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Abstract

In this paper, we aim to address a relevant estimation problem that aviation professionals encounter
in their daily operations. Specificallyhaireraft load planners require information on the expected
number of checked bags for a flight, several”hours prior to its scheduled departure to properly
palletize and load the aircraft,.-However, the checked baggage prediction problem has not been
sufficiently studied in the literature, particularly at the flight level. Existing prediction approaches
have not properly accounted for the different impacts of overestimating and underestimating checked
baggage volumes on airline operations. Therefore, we propose a custom loss function, in the form
of a piecewise quadratic function, which aligns with airline operations practice and utilizes machine
learning algorithmstoloptimize checked baggage predictions incorporating the new loss function. We
consider multiple linearregression, Light GBM, and XGBoost, as supervised learning algorithms.

© The Author(s) 2024. Published by Oxford University Press.
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We apply our proposed methods to baggage data from a major airline and additional data from
various U.S. government agencies. We compare the performance of the three customized supervised
learning algorithms. We find that the two gradient boosting methods (i.e., Light GBM and XGBoost)
yield higher accuracy than the multiple linear regression; XGBoost outperforms Light GBM while
LightGBM requires much less training time than XGBoost. We also investigate the performance
of XGBoost on samples from different categories and provide insights for selecting an appropriate
prediction algorithm to improve baggage prediction practices. Our modeling framework can be
adapted to address other prediction challenges in aviation, such as predicting the number of standby
passengers or no-shows.

Keywords: Aviation, Airline operations, Checked baggage, Supervised learning, Custom loss function

1 Introduction

The air transportation system is a complex network of internal and external entities.that interact with
one another in a variety of ways. For example, passengers can choose from multiple flights operated by
competing airlines, airlines plan and schedule their flights to minimize operating costs, and air traffic
controllers ensure safety and minimize delays for flights sharing the airspace. The air transportation
system is also impacted by external factors such as weather and socie=economic systems (Jardines,
Soler, & Garcia-Heras, 2021), which contribute to the generation of large and intricate datasets. By
analyzing these datasets effectively, there is great potential forthe ‘aviation sector to undergo significant
transformation. The Next Generation Air Transportation System (NextGen) is an initiative led by
the National Aeronautics and Space Administration (NASA) and Federal Aviation Administration
(FAA) to use advanced data mining tools to identify safety vulnerabilities across various types of
data (NASA, 2007). Outside of air traffic management, airlines have also been known for improving
revenues by tailoring their services and proeducts te various customer segments based on analyses of
their very rich passenger booking data*(Sun et.al., 2018). This paper aims to explore how advanced
machine learning algorithms and large-volume operational data can revolutionize conventional practices
in airline operations, with a particular focts on the flight-level checked baggage prediction problem, to
be defined and analyzed next.

A few hours (e.g., thréeyto four hours) before the departure of a passenger flight, load planners need
to decide what shipménts booked on this flight can be selected for loading or off-loading, how selected
shipments can be_packéd into unit load devices (ULD) or palletized, and how ULDs or pallets can be
assigned to different positions on the aircraft (Brandt & Nickel, 2019). Those loading decisions depend
on how much checked baggage to anticipate, whose exact amount only becomes available shortly (such
as 45 minutes) before the scheduled departure. Thus, the expected number of checked bags must be
estimated.in advance, to facilitate the aircraft load planning process where various weight and balance
limits should be enforced. For instance, the maximum cargo (including checked baggage) to carry
should/be jointly determined with fuel load subject to the takeoff weight limit (FAA, 2016b). From
theperspective of balance control, flight safety concerns may arise from baggage issues. A shift in the
longitudinal center of gravity, caused by improperly loaded baggage, may result in unstable aircraft
conditions or control difficulty (FAA, 2016a). In addition, loading checked bags can be time consuming
and labor intensive. Having relatively accurate checked baggage information would allow an airline to

allocate appropriate human power to load checked bags onto an airplane (BEONTRA, 2022). In case
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of an unusually large number of bags, the baggage loading process would be prolonged, thus likely
delaying a flight. While a good estimation of checked baggage is highly desirable, it is difficult to achieve
such a prediction because the amount of checked baggage usually fluctuates substantially, due to the
influence of various factors, such as passenger trip purposes and travel seasons.

A detailed literature review (to be presented in Section 2) indicates that only a few studies have
focused on the checked baggage prediction problem and each of them has various shortcomings. For
instance, non-time series data cannot be easily incorporated into a time series forecasting model’for
baggage prediction as in Ma, Bi, Sai, and Li (2021). The primary shortcoming of the existing literature,is
that the consequences of over-prediction and under-prediction are treated equally, contrary to aviation
practice. Modeling the asymmetric effect is important in the context of baggage predictionyas+the cost
of not having sufficient space to accommodate checked baggage is much higher than having a partially
filled checked baggage compartment.

In this study, we analyzed a checked baggage dataset consisting of nearly one million samples owned
by a major U.S. airline. The primary dataset was enriched by includingadditional features, such as
the population of a city and passenger enplanements of an airport. Next, we/performed necessary
data cleaning and feature processing to avoid the negative impact of ‘datasirregularities on the subse-
quent analyses and predictions. We introduced three prediction methodsy namely linear regression, and
two advanced supervised learning algorithms (i.e., Light GBM and XGBoost). We further customized
them by designing and incorporating an asymmetric loss function. Some findings from the experiments
are highlighted as follows: (1) Light GBM and XGBoost can achieve a much better predictive perfor-
mance than linear regression regardless of whether*the asymmetric loss function is considered or not,
while XGBboost slightly outperformance LightGBM; (2)LightGBM is significantly more efficient than
XGBoost; (3) the predictive performance of XGBoost is not uniform over destination airports or fleet
types due to uneven training data coverage.

To the best knowledge of the authorsy this4s the first flight-level checked baggage prediction study
considering an asymmetric loss function. This study also demonstrates the great potential of state-of-
the-art machine learning algorithms in/modernizing some conventional practices in airline operations
with large-scale real-world“data.

The rest of this paper is organized as follows. Section 2 briefly reviews some machine learning
applications in air_transportation. We next describe how exploratory analyses of the datasets are
conducted along withsdata cleaning and feature engineering in Section 3. Then, in Section 4, multiple
prediction methods of various complexities are introduced and the asymmetric loss function is presented.
Experiments are conducted and major results are reported in Section 5. A discussion of how to choose
an appropriate baggage prediction algorithm is presented in Section 6. Lastly, concluding remarks and

future research directions are given in Section 7.

2 Literature Review

We divide related machine learning applications in air transportation into two broad categories: flight-
related and payload-related. In the first group, we mainly review those predictive studies on aircraft
trajectory and flight delay; in the second group, we focus on those studies on passenger, cargo, and

checked baggage predictions.
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2.1 Flight-related problems
2.1.1 Aircraft trajectory prediction

In traditional Air Traffic Management (ATM), controllers only need to know the current location
of aircraft, while under the new Trajectory-Based Operations (TBO) paradigm, controllers require
information on the future location of aircraft as well (Mondoloni & Rozen, 2020). This is where four-
dimensional (4D) Trajectory Prediction (TP) is needed (Wang, Liang, & Delahaye, 2020; Wu, Yang,
Chen, Hu, & Hu, 2022). 4D TP, which involves predicting an aircraft’s longitude, latitude, altitude,
and time, is crucial for improving air traffic safety and ATM efficiency under TBO. This is because an
aircraft’s actual trajectory can deviate from its planned route due to various factors such as congestion
and weather conditions. Trajectories can be predicted either in the short term (in-flight)/or long ‘term
(pre-flight). Two representative studies are reviewed next.

In a short-term predictive study, Gallego et al. (2019) proposed a measure of probabilistic interde-
pendence for pairs of aircraft, which they used as a feature to predict the vertical profiles of aircraft
trajectories during the descent phase of flight. Their study employed data from the Barcelona Air Traf-
fic Control Center in Spain and demonstrated the usefulness of their meuralsnietwork methods. The
researchers concluded that incorporating the proposed interdependence measure enhanced the accu-
racy of trajectory prediction. In contrast, Wu et al. (2022) focused'\on predicting the 4D trajectory
of an aircraft prior to takeoff using historical trajectory data. To'achieve this, they converted histor-
ical time series data into images and used various types of ‘generative adversarial networks (GANS)
to generate new images, which were then transformed.<into time series data or flight trajectories. The
study used data from flights between Beijing and Chengdu in China and compared different GAN vari-
ants based on training time, prediction time, and predietion accuracy. The researchers found that the

one-dimensional convolution variant of GANproduced the best results.

2.1.2 Flight delay

The issue of flight delays has a significant impact on airline operations and customer satisfaction, leading
many researchers to focus on predicting flight delays using machine learning. For example, Khan, Ma,
Chung, and Wen (2021) observed that current flight delay classification systems use multiple threshold
prediction classifiers runningyin parallel, which can lead to conflicting results and ambiguity. Instead,
they proposed a sequentialwapproach to predicting whether flight delays exceed certain thresholds by
considering only partiof the data. They demonstrated their prediction algorithms with a case study of a
Hong Kong-based airline. In contrast, Rodriguez-Sanz et al. (2019) used a Bayesian Network approach
to predict delays, for the arrival systems of an airport. They also conducted a reliability analysis using
a Markov chain approach to evaluate the system’s reliability. Their model can adaptively capture the
stochastieeharacteristics of arrival processes. As it is beyond the scope of this study to further review
thoese flight-related machine learning studies, interested readers are directed to Chung, Ma, Hansen,
and Choi (2020).
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2.2 Payload-related problems
2.2.1 Passengers and air cargo

Passengers account for the majority of payload on commercial flights. Passenger demand predictions
have been conducted at different levels, such as the national or airport level. S. Xu, Chan, and Zhang
(2019) combined seasonal autoregressive integrated moving average (SARIMA) and support vector
regression (SVR) for the prediction of several aviation metrics for China’s aviation industry, such as
domestic and international passenger miles. They used 133 observations between February 2005yt0
February 2016 to predict values from March 2016 to February 2018. While such predictions at a national
level are useful for strategic planning purposes, other researchers have focused on operational problems
at a lower level. For instance, to dynamically optimize the configurations of airport security sereening
lanes, Hanumantha, Arici, Sefair, and Askin (2020) proposed an ensemble foreeasting model, which
was tested in a case study of Phoenix Sky Harbor Airport.

It is also very common for passenger flights to carry air cargo, whick is organized using pallets
or unit load devices (ULDs) and loaded to the belly of the fuselage 1mdersthe’ passenger compart-
ment. Such cargo space is shared by air cargo and checked baggageswhilesthe latter has priority over
the former. This implies the available belly space for air cargo dis uncertain. Therefore, Tseremoglou,
Bombelli, and Santos (2022) used Long Short-Term Memory Networks (LSTMs) to predict available
cargo space. They then solved a real-time booking acceptance, problem with the predicted values as
inputs. Their experiments indicated that their proposed method can significantly increase loaded vol-
ume while decreasing unplanned offloading. A comprehensive review of the application of machine
learning in air cargo management can be found‘in Barua, Zou, and Zhou (2020).

While predicting cargo and passenger demandseéms similar, the information provided by cargo
tracking and passenger service systems could'be quite different, implying that models for passengers and
air cargo are not immediately transferable. Gender, age, and travel purpose are examples of common

passenger characteristics that do/mot apply to cargo predictions.

2.2.2 Checked Baggage

As the most relevant enes to this study, a few papers tried to predict the amount of checked baggage.
Accurate prediction,of checked baggage is fundamental for reasonable resource allocation to prevent
the overloading ofithesbaggage handling system (Ma et al., 2021) and allocate staff resources (BEON-
TRA, 2022) A seasonal ARIMA model was adopted by Ma et al. (2021) for checked baggage prediction
at the airport level. Based on the historical baggage volume covering eight weeks, the demand for the
subsequent three days was predicted. They quantified the predictive ability with some metrics but
no alternative models were involved for benchmarking purposes. Mikram, Rhanoui, Yousf, and Briwa
(2020) also adopted the ARIMA model to forecast the baggage volume and found that the BOXJENK-
INS-approach and exponential smoothing methods can improve the accuracy. One shortcoming of these
time series models is that they rely on time-series data only, which implies a lot of available passenger-
related characteristics cannot be incorporated. In addition, those predictions are intended to be at the
airport level, rather than the flight level.

Cheng, Gao, and Zhang (2014) forecast the baggage volume for each flight from an international

terminal using a back propagation neural network and multiple linear regression. Numerical experiments
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on three datasets of various sizes were conducted. Only five features were involved, namely passenger
count, flight date, flight type, departure time, and flight duration. This study had a quite limited sample
size. In predicting the baggage amount for a single flight, only 29 samples were used, among which 21
were for training and 8 were for testing. The entire dataset covering all flights had 3,040 samples. Given
the limited number of features and sample size, the resulting R? is also quite low, i.e., slightly over 0.5.

The identification of mishandled bags was studied by van Leeuwen et al. (2020) using a Gradient

Boosting machine, which was not reviewed in detail due to its low relevance.

2.3 Summary

The large amount of data generated in the aviation industry has led to extensive developments of
machine learning algorithms for aviation transportation management (Y. Xu, Wandelt, & Sun,)2024).
A good variety of aviation problems have been studied with machine learning (Cliung_etval:] 2020).
However, only a few studies were for predicting the amount of checked baggage. A shortcoming in the
time series models for checked baggage prediction is that the impact of many non-time series data
on passenger baggage volume cannot be incorporated. More importantly, none of those studies have
explored an asymmetric loss function in predictive analyses. This paper. distinguishes it from those
studies by presenting a flight-level checked baggage prediction method based on the customization
of advanced machine learning algorithms. Another strength of the paper lies in the large-scale and

multi-source datasets covering a whole country being analyzed. in\this’study.

3 Data

3.1 Data Sources and Overview

The flight baggage dataset used in this study wasrobtained from a major U.S. airline, referred to as
Airline A for confidentiality purposes/due to the Non-Disclosure Agreement. The dataset consisted of
926,395 domestic flights operated by the airline in 2019, pre-dating the COVID-19 pandemic. Each row
in the dataset represented a flight on a specific day, with operational details and aggregated passenger
counts being available. The.dataset consisted of 22 features related to flights, including flight number,
departure and arrival datetandstime, origin and destination cities, aircraft type, leg distance, and the
total number of on-board passengers. Additionally, there were 27 other features related to passenger
characteristics, sueh,as payment type, presence of a child or infant, booking method, and cabin class.
Airline A also categorized their passengers based on their loyalty status and predicted travel purposes by
other undisclosedralgorithms. All those passenger-related features combined presented valuable insights
into understanding who those customers were, why they traveled, and how they checked bags. The
dataset contained a single target variable, which was the number of checked bags on each flight.
While the baggage dataset from Airline A was essential, additional data were obtained to enhance
the predictive performance of machine learning algorithms. It was because the baggage dataset did not
have key information about airports, cities, and air travel trends over time. For instance, the baggage
dataset itself did not provide any information on how the population of Houston, Texas compared with
that of Omaha, Nebraska; it did not tell how the Reagan National Airport’s enplanements differed

from the Dulles International Airport serving the same metropolitan area; it did not properly reflect
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the difference between Thanksgiving travels and New Year travels. Therefore, the following new fea-
tures were added: city population from the U.S. Census Bureau (U.S. Census Bureau, 2021), annual
enplanements by airports provided by the Federal Aviation Administration (FAA, 2022), and the TSA
(Transportation Security Administration) checkpoint travel numbers (TSA, 2022). Figure 1 shows the
ten busiest airports in 2021 by enplanement as well as the population of the city served by an airport.
By enplanement, the Atlanta Airport was followed by the Dallas and Denver airports. As no enplane-
ment data were found for 2019, and to avoid considering the disruptions of the COVID-19 pandemiec
in 2020, the 2021 data were used instead. For the TSA daily count, historical data were found for 2019
and thus used. Figure 2 shows the air travel peaks in summer months, especially July and August, as

well as off-peaks in February and September.

4.0 9
3.67
3.5 8
o 3.00 b7
5 3.0 2.86
o >
5. 2.64 o2
o2 2.37 2
b 2.09 52
%20 1.96 1.92 1.89 2
g 3.85 175 a2
k]
2 1.59 5 E
s 2.70 I
f=]
S 1.0
L2
1.62
0.5 0.94 0.88 b1
0.50 w7 o 0.65 044
0.0 " " " 0
I & S & QO O 3 ] O 0 o NP W
oSS & s ¢ EE T B S W
& < & © &2 o & &
<«© S A

Airport and associated city

Fig. 1: Top 15 busiestairports in U.S. in 2021 by enplanement

le6

Daily count
2.8 4 === 7-day average

2.6 1

TSA travel numbers
N N
N} IS

)™
<]

1.8

1.6

2019-01 2019-02 2019-03 2019-04 2019-05 2019-06 2019-07 2019-08 2019-09 2019-10 2019-11 2019-12 2020-01
Date

Fig. 2: TSA checkpoint travel numbers in 2019

¥202 Iudy 62 uo 1senb Ag $90129./1 009E!I/M/E601 0 L/I0p/a|oie-80ueApE/II/WO0D dNo-dlWwsapede//:sdiy woly papeojumo(q



3.2 Data cleaning

According to Airline ), the baggage dataset was real and unaltered. Although we did not find any
missing values or duplicate records, some irregularities in the data were identified. Therefore, we used
the following procedure to clean the baggage dataset. First, any rows with negative passenger counts
were dropped. Second, if the aggregated passenger count over different categories exceeded the total
count, relevant data were dropped. For instance, if the number of local and connecting passengers
exceeded the total number of onboard passengers, the corresponding sample was removed. Similarly;
the number of passengers in the main cabin cannot be greater than the total passenger count. Thirdy, if
the passenger and bag counts were conflicting, relevant data were removed. For instance, certain flights
had a few even zero passengers while carrying over a hundred checked bags. If either the passenger or
bag count was lower than ten, we removed such flights as outliers. After data cleaning, 722,556 records

remained.

3.3 Data explorations

We next conducted several exploratory analyses to illustrate some important. relations in the baggage
dataset, which would have been hidden otherwise. Figure 3 shows how thetarget variable varies with
two passenger-related features, namely the number of paying passengers and the number of main cabin
passengers, as well as the histograms for those two features. In Figure.3, the solid line represents the
average bag count while the standard deviation of bag count“is.visualized by the buffer zone along
the solid line. Those two solid lines seem very similar.because”of a high correlation between those
two corresponding features. The majority of passengers pay for their travels, thus classified as paying
passengers, and opt for the main cabin, thus classified as_the main cabin passengers. While the ratio of
revenue passengers to main cabin passengers.varies, the average ratio is 0.9. It is also evident that as
the number of passengers grows, the number of bags grows in general, especially before the number of
revenue passengers hits 196. When there are more than 196 passengers on a flight, the relation between
the bag and passenger counts is no longer smooth and the standard deviation also increases. The cutoff
line represents the capacity of the largest narrow-body airplane used by the airline. Wide-body aircraft
are capable of carrying morespassengers than 196, while they are used for only 1.85% of all the flights in
the dataset, as shown in Figuré=: The two histograms in Figure 3 also indicate very few observations
for wide-body aircraft. Given the limited sample size for wide-body aircraft, the bag-passenger relation
is not characterizedwadequately by the current data. It is also notable that when the number of paying
passengers is within 10, the bag count is nearly 50, implying an unusually large bag-to-passenger ratio.

Figure/5 indieates that wide-body aircraft carry significantly more checked bags as expected.
Figure<6 presents the distribution of load factor, i.e., the total number of passengers divided by the
aircraft_capacity, which shows that in most cases, aircraft are nearly fully loaded.

We next explore how the counts of bags and passengers vary over time at different granularity levels
(i.e.y month, day of the week, and hour of the day). The way how the bag count varies over months is
very similar to the national air travel trend shown in Figure 2. From Figure 7, we observe more bags
in summer months, such as June and July, while fewer bags are observed in September and October.
In December, the bag count is the highest. This could be partially affected by school sessions. For
example, there might be more family travels for recreational purposes over the summer and winter

breaks, contributing to the bag surges. Figure 7 further shows that there are more checked bags on
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Saturday and Sunday flights-and fewer on Wednesday and Thursday. As Airline A did not operate
any flights around 3 and 4 am, there is a gap in how the bag count varies with the hour of the day
in Figure 7. Flightsicarried fewer bags around noon and more bags close to midnight. This pattern
may reflecti a combination of operational scheduling by airlines and passenger preferences, with late-
night flights pessibly accommodating more long-haul or international travelers who tend to check more
baggage. Additionally, the trend of increased baggage volumes close to midnight could be influenced
by passengers choosing late-night flights for economic reasons or personal scheduling needs.

Figure 8 shows how passengers booked their tickets over time, for an example flight from a major
hub (pseudonymized as Hubl) of Airline A to New York City and a selected aircraft type Boeing 737.
Approximately, 30% of passengers booked their tickets one month in advance, and 65% of passengers
booked at least one week in advance. At the time of departure, 83.2% of tickets were sold, which was
close to the average load factor shown in Figure 6.

Collinearity refers to a linear relationship between two or more predictor variables. This issue

would become a concern in some regression models since the significance level of both variables will
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dramaticallysdecrease and the estimated coefficients of the predictors are unstable (Wold, Ruhe, Wold,
& Dunn, 1984). This issue was detected in the baggage dataset because the number of leisure passengers
was presented twice. The first estimate could be likely obtained from the booking data while the
second estimate was obtained with an “improved” classification algorithm used by Airline A. The two
estimates were highly correlated with a Pearson’s correlation coefficient of 0.97. Therefore, one of the

two variables was removed. Similarly, one variable related to business travelers was dropped.

3.4 Feature encoding

The baggage dataset consisted of many categorical variables, because quite a few time- and location-

related features were involved, such as month, hour, day of the week, and airport code. If one-hot
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encoding was directly employed for all those categorical features, the number of additional dummy
variables would be significant, especially when a categorical variable has many levels. For instance,
when we examine the origin airport as a categorical variable, if there are 100 airports, the same number
of dummy variables are needed with one variable corresponding to one airport. To avoid introducing
too many additional features, we combined some levels for selected categorical features as shown in
Table 1, mainly based on the data explorations described earlier. Hubs 1, 2, and 3 represent the three
busiest hubs in the dataset, measured by the number of flights. Similarly, the encoding for the “hour”
feature into specific groups is informed by our analysis of operational patterns and baggage voluine
trends at airports. Specifically, we observed a consistent increase in baggage volumes during the hours
of 0, 1, 2, and 23 as shown in Figure 7(c). To protect the confidential and proprietary information,of
Airline A, specific names of those hubs are not revealed, while this anonymization does/not hurt-the
rigor and usefulness of this analysis.

Appendix A lists all features considered in the following predictive analyses. Spécifically; 22 features

are flight-related; 27 are related to passengers; five are supplementary.

Table 1: Grouping for categorical variables

Categorical feature  Level grouping

Origin hub [Hub1], [Hub2], [Hub3], [Others]

Destination hub [Hubl], [Hub2], [Hub3], [Others]

Aircraft type [330, 767, 777, 787], [Others]

Day of the week [Wednesday, Thursday], [Monday, Sunday], [Others]
Hour [0, 1, 2, 23], [Others]

Month [9, 10, 11], [6, 7], J42];[Others|

4 Methodology

In this section, we describe three machine learning algorithms to predict the checked baggage volume
y given attributes x, namely all+features listed in Appendix A. Section 4.1 will describe the basic

modeling propositions. Section$i4.2 to\4.4 will describe three predictive algorithms.

4.1 Basic Modeling Propositions

In machine learning, anw unknown prediction function f(x) that relates x and y is identified, using its
N noisy observations;

yi = f(x;) +e,i=1,..., N, (1)
where y; and x; are the dependent and explanatory variable values for the ith observation, respectively.
¢; is independent noise with a mean of zero and variance of 0. In Eq. (1), N is also the sample size.
For f(x), we consider multiple linear regression as the baseline benchmark, which will be described in
Section 4.2. We next consider two gradient boosting methods in Sections 4.3 and 4.4. We seek to find

the’best model f() that minimizes the training error:

J(f) :Zg(f(xi)ayi)v (2)

=1
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where £(f(x;),y;) is a loss function that quantifies the cost of making the prediction f(a;), which can
be abbreviated as g;, when y; is the actual value.

As for the loss function #(-), we consider the business costs related to the prediction inaccuracy. In
airline operations, the business cost of underestimating checked bags is significantly higher than the
cost of overestimation. In case of underestimation, insufficient human power is allocated for loading
checked bags, thus resulting in possible departure delays. Or there might not be enough storage room
for checked bags on the departing airplane, which means customers may spend additional time waiting
for their checked bags to arrive with another flight. Delayed bags may need to be shipped to customer
homers at a high cost. In case of underestimation, the cargo compartment is partially filled, which
incurs some opportunity cost, because some cargo shipments should have been loaded if‘an‘accutrate
count of checked bags has been estimated. To properly consider this cost asymmetry, we design the
following piecewise quadratic loss function:

Uf @) ) = 3 @ — )3 + 5 (i —0)2 (3)

In Eq. (3), the subscript “+” in (9; — y;), means only the positive.part“of (y; —y;) is taken.
In case y; < y;, 0 is used. ¢, and ¢, are the overestimation and underestimation cost coefficients,
respectively. When ¢, and ¢, are assigned different values, overestimation and underestimation are
penalized differently. The ¢, to ¢, ratio depends on how likely.the spacé or weight allowance for checked
baggage is exceeded for a flight. When the likelihood is relatively low, the coefficient for underestimation
¢y should be relatively low while still being greater than ¢,. When the checked baggage allowance is
frequently exceeded, ¢, should be significantly larger than c,. As this likelihood varies over time and
with flight, an airline should carefully determine,the ¢, to ¢, ratio to be consistent with their own

operations.

4.2 Simple benchmark: multiple linear regression

We first consider a multiple linear regression (MLR) model that assumes a linear relation between
features  and the main response y. As MLR has been studied rigorously for many decades, it has been
applied in many practical contexts of business and engineering. The major reason for considering this
is to explore the simplest peossibility that gives the smallest risk of model overfitting. Another benefit
of MLR lies in its interpretability. The estimated linear coefficients are straightforward to interpret as

the main effects, of exploratory variables. An MLR model is formally described as
f(x)=a’x +0b, (4)

where.a and b are the model parameters.

In this study, the asymmetric loss function J( f ) for MLR model can be expressed as Eq (5).

Co

5(aTwi—kb—yi)i—kc—"(yi—aT:ci—b)i. (5)

Minimize a’bJ(f) = Z 2

=1

To minimize this cost function, gradient descent is used. The gradient descent algorithm is an

iterative optimization algorithm that works by starting with an initial set of regression coefficients, a
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and b, and iteratively updating them in the direction of the steepest descent of the cost function, which

is given by the negative gradient of the cost function:

a:a_n'va‘](f)

R 6
b:b_n'vbj(f)v ()

where 7 is the learning rate, which controls the step size of the update. Specifically, we can derive the

partial derivatives of the loss function w.r.t. to the parameters a and b as follows:

; N
Vol (f) = &gg) = %Z {co ('@ +b—yi), —cu(yi—a"w; - b)+}mi, )
=1
f_0I) 1§
Vi J(f) :W:NZCO(GT$i+b_yi)+_Cu (yi —a"zi— D). (8)
i=1

The procedure continues until the cost function converges to a minimum, ie., until the norm of the
gradient becomes sufficiently small or until a maximum number of iterations is reached. As a result, a

set of regression coefficients that best match the data is provided by the gradient descent process.

4.3 Proposed approach with extreme gradient boesting

We also consider Extreme Gradient Boosting (XGBoost). It is‘a variant of gradient boosted decision
trees (GBDT) (Chen & Guestrin, 2016). Like GBDT, its underlying model is an ensemble of decision
trees (DT),

M.
FE 2 (%),

where f,,(x) represents the m-th DT model, and” M is the number of DTs in the ensemble. The M DTs
are learned sequentially, and the m-th DT model f,, is learned at the m-th stage of sequential learning.
For the first stage, the first decigionitree f; is fitted to the original training data {(x;,v;),i =1,...,N}.
For the m-th stage, the m-th, DTf,, s fitted to the residual from the (m — 1)-th stage. Let g}i(m_l) =
Zznz_ll fe(x;) represent the fit'obtained up to the (m—1)-th stage. DT f,, is fitted to {(x;, v —gjgm*l))}.
Such sequential stacking of multiple DT's can be easily overfitted. To avoid overfitting, XGBoost applies
a model regularization. Specifically, the m-th iteration of XGBoost fits f,, to the residual y; — g)l(m*l)

by minimizing the following objective function,

N
L =370 (= 5" o (x0)) + @ () 9)
i=1

where [ is a differentiable convex loss function, which is typically a negative log-likelihood for classi-
fication problems or the mean squared error for regression problems. The regularization term € (f,,)
that penalizes the complexity of the m-th tree is defined as

J,
1 m
Q(fm) = vIm + 5)\ § wjz'a (10)
=1
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where Jy,, is the number of leaves in DT f,,,, w; is the complexity score of the j-th leave, and constants
~v and X determine weights on the two terms in the regularization term. For computational feasibility,

Chen and Guestrin (2016) developed a second-order approximation to the objective function Eq. (9) as
al 1
L~y {é (yz-,y*m—”) + gifm (i) + hif5 (i) | +Q(fm) (11)
i=1

where g; = gm0l (y;, ™) and h; = 8§(m_1)l (i, 9™~Y) are first and second order gradients\of

the loss function [ (yi, g<m—1>). We derive the derivatives for the asymmetric loss function:

N

gi = ZCO (gz - yi)+ —Cy (yi - gz)+ (12)
=1
N

hi =Y colli — Yi) — cu (i — i) (13)
i=1

After removing the constant terms in Eq. (11) and expanding 2 (f,,), the objective function is

written as
J,

N
- 1 1 m
(m)_E:. . 2112 (. _2:2
L = — [ngm (Xz) + 2h2ft (xl):| —I—’me + 2)‘j:1 w;
(14)

<

m

Z Zgi w]——i-% Zhi"‘/\ wj2 +vJm,

j=1 | \iel, icl;

where I; = {i | ¢(x;) = j} is the data samples inlleaf j/After creating the second-order approximation
of the objective function, XGBoost proceeds te build the model by adding trees to the ensemble. At
each iteration, the algorithm calculates’the leaf weights that minimize the objective function for the
newly added tree. This process of adding'trees continues until a stopping criterion is satisfied, which is
often determined by the validation error. This criterion prevents overfitting of the model and ensures

that the algorithm can generalize well to unseen data.

4.4 Proposed approach-with light gradient boosting machine

Another approach we consider is the Light Gradient Boosting Machine (LightGBM), an efficient and
scalable implementation of gradient boosting framework (Ke et al., 2017). Light GBM is known for its
high efficiency, low memory usage, and its ability to handle large-scale data. The core algorithm is
similarto that of XGBoost, but with some distinct features that enhance performance, particularly on
large datasets.

LightGBM builds the model in the form of an ensemble of decision trees, similar to XGBoost:

M
m=1

where f,,(x) represents the m-th decision tree model, and M is the total number of trees.
Two unique features of Light GBM are its Gradient-based One-Side Sampling (GOSS) and Exclusive

Feature Bundling (EFB), which reduce the amount of data and number of features without significant
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loss of accuracy. The GOSS method focuses on instances with larger gradients, as they are considered
more informative, while EFB effectively reduces the number of features by bundling mutually exclusive
features.

The training process involves minimizing a similar objective function as XGBoost, with a loss
function and a regularization term. However, Light GBM uses histogram-based algorithms for computing

the gradients, which significantly speeds up the learning process. The objective function is defined as:

N

L=> Ly, i) + ), (16)

i=1

where £(y;, §;) is the loss function, §; is the predicted value, and Q(f) is the regularization term.

The loss function can be tailored to our specific problem, considering the asymmetric cost of
underestimation and overestimation as previously described. The regularization termshelps to control
the complexity of the model and prevent overfitting. The algorithm iteratively builds trees, each one
focusing on correcting the errors of the previous ensemble.

To optimize the Light GBM model, we employ a similar gradient descentsstrategy as described for the
MLR model, with the objective of minimizing the asymmetric loss function."The Light GBM framework
offers several hyperparameters such as the number of leaves, the learning rate, and the maximum depth
of trees, which we can tune to achieve the best model performance.

In summary, Light GBM offers an efficient and effective appreach for predictive modeling in large-
scale data scenarios. Its ability to handle large datasets with a high speed and lower memory
consumption, while providing high accuracy, makes,it a suitable choice for our predictive analysis of

checked baggage volume.

5 Results

5.1 Comparison of MLR and LightGBM under symmetric loss

We first compare MLR and LightGBM without considering an asymmetric loss function. In other words,
we assume ¢, = ¢, = 1 in/Seetion 5.1. A standard hold-out testing method is adopted where 75% of
the samples (541,917 samples) are in the training dataset and the remaining 180,639 samples are in the
testing dataset. Figtire,9 compares the residual distributions for MLR and LightGBM. In Figure 9, the
mean residuals for Light GBM and MLR are virtually the same and close to 0. The standard deviation
of MLR is 17.6, which is greater than 14.9 for Light GBM. This is consistent with the finding that the
R? value achieved with MLR (0.79) is clearly lower than that of Light GBM (0.85). The scatter plot in
Figuré 9.shows-that the residuals for MLR are more dispersed than Light GBM, a further sign of weaker
prédietion-performance. While a considerable number of residuals are outside of the range [—30, 30] for
MLR, significantly more Light GBM residuals are within the range. For MLR, when the true bag count
is below 100, residuals tend to be negative (i.e., underprediction); when the true bag count is over 100,
residuals tend to be positive (i.e., overprediction). For Light GBM, the correlation of residuals and true
values is lower. Note that the residuals from only 1% of all the testing samples are shown in Figure 9

to avoid overcrowding.
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With 0.5% of testing samples drawn, the Quantile-Quantile plot in Figures 10 indicates that the
residuals of Light GBM and MLR largely follow a normal distribution, as most of the points fall approxi-
mately on the 45-degree reference line. This further indicates that MLR captures the underlying relation
between various features and the target variable quite well.

The above comparisons suggest that the advanced LightGBM outperforms the standard linear
regression model. Light GBM has multiple advantages over MLR. First, Light GBM, being a tree-based
method, can naturally model these non-linear relationships, making it more effective for complex
datasets. Second, Light GBM automatically captures interactions between features through itschierar-
chical tree structure. Lastly, Light GBM is more robust to outliers as decision trees split the data based
on certain conditions, reducing the influence of extreme values.

We further note that for both methods, if the true value is smaller than 50 or larger than 200, it is
quite challenging to predict the true value accurately, as shown in Figure 9. The primary reason is that
there are no adequate training data in those bag count ranges to understand.therelation between the
bag count and other features as stated earlier. For instance, wide-body aircraft, which can accommodate
more than 200 passengers, are severely underrepresented (accounting for only.1.85% of samples), as

shown in Figure 4.
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Fig. 9: Histograms for residuals under symmetric loss

5.2. Comparison of three methods under asymmetric loss

We next compare the three methods when an asymmetric loss function is considered. We use the same
hold-out testing method described in Section 5.1. To model the degree of asymmetry, we set ¢, to be
1 while considering four values for c¢,, namely 1, 5, 10, and 15. When ¢, = ¢,, the asymmetric loss
function reduces to a symmetric one. As the value of ¢, increases, the penalty for underestimation grows.

The XGBoost hyperparameters are tuned by Bayesian Optimization (Snoek, Larochelle, & Adams,

17

¥202 Iudy 62 uo 1senb Ag $90129./1 009E!I/M/E601 0 L/I0p/a|oie-80ueApE/II/WO0D dNo-dlWwsapede//:sdiy woly papeojumo(q



7
® LightGBM ",
3 MLR Pt
/),

2 /
3 1 /
< -
]
2 0 > //
5 )
2 V4
g -1 “ul
n 4

)/
, /
g
//f
_3 // .
e
// °
-4
4 3 -2 0 1 2 3

Normal theoretical quantiles
Fig. 10: Quantiles of residuals of MLR and Light GBM

2012). The hyperparameter tuning process has 100 iterations. A hoeld-oup”strategy is used aiming
to minimize the sum of asymmetric loss function values over tésting\samples. After hyperparameter
tuning, values of some key hyperparameters of XGBoost areslearning rate = 0.1, maximum tree depth
= 6, minimum sum of instance weight (hessian) needed in a‘child = 19, and subsample ratio = 0.8.
While using more estimators leads to better performances, the number of estimators is configured
as 600 because no significant improvements are observed by increasing this value. As the XGBoost
API supports multi-threading, the number of threads is'configured as the maximum value, namely 16.
Similar to XGBoost, the hyperparameters for Light GBM are also tuned using Bayesian Optimization.
Key Light GBM hyperparameters include a learning rate of 0.1, a maximum depth of 6, and 31 leaves
per tree, which is a default yet effective choice for Light GBM. The number of estimators is kept the
same as XGBoost at 600. The subsample‘ratio is set at 0.8, aligning with the XGBoost setup. The
LightGBM model is configured to use all available cores to ensure efficient computation.

Figures 11, 12, and 43 compare the residual distributions of MLR, LightGBM, and XGBoost,
respectively. Clearly, the distributions of XGBoost and Light GBM are tighter than MLR. The stan-
dard deviations of thewesiduals of XGBoost and Light GBM are around 15 while MLR yields a larger
standard deviation ofi17.6 when ¢, = 1. This means XGBoost and Light GBM outperform MLR when
a symmetrie~loss function is considered. As ¢, increases from 1 to 10, the distribution of residuals shifts
to the left and the standard deviation of residuals increases, for all three methods. As ¢, increases fur-
ther to 15, thechange in the mean and standard deviation of residuals becomes relatively small. This
means the tmpact of a growing ¢, on the residual distribution diminishes. While ¢,, increases from 1
to"15, XGBoost and Light GBM have a consistently better predictive performance than MLR judged
by the distribution of residuals. When ¢, increases from 1 to 15, the R? of MLR decreases from 0.79
to 0.56; Light GBM is capable of achieving a high R? consistently, although it decreases from 0.85 to
0.71; XGBoost performs similar to Light GBM, with R? of 0.85 to 0.72.
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We briefly show why as coefficient ¢, in the asymmetric loss function increases, R? decreases. The

coefficient of determination, i.e., R?, is defined as follows:

R2—1_ i (i — ?Jz)z (17)
> Wi —9i)

R? can be rewritten as:

MSE
RP=1- Var(Y) (18
by noting the definitions of mean squared error (MSE) and variance MSE = >, (™= ;)" Yand
Var(Y) =3, (i — 5:)*.

Since the variance of the target variable is a constant, it is quite clear that R? is a standardized
or rescaled MSE. In particular, a larger MSE leads to a smaller R%. As an asyminetricloss function is
adopted in training the learning algorithm, the asymmetric loss is the optimization objective, rather
than MSE (a symmetric metric). In the special case where ¢,, = 1, asymmetrie loss reduces to symmetric
loss, which means minimizing an asymmetric loss gives the minimal MSE;.thus the highest R?. As c,
increases, underestimation is more heavily penalized than overestimation, which means the predictive
algorithm will overestimate, thus directly hurting MSE (becoming“larger) and R? (becoming smaller).
Figures 11, 12, and 13 also show how R? varies with ¢, for(the three methods.

Figure 14 compares the loss function values of threesmethodsywhich shows that MLR, consistently
has the highest loss for all values of ¢,, and XGBoost performs with the lowest loss, indicating that
XGBoost outperforms Light GBM and MLR. Furthermeore, as ¢, increases from 1 to 15, the loss values
for all methods increase, with MLR exhibiting a‘percentage increase in loss of about 45% compared
to XGBoost. Overall, XGBoost outperforms LightGBM very slightly and MLR by a notable margin

when an asymmetric loss function is considered, regardless of the value of ¢,.

25000
o R
17.6| 0.79
20000 17.6| 0.71
17.8| 0.63
17.9| 0.56
15000
€
=
]
O
10000
5000
0
-60 -40 -20 0 20 40 60

Residual

Fig. 11: Effect of ¢, on MLR residual distribution
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5.3 Exploration on residuals of XGBoost

Here we explore the predictive performance of XGBoost across different categories when ¢, = 1 and
¢y, = 5. For instance, we seek to explore whether XGBoost would ‘achieve similar performance for flights
on different days of the week. Figure 15 thus shows the 25th{percentilé, median, and 75th percentile of
the loss function value. No significant differences are ohserved over different days of the week except
for Saturday with a higher loss function value. This means the performance of XGBoost is overall
consistent over the days.

We next define a criterion for misprediction. We state a value is mispredicted, thus constituting a
misprediction, if the absolute residual is largerthan 25 (i.e., | y — § |> 25) and relative deviation is
larger than 20% (i.e., | y—9 | /y > 20%). Themfor each destination city, we can compute the proportion
for mispredicted samples. Figure 16'shows the top destination cities with the highest misprediction
proportions. The two notable destinations are Anchorage, Alaska and Hayden, Colorado. Figures 18
show that the residual distribution fer Atlanta, Georgia is clearly tighter than those for the two identified
airports with significant mispredictions.

One possible reason for baggage mispredictions for Anchorage-bound flights is that 75 out of 268
flights (28.0%) arriving in_Anchorage are operated by wide-body aircraft. The number of bags per
flight for Anchoragé i§%178 on average while the average bag count for the whole dataset is 92. The
latter city Hayden, Colorado is one of the smallest cities getting air services in the U.S. because its
population ‘was only around two thousand in 2020. The whole dataset has only 126 samples for Hayden
covering a four-month winter period from December to March. In other words, those are seasonable
flights. Tt=is"very likely that most of those passengers are taking ski vacations in Hayden during winter
months: It is thus understandable that those passenger characteristics are quite different. For instance,
onaverage 108 passengers are classified as leisure travelers and 8 passengers are classified as business
travelers by Airline A, i.e., the percentage for business travelers is 0.7%. In contrast, a much higher
proportion of passengers, i.e., 33%, travel for business instead of leisure, as classified by Airline A. In
addition, a higher percentage of passengers travel with a child or infant on Hayden-bound flights than

the same percentage for the entire dataset. Clearly, the underlying patterns for the identified cities in
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Figure 16 are different from most other flights in the dataset, which mean those associated flights can
be considered “outliers.” Therefore, substantial mispredictions occur.

Figure 17 shows the misprediction proportion for each fleet type. Four leading fleet types with a large
misprediction proportion are all wide-body aircraft, which suffer from the same underrepresentation
issue. Figure 19 also shows that the residual distribution for Airbus A319 is much tighter than the
distributions for Boeing 777 and 787.
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Even'though XGBoost achieves a very high prediction accuracy overall, its performance may not be
satistactory for certain flights with insufficient data support. For instance, mispredictions are significant
for'those flights associated with the identified destination cities and fleet types. Additional efforts need
to be made to improve the predictive performance of those outlier flights. For instance, more historical
data covering multiple years rather than one year is necessary to achieve an acceptable prediction

performance.
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6 Discussions

Selecting an appropriate prediction algorithm is never an easy task as a trade-off between a learning
algorithm’s/complexity and its performance needs to be made. For checked baggage prediction, the
historical average approach is used in practice primarily due to its intuitiveness and simplicity. However,
even a very typical linear regression algorithm can outperform the state-of-the-practice approach by
a good ‘margin; an advanced machine learning algorithm, such as Light GBM or XGBoost, is more
effective in achieving high prediction accuracy, which is expected. Despite the superior performance
of Tight GBM and XGBoost, especially measured by accuracy, both gradient boosting methods, as an
ensemble model, are not interpretable (Luo et al., 2022; Shi, Jin, Lu, & Shi, 2023). It is less transparent
than the linear regression or historical average approach for analysts to understand how a value is
predicted. From a pragmatic perspective, low interpretability means a lower chance of acceptance by
analysts. In addition, the complexity of XGBoost is high, as it requires more hyperparameter tuning

than multiple linear regression. Figure 20 clearly indicates that the MLR training time is almost
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negligible in relative to the training time for XGBoost even though 16 threads are used in parallel to
train XGBoost. Light GBM, while it is also a gradient boosting method, takes 11.4 and 28.2 seconds
for training with 100,000 and 700,000 samples, respectively, which are dramatically shorter than that
of XGBoost.
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Fig. 20: Training time as a function of training sample size

For this specific prediction task, the relation between the target variable (i.e., the checked bag
count) and a few key features (e.g., the revenue passenger'count) is found to be largely linear, although
other factors (e.g., destination city characteristics and travel seasons) also play a role. The clear linear
relation explains why a linear regression algorithm»can achieve quite satisfactory performance. Linear
regression results are highly interpretable. For instarce, the coefficient for the number of main cabin
passengers measures how many bags a.mainicabin passenger carries. Although this coefficient varies
over time and across regions, values of this coefficient can be tracked by airlines to understand the
trends in checked baggage. Linear regression is thus recommended for replacing the historical average
approach. XGBoost or other complex learning algorithms are recommended for those cases where the
linear relation is unclear or not well characterized by available data.

A more detailed baggageiprediction model can be developed at the individual passenger level, as
the current analysis is/conducted at the flight level. In the individual prediction model, historical
baggage data fof an individual can be leveraged to understand how likely she/he may check bags. Then,
individual bag ‘counts/can be aggregated to obtain the flight-level bag count.

7 Conclusions

With a very large-scale multi-source dataset covering the entire U.S., we customized three machine
learning algorithms of various complexities to predict the number of checked bags on a flight and
evaluated the performance improvements of those three machine learning algorithms. Our primary
contribution is to systematically consider the different impacts of overprediction and underprediction
on airline operations and customize three machine learning algorithms with a piecewise quadratic
loss function. Our numerical experiments indicate that (1) the two gradient boosting methods can

significantly outperform standard multiple linear regression; (2) XGBoost can further improve the
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predictive performance of Light GBM, regardless of whether the asymmetric loss function is considered
or not; (3) Light GBM is more efficient than XGBoost in terms of training process. We also find that
even though XGBoost has remarkably high accuracy in predicting the bag count at the flight level, the
performance is not uniform, as checked bags in certain categories cannot be predicted satisfactorily. For
instance, the misprediction portion tends to be high for flights to Anchorage, Alaska, or flights operated
by wide-body aircraft. One major shortcoming of XGBoost is its low interpretability. Therefore, it is
noted that an ideal prediction algorithm for adoption in practice should strike a reasonable balance
between accuracy and interpretability.

This present study can be improved in the following ways. First, the entire dataset can be partitioned
so that certain categories of samples (e.g., those involving wide-body aircraft) can be”predicted by
dedicated machine learning algorithms with high complexity while the rest of the' samples“can be
predicted with a low-complexity algorithm. Second, the checked baggage weight can"be further predicted
when such data are available. Third, additional passenger-related features, suchas gender, age, and
travel duration (time difference between departure and arrival times), may be added to improve the
predictive performance. Additionally, efforts are needed to investigate how sueh-a prediction tool can
be incorporated into airline revenue management. Finally, in this“studyythe baggage prediction is
conducted only once, several hours prior to departure. The predieted baggage volume, when available,
initializes the aircraft load planning process. As the availability of information varies over time, it is
interesting and relevant to update prediction results when newsinformation (e.g., trip cancellations or
itinerary changes) becomes available as a flights departure nears. The current static prediction can be

extended to a dynamic prediction in a future study:
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Appendix A List of considered features

Table A1 lists the name, description, and variable type of each feature that is considered in the case

study.
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Table A1: Descriptions and variable types of features

Feature name
Flight-related

Description [# features if categorial] Variable type

FLIGHT_DEP_M Scheduled departure date (month only) [12] Categorial

FLIGHT_ARVL_M Scheduled arrival date (month only) [12] Categorial

FLIGHT_DEP_DW Scheduled departure date (day of the week) [7] Categorial

FLIGHT_ARVL_DW Scheduled arrival date (day of the week) [7] Categorial

FLIGHT_DEP_HOUR Scheduled departure time (hour only) [24] Categorial

FLIGHT_ARVL_HOUR  Scheduled arrival time (hour only) [24] Categorial

LEG_DISTANCE Number of miles of this leg Continuous
ORIG_CITY_.NM Origin city name [112] Categorial

DEST_CITY_NM Destination city name [116] Categorial

AIRCRAFT.TYPE Type of aircraft (wide or narrow body) [2] Categorial

FLEET_TYPE Fleet classification code [11] Categorial

TTL_SEATS Total number of seats Continuous
TTL_PAX Total number of passengers Continuous
LF Load factor = number of passengers/number of seats Continuous

Passenger-related
PAX_REV Number of revenue passengers on the flight Continuous
PAX_NONREV Number of non-revenue leisure passengers Continuous
PAX_POS_SPC Number of non-revenue business passengers Continuous
PAX_CONNECT Number of passengers on the flight who have a connection Continuous
PAX_LOCAL Number of passengers who start their flight at the departure.airport = Continuous
PAX_BUSINES Number of passengers classified as business passengers Continuous
PAX_LEISURE Number of passengers classified as leisure passengers Continuous
PAX_CHILD_WINF Number of passengers with a child or infant Continuous
PAX_ASSIST Number of passengers who require assistance Continuous
PAX_ANIMAL Count of all the service/emotional support ‘animals.-on the flight Continuous
LYLTY X Number of passengers with a loyalty status of X Continuous
NUM_GROUP.Y Number of groups that contain Y passengers Continuous
CABIN_FIRST Number of passengers in first class Continuous
CABIN_BUSINESS Number of passengers in business class Continuous
CABIN_PREM Number of passengers in prémium economy Continuous
CABIN_MAIN Number of passengers in‘main eabin Continuous
BOOK_DAYS2DEP_Z Number of passengersbooked within Z days prior to departure Continuous
BOTH_CARD Number of passengers who hold credit cards A and B Continuous
CARD1 Number of passengers who,hold credit card A only Continuous
CARD2 Number of passengers who hold credit card B only Continuous
SALES_BUSINESS Number of passengers booking via a business sales channel Continuous
SALES_DIRECT Number of passengers booking via official websites. Continuous
SALES_LEISURE Number of passengers booking via a leisure sales channel Continuous
SALES_.OTA Number ‘of passengers booking via an Online Travel Agency Continuous
SALES_TMC Number of passengers booking via a Travel Management Company Continuous
Supplemental
CK_POINT TSA checkpoint travel numbers Continuous
ENP_ORIG Enplanement of origin airport Continuous
ENP_DEST Enplanement of destination airport Continuous
POP_ORIG Population of origin city Continuous
POP_DEST Population of destination city Continuous
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