fewer vertices in its space-state graph.
Note that here for comparison purposes, the labeling algo-
rithm described in Section 3.3.4 is not used under
Policy 1b.

To further compare different policy variants for the same
auto-carrier routes, we next generate 3000 random routes
for the benchmark auto-carrier covering a given set of auto-
mobile shipping orders, and compare the minimum number
of reloads for a given route under each policy. We find the
following: (i) for 998 routes (accounting for 33.2%), Policies
1a, 1b, and 1c all yield zero reloads, which means this route
is feasible under Policy 0 as well; (ii) for 2516 routes
(83.9%), Policy 1c can achieve the same number of reloads
as Policy 1a; and (iii) for 2998 routes (99.9%), Policies 1b
and 1a yield the same solution. In cases where Policy 1c
yields suboptimal solutions, the obtained number of reloads
can be substantially larger than the optimum. For instance,
in the worst case the minimum number of reloads obtained

under Policy 1c is five times the optimum under Policy 1a.
By contrast, the minimum number of reloads obtained
under Policy 1b is at most 33.3% larger than the optimum.
To summarize, the numerical results indicate that Policy 1b
yields optimal solutions for virtually all routes (99.9%) and
Policy 1c is optimal for most of the routes (83.9%), although
in some cases, Policy 1c can yield clearly inferior solutions.

5.3. Sensitivity analyses

In the above benchmark instances, we use a single value of
the reloading cost coefficient (i.e., 50 miles per reload) and
assume that an automobile can be shipped from any Florida
metropolitan area to any other, while the sampling probabil-
ity depends on its population. We next explore how the
comparison results would vary as the reloading cost coeffi-
cient changes, and investigate how the comparative advan-
tage of a proposed loading policy (Policy 1b) would change
when automobile orders are generated in a different way. In
the following, results averaged over 100 random experiments
(bm-exp-1 to bm-exp-100) are reported.

Figure 10. Performance of Policy 1b in solving 100 benchmark instances.

Figure 11. Performance of Policy 1c in solving 100 benchmark instances.

IISE TRANSACTIONS 15

Figure 13 shows the impact of reloading cost coefficient.
As the reloading cost coefficient increases (i.e., reloading is
increasingly expensive), the advantage of Policies 1a and 1b

over Policy 0 decreases. The advantage diminishes to zero
only when the reloading cost becomes unpractical, e.g.,
equivalent to 600 auto-carrier miles per reload. This implies

Figure 12. Suboptimality of Policy 1b.

Figure 13. Effect of reloading cost coefficient.

16 S. K. KIRTONIA ET AL.

that in practical cases, the cost savings achieved by allowing
reloading are quite robust. Between Policies 1a and 1b, the
achieved cost savings are very comparable, while the solu-
tion time under Policy 1b is slightly over 20% of the time
under Policy 1a. Figure 14 further shows the solution time
and total cost for each loading policy when the number of
randomly generated routes in the benchmark experiments
varies from 150 to 500. Across all the three cases, it is clear
that Policy 1b can result in significant cost savings in rela-
tive to Policy 0; the solution quality of Policy 1b is very
similar to that of Policy 1a, whereas its solution time is sig-
nificantly less than Policy 1a.

We next consider restricted sets of pickup and drop-off
locations. For instance, automobiles are shipped only from
the Tampa–St. Petersburg–Clearwater (or Tampa for brev-
ity) metropolitan area to other areas, referred to as “From
Tampa only.” Alternatively, automobiles flow from non-
Tampa areas in Florida to Tampa only, referred to as “To
Tampa only.” Figure 15 thus shows how the advantage of
Policy 1b varies in each case. Overall, we find when

automobiles for shipping tend to have clustered origins or
destinations, larger percentage savings can be expected if
Policy 1b is adopted, relative to Policy 0.

5.4. A full-scale analysis

In the benchmark analysis reported in Section 5.2, only a
single auto-carrier is considered, which always covers the
same set of automobiles in one benchmark experiment. In
addition, only certain Florida metropolitan areas are
involved. In this full-scale analysis, multiple types of auto-
carriers are employed to transport automobiles in a south-
eastern region of the U.S. consisting of five states, namely
Alabama, Georgia, North Carolina, South Carolina, and
Florida. The auto-carrier depot is now in central Georgia. A
different population threshold of 300,000 instead of 100,000
is used to filter metropolitan areas in this region, as shown
in Figure 16.

There are in total 10 auto-carriers of two types in the
fleet as follows. The first five are homogeneous and have a
single level; the other five are also homogeneous and have
two levels. A single-level auto-carrier has five slots (shown
in Figure 1) with a variable routing cost of $2.0 per mile
and $50 per reload. For a single-level auto-carrier, there is a
single loading constraint: a Type 3 automobile cannot be
assigned to the exit slot (slot 1) or the innermost slot (num-
bered slot 9 in Figure 1). A two-level auto-carrier is the
same as the benchmark auto-carrier described earlier, with a
variable routing cost of $3.0 per mile and $100 per reload.
Loading constraints associated with the benchmark auto-car-
rier are provided in Section 4.1.

A set of 45 randomly generated automobile orders to be
covered by this fleet is shown in Figure 16. The numbers in
the parenthesis for each metropolitan area represent the
numbers of pickups and drop-offs, respectively. The auto-
mobile type distribution is the same as in the benchmark
analysis, namely 1/6 (Type 1), 1/3 (Type 2), and 1/2 (Type
3). While in the benchmark analysis the auto-carrier must
be fully reloaded, now this requirement is relaxed as follows:
a single-level carrier can cover 3, 4, or 5 orders, whereas a

Figure 14. Effect of the number of auto-carrier routes per experiment.

Figure 15. Effect of the spatial distribution of pickup and drop-off locations.

IISE TRANSACTIONS 17

two-level carrier can cover 4, 5, or 6 orders. We next gener-
ate auto-carrier routes for each of the two auto-carrier types
as follows. First, we randomly draw an allowable number of
orders (e.g., 3 orders for a five-slot auto-carrier) with equal
probability from the 45 given orders. Then, 50 random
auto-carrier routes are generated covering the sampled set of
orders. This is repeated 800 times, generating a total of
40,000 routes for each auto-carrier type. Thus, in total,
80,000 auto-carrier routes are generated. From a probabilis-
tic point of view, it is very unlikely that any two of these
routes are identical because first, it is unlikely that any two
draws yield the same subset of orders, and second, for the
same subset of orders, it is unlikely that any two of the 50
generated routes are identical.

The revised automobile shipping formulation for homo-
geneous auto-carriers of the same type (presented in the
online Appendix A) is solved under Policies 0, 1b, and 1c.
Optimization results are shown in Table 1. First, all 10 auto-
carriers are needed to cover 45 given orders under Policy 0,
whereas under Policies 1b and 1c, only nine are needed, five
of which are single-level auto-carriers. The total solution
time under Policy 0 is 15 seconds, and the solution time
under Policy 1b is approximately 1.3 hours. Relative to
Policy 0, Policy 1b can reduce the total cost from $59,376.4
to $54,263.4. The benefit of Policy 1b is thus apparent: with

a computation time of about 1.3 hours, a cost saving of
$5,113.0 (or 8.6%) is achieved.

Policy 1c yields a slightly higher total cost than Policy 1b,
with a much smaller solution time. For all nine auto-car-
riers, the same auto-carrier routes are used under Policy 1c
in comparison with Policy 1b. Therefore, Policies 1b and 1c
have the same routing cost as shown in Table 1. For five
single-level auto-carriers, Policy 1c yields only two more
reloads than Policy 1b, as shown in the online Appendix C,
whereas for four two-level auto-carriers, Policy 1c yields the
same number of reloads as Policy 1b, which is not shown
due to space limitations.

We further present a slightly modified analysis where we
reduce the number of random routes for a given set of
orders from 50 to 25. Specifically, for each set of orders, we
randomly draw 25 routes from the 50 routes generated
above. The updated optimization results are shown in
Table 2. As expected, the total cost under each policy
increases, because now fewer routes cover a given set of
orders. Proposed policy variants yield even larger cost sav-
ings. For instance, now Policy 1b yields a cost saving of
$5706.1 (or 9.3%), instead of $5113.0 (or 8.6%). Notably, the
computation time needed to generate the said cost saving
decreases by more than 50%, which provides more convinc-
ing evidence for the advantage of Policy 1b. We next change

Figure 16. Metro areas with pickup and drop-off locations of the 45 automobile shipping orders.

Table 1. Trade-off of total cost and computation time (45 orders, 50 routes per given set).

Policy # of Auto-carriers used Total cost ($) Routing cost ($) Reloading cost ($) Computation time (s)

Policy 0 10 59,376.4 59,376.4 0 15
Policy 1b 9 54,263.4 53,313.4 950.0 4677
Policy 1c 9 54,363.4 53,313.4 1050.0 381

18 S. K. KIRTONIA ET AL.

https://doi.org/10.1080/24725854.2023.2291469
https://doi.org/10.1080/24725854.2023.2291469

the number of automobile orders to 90, the number of auto-
carriers of each type to 20, while keeping the number of sets
of routes at 800 and the number of random routes in each
set at 25. The optimization results are shown in Table 3.
The relative advantages of Policies 1b and 1c are consistent
with those observed in Tables 1 and 2.

Based on the analyses presented above, we conclude that
both proposed policy variants, Policies 1b and 1c, have
achieved a more desirable balance between total cost and
computation time than Policies 0 and 1a. As neither of
Policies 1b and 1c dominates the other, we recommend both
policies be considered depending on the specific needs of an
auto-carrier company. For instance, if a company is con-
strained by computational power, Policy 1c can be adopted;
if a company seeks to achieve the highest cost efficiency
possible, while being not much constrained by computa-
tional power, Policy 1b is preferable.

6. Conclusions

This study is motivated by the lack of understanding of how
the degree to which automobile reloading is allowed in auto-
mobile shipping influences the resulting computational bur-
den and total cost. We therefore develop a space-state
network-based solution approach for auto-carrier loading/
unloading optimization under various reloading policies,
when auto-carrier routes are given. Benchmark analysis
results indicate that the two proposed loading policies (i.e.,
Policies 1b and 1c) can yield a desirable compromise
between cost efficiency and computation time. Specifically,
Policy 1b yields optimal solutions for virtually all routes
(over 99%) and Policy 1c is optimal for most of the routes
(over 80%). Policy 1b requires less than 25% of the solution
time than a brute-force algorithm (i.e., Policy 1a) when
reloading is allowed. Policy 1c requires even less time,
although the disadvantage of Policy 1c is that in certain
cases, it can yield clearly inferior solutions. Through sensi-
tivity analyses, we also find that the cost savings achieved
with Policy 1b are quite robust when practical values of
reloading costs are adopted. In addition, in contrast with
uniform distributions of origins and destinations, when
pickup or drop-off locations are more clustered (i.e., auto-
mobiles are moving in a similar direction), the advantage of
Policy 1b is even more significant. Lastly, findings from a
full-scale analysis involving multiple types of auto-carriers
validate the substantial benefits of proposed loading policies,

as they may yield more than a cost saving of $5000 (or
8.6%) with around 1.3 hours or less in solution time.

In this article, we have focused on the optimization of
auto-carrier loading/unloading plans for given auto-carrier
routes. A natural extension is to employ sophisticated algo-
rithms, such as column generation, to generate in a more
intelligent fashion auto-carrier routes that satisfy various
practical routing constraints (such as time window require-
ments), while considering the impact of routing decisions
on auto-carrier loading/unloading operations in real time.
That way, routing and loading decisions are truly integrated.

It should also be noted that there are many studies based
on the notion of space-time prism for measuring space-time
accessibility, such as Tong et al. (2015) and Qin and Liao
(2021). Specifically, a strategy for reducing the trip chaining
space proposed by Qin and Liao (2021) may inspire new
policies for finding the most efficient auto-carrier loading
path on a space-state graph.

As indicated in Section 4.1, no publicly available problem
instances are available for testing the proposed loading poli-
cies. Therefore, many instances are generated in this study
and the way to generate such instances is well described.
Additional efforts are clearly needed to create more standar-
dized test instances that can be used in future studies, pref-
erably with inputs from the automobile shipping industry.

Disclosure statement

No competing interests are declared by the authors.

Funding

Division ofHumanResource Development; National Science Foundation.

Notes on contributors

Sajeeb Kumar Kirtonia was a PhD student while working on this
paper. He defended his doctoral dissertation in November 2023. Prior
to his doctoral study at Florida State University, he received his bache-
lor’s degree from Shahjalal University of Science and Technology,
Bangladesh.

Yanshuo Sun is an assistant professor of industrial engineering at the
FAMU-FSU College of Engineering. He specializes in transportation
systems optimization. He received his PhD in civil engineering from
the University of Maryland, College Park.

Zhi-Long Chen is currently Orkand Corporation Professor of
Management Science, and Professor of Operations Management at the
Smith School at the University of Maryland, College Park. He does

Table 2. Trade-off of total cost and computation time (45 orders, 25 routes per given set).

Policy # of Auto-carriers used Total cost ($) Routing cost ($) Reloading cost ($) Computation time (s)

Policy 0 10 61,635.1 61,635.2 0 7
Policy 1b 10 55,929.1 55,279.1 650.0 1866
Policy 1c 10 55,979.1 55,279.1 700.0 167

Table 3. Trade-off of total cost and computation time (90 orders, 25 routes per given set).

Policy # of Auto-carriers used Total cost ($) Routing cost ($) Reloading cost ($) Computation time (s)

Policy 0 21 95,789.2 95,789.2 0 7
Policy 1b 20 80,280.6 78,830.6 1450 1681
Policy 1c 20 80,454.9 78,904.9 1550 177

IISE TRANSACTIONS 19

research and teaches in the areas of operations management, supply
chain management and management science.

ORCID

Sajeeb Kumar Kirtonia http://orcid.org/0000-0003-4825-6454
Yanshuo Sun http://orcid.org/0000-0003-2943-4323
Zhi-Long Chen http://orcid.org/0000-0002-9960-0465

Data availability statement

The authors confirm that the data supporting the findings of this study
are available within the article

References

Agbegha, G.Y., Ballou, R.H. and Mathur, K. (1998) Optimizing auto-
carrier loading. Transportation Science, 32(2), 174–188.

Battarra, M., Erdoǧan, G., Laporte, G. and Vigo, D. (2010) The travel-
ing salesman problem with pickups, deliveries, and handling costs.
Transportation Science, 44(3), 383–399.

Bonassa, A.C., da Cunha, C.B. and Isler, C.A. (2023) A multi-start local
search heuristic for the multi-period auto-carrier loading and trans-
portation problem in Brazil. European Journal of Operational
Research, 307(1), 193–211.

Bortfeldt, A. and Yi, J. (2020) The split delivery vehicle routing prob-
lem with three-dimensional loading constraints. European Journal of
Operational Research, 282(2), 545–558.

Bukchin, J. and Sarin, S.C. (2004) A cyclic policy for the loading of
multiple products on a vehicle with different compartment sizes. IIE
Transactions, 36(7), 641–653.

Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, New York, NY.

Chen, F. and Wang, Y. (2020) Downward compatible loading optimiza-
tion with inter-set cost in automobile outbound logistics. European
Journal of Operational Research, 287(1), 106–118.

Chen, H.K. (2016) Sequential auto carrier loading problem.
Transportation Research Record, 2548(1), 53–61.

Dell’Amico, M., Falavigna, S. and Iori, M. (2015) Optimization of a
real-world auto-carrier transportation problem. Transportation
Science, 49(2), 402–419.

Google Maps (2022) Distance matrix API overview. https://developers.
google.com/maps/documentation/distance-matrix/overview.
(accessed November 1, 2022).

Ju�arez P�erez, M.A., P�erez Loaiza, R.E., Quintero Flores, P.M., Atriano
Ponce, O., Flores Lee, J., Kim, B.I. and Johnson, A.L. (2013) A two-
dimensional bin packing problem with size changeable items for the
production of wind turbine flanges in the open die forging industry.
IIE Transactions, 45(12), 1332–1344.

Lin, C.H. (2010) An exact solving approach to the auto-carrier loading
problem. Journal of Society for Transportation and Traffic Studies
(JSTS), 1(1), 93–107.

Mahmoudi, M. and Zhou, X. (2016) Finding optimal solutions for
vehicle routing problem with pickup and delivery services with time
windows: A dynamic programming approach based on state–space–
time network representations. Transportation Research Part B:
Methodological, 89, 19–42.

Petersen, H.L. and Madsen, O.B. (2009) The double travelling salesman
problem with multiple stacks–formulation and heuristic solution
approaches. European Journal of Operational Research, 198(1),
139–147.

Qin, J. and Liao, F. (2021) Space–time prism in multimodal supernet-
work-Part 1: Methodology. Communications in Transportation
Research, 1, 100016.

Reil, S., Bortfeldt, A. and M€onch, L. (2018) Heuristics for vehicle rout-
ing problems with backhauls, time windows, and 3D loading con-
straints. European Journal of Operational Research, 266(3), 877–894.

Statista.com (2022) Light vehicle retail sales in the United States from
1976 to 2020. https://www.statista.com/statistics/199983/us-vehicle-
sales-since-1951/. (accessed 1 November 2022).

Sun, Y., Kirtonia, S. and Chen, Z.-L. (2021) A survey of finished
vehicle distribution and related problems from an optimization per-
spective. Transportation Research Part E: Logistics and
Transportation Review, 149, 102302.

Tadei, R., Perboli, G. and Della Croce, F. (2002) A heuristic algorithm
for the auto-carrier transportation problem. Transportation Science,
36(1), 55–62.

Tadumadze, G. and Emde, S. (2022) Loading and scheduling outbound
trucks at a dispatch warehouse. IISE Transactions, 54(8), 770–784.

Tong, L., Zhou, X. and Miller, H.J. (2015) Transportation network
design for maximizing space–time accessibility. Transportation
Research Part B: Methodological, 81, 555–576.

Veenstra, M., Roodbergen, K.J., Vis, I.F. and Coelho, L.C. (2017) The
pickup and delivery traveling salesman problem with handling costs.
European Journal of Operational Research, 257(1), 118–132.

Wang, Y., Chen, F. and Chen, Z.-L. (2018) Pickup and delivery of
automobiles from warehouses to dealers. Transportation Research
Part B: Methodological, 117, 412–430.

20 S. K. KIRTONIA ET AL.

https://developers.google.com/maps/documentation/distance-matrix/overview
https://developers.google.com/maps/documentation/distance-matrix/overview
https://www.statista.com/statistics/199983/us-vehicle-sales-since-1951/
https://www.statista.com/statistics/199983/us-vehicle-sales-since-1951/

	Selection of auto-carrier loading policy in automobile shipping
	Abstract
	Introduction
	Literature review
	Auto-carrier loading optimization problem
	Loading policies in non-automobile transportation
	Research gaps

	Problem statement and complexity analysis
	Description of the auto-carrier loading optimization problem
	Complexity analysis of the auto-carrier loading optimization problem
	Observation:

	Space-state network-based approach
	A motivating example for the proposed approach
	Space-state network-based solution approach
	Formulation of auto-carrier loading constraints
	Space-state graph generation
	Specification of edge costs
	A labeling approach for concurrent graph generation and edge cost computation

	Computational experiments
	Benchmark test instances
	Benchmark analysis
	Sensitivity analyses
	A full-scale analysis

	Conclusions
	Disclosure statement
	Funding
	Orcid
	References

