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Abstract

In this paper, we aim to address a relevant estimation problem that aviation professionals encounter
in their daily operations. Specifically, aircraft load planners require information on the expected
number of checked bags for a flight several hours prior to its scheduled departure to properly
palletize and load the aircraft. However, the checked baggage prediction problem has not been
sufficiently studied in the literature, particularly at the flight level. Existing prediction approaches
have not properly accounted for the different impacts of overestimating and underestimating checked
baggage volumes on airline operations. Therefore, we propose a custom loss function, in the form
of a piecewise quadratic function, which aligns with airline operations practice and utilizes machine
learning algorithms to optimize checked baggage predictions incorporating the new loss function. We
consider multiple linear regression, LightGBM, and XGBoost, as supervised learning algorithms.
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We apply our proposed methods to baggage data from a major airline and additional data from
various U.S. government agencies. We compare the performance of the three customized supervised
learning algorithms. We find that the two gradient boosting methods (i.e., LightGBM and XGBoost)
yield higher accuracy than the multiple linear regression; XGBoost outperforms LightGBM while
LightGBM requires much less training time than XGBoost. We also investigate the performance
of XGBoost on samples from different categories and provide insights for selecting an appropriate
prediction algorithm to improve baggage prediction practices. Our modeling framework can be
adapted to address other prediction challenges in aviation, such as predicting the number of standby
passengers or no-shows.

Keywords: Aviation, Airline operations, Checked baggage, Supervised learning, Custom loss function

1 Introduction

The air transportation system is a complex network of internal and external entities that interact with

one another in a variety of ways. For example, passengers can choose from multiple flights operated by

competing airlines, airlines plan and schedule their flights to minimize operating costs, and air traffic

controllers ensure safety and minimize delays for flights sharing the airspace. The air transportation

system is also impacted by external factors such as weather and socio-economic systems (Jardines,

Soler, & Garćıa-Heras, 2021), which contribute to the generation of large and intricate datasets. By

analyzing these datasets effectively, there is great potential for the aviation sector to undergo significant

transformation. The Next Generation Air Transportation System (NextGen) is an initiative led by

the National Aeronautics and Space Administration (NASA) and Federal Aviation Administration

(FAA) to use advanced data mining tools to identify safety vulnerabilities across various types of

data (NASA, 2007). Outside of air traffic management, airlines have also been known for improving

revenues by tailoring their services and products to various customer segments based on analyses of

their very rich passenger booking data (Sun et al., 2018). This paper aims to explore how advanced

machine learning algorithms and large-volume operational data can revolutionize conventional practices

in airline operations, with a particular focus on the flight-level checked baggage prediction problem, to

be defined and analyzed next.

A few hours (e.g., three to four hours) before the departure of a passenger flight, load planners need

to decide what shipments booked on this flight can be selected for loading or off-loading, how selected

shipments can be packed into unit load devices (ULD) or palletized, and how ULDs or pallets can be

assigned to different positions on the aircraft (Brandt & Nickel, 2019). Those loading decisions depend

on how much checked baggage to anticipate, whose exact amount only becomes available shortly (such

as 45 minutes) before the scheduled departure. Thus, the expected number of checked bags must be

estimated in advance, to facilitate the aircraft load planning process where various weight and balance

limits should be enforced. For instance, the maximum cargo (including checked baggage) to carry

should be jointly determined with fuel load subject to the takeoff weight limit (FAA, 2016b). From

the perspective of balance control, flight safety concerns may arise from baggage issues. A shift in the

longitudinal center of gravity, caused by improperly loaded baggage, may result in unstable aircraft

conditions or control difficulty (FAA, 2016a). In addition, loading checked bags can be time consuming

and labor intensive. Having relatively accurate checked baggage information would allow an airline to

allocate appropriate human power to load checked bags onto an airplane (BEONTRA, 2022). In case
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of an unusually large number of bags, the baggage loading process would be prolonged, thus likely

delaying a flight. While a good estimation of checked baggage is highly desirable, it is difficult to achieve

such a prediction because the amount of checked baggage usually fluctuates substantially, due to the

influence of various factors, such as passenger trip purposes and travel seasons.

A detailed literature review (to be presented in Section 2) indicates that only a few studies have

focused on the checked baggage prediction problem and each of them has various shortcomings. For

instance, non-time series data cannot be easily incorporated into a time series forecasting model for

baggage prediction as in Ma, Bi, Sai, and Li (2021). The primary shortcoming of the existing literature is

that the consequences of over-prediction and under-prediction are treated equally, contrary to aviation

practice. Modeling the asymmetric effect is important in the context of baggage prediction, as the cost

of not having sufficient space to accommodate checked baggage is much higher than having a partially

filled checked baggage compartment.

In this study, we analyzed a checked baggage dataset consisting of nearly one million samples owned

by a major U.S. airline. The primary dataset was enriched by including additional features, such as

the population of a city and passenger enplanements of an airport. Next, we performed necessary

data cleaning and feature processing to avoid the negative impact of data irregularities on the subse-

quent analyses and predictions. We introduced three prediction methods, namely linear regression, and

two advanced supervised learning algorithms (i.e., LightGBM and XGBoost). We further customized

them by designing and incorporating an asymmetric loss function. Some findings from the experiments

are highlighted as follows: (1) LightGBM and XGBoost can achieve a much better predictive perfor-

mance than linear regression regardless of whether the asymmetric loss function is considered or not,

while XGBboost slightly outperformance LightGBM; (2)LightGBM is significantly more efficient than

XGBoost; (3) the predictive performance of XGBoost is not uniform over destination airports or fleet

types due to uneven training data coverage.

To the best knowledge of the authors, this is the first flight-level checked baggage prediction study

considering an asymmetric loss function. This study also demonstrates the great potential of state-of-

the-art machine learning algorithms in modernizing some conventional practices in airline operations

with large-scale real-world data.

The rest of this paper is organized as follows. Section 2 briefly reviews some machine learning

applications in air transportation. We next describe how exploratory analyses of the datasets are

conducted along with data cleaning and feature engineering in Section 3. Then, in Section 4, multiple

prediction methods of various complexities are introduced and the asymmetric loss function is presented.

Experiments are conducted and major results are reported in Section 5. A discussion of how to choose

an appropriate baggage prediction algorithm is presented in Section 6. Lastly, concluding remarks and

future research directions are given in Section 7.

2 Literature Review

We divide related machine learning applications in air transportation into two broad categories: flight-

related and payload-related. In the first group, we mainly review those predictive studies on aircraft

trajectory and flight delay; in the second group, we focus on those studies on passenger, cargo, and

checked baggage predictions.
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2.1 Flight-related problems

2.1.1 Aircraft trajectory prediction

In traditional Air Traffic Management (ATM), controllers only need to know the current location

of aircraft, while under the new Trajectory-Based Operations (TBO) paradigm, controllers require

information on the future location of aircraft as well (Mondoloni & Rozen, 2020). This is where four-

dimensional (4D) Trajectory Prediction (TP) is needed (Wang, Liang, & Delahaye, 2020; Wu, Yang,

Chen, Hu, & Hu, 2022). 4D TP, which involves predicting an aircraft’s longitude, latitude, altitude,

and time, is crucial for improving air traffic safety and ATM efficiency under TBO. This is because an

aircraft’s actual trajectory can deviate from its planned route due to various factors such as congestion

and weather conditions. Trajectories can be predicted either in the short term (in-flight) or long term

(pre-flight). Two representative studies are reviewed next.

In a short-term predictive study, Gallego et al. (2019) proposed a measure of probabilistic interde-

pendence for pairs of aircraft, which they used as a feature to predict the vertical profiles of aircraft

trajectories during the descent phase of flight. Their study employed data from the Barcelona Air Traf-

fic Control Center in Spain and demonstrated the usefulness of their neural network methods. The

researchers concluded that incorporating the proposed interdependence measure enhanced the accu-

racy of trajectory prediction. In contrast, Wu et al. (2022) focused on predicting the 4D trajectory

of an aircraft prior to takeoff using historical trajectory data. To achieve this, they converted histor-

ical time series data into images and used various types of generative adversarial networks (GANs)

to generate new images, which were then transformed into time series data or flight trajectories. The

study used data from flights between Beijing and Chengdu in China and compared different GAN vari-

ants based on training time, prediction time, and prediction accuracy. The researchers found that the

one-dimensional convolution variant of GAN produced the best results.

2.1.2 Flight delay

The issue of flight delays has a significant impact on airline operations and customer satisfaction, leading

many researchers to focus on predicting flight delays using machine learning. For example, Khan, Ma,

Chung, and Wen (2021) observed that current flight delay classification systems use multiple threshold

prediction classifiers running in parallel, which can lead to conflicting results and ambiguity. Instead,

they proposed a sequential approach to predicting whether flight delays exceed certain thresholds by

considering only part of the data. They demonstrated their prediction algorithms with a case study of a

Hong Kong-based airline. In contrast, Rodŕıguez-Sanz et al. (2019) used a Bayesian Network approach

to predict delays for the arrival systems of an airport. They also conducted a reliability analysis using

a Markov chain approach to evaluate the system’s reliability. Their model can adaptively capture the

stochastic characteristics of arrival processes. As it is beyond the scope of this study to further review

those flight-related machine learning studies, interested readers are directed to Chung, Ma, Hansen,

and Choi (2020).
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2.2 Payload-related problems

2.2.1 Passengers and air cargo

Passengers account for the majority of payload on commercial flights. Passenger demand predictions

have been conducted at different levels, such as the national or airport level. S. Xu, Chan, and Zhang

(2019) combined seasonal autoregressive integrated moving average (SARIMA) and support vector

regression (SVR) for the prediction of several aviation metrics for China’s aviation industry, such as

domestic and international passenger miles. They used 133 observations between February 2005 to

February 2016 to predict values from March 2016 to February 2018. While such predictions at a national

level are useful for strategic planning purposes, other researchers have focused on operational problems

at a lower level. For instance, to dynamically optimize the configurations of airport security screening

lanes, Hanumantha, Arici, Sefair, and Askin (2020) proposed an ensemble forecasting model, which

was tested in a case study of Phoenix Sky Harbor Airport.

It is also very common for passenger flights to carry air cargo, which is organized using pallets

or unit load devices (ULDs) and loaded to the belly of the fuselage under the passenger compart-

ment. Such cargo space is shared by air cargo and checked baggage, while the latter has priority over

the former. This implies the available belly space for air cargo is uncertain. Therefore, Tseremoglou,

Bombelli, and Santos (2022) used Long Short-Term Memory Networks (LSTMs) to predict available

cargo space. They then solved a real-time booking acceptance problem with the predicted values as

inputs. Their experiments indicated that their proposed method can significantly increase loaded vol-

ume while decreasing unplanned offloading. A comprehensive review of the application of machine

learning in air cargo management can be found in Barua, Zou, and Zhou (2020).

While predicting cargo and passenger demand seems similar, the information provided by cargo

tracking and passenger service systems could be quite different, implying that models for passengers and

air cargo are not immediately transferable. Gender, age, and travel purpose are examples of common

passenger characteristics that do not apply to cargo predictions.

2.2.2 Checked Baggage

As the most relevant ones to this study, a few papers tried to predict the amount of checked baggage.

Accurate prediction of checked baggage is fundamental for reasonable resource allocation to prevent

the overloading of the baggage handling system (Ma et al., 2021) and allocate staff resources (BEON-

TRA, 2022). A seasonal ARIMA model was adopted by Ma et al. (2021) for checked baggage prediction

at the airport level. Based on the historical baggage volume covering eight weeks, the demand for the

subsequent three days was predicted. They quantified the predictive ability with some metrics but

no alternative models were involved for benchmarking purposes. Mikram, Rhanoui, Yousf, and Briwa

(2020) also adopted the ARIMA model to forecast the baggage volume and found that the BOXJENK-

INS approach and exponential smoothing methods can improve the accuracy. One shortcoming of these

time series models is that they rely on time-series data only, which implies a lot of available passenger-

related characteristics cannot be incorporated. In addition, those predictions are intended to be at the

airport level, rather than the flight level.

Cheng, Gao, and Zhang (2014) forecast the baggage volume for each flight from an international

terminal using a back propagation neural network and multiple linear regression. Numerical experiments
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on three datasets of various sizes were conducted. Only five features were involved, namely passenger

count, flight date, flight type, departure time, and flight duration. This study had a quite limited sample

size. In predicting the baggage amount for a single flight, only 29 samples were used, among which 21

were for training and 8 were for testing. The entire dataset covering all flights had 3,040 samples. Given

the limited number of features and sample size, the resulting R2 is also quite low, i.e., slightly over 0.5.

The identification of mishandled bags was studied by van Leeuwen et al. (2020) using a Gradient

Boosting machine, which was not reviewed in detail due to its low relevance.

2.3 Summary

The large amount of data generated in the aviation industry has led to extensive developments of

machine learning algorithms for aviation transportation management (Y. Xu, Wandelt, & Sun, 2024).

A good variety of aviation problems have been studied with machine learning (Chung et al., 2020).

However, only a few studies were for predicting the amount of checked baggage. A shortcoming in the

time series models for checked baggage prediction is that the impact of many non-time series data

on passenger baggage volume cannot be incorporated. More importantly, none of those studies have

explored an asymmetric loss function in predictive analyses. This paper distinguishes it from those

studies by presenting a flight-level checked baggage prediction method based on the customization

of advanced machine learning algorithms. Another strength of the paper lies in the large-scale and

multi-source datasets covering a whole country being analyzed in this study.

3 Data

3.1 Data Sources and Overview

The flight baggage dataset used in this study was obtained from a major U.S. airline, referred to as

Airline λ for confidentiality purposes due to the Non-Disclosure Agreement. The dataset consisted of

926,395 domestic flights operated by the airline in 2019, pre-dating the COVID-19 pandemic. Each row

in the dataset represented a flight on a specific day, with operational details and aggregated passenger

counts being available. The dataset consisted of 22 features related to flights, including flight number,

departure and arrival date and time, origin and destination cities, aircraft type, leg distance, and the

total number of on-board passengers. Additionally, there were 27 other features related to passenger

characteristics, such as payment type, presence of a child or infant, booking method, and cabin class.

Airline λ also categorized their passengers based on their loyalty status and predicted travel purposes by

other undisclosed algorithms. All those passenger-related features combined presented valuable insights

into understanding who those customers were, why they traveled, and how they checked bags. The

dataset contained a single target variable, which was the number of checked bags on each flight.

While the baggage dataset from Airline λ was essential, additional data were obtained to enhance

the predictive performance of machine learning algorithms. It was because the baggage dataset did not

have key information about airports, cities, and air travel trends over time. For instance, the baggage

dataset itself did not provide any information on how the population of Houston, Texas compared with

that of Omaha, Nebraska; it did not tell how the Reagan National Airport’s enplanements differed

from the Dulles International Airport serving the same metropolitan area; it did not properly reflect
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the difference between Thanksgiving travels and New Year travels. Therefore, the following new fea-

tures were added: city population from the U.S. Census Bureau (U.S. Census Bureau, 2021), annual

enplanements by airports provided by the Federal Aviation Administration (FAA, 2022), and the TSA

(Transportation Security Administration) checkpoint travel numbers (TSA, 2022). Figure 1 shows the

ten busiest airports in 2021 by enplanement as well as the population of the city served by an airport.

By enplanement, the Atlanta Airport was followed by the Dallas and Denver airports. As no enplane-

ment data were found for 2019, and to avoid considering the disruptions of the COVID-19 pandemic

in 2020, the 2021 data were used instead. For the TSA daily count, historical data were found for 2019

and thus used. Figure 2 shows the air travel peaks in summer months, especially July and August, as

well as off-peaks in February and September.

Fig. 1: Top 15 busiest airports in U.S. in 2021 by enplanement

Fig. 2: TSA checkpoint travel numbers in 2019
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3.2 Data cleaning

According to Airline λ, the baggage dataset was real and unaltered. Although we did not find any

missing values or duplicate records, some irregularities in the data were identified. Therefore, we used

the following procedure to clean the baggage dataset. First, any rows with negative passenger counts

were dropped. Second, if the aggregated passenger count over different categories exceeded the total

count, relevant data were dropped. For instance, if the number of local and connecting passengers

exceeded the total number of onboard passengers, the corresponding sample was removed. Similarly,

the number of passengers in the main cabin cannot be greater than the total passenger count. Third, if

the passenger and bag counts were conflicting, relevant data were removed. For instance, certain flights

had a few even zero passengers while carrying over a hundred checked bags. If either the passenger or

bag count was lower than ten, we removed such flights as outliers. After data cleaning, 722,556 records

remained.

3.3 Data explorations

We next conducted several exploratory analyses to illustrate some important relations in the baggage

dataset, which would have been hidden otherwise. Figure 3 shows how the target variable varies with

two passenger-related features, namely the number of paying passengers and the number of main cabin

passengers, as well as the histograms for those two features. In Figure 3, the solid line represents the

average bag count while the standard deviation of bag count is visualized by the buffer zone along

the solid line. Those two solid lines seem very similar because of a high correlation between those

two corresponding features. The majority of passengers pay for their travels, thus classified as paying

passengers, and opt for the main cabin, thus classified as the main cabin passengers. While the ratio of

revenue passengers to main cabin passengers varies, the average ratio is 0.9. It is also evident that as

the number of passengers grows, the number of bags grows in general, especially before the number of

revenue passengers hits 196. When there are more than 196 passengers on a flight, the relation between

the bag and passenger counts is no longer smooth and the standard deviation also increases. The cutoff

line represents the capacity of the largest narrow-body airplane used by the airline. Wide-body aircraft

are capable of carrying more passengers than 196, while they are used for only 1.85% of all the flights in

the dataset, as shown in Figure 4. The two histograms in Figure 3 also indicate very few observations

for wide-body aircraft. Given the limited sample size for wide-body aircraft, the bag-passenger relation

is not characterized adequately by the current data. It is also notable that when the number of paying

passengers is within 10, the bag count is nearly 50, implying an unusually large bag-to-passenger ratio.

Figure 5 indicates that wide-body aircraft carry significantly more checked bags as expected.

Figure 6 presents the distribution of load factor, i.e., the total number of passengers divided by the

aircraft capacity, which shows that in most cases, aircraft are nearly fully loaded.

We next explore how the counts of bags and passengers vary over time at different granularity levels

(i.e., month, day of the week, and hour of the day). The way how the bag count varies over months is

very similar to the national air travel trend shown in Figure 2. From Figure 7, we observe more bags

in summer months, such as June and July, while fewer bags are observed in September and October.

In December, the bag count is the highest. This could be partially affected by school sessions. For

example, there might be more family travels for recreational purposes over the summer and winter

breaks, contributing to the bag surges. Figure 7 further shows that there are more checked bags on
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Fig. 3: Bag count vs passenger count

Fig. 4: Percentage of flights using narrow-body aircraft over months

Saturday and Sunday flights and fewer on Wednesday and Thursday. As Airline λ did not operate

any flights around 3 and 4 am, there is a gap in how the bag count varies with the hour of the day

in Figure 7. Flights carried fewer bags around noon and more bags close to midnight. This pattern

may reflect a combination of operational scheduling by airlines and passenger preferences, with late-

night flights possibly accommodating more long-haul or international travelers who tend to check more

baggage. Additionally, the trend of increased baggage volumes close to midnight could be influenced

by passengers choosing late-night flights for economic reasons or personal scheduling needs.

Figure 8 shows how passengers booked their tickets over time, for an example flight from a major

hub (pseudonymized as Hub1) of Airline λ to New York City and a selected aircraft type Boeing 737.

Approximately, 30% of passengers booked their tickets one month in advance, and 65% of passengers

booked at least one week in advance. At the time of departure, 83.2% of tickets were sold, which was

close to the average load factor shown in Figure 6.

Collinearity refers to a linear relationship between two or more predictor variables. This issue

would become a concern in some regression models since the significance level of both variables will
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Fig. 5: Number of bags by aircraft type

Fig. 6: Density distribution for load factor over days of the week
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Fig. 7: Passenger and bag counts over time

Fig. 8: Cumulative number of tickets sold before departure (Hub1 - New York)

dramatically decrease and the estimated coefficients of the predictors are unstable (Wold, Ruhe, Wold,

& Dunn, 1984). This issue was detected in the baggage dataset because the number of leisure passengers

was presented twice. The first estimate could be likely obtained from the booking data while the

second estimate was obtained with an “improved” classification algorithm used by Airline λ. The two

estimates were highly correlated with a Pearson’s correlation coefficient of 0.97. Therefore, one of the

two variables was removed. Similarly, one variable related to business travelers was dropped.

3.4 Feature encoding

The baggage dataset consisted of many categorical variables, because quite a few time- and location-

related features were involved, such as month, hour, day of the week, and airport code. If one-hot
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encoding was directly employed for all those categorical features, the number of additional dummy

variables would be significant, especially when a categorical variable has many levels. For instance,

when we examine the origin airport as a categorical variable, if there are 100 airports, the same number

of dummy variables are needed with one variable corresponding to one airport. To avoid introducing

too many additional features, we combined some levels for selected categorical features as shown in

Table 1, mainly based on the data explorations described earlier. Hubs 1, 2, and 3 represent the three

busiest hubs in the dataset, measured by the number of flights. Similarly, the encoding for the “hour”

feature into specific groups is informed by our analysis of operational patterns and baggage volume

trends at airports. Specifically, we observed a consistent increase in baggage volumes during the hours

of 0, 1, 2, and 23 as shown in Figure 7(c). To protect the confidential and proprietary information of

Airline λ, specific names of those hubs are not revealed, while this anonymization does not hurt the

rigor and usefulness of this analysis.

Appendix A lists all features considered in the following predictive analyses. Specifically, 22 features

are flight-related; 27 are related to passengers; five are supplementary.

Table 1: Grouping for categorical variables

Categorical feature Level grouping
Origin hub [Hub1], [Hub2], [Hub3], [Others]
Destination hub [Hub1], [Hub2], [Hub3], [Others]
Aircraft type [330, 767, 777, 787], [Others]
Day of the week [Wednesday, Thursday], [Monday, Sunday], [Others]
Hour [0, 1, 2, 23], [Others]
Month [9, 10, 11], [6, 7], [12], [Others]

4 Methodology

In this section, we describe three machine learning algorithms to predict the checked baggage volume

y given attributes x, namely all features listed in Appendix A. Section 4.1 will describe the basic

modeling propositions. Sections 4.2 to 4.4 will describe three predictive algorithms.

4.1 Basic Modeling Propositions

In machine learning, an unknown prediction function f(x) that relates x and y is identified, using its

N noisy observations,

yi = f(xi) + ǫi, i = 1, . . . , N, (1)

where yi and xi are the dependent and explanatory variable values for the ith observation, respectively.

ǫi is independent noise with a mean of zero and variance of σ2. In Eq. (1), N is also the sample size.

For f(x), we consider multiple linear regression as the baseline benchmark, which will be described in

Section 4.2. We next consider two gradient boosting methods in Sections 4.3 and 4.4. We seek to find

the best model f̂(x) that minimizes the training error:

J(f̂) =

N
∑

i=1

ℓ(f̂(xi), yi), (2)
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where ℓ(f̂(xi), yi) is a loss function that quantifies the cost of making the prediction f̂(xi), which can

be abbreviated as ŷi, when yi is the actual value.

As for the loss function ℓ(·), we consider the business costs related to the prediction inaccuracy. In

airline operations, the business cost of underestimating checked bags is significantly higher than the

cost of overestimation. In case of underestimation, insufficient human power is allocated for loading

checked bags, thus resulting in possible departure delays. Or there might not be enough storage room

for checked bags on the departing airplane, which means customers may spend additional time waiting

for their checked bags to arrive with another flight. Delayed bags may need to be shipped to customer

homers at a high cost. In case of underestimation, the cargo compartment is partially filled, which

incurs some opportunity cost, because some cargo shipments should have been loaded if an accurate

count of checked bags has been estimated. To properly consider this cost asymmetry, we design the

following piecewise quadratic loss function:

ℓ(f̂(xi), yi) =
co
2
(ŷi − yi)

2
+ +

cu
2

(yi − ŷi)
2
+ (3)

In Eq. (3), the subscript “+” in (ŷi − yi)+ means only the positive part of (ŷi − yi) is taken.

In case ŷi < yi, 0 is used. co and cu are the overestimation and underestimation cost coefficients,

respectively. When co and cu are assigned different values, overestimation and underestimation are

penalized differently. The cu to co ratio depends on how likely the space or weight allowance for checked

baggage is exceeded for a flight. When the likelihood is relatively low, the coefficient for underestimation

cu should be relatively low while still being greater than co. When the checked baggage allowance is

frequently exceeded, cu should be significantly larger than co. As this likelihood varies over time and

with flight, an airline should carefully determine the cu to co ratio to be consistent with their own

operations.

4.2 Simple benchmark: multiple linear regression

We first consider a multiple linear regression (MLR) model that assumes a linear relation between

features x and the main response y. As MLR has been studied rigorously for many decades, it has been

applied in many practical contexts of business and engineering. The major reason for considering this

is to explore the simplest possibility that gives the smallest risk of model overfitting. Another benefit

of MLR lies in its interpretability. The estimated linear coefficients are straightforward to interpret as

the main effects of exploratory variables. An MLR model is formally described as

f(x) = a
T
x+ b, (4)

where a and b are the model parameters.

In this study, the asymmetric loss function J(f̂) for MLR model can be expressed as Eq (5).

Minimize a,bJ(f̂) =

N
∑

i=1

co
2

(

a
T
xi + b− yi

)2

+
+

cu
2

(

yi − a
T
xi − b

)2

+
. (5)

To minimize this cost function, gradient descent is used. The gradient descent algorithm is an

iterative optimization algorithm that works by starting with an initial set of regression coefficients, a
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and b, and iteratively updating them in the direction of the steepest descent of the cost function, which

is given by the negative gradient of the cost function:

a = a− η · ∇aJ(f̂)

b = b− η · ∇bJ(f̂),
(6)

where η is the learning rate, which controls the step size of the update. Specifically, we can derive the

partial derivatives of the loss function w.r.t. to the parameters a and b as follows:

∇aJ(f̂) =
∂J(f̂)

∂a
=

1

N

N
∑

i=1

{

co
(

a
T
xi + b− yi

)

+
− cu

(

yi − a
T
xi − b

)

+

}

xi, (7)

∇bJ(f̂) =
∂J(f̂)

∂b
=

1

N

N
∑

i=1

co
(

a
T
xi + b− yi

)

+
− cu

(

yi − a
T
xi − b

)

+
. (8)

The procedure continues until the cost function converges to a minimum, i.e., until the norm of the

gradient becomes sufficiently small or until a maximum number of iterations is reached. As a result, a

set of regression coefficients that best match the data is provided by the gradient descent process.

4.3 Proposed approach with extreme gradient boosting

We also consider Extreme Gradient Boosting (XGBoost). It is a variant of gradient boosted decision

trees (GBDT) (Chen & Guestrin, 2016). Like GBDT, its underlying model is an ensemble of decision

trees (DT),

f(x) =

M
∑

m=1

fm (x) ,

where fm(x) represents the m-th DT model, and M is the number of DTs in the ensemble. The M DTs

are learned sequentially, and the m-th DT model fm is learned at the m-th stage of sequential learning.

For the first stage, the first decision tree f1 is fitted to the original training data {(xi, yi), i = 1, . . . , N}.

For the m-th stage, the m-th DT fm is fitted to the residual from the (m− 1)-th stage. Let ŷ
(m−1)
i =

∑m−1
ℓ=1 fℓ(xi) represent the fit obtained up to the (m−1)-th stage. DT fm is fitted to {(xi, yi−ŷ

(m−1)
i )}.

Such sequential stacking of multiple DTs can be easily overfitted. To avoid overfitting, XGBoost applies

a model regularization. Specifically, the m-th iteration of XGBoost fits fm to the residual yi − ŷ
(m−1)
i

by minimizing the following objective function,

L(m) =

N
∑

i=1

ℓ
(

yi − ŷ
(m−1)
i , fm (xi)

)

+Ω(fm) , (9)

where l is a differentiable convex loss function, which is typically a negative log-likelihood for classi-

fication problems or the mean squared error for regression problems. The regularization term Ω (fm)

that penalizes the complexity of the m-th tree is defined as

Ω(fm) = γJm +
1

2
λ

Jm
∑

j=1

w2
j , (10)

14

D
ow

nloaded from
 https://academ

ic.oup.com
/iti/advance-article/doi/10.1093/iti/liae001/7624064 by guest on 29 April 2024



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

where Jm is the number of leaves in DT fm, wj is the complexity score of the j-th leave, and constants

γ and λ determine weights on the two terms in the regularization term. For computational feasibility,

Chen and Guestrin (2016) developed a second-order approximation to the objective function Eq. (9) as

L(m) ≃

N
∑

i=1

[

ℓ
(

yi, ŷ
(m−1)

)

+ gifm (xi) +
1

2
hif

2
m (xi)

]

+Ω(fm) , (11)

where gi = ∂ŷ(m−1) l
(

yi, ŷ
(m−1)

)

and hi = ∂2
ŷ(m−1) l

(

yi, ŷ
(m−1)

)

are first and second order gradients of

the loss function l
(

yi, ŷ
(m−1)

)

. We derive the derivatives for the asymmetric loss function:

gi =

N
∑

i=1

co (ŷi − yi)+ − cu (yi − ŷi)+ (12)

hi =

N
∑

i=1

co (ŷi − yi)
0
+ − cu (yi − ŷi)

0
+ (13)

After removing the constant terms in Eq. (11) and expanding Ω (fm), the objective function is

written as

L̃(m) =

N
∑

i=1

[

gifm (xi) +
1

2
hif

2
t (xi)

]

+ γJm +
1

2
λ

Jm
∑

j=1

w2
j

=

Jm
∑

j=1









∑

i∈Ij

gi



wj +
1

2





∑

i∈Ij

hi + λ



w2
j



+ γJm,

(14)

where Ij = {i | q (xi) = j} is the data samples in leaf j. After creating the second-order approximation

of the objective function, XGBoost proceeds to build the model by adding trees to the ensemble. At

each iteration, the algorithm calculates the leaf weights that minimize the objective function for the

newly added tree. This process of adding trees continues until a stopping criterion is satisfied, which is

often determined by the validation error. This criterion prevents overfitting of the model and ensures

that the algorithm can generalize well to unseen data.

4.4 Proposed approach with light gradient boosting machine

Another approach we consider is the Light Gradient Boosting Machine (LightGBM), an efficient and

scalable implementation of gradient boosting framework (Ke et al., 2017). LightGBM is known for its

high efficiency, low memory usage, and its ability to handle large-scale data. The core algorithm is

similar to that of XGBoost, but with some distinct features that enhance performance, particularly on

large datasets.

LightGBM builds the model in the form of an ensemble of decision trees, similar to XGBoost:

f(x) =

M
∑

m=1

fm(x), (15)

where fm(x) represents the m-th decision tree model, and M is the total number of trees.

Two unique features of LightGBM are its Gradient-based One-Side Sampling (GOSS) and Exclusive

Feature Bundling (EFB), which reduce the amount of data and number of features without significant
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loss of accuracy. The GOSS method focuses on instances with larger gradients, as they are considered

more informative, while EFB effectively reduces the number of features by bundling mutually exclusive

features.

The training process involves minimizing a similar objective function as XGBoost, with a loss

function and a regularization term. However, LightGBM uses histogram-based algorithms for computing

the gradients, which significantly speeds up the learning process. The objective function is defined as:

L =

N
∑

i=1

ℓ (yi, ŷi) + Ω(f), (16)

where ℓ(yi, ŷi) is the loss function, ŷi is the predicted value, and Ω(f) is the regularization term.

The loss function can be tailored to our specific problem, considering the asymmetric cost of

underestimation and overestimation as previously described. The regularization term helps to control

the complexity of the model and prevent overfitting. The algorithm iteratively builds trees, each one

focusing on correcting the errors of the previous ensemble.

To optimize the LightGBMmodel, we employ a similar gradient descent strategy as described for the

MLR model, with the objective of minimizing the asymmetric loss function. The LightGBM framework

offers several hyperparameters such as the number of leaves, the learning rate, and the maximum depth

of trees, which we can tune to achieve the best model performance.

In summary, LightGBM offers an efficient and effective approach for predictive modeling in large-

scale data scenarios. Its ability to handle large datasets with a high speed and lower memory

consumption, while providing high accuracy, makes it a suitable choice for our predictive analysis of

checked baggage volume.

5 Results

5.1 Comparison of MLR and LightGBM under symmetric loss

We first compare MLR and LightGBM without considering an asymmetric loss function. In other words,

we assume cu = co = 1 in Section 5.1. A standard hold-out testing method is adopted where 75% of

the samples (541,917 samples) are in the training dataset and the remaining 180,639 samples are in the

testing dataset. Figure 9 compares the residual distributions for MLR and LightGBM. In Figure 9, the

mean residuals for LightGBM and MLR are virtually the same and close to 0. The standard deviation

of MLR is 17.6, which is greater than 14.9 for LightGBM. This is consistent with the finding that the

R2 value achieved with MLR (0.79) is clearly lower than that of LightGBM (0.85). The scatter plot in

Figure 9 shows that the residuals for MLR are more dispersed than LightGBM, a further sign of weaker

prediction performance. While a considerable number of residuals are outside of the range [−30, 30] for

MLR, significantly more LightGBM residuals are within the range. For MLR, when the true bag count

is below 100, residuals tend to be negative (i.e., underprediction); when the true bag count is over 100,

residuals tend to be positive (i.e., overprediction). For LightGBM, the correlation of residuals and true

values is lower. Note that the residuals from only 1% of all the testing samples are shown in Figure 9

to avoid overcrowding.
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With 0.5% of testing samples drawn, the Quantile-Quantile plot in Figures 10 indicates that the

residuals of LightGBM and MLR largely follow a normal distribution, as most of the points fall approxi-

mately on the 45-degree reference line. This further indicates that MLR captures the underlying relation

between various features and the target variable quite well.

The above comparisons suggest that the advanced LightGBM outperforms the standard linear

regression model. LightGBM has multiple advantages over MLR. First, LightGBM, being a tree-based

method, can naturally model these non-linear relationships, making it more effective for complex

datasets. Second, LightGBM automatically captures interactions between features through its hierar-

chical tree structure. Lastly, LightGBM is more robust to outliers as decision trees split the data based

on certain conditions, reducing the influence of extreme values.

We further note that for both methods, if the true value is smaller than 50 or larger than 200, it is

quite challenging to predict the true value accurately, as shown in Figure 9. The primary reason is that

there are no adequate training data in those bag count ranges to understand the relation between the

bag count and other features as stated earlier. For instance, wide-body aircraft, which can accommodate

more than 200 passengers, are severely underrepresented (accounting for only 1.85% of samples), as

shown in Figure 4.

Fig. 9: Histograms for residuals under symmetric loss

5.2 Comparison of three methods under asymmetric loss

We next compare the three methods when an asymmetric loss function is considered. We use the same

hold-out testing method described in Section 5.1. To model the degree of asymmetry, we set co to be

1 while considering four values for cu, namely 1, 5, 10, and 15. When cu = co, the asymmetric loss

function reduces to a symmetric one. As the value of cu increases, the penalty for underestimation grows.

The XGBoost hyperparameters are tuned by Bayesian Optimization (Snoek, Larochelle, & Adams,
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Fig. 10: Quantiles of residuals of MLR and LightGBM

2012). The hyperparameter tuning process has 100 iterations. A hold-out strategy is used aiming

to minimize the sum of asymmetric loss function values over testing samples. After hyperparameter

tuning, values of some key hyperparameters of XGBoost are: learning rate = 0.1, maximum tree depth

= 6, minimum sum of instance weight (hessian) needed in a child = 19, and subsample ratio = 0.8.

While using more estimators leads to better performances, the number of estimators is configured

as 600 because no significant improvements are observed by increasing this value. As the XGBoost

API supports multi-threading, the number of threads is configured as the maximum value, namely 16.

Similar to XGBoost, the hyperparameters for LightGBM are also tuned using Bayesian Optimization.

Key LightGBM hyperparameters include a learning rate of 0.1, a maximum depth of 6, and 31 leaves

per tree, which is a default yet effective choice for LightGBM. The number of estimators is kept the

same as XGBoost at 600. The subsample ratio is set at 0.8, aligning with the XGBoost setup. The

LightGBM model is configured to use all available cores to ensure efficient computation.

Figures 11, 12, and 13 compare the residual distributions of MLR, LightGBM, and XGBoost,

respectively. Clearly, the distributions of XGBoost and LightGBM are tighter than MLR. The stan-

dard deviations of the residuals of XGBoost and LightGBM are around 15 while MLR yields a larger

standard deviation of 17.6 when cu = 1. This means XGBoost and LightGBM outperform MLR when

a symmetric loss function is considered. As cu increases from 1 to 10, the distribution of residuals shifts

to the left and the standard deviation of residuals increases, for all three methods. As cu increases fur-

ther to 15, the change in the mean and standard deviation of residuals becomes relatively small. This

means the impact of a growing cu on the residual distribution diminishes. While cu increases from 1

to 15, XGBoost and LightGBM have a consistently better predictive performance than MLR judged

by the distribution of residuals. When cu increases from 1 to 15, the R2 of MLR decreases from 0.79

to 0.56; LightGBM is capable of achieving a high R2 consistently, although it decreases from 0.85 to

0.71; XGBoost performs similar to LightGBM, with R2 of 0.85 to 0.72.
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We briefly show why as coefficient cu in the asymmetric loss function increases, R2 decreases. The

coefficient of determination, i.e., R2, is defined as follows:

R2 = 1−

∑

i (yi − ŷi)
2

∑

i (yi − ȳi)
2 (17)

R2 can be rewritten as:

R2 = 1−
MSE

V ar(Y )
(18)

by noting the definitions of mean squared error (MSE) and variance MSE =
∑

i (yi − ŷi)
2
and

V ar(Y ) =
∑

i (yi − ȳi)
2
.

Since the variance of the target variable is a constant, it is quite clear that R2 is a standardized

or rescaled MSE. In particular, a larger MSE leads to a smaller R2. As an asymmetric loss function is

adopted in training the learning algorithm, the asymmetric loss is the optimization objective, rather

than MSE (a symmetric metric). In the special case where cu = 1, asymmetric loss reduces to symmetric

loss, which means minimizing an asymmetric loss gives the minimal MSE, thus the highest R2. As cu

increases, underestimation is more heavily penalized than overestimation, which means the predictive

algorithm will overestimate, thus directly hurting MSE (becoming larger) and R2 (becoming smaller).

Figures 11, 12, and 13 also show how R2 varies with cu for the three methods.

Figure 14 compares the loss function values of three methods, which shows that MLR consistently

has the highest loss for all values of cu, and XGBoost performs with the lowest loss, indicating that

XGBoost outperforms LightGBM and MLR. Furthermore, as cu increases from 1 to 15, the loss values

for all methods increase, with MLR exhibiting a percentage increase in loss of about 45% compared

to XGBoost. Overall, XGBoost outperforms LightGBM very slightly and MLR by a notable margin

when an asymmetric loss function is considered, regardless of the value of cu.

Fig. 11: Effect of cu on MLR residual distribution
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Fig. 12: Effect of cu on LightGBM residual distribution

Fig. 13: Effect of cu on XGBoost residual distribution

Fig. 14: Comparison of loss function values under different cu
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Fig. 15: Loss function value per flight of XGBoost by day of the week

5.3 Exploration on residuals of XGBoost

Here we explore the predictive performance of XGBoost across different categories when co = 1 and

cu = 5. For instance, we seek to explore whether XGBoost would achieve similar performance for flights

on different days of the week. Figure 15 thus shows the 25th percentile, median, and 75th percentile of

the loss function value. No significant differences are observed over different days of the week except

for Saturday with a higher loss function value. This means the performance of XGBoost is overall

consistent over the days.

We next define a criterion for misprediction. We state a value is mispredicted, thus constituting a

misprediction, if the absolute residual is larger than 25 (i.e., | y − ŷ |> 25) and relative deviation is

larger than 20% (i.e., | y−ŷ | /y > 20%). Then for each destination city, we can compute the proportion

for mispredicted samples. Figure 16 shows the top destination cities with the highest misprediction

proportions. The two notable destinations are Anchorage, Alaska and Hayden, Colorado. Figures 18

show that the residual distribution for Atlanta, Georgia is clearly tighter than those for the two identified

airports with significant mispredictions.

One possible reason for baggage mispredictions for Anchorage-bound flights is that 75 out of 268

flights (28.0%) arriving in Anchorage are operated by wide-body aircraft. The number of bags per

flight for Anchorage is 178 on average while the average bag count for the whole dataset is 92. The

latter city Hayden, Colorado is one of the smallest cities getting air services in the U.S. because its

population was only around two thousand in 2020. The whole dataset has only 126 samples for Hayden

covering a four-month winter period from December to March. In other words, those are seasonable

flights. It is very likely that most of those passengers are taking ski vacations in Hayden during winter

months. It is thus understandable that those passenger characteristics are quite different. For instance,

on average 108 passengers are classified as leisure travelers and 8 passengers are classified as business

travelers by Airline λ, i.e., the percentage for business travelers is 0.7%. In contrast, a much higher

proportion of passengers, i.e., 33%, travel for business instead of leisure, as classified by Airline λ. In

addition, a higher percentage of passengers travel with a child or infant on Hayden-bound flights than

the same percentage for the entire dataset. Clearly, the underlying patterns for the identified cities in
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Figure 16 are different from most other flights in the dataset, which mean those associated flights can

be considered “outliers.” Therefore, substantial mispredictions occur.

Figure 17 shows the misprediction proportion for each fleet type. Four leading fleet types with a large

misprediction proportion are all wide-body aircraft, which suffer from the same underrepresentation

issue. Figure 19 also shows that the residual distribution for Airbus A319 is much tighter than the

distributions for Boeing 777 and 787.

Fig. 16: Distribution of top 10 destination cities with significant mispredictions

Fig. 17: Distribution of fleet types with significant mispredictions

Even though XGBoost achieves a very high prediction accuracy overall, its performance may not be

satisfactory for certain flights with insufficient data support. For instance, mispredictions are significant

for those flights associated with the identified destination cities and fleet types. Additional efforts need

to be made to improve the predictive performance of those outlier flights. For instance, more historical

data covering multiple years rather than one year is necessary to achieve an acceptable prediction

performance.
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Fig. 18: Residual distributions for three example destination cities

Fig. 19: Residual distributions for three example fleet types

6 Discussions

Selecting an appropriate prediction algorithm is never an easy task as a trade-off between a learning

algorithm’s complexity and its performance needs to be made. For checked baggage prediction, the

historical average approach is used in practice primarily due to its intuitiveness and simplicity. However,

even a very typical linear regression algorithm can outperform the state-of-the-practice approach by

a good margin; an advanced machine learning algorithm, such as LightGBM or XGBoost, is more

effective in achieving high prediction accuracy, which is expected. Despite the superior performance

of LightGBM and XGBoost, especially measured by accuracy, both gradient boosting methods, as an

ensemble model, are not interpretable (Luo et al., 2022; Shi, Jin, Lu, & Shi, 2023). It is less transparent

than the linear regression or historical average approach for analysts to understand how a value is

predicted. From a pragmatic perspective, low interpretability means a lower chance of acceptance by

analysts. In addition, the complexity of XGBoost is high, as it requires more hyperparameter tuning

than multiple linear regression. Figure 20 clearly indicates that the MLR training time is almost
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negligible in relative to the training time for XGBoost even though 16 threads are used in parallel to

train XGBoost. LightGBM, while it is also a gradient boosting method, takes 11.4 and 28.2 seconds

for training with 100,000 and 700,000 samples, respectively, which are dramatically shorter than that

of XGBoost.

Fig. 20: Training time as a function of training sample size

For this specific prediction task, the relation between the target variable (i.e., the checked bag

count) and a few key features (e.g., the revenue passenger count) is found to be largely linear, although

other factors (e.g., destination city characteristics and travel seasons) also play a role. The clear linear

relation explains why a linear regression algorithm can achieve quite satisfactory performance. Linear

regression results are highly interpretable. For instance, the coefficient for the number of main cabin

passengers measures how many bags a main cabin passenger carries. Although this coefficient varies

over time and across regions, values of this coefficient can be tracked by airlines to understand the

trends in checked baggage. Linear regression is thus recommended for replacing the historical average

approach. XGBoost or other complex learning algorithms are recommended for those cases where the

linear relation is unclear or not well characterized by available data.

A more detailed baggage prediction model can be developed at the individual passenger level, as

the current analysis is conducted at the flight level. In the individual prediction model, historical

baggage data for an individual can be leveraged to understand how likely she/he may check bags. Then,

individual bag counts can be aggregated to obtain the flight-level bag count.

7 Conclusions

With a very large-scale multi-source dataset covering the entire U.S., we customized three machine

learning algorithms of various complexities to predict the number of checked bags on a flight and

evaluated the performance improvements of those three machine learning algorithms. Our primary

contribution is to systematically consider the different impacts of overprediction and underprediction

on airline operations and customize three machine learning algorithms with a piecewise quadratic

loss function. Our numerical experiments indicate that (1) the two gradient boosting methods can

significantly outperform standard multiple linear regression; (2) XGBoost can further improve the
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predictive performance of LightGBM, regardless of whether the asymmetric loss function is considered

or not; (3) LightGBM is more efficient than XGBoost in terms of training process. We also find that

even though XGBoost has remarkably high accuracy in predicting the bag count at the flight level, the

performance is not uniform, as checked bags in certain categories cannot be predicted satisfactorily. For

instance, the misprediction portion tends to be high for flights to Anchorage, Alaska, or flights operated

by wide-body aircraft. One major shortcoming of XGBoost is its low interpretability. Therefore, it is

noted that an ideal prediction algorithm for adoption in practice should strike a reasonable balance

between accuracy and interpretability.

This present study can be improved in the following ways. First, the entire dataset can be partitioned

so that certain categories of samples (e.g., those involving wide-body aircraft) can be predicted by

dedicated machine learning algorithms with high complexity while the rest of the samples can be

predicted with a low-complexity algorithm. Second, the checked baggage weight can be further predicted

when such data are available. Third, additional passenger-related features, such as gender, age, and

travel duration (time difference between departure and arrival times), may be added to improve the

predictive performance. Additionally, efforts are needed to investigate how such a prediction tool can

be incorporated into airline revenue management. Finally, in this study, the baggage prediction is

conducted only once, several hours prior to departure. The predicted baggage volume, when available,

initializes the aircraft load planning process. As the availability of information varies over time, it is

interesting and relevant to update prediction results when new information (e.g., trip cancellations or

itinerary changes) becomes available as a flights departure nears. The current static prediction can be

extended to a dynamic prediction in a future study.
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Appendix A List of considered features

Table A1 lists the name, description, and variable type of each feature that is considered in the case

study.
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Table A1: Descriptions and variable types of features

Feature name Description [# features if categorial] Variable type
Flight-related

FLIGHT DEP M Scheduled departure date (month only) [12] Categorial
FLIGHT ARVL M Scheduled arrival date (month only) [12] Categorial
FLIGHT DEP DW Scheduled departure date (day of the week) [7] Categorial
FLIGHT ARVL DW Scheduled arrival date (day of the week) [7] Categorial
FLIGHT DEP HOUR Scheduled departure time (hour only) [24] Categorial
FLIGHT ARVL HOUR Scheduled arrival time (hour only) [24] Categorial
LEG DISTANCE Number of miles of this leg Continuous
ORIG CITY NM Origin city name [112] Categorial
DEST CITY NM Destination city name [116] Categorial
AIRCRAFT TYPE Type of aircraft (wide or narrow body) [2] Categorial
FLEET TYPE Fleet classification code [11] Categorial
TTL SEATS Total number of seats Continuous
TTL PAX Total number of passengers Continuous
LF Load factor = number of passengers/number of seats Continuous

Passenger-related
PAX REV Number of revenue passengers on the flight Continuous
PAX NONREV Number of non-revenue leisure passengers Continuous
PAX POS SPC Number of non-revenue business passengers Continuous
PAX CONNECT Number of passengers on the flight who have a connection Continuous
PAX LOCAL Number of passengers who start their flight at the departure airport Continuous
PAX BUSINES Number of passengers classified as business passengers Continuous
PAX LEISURE Number of passengers classified as leisure passengers Continuous
PAX CHILD WINF Number of passengers with a child or infant Continuous
PAX ASSIST Number of passengers who require assistance Continuous
PAX ANIMAL Count of all the service/emotional support animals on the flight Continuous
LYLTY X Number of passengers with a loyalty status of X Continuous
NUM GROUP Y Number of groups that contain Y passengers Continuous
CABIN FIRST Number of passengers in first class Continuous
CABIN BUSINESS Number of passengers in business class Continuous
CABIN PREM Number of passengers in premium economy Continuous
CABIN MAIN Number of passengers in main cabin Continuous
BOOK DAYS2DEP Z Number of passengers booked within Z days prior to departure Continuous
BOTH CARD Number of passengers who hold credit cards A and B Continuous
CARD1 Number of passengers who hold credit card A only Continuous
CARD2 Number of passengers who hold credit card B only Continuous
SALES BUSINESS Number of passengers booking via a business sales channel Continuous
SALES DIRECT Number of passengers booking via official websites. Continuous
SALES LEISURE Number of passengers booking via a leisure sales channel Continuous
SALES OTA Number of passengers booking via an Online Travel Agency Continuous
SALES TMC Number of passengers booking via a Travel Management Company Continuous

Supplemental
CK POINT TSA checkpoint travel numbers Continuous
ENP ORIG Enplanement of origin airport Continuous
ENP DEST Enplanement of destination airport Continuous
POP ORIG Population of origin city Continuous
POP DEST Population of destination city Continuous
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