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A B S T R A C T

We study the incentive properties of the two primary approaches to incorporating unit-commitment decisions in
wholesale electricity markets. One approach is centralized unit commitment, wherein generating firms provide
complex multi-part offers that specify their non-convex fixed and variable operating costs. The market operator
uses these offers to co-optimize unit-commitment and economic-dispatch decisions. The second approach is
self-commitment, whereby firms determine unit-commitment decisions for their generating units individually
and submit simple offers for the provision of energy. Operators of self-committed markets determine generator
dispatch based on the merit order of the simple offers.

Comparing the incentive properties of the two market designs is challenging because the offer-optimization
problem for a firm that participates in a centrally committed market is a bi-level model with binary variables
in the lower-level problem. To address this challenge, we develop a computationally efficient approach to
solve such a problem and illustrate the method with examples. We use the examples to compare the incentive
properties of the two market designs. Our examples show that the profit of the profit-maximizing firm does not
differ significantly between the two market designs but that system costs can be higher under a self-committed
design. These cost differences are because the complex offers and discriminatory payment schemes that are
used under centrally committed designs can mitigate incentives for the profit-maximizing firm to exercise
market power.

1. Introduction

Designing wholesale electricity markets raises the question of how
unit-commitment decisions are co-ordinated amongst generators. Ex-
isting markets use two primary approaches. Some markets, especially
those in United States of America, employ a centrally committed design.
With such a design, unit-commitment decisions are made by a market
operator (MO), which receives complex offers from firms that specify
the non-convex costs and constraints of their generating units. Muck-
stadt and Koenig (1977) give a formative application of Lagrangian
relaxation (LR) to solve the model that underlies a centrally committed
market. Baldick (1995) gives a generalized formulation of the model,
which accounts for a broad array of constraints, and refines the LR
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algorithm. Hobbs et al. (2001) survey such models and algorithmic
developments. Scarf (1990, 1994) notes a pricing challenge with cen-
trally committed designs—uniform linear pricing can be economically
confiscatory, due to the non-convex costs and constraints that govern
generator operations. O’Neill et al. (2005), Sioshansi (2014) discuss
make-whole payments as a common mechanism to address this chal-
lenge. Make-whole payments are discriminatory transfers from the MO
to each generator to ensure that the latter earns non-negative profit (on
the basis of the offers that the generator submits to the market). In most
cases, the costs of make-whole payments are socialized to customers.

Another common design, especially in Europe and Australia, are
self-committed wholesale electricity markets. Generating firms in such
markets determine individually the commitments of their units and
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submit simple offers that specify prices at which the units provide
energy. Operators of self-committed markets determine the dispatch of
generating units based on the merit order of the simple offers. Because
self-committed markets rely upon simple offers being submitted into
the market, the onus is upon generating firms to ensure that the
offers yield revenues that recover their non-convex costs. Imran and
Kockar (2014) compare the designs of European and North Amer-
ican electricity markets, including with respect to the treatment of
unit-commitment decisions.

There are works that examine these two market designs. Johnson
et al. (1997), Sioshansi et al. (2008a) show that using LR to solve the
market model that underlies a centrally committed design can impact
the profits of individual generating units. Profit differences arise be-
cause solutions that yield similar total cost can give different prices and
unit-commitment and dispatch decisions. Sioshansi and Tignor (2012)
demonstrate that these profit impacts under a centrally committed
design can be most pronounced for generators with greater operational
flexibility. Elmaghraby and Oren (1999) consider the treatment of
intertemporal constraints and non-convex costs under a self-committed
design. They propose a horizontal market-clearing procedure to address
these aspects of the market-clearing problem. Sioshansi et al. (2008b)
show that even with truthful cost revelation, a self-committed design
yields productive-efficiency losses. Ahlqvist et al. (2022) compare the
two designs, including their relative merits vis-à-vis supply and demand
flexibility, resource remuneration, and market power and efficiency.

These works that examine the two market designs assume truthful
revelation by the participating generating firms. We know of two
works that compare the market designs while considering strategic
behavior with asymmetric information between generating firms and
the MO. Sioshansi and Nicholson (2011) characterize and compare
Nash equilibria under the two market designs assuming two symmetric
firms that compete during a single operating period. Duggan, Jr. and
Sioshansi (2019) extend the work of Sioshansi and Nicholson (2011)
by relaxing the duopoly assumption, assuming a symmetric oligopoly
with an arbitrary number of firms.

This paper relaxes the assumptions of these previous works and
explores strategic behavior by a single firm that participates in a
market with one of the two designs, i.e., the offers of the other firms
are fixed. Specifically, we relax the symmetric-firm assumption by
assuming that generating firms have the same capacities but can have
different production costs. We consider also multiple as opposed to
a single operating period. Multiple operating periods complicate the
profit-maximizing behavior of the strategic firm under a centrally
committed design in two ways. First, it is typical for the MO to use
the same so-called long-lived offers to clear the market during multiple
operating periods (e.g., 24 hour-long periods is common of many day-
ahead wholesale electricity markets). Second, the determination of any
make-whole payment that a generator receives depends upon revenue
and cost across multiple operating periods. Our modeling approach
allows the strategic firm to account for these complexities.

We cast our problem as a bi-level optimization model, which
has the strategic firm’s profit maximization as the upper-level and
the MO’s market clearing as the lower-level problem. There is an
extensive literature that applies bi-level optimization to model strate-
gic behavior in markets, especially when the lower-level problem is
convex. Fampa et al. (2008) propose a penalty-based heuristic and
a mixed-integer-linear program (MILP), which uses binary expansion,
to solve a bi-level problem with economic dispatch in the lower
level. Gabriel and Leuthold (2010) consider a quadratic lower-level
model and employ a linearization technique, which is based on a set
of discrete generation levels, to obtain an MILP formulation for their
problem. Hobbs et al. (2000) model profit-maximizing firms competing
in a transmission-constrained market and solve the model using a
penalty-based interior-point method. Barroso et al. (2006) discretize
the strategy sets of market participants and compute Nash equilibria of
the resultant game. Bakirtzis et al. (2007) assume that generating firms

use stepped offers to participate in an energy market. Ruiz and Conejo
(2009) model the lower level of a bi-level model as a multi-period
optimal-power-flow problem that considers uncertainty in consumers’
bids and rival generators’ offers. Kozanidis et al. (2013) incorporate
unit-commitment decisions into the lower-level market clearing of a
bi-level model. They use parametric integer optimization to develop a
problem-specific algorithm that exploits the relationship between the
offers that are submitted by the strategic firm and total system cost.

Our paper has two primary contributions to this existing literature.
First, we provide an efficient algorithm to compute optimal offers by a
strategic market participant under a centrally committed design. This
is our primary technical contribution, which addresses the challenge of
having binary variables in the lower level of a bi-level model. Second,
we use numerical examples to compare centrally and self-committed
designs for wholesale electricity markets. In particular, we examine the
extent to which a strategic generating firm can manipulate its offers
under the two market designs to impact prices, profits, settlement costs,
and other market-performance metrics.

The remainder of the paper is organized as follows. Section 2
presents the formulations of bi-level models for a profit-maximizing
generator under the two market designs and assumptions that are
common to the market designs. Section 3 applies standard approaches
to convert the bi-level model for the self-committed market into an
equivalent single-level optimization problem. Section 4 examines the
properties of a centrally committed market and develops an algorithm
to solve the bi-level model that corresponds to this case. The appendix
provides a proof of a proposition that underlies this analysis. Section 5
extends the algorithm that is developed in Section 4 to the case of
a centrally committed design with make-whole payments. Section 6
presents numerical examples that we use to compare the two market
designs. Section 7 concludes.

2. Model assumptions and formulations

This section provides assumptions and formulations of bi-level op-
timization models for a profit-maximizing firm that participates in
centrally and self-committed markets.

2.1. Model notation

Under both designs, we assume that the market consists of a set, õ,
of generating firms and let j * õ be a generic generating-firm index.
We let i * õ denote the index of the strategic generator, the offers of
which are optimized in our models. For notational ease, we assume that
each generating firm owns a single generator. As is common, the MO’s
market model is assumed to use hourly operating periods. We let Ă and
t * Ă denote the set of hours in the MO’s model horizon and the time
index, respectively.

We introduce the following assumption regarding the treatment of
transmission constraints in the MO’s model.

Assumption 1. The market model includes no binding transmission
constraints and treats all generators and load as being at a single
transmission-network node.

Assumption 1 is needed for model tractability. Including transmis-
sion constraints would hamper significantly our analysis of a centrally
committed market design. In addition, Yao et al. (2004) note that trans-
mission constraints can complicate the derivation of profit-maximizing
strategies by strategic generating firms. In some cases it can be optimal
for a firm to follow a strategy that congests or decongests a transmission
line infinitesimally. Such strategies can be difficult to capture using
the bi-level modeling approach that we employ. An implication of
Assumption 1 is that our work does not capture added firm-behavior
complexities that are associated with the use of locational marginal
pricing in some wholesale electricity markets.

Next, we define the following parameters, which are common to
both market designs.
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b̄v maximum energy offer ($/MWh)

c
f

j
fixed operating cost of firm j ($/hour)

cv
j

variable operating cost of firm j ($/MWh)

Dt hour-t demand (MW)
K generator production capacity (MW)

Generators are assumed to have the same capacities but different
costs. Generation costs are non-convex, because "j * õ, firm j incurs a
fixed cost of cf

j
if it is committed during a given hour. Otherwise, if it

is shutdown during that hour, it incurs no cost during that hour but its
production during that hour must be zero.

2.2. Model of self-committed design

To formulate firm i’s profit-maximization under a self-committed
design, first we define bv

j
as firm j’s energy offer ($/MWh). For all

j * õ, t * Ă we let uj,t denote firm j’s hour-t unit-commitment status.
uj,t is equal to 1 is firm j is online during hour t and is equal to zero
otherwise. For all j * õ, bv

j
and uj,t are treated as fixed parameters in

the MO’s lower-level problem. bv
i
and ui,t, "t * Ă are variables in firm i’s

upper-level profit-maximization problem, whereas "j * õ, j � i, t * Ă ,
bv
j
and uj,t are treated as parameters by firm i. We define also xj,t as

firm j’s hour-t power output (MW). For all j * õ, t * Ă , xj,t is a variable
that is determined in the MO’s lower-level model, which is formulated
as:

min
1

j*õ,t*Ă

bv
j
xj,t (1)

s.t.
1
j*õ

xj,t = Dt; "t * Ă (!t) (2)

0 d xj,t d Kuj,t; "j * õ, t * Ă (�−
j,t
, �+

j,t
); (3)

where the decision variables are xj,t, "j * õ, t * Ă and the Lagrange-
multiplier set that is associated with each constraint set is in parenthe-
ses to its right. Objective function (1) minimizes the cost of operating
the system, based on the supply offers that are submitted by the
generating firms (i.e., it may be that bv

j
� cv

j
for some j * õ). Constraint

set (2) ensures hourly load balance and (3) enforces production limits.
If uj,t = 0 for some j * ø , t * Ă , then xj,t must equal zero as well.

Firm i’s bi-level profit-maximization problem is:

max
1
t*Ă

[
(!t − cv

i
)xi,t − c

f

i
ui,t

]
(4)

s.t.0 d bv
i
d b̄v (5)

ui,t * {0, 1}; "t * Ă (6)

(1)–(3); (7)

where the decision variables are ui,t, "t * Ă , bv
i
, and all of the variables

of (1)–(3). Objective function (4) maximizes firm i’s profit. We use
the standard convention that "t * Ă , the Lagrange multiplier, !t, that
is associated with hour-t load-balance requirement (2) sets the hour-t
energy price. Constraint (5) imposes standard restrictions on firm i’s
energy offer. Constraint set (6) requires that firm i’s unit-commitment
decisions be binary. Because we are modeling a self-committed design,
firm i makes its own unit-commitment decisions as opposed to those
decisions being made by the MO. Constraint set (7) embeds the MO’s
market-clearing model within firm i’s profit maximization. This is
necessary, because the MO’s model determines the values of xi,t and
!t, "t * Ă .

2.3. Model of centrally committed design

To formulate a model for a centrally committed design, we retain
the same notation as is used for the self-committed market. In addition,
"j * õ, we define b

f

j
as firm j’s fixed-cost offer ($/hour), which is

treated as a parameter in the MO’s model, and b̄f as the maximum

fixed-cost offer ($/hour), which is a parameter. Under a centrally
committed design, the MO’s model is:

min
1

j*õ,t*Ă

(
bv
j
xj,t + b

f

j
uj,t

)
(8)

s.t.
1
j*õ

xj,t = Dt; "t * Ă (9)

0 d xj,t d Kuj,t; "j * õ, t * Ă (10)

uj,t * {0, 1}; "j * õ, t * Ă ; (11)

where the decision variables are xj,t and uj,t, "j * õ, t * Ă . Objective
function (8) minimizes the cost of operating the system, which in-
cludes non-convex fixed-cost offers. Although they impose an ancillary
cost upon customers, make-whole payments are not included normally
in the MO’s objective function. Make-whole payments are excluded
from (8) because including them would cause the MO to clear the
market as a monopsonist, which is economically inefficient. Constraint
set (9) ensures hourly load balance, (10) enforces production limits,
and (11) imposes integrality on unit-commitment decisions.

Firm i’s profit-maximization problem is:

max
1
t*Ă

[
(�t − cv

i
)xi,t − c

f

i
ui,t

]
(12)

s.t.0 d bv
i
d b̄v (13)

0 d b
f

i
d b̄f (14)

(8)–(11); (15)

where the decision variables are bv
i
, bf

i
, and all of the variables of (8)–

(11). Objective function (12) maximizes firm i’s profit. For all t * Ă ,
we let �t denote the hour-t energy price. Problem (8)–(11) does not
have well defined dual variables or Lagrange multipliers, because of the
integrality restrictions. We impose a standard assumption in Section 4
on how to set marginal prices, which behave similarly to !t, "t *

Ă under a self-committed design. Constraints (13) and (14) impose
standard limits on firm i’s offer and (15) embeds the MO’s model as
the lower-level problem.

2.4. Additional assumptions

We conclude this section by introducing the following two addi-
tional assumptions that underlie our analysis.

Assumption 2. Under a self-committed market design firm i knows
the values of bv

j
and uj,t, "j * õ, j � i, t * Ă , with certainty. Under a

centrally committed market design firm i knows the values of bv
j
and

b
f

j
, "j * õ, j � i, with certainty.

Assumption 2 is needed to make analysis of a centrally committed
design tractable. Assumption 2 can be viewed as related to the defini-
tion of a Nash equilibrium. Nash, Jr. (1950) defines a Nash equilibrium
as assuming that each player predicts perfectly the strategies of its
rivals and selecting a strategy from which it has no profitable unilateral
deviation. So long as firm i’s rival select bv

j
and uj,t, "j * õ, j � i, t * Ă

under a self-committed design to maximize their individual profits, a
solution to (4)–(7) satisfies this definition. The same can be said of a
solution to (12)–(15), so long as bv

j
and b

f

j
, "j * õ, j � i maximize the

individual profits of firm i’s rivals.
Assumption 2 makes (4)–(7) and (12)–(15) static in nature, due to

the assumed sequence of events. Specifically, under a self-committed
design, firm i’s rivals are assumed to choose bv

j
and uj,t, "j * õ, j � i, t *

Ă , which is followed by firm i’s profit-maximizing choice of bv
i
and ui,t,

"t * Ă and then the MO determining prices and production levels. A
centrally committed design has a similar sequence of events. Firm i’s
rivals choose bv

j
and b

f

j
, "j * õ, j � i, which is followed by firm i’s

profit-maximizing choice of bv
i
and b

f

i
, and the MO determining prices,

commitments, and production levels.
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Assumption 3. Under a self- and centrally committed market design,
respectively, if (1)–(3) or (8)–(11) have multiple optimal solutions, one
that is preferable to firm i is chosen.

Assumption 3 states that if there are multiple optimal solutions, the
MO chooses a market-clearing solution that maximizes firm i’s profit.
This assumption is key to the standard approach that we employ to
analyze firm i’s profit-maximization under a self-committed design (cf.
Section 3 for details). As such, it is natural to adopt this assumption for
analysis of a centrally committed design.

3. Equivalent single-level formulation of (4) –(7)

The standard approach to make (4)–(7) computationally tractable
is to recast it as an equivalent single-level model, which can be solved
using off-the-shelf optimization software. Problem (1)–(3) is a convex
linear optimization. Thus, Sioshansi and Conejo (2017) note that an
optimal solution to (1)–(3) can be characterized by its necessary and
sufficient Karush–Kuhn–Tucker (KKT) conditions, which are:

bv
j
− !t − �−

j,t
+ �+

j,t
= 0; "j * õ, t * Ă (16)

(2) (17)

0 d xj,t é �−
j,t

e 0; "j * õ, t * Ă (18)

xj,t d Kuj,t é �+
j,t

e 0; "j * õ, t * Ă . (19)

Conditions (18)–(19) include complementary-slackness
requirements that are non-convex. Hereafter, we assume that (18)–
(19) are convexified using the approach that Fortuny-Amat and McCarl
(1981) propose, which entails the use of auxiliary specially-ordered-set
variables.

Thus, we can convert (4)–(7) into an equivalent single-level prob-
lem which consists of (4)–(6) and (16)–(19). The replacement of (7)
with (16)–(19) relies, implicitly, upon Assumption 3. This reliance
stems from the property that if (7) has multiple optimal solutions, (4)–
(6) and (16)–(19) necessarily selects one that maximizes firm i’s profit.
Constraints (5)–(6) and (16)–(19) yield a convex feasible region, but (4)
is non-convex because it contains bi-linear terms in which !t and xi,t

are multiplied. We obtain an exactly equivalent convexification of (4)
by noting that by (16):
1
t*Ă

[
(!t − cv

i
)xi,t − c

f

i
ui,t

]
=
1
t*Ă

[(
bv
i
− �−

i,t
+ �+

i,t
− cv

i

)
xi,t − c

f

i
ui,t

]
;

and that by (18) and (19):
1
t*Ă

[(
bv
i
− �−

i,t
+ �+

i,t
− cv

i

)
xi,t − c

f

i
ui,t

]
=

1
t*Ă

(
bv
i
xi,t +Kui,t�

+
i,t
− cv

i
xi,t − c

f

i
ui,t

)
. (20)

The strong-duality equality for (1)–(3) is:

1
j*õ,t*Ă

bv
j
xj,t =

1
t*Ă

(
Dt!t −

1
j*õ

Kuj,t�
+
j,t

)
; (21)

Substituting (21) into (20) gives:

1
t*Ă

[
(!t − cv

i
)xi,t − c

f

i
ui,t

]
=
1
t*Ă

[
Dt!t

−
1

j*õ,j�i

(
bv
j
xj,t +Kuj,t�

+
j,t

)
− cv

i
xi,t − c

f

i
ui,t

]
; (22)

which is convex and linear in the decision variables of (4)–(7). Thus,
a computationally efficient approach to solving (4)–(7) is to solve the
single-level mixed-integer linear optimization problem:

max
1
t*Ă

[
Dt!t −

1
j*õ,j�i

(
bv
j
xj,t +Kuj,t�

+
j,t

)
− cv

i
xi,t − c

f

i
ui,t

]
(23)

s.t.(5)–(6), (16)–(19). (24)

Because (23) is equal exactly to (4), solving (23)–(24) gives an exact
solution to (4)–(7).

4. Properties of and solution algorithm for centrally committed
design

The analysis of (12)–(15) is more complicated than what is pre-
sented in Section 3. The complexity arises because (8)–(11) has binary
variables, meaning that there are no computationally tractable op-
timality conditions with which to replace (15). Thus, our approach
to analyzing (12)–(15) is to prove characteristics of an optimal so-
lution to (8)–(11), which are used to develop a solution algorithm
for (12)–(15).

We begin with the following assumption, which eliminates cases
wherein demand is an exact integer multiple of the firms’ capacities,
which would raise technical challenges without added insights.

Assumption 4. For all t * Ă , Dt is not an integer multiple of K.

For all t * Ă , we define rt = Dt −K ç +Dt∕K, as the hour-t residual
demand. By Assumption 4, rt * (0, K), "t * Ă .

We let (x∗, u∗) denote an optimal solution to (8)–(11) and "t * Ă

we partition the generating firms into the sets, õI
t
, õM

t
, and õV

t
. õI

t
is

the set of hour-t-inframarginal generators and x∗
j,t

= K, "j * õI
t
. õM

t

is the set of hour-t-marginal generators and x∗
j,t

* (0, K), "j * õM
t
.

By Assumption 4, õM
t
is non-empty "t * Ă . Finally, õV

t
is the set of

hour-t-inactive generators and x∗
j,t

= 0, "j * õV
t
.

Next, we prove the following lemma, which shows that all hour-t
marginal generators have the same energy offer.

Lemma 1. For all t * Ă and j, ℎ * õM
t
, we have that bv

j
= bv

ℎ
.

Proof. Suppose for contradiction that #t * Ă and j, ℎ * õM
t
with

j � ℎ and that, without loss of generality, j and ℎ are labeled such
that bv

j
< bv

ℎ
. The value of (8) is reduced if x∗

ℎ,t
is decreased by � and

x∗
j,t
is increased by � where � is sufficiently small that x∗

ℎ,t
− � e 0 and

x∗
j,t

+ � d K. This gives the desired contradiction. ¦

We add the following assumption that hourly energy prices are
equal to the energy offer of the marginal unit(s).

Assumption 5. For all t * Ă , �t is equal to bv
j
for some j * õM

t
.

The following lemma shows the relationship between the energy
offers of inframarginal and marginal generators.

Lemma 2. For all t * Ă , l * õI
t
, and ℎ * õM

t
we must have bv

l
d bv

ℎ
.

Proof. Following from Lemma 1 we have that "t * Ă , the optimized
value of:
1
j*õ

(
bv
j
xj,t + b

f

j
uj,t

)
;

equals:
1
j*õI

t

(
bv
j
K + b

f

j

)
+ bv

ℎ
ç

(
Dt −K ç

|||õ
I
t

|||
)
+

1
j*õM

t

b
f

j
;

where ℎ * õM
t
. Suppose for contradiction that #l * õI

t
such that

bv
l
> bv

ℎ
. This contradicts the optimality of (x∗, u∗), because the value

of (8) is reduced by making generator l marginal and generator ℎ

inframarginal. ¦

Now we show the following key property of an optimal solution to
firm i’s bi-level profit-maximization problem.
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Proposition 1. Suppose that (bf
i

∗
, bv

i
∗) is an optimum of (12)–(15). Then

#(x∗, u∗) that is an optimum of (8)–(11), satisfies Assumption 3, and has
x∗
i,t
* {0, rt, K}, "t * Ă .

Proof. Suppose for contradiction that #� * Ă such that x∗
i,�

+ {0, r� , K}.
We can consider the following two cases.

First, suppose that x∗
i,�

* (0, r� ). In such a case, we must have
||õM� || e 2 to satisfy (9). We define � = r� − x∗

i,�
and by (9) we must

have:

1
j*õM� ,j�i

x∗
j,�

= K ç

(+
D�

K

,
−
|||õ

I
�

|||
)
+ �.

Thus, we must have that:

|||õ
M
�

ö {i}
||| e

+
D�

K

,
−
|||õ

I
�

||| + 1. (25)

We let õ̃� ⊂ õM
�
be a (possibly empty) proper subset of õM

�
such that

i + õ̃� and:

||õ̃� || =
+
D�

K

,
−
|||õ

I
�

||| .

Such a subset is guaranteed to exist by (25). Consider an alternative
solution, (x̃, ũ), to (8)–(11) where x̃j,t = x∗

j,t
and ũj,t = u∗

j,t
, "t � �,

x̃j,� = K and ũj,� = 1, "j * õI
�
Lõ̃� , x̃i,� = r� and ũi,� = 1, and x̃j,� = 0 and

ũj,� = 0, "j + õI
�
L õ̃� L i. Such a solution improves the value of (8) by:

1
j*õM� öõ̃� ,j�i

b
f

j
;

which is non-negative.
Next, suppose that x∗

i,�
* (r� , K), in which case we must have

||õM� || e 2 to satisfy (9). Firm i’s hour-� profit is:

(!� − cv
i
)x∗

i,�
− c

f

i
.

We can consider two cases, which depend upon the sign of !� − cv
i
. If

!� − cv
i
e 0, consider an alternative solution to (8)–(11) in which x∗

i,�
is

increased by � and:
1

j*õM� ,j�i

x∗
j,�
;

is decreased by �, where � is sufficiently small so as not to violate (10).
Such an alternative solution does not change the value of (8), because
by Lemma 1 we have that bv

i
∗ = bv

j
, "j * õM

�
. However, this alternative

solution increases firm i’s profit. This contradicts (x∗, u∗) satisfying
Assumption 3. If !�−c

v
i
< 0, consider an alternative solution to (8)–(11)

in which x∗
i,�
is decreased by � and:

1
j*õM� ,j�i

x∗
j,�
;

is increased by �, where � is sufficiently small so as not to violate (10).
Such an alternative solution does not change the value of (8). However,
this alternative solution increases firm i’s profit, which contradicts
(x∗, u∗) satisfying Assumption 3. ¦

Proposition 1, which relies upon the assumption that all generators
have the same K-MW capacity, reduces the complexity of (12)–(15)
considerably. Problem (12)–(15) is simplified, because by Proposi-
tion 1, (12)–(15) has at most 3|Ă | candidate optimal solutions. Next,
we introduce the following lexicographic assumption on an optimal
solution, (x∗, u∗), to (12)–(15), which simplifies the subsequent analysis
without loss of generality.

Assumption 6. The firms are ordered lexicographically by fixed-cost
offer and then by index so that an optimal solution, (x∗, u∗), to (12)–(15)
has |õM

t
| = 1, "t * Ă .

Assumption 6 and its lexicographic ordering can be satisfied without
loss of generality. To see this, suppose that a solution, (x̃, ũ), with
|õM

t
| e 2 for some t * Ă , is optimal to (12)–(15). By Lemmata 1 and 2

we must have bv
j
= bv

ℎ
, "j, ℎ * õM

t
and bv

j
d bv

ℎ
, "j * õI

t
and ℎ * õM

t
.

Place the elements of õM
t
into a lexicographic order by the values of

b
f

j
, "j * õM

t
and break ties by indices. Consider an alternative solution

in which the first |õM
t
| − 1 members of õM

t
are assigned to õI

t
and the

final member remains in õM
t
but produces rt MW during hour t. Such

a solution can be no more costly than (x̃, ũ) is.
Next, we define the following metric with which to compare the

offers of two firms and state the subsequent lemma, which we do not
prove, because it follows trivially from the definition and the principle
of optimality.

Definition 1. We say that firm j is weakly less expensive than firm ℎ

when producing m MW, which we denote as j dm ℎ, if bv
j
m + b

f

j
d

bv
ℎ
m + b

f

ℎ
. We define firm j being cost-equivalent to and weakly more

expensive than firm ℎ, which are denoted as j =m ℎ and j em ℎ,
respectively, analogously.

Lemma 3. Suppose that (x∗, u∗) is optimal to (12)–(15) and gives the
partitions, (õI

t
,õM

t
,õV

t
), "t * Ă . Then "t * Ă we have j dK ℎ, "j * õI

t

and ℎ * õV
t
and j drt

ℎ, "j * õM
t
and ℎ * õV

t
.

Next, we consider optimal solutions to two variants of (8)–(11). The
first removes firm i from the set of candidate generators and "t * Ă ,
we let (õI,−

t
,õ

M,−
t

,õ
V ,−
t

) denote the resultant hour-t partition of the
firms. The second has firm i with arbitrarily small offers among the
set of candidate generators (i.e., firm i is inframarginal "t * Ă such
that Dt > K and is marginal during other hours) and "t * Ă , we let
(õI,+

t
,õ

M,+
t

,õ
V ,+
t

) denote the resultant hour-t partition of the firms. For
notational ease, we give the following definition of the indices of the
unique marginal generators during each hour under these two sets of
partitions.

Definition 2. For all t * Ă and the resultant partitions,
(õI,−

t
,õ

M,−
t

,õ
V ,−
t

) and (õI,+
t

,õ
M,+
t

,õ
V ,+
t

), we define j
M,−
t

and j
M,+
t

, re-
spectively, as the index of the unique firms that are members of õM,−

t

and õ
M,+
t

.

We prove now the following two lemmata, which show important
relationships between the two sets of partitions.

Lemma 4. For all t * Ă such that õI,−
t

� ∅, #j * õ
I,−
t

such that:

õ
I,+
t

=
(
õ
I,−
t

ö {j}
)
L {i}.

Proof. If for any given t * Ă we have õ
I,−
t

� ∅ then we must have
Dt > K, which means that õI,+

t
� ∅. By its definition, i is an element of

õ
I,+
t
. Thus, all we must show is that "j * õ

I,+
t

with j � i, we must have
that j * õ

I,−
t
.

Suppose, for contradiction, that #j * õ
I,+
t

with j � i and j + õ
I,−
t
.

By Assumption 6 we must have:

|||õ
I,−
t

||| =
|||õ

I,+
t

||| .
Thus, there must be ℎ, k * õ

I,−
t

with k � ℎ and ℎ, k + õ
I,+
t
. At least one

of ℎ or k must be a member of õV ,+
t
, because by Assumption 6, õM,+

t

is a singleton. Without loss of generality, we assume that ℎ * õ
V ,+
t
,

meaning that either k * õ
V ,+
t

or k = j
M,+
t

. Let us assume that j = j
M,−
t

.
If k = j

M,+
t

, the lexicographic ordering of Assumption 6 is violated.
Conversely, if k * õ

V ,+
t
, we know that jM,+

t
� j

M,−
t

, because of our
assumption that j = j

M,−
t

. Thus, we have either that jM,+
t

* õ
I,−
t

or
j
M,+
t

* õ
V ,−
t
. However, we cannot have j

M,+
t

* õ
I,−
t
, as this would

violate the lexicographic ordering of Assumption 6. On the other hand,
if jM,+

t
* õ

V ,−
t

the principle of optimality requires:

bv
j
K + b

f

j
+ bv

j
M,+
t

rt + b
f

j
M,+
t

< bv
ℎ
K + b

f

ℎ
+ bv

j
rt + b

f

j
; (26)
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where the strict inequality is required by imposing the lexicographic-
ordering requirement of Assumption 6 on the partition,
(õI,−

t
,õ

M,−
t

,õ
V ,−
t

). However, (26) violates the optimality of the partition,
(õI,−

t
,õ

M,−
t

,õ
V ,−
t

). Thus, we can have neither j
M,+
t

* õ
I,−
t

nor j
M,+
t

*

õ
V ,−
t
, which means that k + õ

V ,+
t

and that we must have j * õ
V ,−
t
.

However, because ℎ * õ
I,−
t

and ℎ * õ
V ,+
t
, we must have j =K ℎ, which

violates the lexicographic ordering of Assumption 6. ¦

Lemma 5. For all t * Ă exactly one of following holds: either jM,+
t

* õ
I,−
t

or õM,−
t

= õ
M,+
t

.

Proof. For any t * Ă both statements cannot hold simultaneously,
because by Assumption 6 both õ

M,−
t

and õ
M,+
t

are singletons. Thus, we
must show that it is impossible for neither statement to hold.

Suppose for contradiction that #t * Ă for which neither statement
holds. Then, j

M,+
t

* õ
V ,−
t
. By Lemma 4 this requires that j

M,−
t

+

õ
I,+
t
, which implies that jM,−

t
* õ

V ,+
t
. However, having j

M,−
t

* õ
V ,+
t

contradicts the lexicographic ordering of Assumption 6. ¦

Lemma 4 shows that if õ
I,−
t

is non-empty for a given t * Ă ,
then õ

I,−
t

and õ
I,+
t

differ exactly by one firm (i.e., firm i becomes
a member of õ

I,+
t

and one member of õ
I,−
t

becomes a member of
õ
M,+
t

or õ
V ,+
t
). Lemma 5 states that "t * Ă , a firm that is inactive

under the partition, (õI,−
t

,õ
M,−
t

,õ
V ,−
t

), cannot become marginal under
the partition, (õI,+

t
,õ

M,+
t

,õ
V ,+
t

).
Proposition 1 provides a theoretical foundation with which to de-

velop an algorithm to solve (12)–(15). Specifically, one can com-
pute firm i’s profit under each of the 3|Ă | candidate solutions that
Proposition 1 characterizes and select the optimal one. Enumerating
completely all 3|Ă | solutions is computationally costly. Moreover, this
technique does not connect firm i’s offers to the resultant production
allocation. Thus, we derive necessary and sufficient conditions that
provide this linkage.

To do so, we begin with the following definition.

Definition 3. For all t * Ă and the resultant partition,
(õI,−

t
,õ

M,−
t

,õ
V ,−
t

), such that õI,−
t

� ∅, we define:

j
I,−
t

= argmax
j*õ

I,−
t

bv
j
K + b

f

j
.

Next, we let:

x̂i =
(
x̂i,1,& , x̂i,|Ă |

)
;

denote a candidate set of production levels for firm i, which is of the
form that is given by Proposition 1. We define the following constraint
set, ðx̂i

, that relates firm i’s offer to x̂i. The subsequent proposition

shows that ðx̂i
is necessary and sufficient for the offer, (bf

i
, bv

i
), to yield

x̂i as firm i’s production levels that are given by (8)–(11).
For each t * Ă , there are three possible hour-t production levels.

We add different constraints to ðx̂i
depending upon the desired value

of x̂i,t. The totality of these constraints "t * Ă gives the set, ðx̂i
. We

begin with the case of x̂i,t = 0. In such a case, we add the inequalities:

bv
i
rt + b

f

i
e max

{(
bv
j
I,−
t

− bv
j
M,−
t

)
K + b

f

j
I,−
t

− b
f

j
M,−
t

, 0

}

+ bv
j
M,−
t

rt + b
f

j
M,−
t

(27)

bv
i
K + b

f

i
e max

{(
bv
j
M,−
t

− bv
j

)
rt + b

f

j
M,−
t

− b
f

j
, 0

}

+ bv
j
K + b

f

j
; "j * õ

I,−
t

; (28)

to ðx̂i
.

If x̂i,t = rt, there are two possible cases. First, if j
M,−
t

eK j
I,−
t
, we

add the inequalities:

bv
i
rt + b

f

i
d bv

j
M,−
t

rt + b
f

j
M,−
t

(29)

bv
i
e bv

j
; "j * õ

I,−
t

(30)

bv
i
K + b

f

i
+ bv

j
M,−
t

rt + b
f

j
M,−
t

e bv
j
I,−
t

K + b
f

j
I,−
t

+ bv
i
rt + b

f

i
; (31)

to ðx̂i
. Otherwise, if jM,−

t
<K j

I,−
t
, we add the inequalities:

bv
i
rt + b

f

i
d bv

j
M,−
t

rt + b
f

j
M,−
t

+

(
bv
j
I,−
t

− bv
j
M,−
t

)
K + b

f

j
I,−
t

− b
f

j
M,−
t

(32)

bv
i
e bv

j
M,−
t

(33)

bv
i
K + b

f

i
+N e M + bv

i
rt + b

f

i
; (34)

to ðx̂i
, where:

M = max
j*

(
õ
I,−
t

Lõ
M,−
t

)
ö
{
j
I,−
t

}
(
bv
j
K + b

f

j

)
;

and:

N = min
j*

{
j
I,−
t

}
Lõ

V ,−
t

(
bv
j
rt + b

f

j

)
.

Finally, if x̂i,t = K, there are two possible cases. First, if jM,−
t

� j
M,+
t

,
we add the inequalities:

bv
i
K + b

f

i
+ bv

j
M,+
t

rt + b
f

j
M,+
t

d bv
j
M,+
t

K + b
f

j
M,+
t

+ bv
j
M,−
t

rt + b
f

j
M,−
t

(35)

bv
i
d bv

j
M,+
t

; (36)

to ðx̂i
. Otherwise, if jM,−

t
= j

M,+
t

, we add the inequalities:

bv
i
K + b

f

i
d bv

p
K + bf

p
(37)

bv
i
d bv

j
M,+
t

(38)

bv
p
K + bf

p
+ bv

i
rt + b

f

i
e bv

i
K + b

f

i
+ bv

j
M,+
t

rt + b
f

j
M,+
t

; (39)

to ðx̂i
, where p * õ

I,−
t

and p + õ
I,+
t
. Such a firm, p, is guaranteed to

exist by Lemma 4.

Proposition 2. For any set of firm-i production levels, x̂i, that is of the
form that is characterized by Proposition 1, the constraint set, ðx̂i

, which
is defined by (27)–(39), is necessary and sufficient to have x̂i be optimal
in (8)–(11).

The proof of Proposition 2 is provided in the appendix in three parts,
which correspond to showing the necessity and sufficiency of ðx̂i

for
hours, t * Ă , such that x̂i,t = 0, x̂i,t = rt, and x̂i,t = K.

Proposition 2 connects firm i’s upper-level variables, which consti-
tutes its offer, to a commitment and dispatch schedule that it wants
to receive from the lower-level MO problem. However, Proposition 2
provides constraints that the offers must satisfy, not an optimal set of
offers. Hence, we introduce the following auxiliary problem:

max
b
f

i
,bv
i

bv
i

s.t.
(
b
f

i
, bv

i

)
* ðx̂i

(13)–(14);

which we denote as þï
ñ
(x̂i). We prove in the following lemma that for

a given x̂i, þ
ï
ñ
(x̂i) generates firm-i offers that result in those production

levels from the MO’s lower-level problem and maximize firm i’s profit.

Lemma 6. For any x̂i that is of the form that is characterized by
Proposition 1, an optimal solution to þï

ñ
(x̂i) generates firm-i offers that

result in x̂i being optimal in (8)–(11) and (12) being maximized.

Proof. Objective function (12) is additively separable in t and we can
consider separately hours such that x̂i,t = 0, x̂i,t = K, and x̂i,t = rt. By
definition, firm i’s profit is zero during all hours t * Ă such that x̂i,t = 0.
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For hours t * Ă , such that x̂i,t = K, we have from Assumption 5 that �t
depends upon neither bv

i
nor bf

i
. Thus, for all t * Ă such that x̂i,t = 0 or

x̂i,t = K, firm i’s hour-t profit does not depend upon firm i’s offer. For
the final case of all t * Ă such that x̂i,t = rt, Assumptions 5 and 6 imply
that firm i’s hour-t profit is:

(�t − cv
i
)xi,t − c

f

i
ui,t = (bv

i
− cv

i
)xi,t − c

f

i
ui,t;

which is strictly increasing in bv
i
. Thus, the objective function of þï

ñ
(x̂i)

maximizes the terms in firm i’s profit function that are dependent upon
firm i’s offers. ¦

The final step before developing our solution algorithm for (12)–
(15) is to introduce the following variant of the MO’s lower-level
problem. This variant takes as an input a partition set, (õI

t
,õM

t
,õV

t
),

"t * Ă and is formulated as:

min
1

j*õ,t*Ă

(
bv
j
xj,t + b

f

j
uj,t

)
(40)

s.t.
1
j*õ

xj,t = Dt; "t * Ă (�t) (41)

0 d xj,t d Kuj,t; "j * õ, t * Ă (�−
j,t
, �+

j,t
) (42)

0 d uj,t d 1; "j * õ, t * Ă (�−
j,t
, �+

j,t
) (43)

uj,t e 1; "t * Ă , j * õI
t
L õM

t
(�j,t) (44)

uj,t d 0; "t * Ă , j * õV
t

(�j,t). (45)

Problem (40)–(45) is the same as (8)–(11) except that integrality re-
striction (11) is relaxed and replaced with restrictions that fix the
values of the commitment variables based on the given partition set.
Problem (40)–(45) is a convex linear optimization, meaning that it has
well defined Lagrange multipliers, which are given in parentheses to
the right of each constraint set. Following Assumption 5, "t * Ă , �t can
be used as the hour-t energy price.

We conclude our theoretical analysis of a centrally committed de-
sign by presenting pseudocode in Algorithm 1 for our technique to
solve (12)–(15). Lines 1 and 2 begin by determining the two sets of
partitions, (õI,−

t
,õ

M,−
t

,õ
V ,−
t

) and (õI,+
t

,õ
M,+
t

,õ
V ,+
t

), "t * Ă , respectively.
Line 3 initializes the main iterative loop, which is in Lines 4–14. z∗

stores the incumbent best value of firm i’s objective function and b
f

i

∗

and bv
i
∗ represent the offer that achieves z∗.

Algorithm 1 Solution Technique for (12)–(15)

1: Solve (8)–(11) with i removed from õ to obtain the partitions,
(õI,−

t
,õ

M,−
t

,õ
V ,−
t

), "t * Ă

2: Solve (8)–(11) with b
f

i
± 0 and bv

i
± 0 to obtain the partitions,

(õI,+
t

,õ
M,+
t

,õ
V ,+
t

), "t * Ă

3: z∗ ± −@, bf
i

∗
± b̄f , bv

i
∗
± b̄v

4: for x̂i * � do
5: (b̂v

i
, b̂

f

i
) ± argmaxþï

ñ
(x̂i)

6: if þï
ñ
(x̂i) is feasible and bounded then

7: Solve (8)–(11) with b
f

i
± b̂

f

i
and bv

i
± b̂v

i
to obtain the

partitions, (õ̂I
t
, õ̂M

t
, õ̂V

t
), "t * Ă

8: Solve (40)–(45) with partitions, (õ̂I
t
, õ̂M

t
, õ̂V

t
), "t * Ă , to

obtain energy prices, �̂t, "t * Ă

9: ẑ ±

1
t*Ă [(�̂t − cv

i
)x̂i,t − c

f

i
ûi,t]

10: if ẑ > z∗ then
11: z∗ ± ẑ, bf

i

∗
± b̂

f

i
, bv

i
∗
± b̂v

i

12: end if
13: end if
14: end for

Lines 4–14 loop through the elements of, �, which is the set of
possible values of x̂i in accordance with Proposition 1, i.e., "x̂i * �

we have x̂i,t * {0, rt, k}, "t * Ă . For each x̂i * �, Line 5 solves þï
ñ
(x̂i)

to determine optimal offers that attain the dispatch level x̂i. þ
ï
ñ
(x̂i)may

be infeasible for some x̂i, e.g., the inequalities that define ðx̂i
may be

inconsistent. Such x̂i are excluded from further consideration. If þï
ñ
(x̂i)

is feasible and bounded (cf. Line 6), the optimized value of (b̂f
i
, b̂v

i
) that

is found in Line 5 is used to find the partitions, (õ̂I
t
, õ̂M

t
, õ̂V

t
), "t * Ă , in

Line 7. Line 8 solves (40)–(45) to determine the resultant energy prices,
which are used in Line 9 to compute firm i’s profit, where we assume
that ûi,t = 0, "t * Ă such that x̂i,t = 0 and ûi,t = 1 for all other t. If the
profit that firm i earns from x̂i is greater than z∗ (cf. Line 10) then z∗

and (b
f

i

∗
, bv

i
∗) are updated in Line 11.

We conclude this section with the following lemma, which states
that Algorithm 1 is guaranteed to find an optimal solution to (12)–(15).

Lemma 7. Algorithm 1 is guaranteed to produce an optimal solution
to (12)–(15).

Proof. By Proposition 1, an optimal solution to (12)–(15) occurs at an
element of �. By Lemma 6, for each x̂i * �, þï

ñ
(x̂i) finds firm-i offers

that maximize firm-i profit. ¦

5. Centrally committed market with make-whole payments

Make-whole payments are a common approach to address poten-
tial economic confiscation under centrally committed designs. Extend-
ing (12)–(15) to include make-whole payments is straightforward, be-
cause such payments change only firm i’s objective function. With
make-whole payments, (12)–(15) changes to:

max
1
t*Ă

[
(�t − cv

i
)xi,t − c

f

i
ui,t

]

+ max

{
0,
1
t*Ă

[
(bv

i
− �t)xi,t + b

f

i
ui,t

]}
(46)

s.t.(13)–(15); (47)

and retains the same decision variables.
Importantly, the MO’s lower-level problem does not change with

make-whole payments, meaning that most of the analysis that we
present in Section 4 applies to (46)–(47). Extending our analysis to
include make-whole payments requires three steps. First, we prove a
result that is analogous to Proposition 1. Next, we linearize (46). Third,
we develop an algorithm that is akin to Algorithm 1.

Proposition 3. Suppose that (bf
i

∗
, bv

i
∗) is an optimum of (46)–(47). Then

#(x∗, u∗) that is an optimum of (8)–(11), satisfies Assumption 3, and has
x∗
i,t
* {0, rt, K}, "t * Ă .

Proof. The sole difference between (46)–(12) and (47)–(15) is the
max{ç} operator that is in (46). If the max{ç} operator equals zero,
then Proposition 3 follows immediately from Proposition 1. Thus, we
consider the other case, wherein the max{ç} operator is strictly positive.
In such a case, firm i’s profit is:
1
t*Ă

[
(bv

i
∗ − cv

i
)xi,t +

(
b
f

i

∗
− c

f

i

)
ui,t

]
.

Suppose for contradiction that #� * Ă such that x∗
i,�

+ {0, r� , K}. We
consider two cases.

First, consider a case wherein x∗
i,�

* (0, r� ). We can use the exact
same argument as in the proof of Proposition 1 to show that there is
an alternative feasible solution that is less costly in (8)–(11).

Next, consider a case wherein x∗
i,�

* (r� , K), in which case we must
have |õM

�
| e 2 to satisfy (9). By Lemma 1 we have that bv

i
∗ = bv

j
,

"j * õM
�
and by Assumption 5 we have that �� = bv

i
∗. We can consider

two cases, which differ by the sign of bv
i
∗ − cv

i
. If bv

i
∗ − cv

i
e 0, consider

an alternative solution in which x∗
i,�
is increased by � and:

1
j*õM� ,j�i

x∗
j,�
;
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is decreased by �, where � is sufficiently small so as not to violate (10).
Such an alternative solution does not change the value of (8) but
weakly increases the value of (46), which contradicts (x∗, u∗) satisfying
Assumption 3. For the other case, wherein bv

i
∗ − cv

i
< 0, consider an

alternative solution in which x∗
i,�
is decreased by � and:

1
j*õM� ,j�i

x∗
j,�
;

is increased by �, where � is sufficiently small so as not to violate (10).
This alternative solution does not change the value of (8) but increases
strictly the value of (46), which contradicts the optimality of (bf

i

∗
, bv

i
∗)

in (46)–(47). ¦

As is the case without make-whole payments, Proposition 3 allows
us to limit our attention to a finite set of production levels for firm i.
Next, to linearize (46), we begin with the KKT conditions for (40)–(45),
which are:

bv
j
− �t − �−

j,t
+ �+

j,t
= 0; "j * õ, t * Ă (48)

b
f

j
−K�+

j,t
− �−

j,t
+ �+

j,t
− �j,t = 0; "t * Ă , j * õI

t
L õM

t
(49)

b
f

j
−K�+

j,t
− �−

j,t
+ �+

j,t
+ �j,t = 0; "t * Ă , j * õV

t
(50)

(41) (51)

0 d xj,t é �−
j,t

e 0; "j * õ, t * Ă (52)

xj,t d Kuj,t é �+
j,t

e 0; "j * õ, t * Ă (53)

0 d uj,t é �−
j,t

e 0; "j * õ, t * Ă (54)

uj,t d 1 é �+
j,t

e 0; "j * õ, t * Ă (55)

uj,t e 1 é �j,t e 0; "t * Ă , j * õI
t
L õM

t
(56)

uj,t d 0 é �j,t e 0; "t * Ă , j * õV
t
; (57)

and its strong-duality equality, which is:

1
j*õ,t*Ă

(
bv
j
xj,t + b

f

j
uj,t

)
=
1
t*Ă

⎡⎢⎢⎣
Dt�t −

1
j*õ

�+
j,t

+
1

j*õI
t
LõM

t

�j,t

⎤
⎥⎥⎦
. (58)

We break (46) into two parts to linearize it. First, we have from (48)
and Assumption 5 that:
1
t*Ă

[
(�t − cv

i
)xi,t − c

f

i
ui,t

]

=
1
t*Ă

[
(bv

i
− �−

i,t
+ �+

i,t
− cv

i
)xi,t − c

f

i
ui,t

]
. (59)

From (52) and (53), the right-hand side of (59) simplifies to:
1
t*Ă

[
bv
i
xi,t +Kui,t�

+
i,t
− cv

i
xi,t − c

f

i
ui,t

]
;

which becomes:

1
t*Ă

⎡⎢⎢⎣
Dt�t −

1
j*õ

�+
j,t

+
1

j*õI
t
LõM

t

�j,t −
(
b
f

i
−K�+

i,t

)
ui,t

−
1

j*õ,j�i

(
bv
j
xj,t + b

f

j
uj,t

)
− cv

i
xi,t − c

f

i
ui,t

]
; (60)

by (58). Conditions (49) and (50) imply that (60) becomes:

1
t*Ă ∶i*õI

t
LõM

t

⎡⎢⎢⎣
Dt�t −

1
j*õ

�+
j,t

+
1

j*õI
t
LõM

t

�j,t

−
(
�−
i,t
− �+

i,t
+ �i,t

)
ui,t −

1
j*õ,j�i

(
bv
j
xj,t + b

f

j
uj,t

)

− cv
i
xi,t − c

f

i
ui,t

]
+

1
t*Ă ∶i*õV

t

[
Dt�t −

1
j*õ

�+
j,t

+
1

j*õI
t
LõM

t

�j,t −
(
�−
i,t
− �+

i,t
− �i,t

)
ui,t

−
1

j*õ,j�i

(
bv
j
xj,t + b

f

j
uj,t

)
− cv

i
xi,t − c

f

i
ui,t

]
;

which by (54)–(57) simplifies further to:

1
t*Ă ∶i*õI

t
LõM

t

⎡⎢⎢⎣
Dt�t −

1
j*õ

�+
j,t

+
1

j*õI
t
LõM

t

�j,t + �+
i,t

−�i,t −
1

j*õ,j�i

(
bv
j
xj,t + b

f

j
uj,t

)
− cv

i
xi,t − c

f

i
ui,t

]

+
1

t*Ă ∶i*õV
t

⎡⎢⎢⎣
Dt�t −

1
j*õ

�+
j,t

+
1

j*õI
t
LõM

t

�j,t + �+
i,t

−
1

j*õ,j�i

(
bv
j
xj,t + b

f

j
uj,t

)
− cv

i
xi,t − c

f

i
ui,t

]
;

and can be rewritten as:

1
t*Ă

[
Dt�t −

1
j*õ,j�i

(
�+
j,t

+ bv
j
xj,t + b

f

j
uj,t

)

+
1

j*õI
t
LõM

t
,j�i

�j,t − cv
i
xi,t − c

f

i
ui,t

⎤
⎥⎥⎦
;

which is linear in the decision variables of (46)–(47).
The second part of (46) has the max{ç} operator. Using (48) and

Assumption 5, the term in the max{ç} operator in (46) can be written as:
1
t*Ă

[
(bv

i
− �t)xi,t + b

f

i
ui,t

]
=
1
t*Ă

[(
�−
i,t
− �+

i,t

)
xi,t + b

f

i
ui,t

]
;

which simplifies further to:
1
t*Ă

(
−K�+

i,t
+ b

f

i

)
ui,t;

by (52) and (53). This expression becomes:
1

t*Ă ∶i*õI
t
LõM

t

(
�−
i,t
− �+

i,t
+ �i,t

)
ui,t +

1
t*Ă ∶i*õV

t

(
�−
i,t
− �+

i,t
− �i,t

)
ui,t;

by (49) and (50), which simplifies further to:
1

t*Ă ∶i*õI
t
LõM

t

�i,t −
1
t*Ă

�+
i,t
; (61)

by (54)–(57). We introduce an auxiliary binary variable, �, which
equals 1 if the term in the max{ç} operator in (46) is positive and
equals 0 otherwise. With this definition, we can write the max{ç}

operator in (46) as:

max

{
0,
1
t*Ă

[
(bv

i
− �t)xi,t + b

f

i
ui,t

]}
=
1
t*Ă

[
(bv

i
− �t)xi,t + b

f

i
ui,t

]
�;

the right-hand side of which becomes the linear expression:

⎛
⎜⎜⎝

1
t*Ă ∶i*õI

t
LõM

t

�i,t −
1
t*Ă

�+
i,t

⎞
⎟⎟⎠
� =

1
t*Ă ∶i*õI

t
LõM

t

�̂i,t −
1
t*Ă

�̂+
i,t
;

by (61), where we define �̂i,t = �i,t� and �̂+
i,t

= �+
i,t
�, "t * Ă . For all

t * Ă , �̂i,t and �̂+
i,t
are bilinear, however because these are the products

of continuous and binary variables, they can be linearized by adding
the constraints:

� * {0, 1} (62)

0 d �̂i,t d M�; "t * Ă ∶ i * õI
t
L õM

t
(63)

�i,t − (1 − �)M d �̂i,t d �i,t; "t * Ă ∶ i * õI
t
L õM

t
(64)

0 d �̂+
i,t
d M�; "t * Ă (65)

�+
i,t
− (1 − �)M d �̂+

i,t
d �+

i,t
; "t * Ă ; (66)

where M is a sufficiently large constant (cf. the work of Sioshansi and
Conejo (2017) for further details).
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We define now an auxiliary problem, which plays a similar role in
our solution methodology to that of þï

ñ
(x̂i) in the case without make-

whole payments. The auxiliary problem takes as an input a set of firm-i
production levels, x̂i, and an associated partition set, (õ

I
t
,õM

t
,õV

t
), "t *

Ă , and is formulated as:

max
1
t*Ă

[
Dt�t −

1
j*õ,j�i

(
�+
j,t

+ bv
j
xj,t + b

f

j
uj,t

)

+
1

j*õI
t
LõM

t
,j�i

�j,t − cv
i
xi,t − c

f

i
ui,t − �̂+

i,t

⎤⎥⎥⎦
+

1
t*Ă ∶i*õI

t
LõM

t

�̂i,t (67)

s.t.
(
b
f

i
, bv

i

)
* ðx̂i

(68)

(48)–(57), (62)–(66); (69)

where the decision variables include all of the variables of (46)–(47),
the Lagrange multipliers of (48)–(57), and the auxiliary variables, �̂i,t
and �̂+

i,t
, t * Ă and �. We show now the following two lemmata. The

first shows that there is a one-to-one correspondence between x̂i and a
partition set, (õI

t
,õM

t
,õV

t
), "t * Ă . The second is akin to Lemma 6, and

shows that for a given x̂i, (67)–(69) yields offers that solve (46)–(47).

Lemma 8. For any (b
f

i
, bv

i
) * ðx̂i

there is a unique resultant partition set
that satisfies the lexicographic ordering that underlies Assumption 6.

Proof. Suppose for contradiction that for a given (b
f

i
, bv

i
) * ðx̂i

, #� * Ă

such that there are two partitions, which we denote as (õI
�
,õM

�
,õV

�
) and

(õ̂I
�
, õ̂M

�
, õ̂V

�
). Consider, first, the case wherein x̂i,� = K. In such a case,

we have that:
1

j*õI� ö{i}

(
bv
j
K + b

f

j

)
+ bv

jM�
r� + b

f

jM�
=

1
j*õ̂I� ö{i}

(
bv
j
K + b

f

j

)
+ bv

ĵM�
r� + b

f

ĵM�
;

where jM
�
and ĵM

�
denote the unique elements of õM

�
and õ̂M

�
, respec-

tively. This equality, which holds because if it does not one of the
partitions is not optimal in (8)–(11), implies that the two partitions
are identical, otherwise the lexicographic ordering of Assumption 6 is
violated.

The other cases wherein x̂i,� = rt and x̂i,� = 0 yield the equalities:
1
j*õI�

(
bv
j
K + b

f

j

)
=

1
j*õ̂I�

(
bv
j
K + b

f

j

)
;

and:
1
j*õI�

(
bv
j
K + b

f

j

)
+ bv

jM�
r� + b

f

jM�
=

1
j*õ̂I�

(
bv
j
K + b

f

j

)
+ bv

ĵM�
r� + b

f

ĵM�
;

respectively, which yield the same conclusions that the two partitions
must be equivalent. ¦

Lemma 9. For any x̂i that is of the form that is characterized by
Proposition 3, an optimal solution to (67)–(69) generates firm-i offers that
result in x̂i being optimal in (8)–(11) and maximizing (46).

Proof. By Proposition 2, the constraint set, ðx̂i
, is necessary and

sufficient for (bf
i
, bv

i
) to yield x̂i as an optimum of (8)–(11). By Lemma 8,

for a given offer, (bf
i
, bv

i
) * ðx̂i

, there is a unique partition that is
associated with x̂i. Thus, fixing this partition, (8)–(11) can be replaced
with (40)–(45), which, in turn, can be replaced with necessary and
sufficient KKT conditions (48)–(57). Finally, (62)–(66) are needed to
linearize the max{ç} in (46), which yields the equivalent objective
function that is given by (67). ¦

To conclude our analysis of a centrally committed design with
make-whole payments, we provide pseudocode in Algorithm 2 for our
technique to solve (46)–(47). Algorithms 1 and 2 are similar, with the
key difference in Line 8 of the former. For each given firm-i production
schedule, Algorithm 1 determines firm-i profit in Line 9 by determining

first prices in Line 8. Line 8 of Algorithm 2 does this in one step by
solving (67)–(69), which incorporates make-whole payments.

Algorithm 2 Solution Technique for (46)–(47)

1: Solve (8)–(11) with i removed from õ to obtain the partitions,
(õI,−

t
,õ

M,−
t

,õ
V ,−
t

), "t * Ă

2: Solve (8)–(11) with b
f

i
± 0 and bv

i
± 0 to obtain the partitions,

(õI,+
t

,õ
M,+
t

,õ
V ,+
t

), "t * Ă

3: z∗ ± −@, bf
i

∗
± b̄f , bv

i
∗
± b̄v

4: for x̂i * � do
5: (b̂v

i
, b̂

f

i
) ± argmaxþï

ñ
(x̂i)

6: if þï
ñ
(x̂i) is feasible and bounded then

7: Solve (8)–(11) with b
f

i
± b̂

f

i
and bv

i
± b̂v

i
to obtain the

partitions, (õ̂I
t
, õ̂M

t
, õ̂V

t
), "t * Ă

8: ẑ ± max (67) s.t. (68)–(69)
9: if ẑ > z∗ then
10: z∗ ± ẑ, bf

i

∗
± b̂

f

i
, bv

i
∗
± b̂v

i

11: end if
12: end if
13: end for

The following lemma shows that Algorithm 2 is guaranteed to find
an optimal solution to (46)–(47).

Lemma 10. Algorithm 2 is guaranteed to produce an optimal solution
to (46)–(47).

Proof. By Proposition 3, an optimal solution to (46)–(47) occurs at an
element of �. By Lemma 9, for each x̂i * �, solving (67)–(69) yields a
set of firm-i offers that maximizes firm i’s profit. ¦

6. Numerical example

This section presents two numerical examples in which firm i has
two rivals, which are denoted as firms 1 and 2, and there are |Ă | =

3 operating hours with demands, D1 = 25 MW, D2 = 34 MW, and
D3 = 38 MW. Firms i, 1, and 2 have K = 20 MW capacities in both
examples. The fixed costs of firms 1 and 2, cf

1
and c

f

2
, are non-zero in

the first example and are zero in the second example.
We consider these two examples because having non-zero c

f

1
or cf

2
complicates comparing the two market designs. Under a centrally com-
mitted design, firms can signal and recover their fixed costs through
their multi-part offers and make-whole payments. Under a self-
committed design, firms must account for their fixed costs in their
energy offers. As such, we use the first example to examine how firm i

structures its fixed- and variable-cost offers to compete against its
two rivals under a centrally committed design. The second example
is used to contrast firm i’s offering behavior between centrally and
self-committed designs.

Another issue in comparing the two market designs is that As-
sumption 6 guarantees that a single marginal generator is operated
during each operating period. Our approach to solving firm i’s profit-
maximization problem under a self-committed design has no such
guarantee. In comparing the two market designs with the second
example, we assume that the generating firms and MO behave in a
manner to yield a similar result to Assumption 6.

6.1. Non-zero c
f

1
and c

f

2

6.1.1. Data
Columns two and three of Table 1 provide the assumed cost param-

eters of firms 1 and 2. Our base case assumes that firm i has a fixed
cost of cf

i
= 10 and considers cases wherein cv

i
varies from 0.50 to 5.00

at increments of 0.25. Section 6.1.3 presents a parametric analysis, in
which we examine the sensitivity of firm i’s profit-maximizing behavior
and resultant market operations with different values of cf

i
.
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Table 1
Cost data for Firms 1 and 2 with
Non-Zero c

f

1
and c

f

2
.

j cv
j

c
f

j

1 4 10
2 5 10

Fig. 1. Optimized firm-i offers under centrally committed design with non-zero c
f

1
and

c
f

2
in the base case.

6.1.2. Base-case results
Fig. 1 shows optimized firm-i offers in the base case under a

centrally committed design with make-whole payments for different
values of cv

i
. Firm i’s strategy differs for high and low values of cv

i
. If

cv
i
d 3.00, firm i submits an offer with bv

i
= 4.00, so it matches firm 1’s

energy cost, and b
f

i
= 15, which is the highest value that allows firm i

to be an inframarginal generator during all three hours. In following
such a strategy, the energy price is set by firm 1, which is the marginal
generator, to $4.00/MWh during each hour and firm i’s make-whole
payments are maximized. Conversely, if cv

i
e 3.25, firm i submits an

offer with bv
i
= 5.00 and b

f

i
= 10, which allows firm i to match firm 2

on cost and to become the marginal generator during all three hours,
yielding $5.00/MWh energy prices during each hour.

Fig. 2 summarizes the optimized profit, which is broken into two
components, that firm i earns under the centrally committed design
with different values of cv

i
. The first profit component is operating

profit from energy sales, i.e., total revenue from selling energy less
the sum of variable and fixed operating costs. This profit component is
negative for cv

i
e 4.25. The second profit component is the make-whole

payment. Fig. 2 shows that total profit is decreasing in cv
i
. Moreover,

for sufficiently high values of cv
i
, firm i’s profit-maximizing strategy is

to submit an offer that yields an actual profit loss, which is recovered
through make-whole payments (firm i’s optimal profit is exactly zero
for the boundary case of cv

i
= 5.00). Firm i receives make-whole

payments for all values of cv
i
that we examine, despite earning positive

rents from energy payments for cv
i
d 4.00.

Fig. 1 shows that cv
i

= 3.25 is the threshold beyond which it is
profitable under a centrally committed design for firm i to submit offers
that result in its being the marginal generator. For instance, if cv

i
= 4.00

an optimal offer that results in firm i being inframarginal yields a profit
loss of $30 from energy sales, which is supplemented by a $45 make-
whole payment, for a total profit of $15. Conversely, the optimized
offers that are shown in Fig. 1 that result in firm i being marginal during
each hour yields $7 of profit from energy sales, which is supplemented
by a $30 make-whole payment. This result demonstrates the trade-
off between selling more energy at a lower price as an inframarginal

Fig. 2. Optimized firm-i profit under centrally committed design with non-zero c
f

1
and

c
f

2
in the base case.

generator versus selling less energy at a higher price as a marginal
supplier. Make-whole payments affect this trade-off.

Fig. 3 summarizes three different cost metrics from the optimized
firm-i offers under a centrally committed design. The first is actual cost,
which is defined as:
1

j*õ,t*Ă

(
cv
j
x∗
j,t

+ c
f

j
u∗
j,t

)
;

where "j * õ, t * Ă we let x∗
j,t
and u∗

j,t
denote the values of xj,t and uj,t

that are obtained from solving the bi-level problem for the centrally
committed design. The second is as-offered cost, which is defined as
the value of (8). The distinction between actual and as-offered costs
are that the former are actual costs that are incurred by the generating
firms, whereas the latter are what the MO believes their costs to be,
based upon offers that it receives. The final cost metric is settlement
cost, which is defined as the sum of energy and make-whole payments
to the generating firms. Finally, Fig. 3 shows the true cost minimum.
The distinction between actual and true-minimal cost is that the former
is based on commitment and dispatch decisions that are made using
offers, which may not reflect actual cost and may be suboptimal with
true cost information. Thus, the latter may be viewed as the cost of a
perfectly competitive benchmark.

Fig. 3 shows that if 2.50 d cv
i
d 3.00, the centrally committed design

yields the true cost minimum. If cv
i

< 4.00 and 4.00 < cv
i

< 5.00,
firm i is strictly less costly than firm 1 and 2, respectively. However,
firm i’s optimal offering strategies (cf. Fig. 1) result in firm i appearing
to be as costly as its more-expensive rival. Under a centrally committed
design, 3.25 d cv

i
is the threshold, beyond which firm i increases its

offer to match firm 2’s cost. As such, a centrally committed design
is not cost optimal if 3.25 d cv

i
d 3.75. Productive-efficiency losses

arise for these values of ci
v
because it is profit-maximizing for firm i to

submit offers that result in its being operated as a marginal generator,
whereas it is cost-minimal for it operate as an inframarginal unit. A
centrally committed design yields cost-minimal solutions if 4.00 d cv

i
.

This result stems from firm i’s behavior during hour 1. Specifically, the
make-whole payment provides a financial incentive for firm i to operate
as the marginal generator during all three hours.

System operations appear considerably more costly, on the basis
of the offers that are submitted, than actual costs. This is because
firm i’s optimal offers result in its appearing to be as costly as its more-
expensive rival. Specifically, if cv

i
d 3.25, firm i submits offers that

makes it appear as costly as firm 1. Above this threshold, firm i submits
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Fig. 3. Resultant actual, as-offered, and settlement costs from optimized firm-i offers
under centrally committed design and true cost minimum with non-zero c

f

1
and c

f

2
in

the base case.

Fig. 4. Total generator profits resulting from optimized firm-i offers under centrally
committed design with non-zero c

f

1
and c

f

2
in the base case assuming firm-i optimal

and competitive offers.

offers to appear as costly as firm 2. Settlement cost is higher, also, than
actual and as-offered costs.

We conclude our analysis of the base case with non-zero c
f

1
and c

f

2
with two profit comparisons. First, Fig. 4 summarizes total generator
profits under a centrally committed design in two cases. The first,
which is labeled ‘Firm-i Optimal’, uses firm i’s optimal offers. The
second, which is labeled ’Competitive Benchmark’ assumes that firm i

submits offers that are equal to its actual costs. As expected, generator
profits are higher under if firm i optimizes its offer as compared to a
competitive benchmark.

Our second profit comparison relaxes the requirement that firm i

submit the same set of long-lived offers for each of the |Ă | = 3 operating
hours and instead allows for so-called short-lived offers, which can
be different for each hour. Fig. 5 summarizes optimized firm-i profit
under a centrally committed design with long- and short-lived offers.
The figure shows that allowing short-lived offers yields profit increases,
especially if cv

i
is relatively low. As an example, consider the case with

cv
i

= 0.50. With long-live offers, it is profit-maximizing for firm i to
submit bv

i
= 4.00, which is the highest offer that allows firm i to be

Fig. 5. Optimized Firm-i profit under centrally committed design with non-zero c
f

1
and

c
f

2
in the base case with long- and short-lived offers.

inframarginal, and b
f

i
= 15, which is the highest offer that prevents

firm 2 being committed and dispatched in firm i’s place. With short-

lived offers, it is profit-maximizing for firm i to submit the same offers

during hour 1 but to offer instead b
f

i
= 24 and b

f

i
= 28 during hours 2

and 3, respectively. Although the energy price remains $4.00/MWh

during all three hours with the short-lived offers, firm i receives greater

make-whole payments, due to the higher values of bf
i
.

6.1.3. Sensitivity of results to fixed cost

We examine cases with c
f

i
= 5 and c

f

i
= 15 to determine how firm i’s

fixed cost impacts its offers and the resultant impact on dispatch, profit,

and costs under a centrally committed design. Both cost levels yield the

same type of threshold offering behavior. If cf
i
= 5, firm i submits offers

under a centrally committed design that match firm 1 so long as cv
i
d

3.00. Otherwise, it submits offers to match firm 2. With c
f

i
= 15, firm i

matches firm 1 up to the same threshold value of cv
i
d 3.00. Thereafter,

if 3.25 d cv
i
d 4.50, firm i submits offers to match firm 2. If cv

i
e 4.75,

firm i submits an offer at the price ceiling, thereby withdrawing its

capacity from the market completely. This capacity withholding stems

from firm i being unable to compete profitably with firm 2 if firm-i

costs are too high.

With c
f

i
= 5, firm i is an inframarginal generator when its offer

matches firm 1 and is the marginal generator when its offer matches

firm 2. With c
f

i
= 15, firm i is an inframarginal generator when its

offer matches firm 1 and its dispatch is mixed when its offer matches

firm 2. Specifically, firm i is the marginal generator if 3.25 d cv
i
d 3.75.

If 4.00 d cv
i
d 4.50, firm i is not dispatched during hour 1 and firm 2 is

the marginal generator during hour 1 instead.

Figs. 6 and 7 summarize for the two cases with c
f

i
= 5 and c

f

i
= 15,

respectively, the cost metrics that Fig. 3 provides for the base case.

The results are qualitatively similar in these sensitivity cases to the

base case. There are productive-efficiency losses in cases wherein firm i

should be an inframarginal generator under the cost minimum but

firm i is the marginal generator instead due to its offering strategy.

Settlement costs are higher than actual costs.

Figs. 8 and 9 summarize optimized firm-i profit with c
f

i
= 5 and

c
f

i
= 15, respectively. As under the base case, firm i is able to extract a

make-whole payment in all cases in which it is dispatched, regardless

of whether it earns a strictly positive rent from energy payments only.
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Fig. 6. Resultant actual, as-offered, and settlement costs from optimized firm-i offers
under centrally committed design and true cost minimum with non-zero c

f

1
and c

f

2
and

c
f

i
= 5.

Fig. 7. Resultant actual, as-offered, and settlement costs from optimized firm-i offers
under centrally committed design and true cost minimum with non-zero c

f

1
and c

f

2
and

c
f

i
= 15.

6.2. cf
1
= c

f

2
= 0

Having c
f

1
= c

f

2
= 0 simplifies the comparison of the two market

designs, because it obviates the need for making a behavioral assump-
tion regarding how firms 1 and 2 incorporate their fixed costs into their
energy offers under a self-committed design. Instead, with c

f

1
= c

f

2
= 0,

we assume simply that firms 1 and 2 submit their per-unit energy-
generation costs under the two market designs. This example assumes
that cv

1
= 5 and cv

2
= 6.

Figs. 10–12 summarize the same information for the case with
c
f

1
= c

f

2
= 0 that Figs. 1–3 do for the base case with non-zero c

f

1

and c
f

2
. Overall, the results for the centrally committed design are

qualitatively similar between cases with zero and non-zero c
f

1
and

c
f

2
. Moreover, firm i’s optimal offering strategies under centrally and

self-committed designs exhibit the same threshold-type behavior. Thus,
market outcomes under the two designs have qualitative similarities.

Specifically, with c
f

1
= c

f

2
= 0, if cv

i
d 3.25 firm i matches firm 1’s

offer and is the inframarginal generator under a self-committed design.

Fig. 8. Optimized firm-i profit under centrally committed design with non-zero c
f

1
and

c
f

2
and c

f

i
= 5.

Fig. 9. Optimized firm-i profit under centrally committed design with non-zero c
f

1
and

c
f

2
and c

f

i
= 15.

Fig. 10. Optimized firm-i offers under centrally and self-committed designs with
c
f

1
= c

f

2
= 0.



European Journal of Operational Research 317 (2024) 25–42

37

Y. Jiang and R. Sioshansi

Fig. 11. Optimized firm-i profit under centrally and self-committed designs with
c
f

1
= c

f

2
= 0.

Fig. 12. Resultant actual, as-offered, and settlement costs from optimized firm-i offers
under centrally and self-committed designs and true cost minimum with c

f

1
= c

f

2
= 0.

If cv
i

e 3.50, firm i raises its offer under a self-committed design to
match firm 2’s cost and is the marginal generator. Firm i’s behavior
under a centrally committed differs slightly with zero compared to
non-zero c

f

1
and c

f

2
if cv

i
is relatively high. With c

f

1
= c

f

2
= 0 and

cv
i
d 3.75, firm i submits offers under a centrally committed design to

be the inframarginal generator during all three hours. If cf
1

= c
f

2
= 0

and 4.00 d cv
i
d 4.50, firm i submits offers that make it inactive during

hour 1 and inframarginal during hours 2 and 3. If cf
1

= c
f

2
= 0 and

4.75 d cv
i
, firm i submits the same offers under a centrally and self-

committed design and is the marginal generator during hours 2 and 3

with centralized commitment.
Fig. 11 shows that firm i’s profit under a centrally committed design

is slightly superior to that under self commitment for all values of cv
i

that we consider. This result arises from the principle of optimality.
Because c

f

1
= c

f

2
= 0, we assume that firms 1 and 2 submit the same

offers under the two market designs. As such, the additional degrees
of freedom that are provided by multi-part offers and a make-whole
payment under centralized commitment imply that firm-i profit can be
no less under such a design.

Fig. 12 shows that centralized commitment yields lower productive-
efficiency losses compared to self commitment. This result stems from

cv
i

= 4.50 and cv
i

= 3.50 being the thresholds under a centrally and
self-committed design, respectively, beyond which its optimal behavior
results in firm i matching the offer of its more expensive rival (firm 2).
By matching firm 2’s offer, firm i switches from being an inframarginal
to the marginal generator. This switch yields productive-efficiency
losses, because the MO makes inefficient operational decisions on
the basis of the incorrect cost information that firm i submits. The
availability of the make-whole payment under a centrally committed
design makes it preferable for firm i to remain as an inframarginal as
unit for a larger range of values of cv

i
.

Fig. 11 shows firm i’s profit is lower under a self-committed design
as compared to centralized commitment. However, for relatively high
values of cv

i
, settlement cost is much higher under self commitment

(cf. Fig. 12). This higher settlement cost implies that total generator
profits are higher under self commitment for high values of cv

i
. The

lack of a make-whole payment under such a design means that firm i’s
sole mechanism to increase profit is through the uniform energy price,
which is paid also to the inframarginal firm 1. Under a centrally com-
mitted design, firm i has an additional degree of freedom in collecting
a make-whole payment, which is discriminatory and does not affect
settlements that are paid to firm 1. This finding suggests that the
discriminatory nature of the make-whole payment may mitigate the
cost of the exercise of market power.

Finally, we examine the impact of relaxing the long-lived-offer
requirement. Fig. 10 shows that if cv

i
= 4.75, firm i’s profit-maximizing

long-lived offers under centralized commitment are b
f

i

∗
= 0 and bv

i
∗ =

6.00. These offers result in firm i being inactive during hour 1 and
marginal during hours 2 and 3 and earning hourly energy profits of
$0.00, $7.50, and $12.50, respectively. Conversely, if firm i is able
to submit short-lived offers, it submits arbitrarily high offers during
hour 1 (thereby remaining inactive). For the other two hours it submits
bv
i
∗ = 5.00 (thereby being dispatched as the inframarginal generator)

and b
f

i

∗
= 14 and b

f

i

∗
= 18 during hours 2 and 3, respectively,

which maximize make-whole payments. These offers yield losses of
$5.00 during each of hours 2 and 3 from energy payments, which
are supplemented by make-whole payments of $14.00 and $18.00,
respectively, and give a total net profit of $22.00.

Fig. 13 summarizes the same cost information for the case of
long-lived offers that Fig. 12 does for the case of short-lived offers.
Fig. 13 shows that centralized commitment continues to outperform
a self-committed design with short-lived offers. Indeed, there are no
productive-efficiency losses with centralized commitment and short-
lived offers, because actual cost equals the true cost minimum for
all values of cv

i
that we consider. Productive-efficiency losses under

centralized commitment that are shown in Fig. 12 for 4.00 d cv
i
d 4.50

arise because firm i’s profit-maximizing long-lived offers result in its
being inactive during hour 1. Such offers maximize firm-i profit, despite
firm i being lower-cost to operate than firm 2. As such, firm 2 is
dispatched in firm i’s place, which yields the cost increases. Fig. 13
shows that short-lived offers can alleviate these productive-efficiency
losses, because firm i can submit offers during hour 1 that result in
its being dispatched without unduly impacting its earnings during the
remaining hours.

6.3. Computational performance

Algorithms 1 and 2 examine a set of 3|Ă | candidate optimal firm-i
production levels and solve subproblems for each. As such, it may scale
poorly. We benchmark the computational performance of Algorithm 2
to the method that is proposed by Huppmann and Siddiqui (2018),
which solves (12)–(15) by solving an auxiliary mixed-integer non-
linear optimization problem. Although this method requires solving
only one problem, the problem includes auxiliary binary variables and
constraints, the numbers of which grow exponentially in |õ| and |Ă |.

To conduct such a comparison, we use sets of randomly generated
instances of (12)–(15). Each set has different-sized sets, õ and Ă .
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Fig. 13. Resultant actual, as-offered, and settlement costs from optimized firm-i offers
under centrally and self-committed designs and true cost minimum with c

f

1
= c

f

2
= 0 if

firm i submits short-lived offers.

Table 2
Average computational performance of Algorithm 2 and method of Huppmann and
Siddiqui (2018) (Denoted as HS).

|õ| |Ă | HS Algorithm 2

Time (s) Time (s) Infeasible þï

ñ
(x̂i)

2 2 0.176 0.066 0.06
2 3 2.572 0.098 0.21
2 4 70.073 0.212 0.66
2 5 5827.641 0.319 1.63
3 2 5.167 0.086 0.83
3 3 1159.978 0.153 4.61
3 4 @ 0.296 17.99
3 5 @ 0.660 59.89
4 2 @ 0.061 1.50
4 3 @ 0.135 8.93
4 4 @ 0.275 33.00
4 5 @ 0.531 104.15
5 2 @ 0.068 1.97
5 3 @ 0.146 10.51
5 4 @ 0.302 37.73
5 5 @ 0.651 119.49

The sets of instances are solved using the two methods, which are
programmed using Python 3.7. The optimization problems are solved
using Gurobi 9.1.1. All of the computations are conducted on a system
with a processor with two 2.90-GHz cores and 16.0 GB of memory.
We impose a 43200-s (12-hour) time limit on the computations. Table 2
reports the average time to solve (12)–(15) across each set of random
instances using the two methods. Computation times of@ indicate that
the instances are not solvable within the 12-hour time limit.

Overall, Algorithm 2 scales better than the method of Huppmann
and Siddiqui (2018). Algorithm 2 has two properties that provide better
scaling performance. First, the number of optimization problems that
Algorithm 2 requires solving grows only with the size of Ă . Conversely,
the method of Huppmann and Siddiqui (2018) entails solving an opti-
mization problem that grows with the size of both õ and Ă . As such,
none of the instances with |õ| e 4 and only some instances with
|õ| = 3 can be solved by that method within 12 hours. If õ is held
fixed, computation times for Algorithm 2 roughly double each time an
additional hour is added to the model horizon. On the other hand, if
Ă is held fixed, computation times for Algorithm 2 see relatively small
changes as õ grows.

Another property of Algorithm 2 that provides for favorable scaling
is that many of the subproblems are infeasible. Any firm-i allocation, x̂i,

that yields an infeasible þï
ñ
(x̂i) can be eliminated from consideration.

The final column of Table 2 shows that as õ and Ă increase, an
increasing number of these subproblems are infeasible. For instance,
with õ = 4 and Ă = 5, there are 35 = 243 candidate firm-i allocations
to examine. However, nearly half of these yield infeasible subproblems
and do not require further consideration.

The methodology of Huppmann and Siddiqui (2018) is more general
and can solve any bi-level optimization problem with binary variables
in the lower level. Conversely, Algorithm 2 is tailored for our specific
problem and assumptions. Thus, the work of Huppmann and Siddiqui
(2018) has an advantage relative to our work, in its more broad
applicability.

7. Concluding remarks

This paper explores profit-maximizing strategic behavior in whole-
sale electricity markets, considering two common archetypal market
designs—self- and centrally committed. We analyze both designs us-
ing a bi-level model, whereby the strategic firm determines profit-
maximizing offers in the upper level and the MO clears the market
in the lower level. We incorporate make-whole payments, which are
a commonly used remuneration scheme under centrally committed
designs, into the bi-level model of the centrally committed market.

The bi-level model of the self-committed design is computationally
tractable using standard techniques, because its lower-level problem is
a linear optimization. Thus, an optimum of the MO’s problem can be
characterized using optimality conditions, allowing the bi-level prob-
lem to be converted to a single-level problem. This approach cannot
be taken with the model of the centrally committed design, because its
lower-level problem includes binary variables. Huppmann and Siddiqui
(2018) propose a general methodology, which can be applied to any
bi-level model with binary variables in its lower level. However, their
approach does not exploit model structure, which can make their
method computationally expensive. A major contribution of our work
is developing an efficient solution algorithm, which exploits model
structure, for the model of the centrally committed design. Impor-
tantly, our solution algorithm is exact, insomuch as it introduces no
approximations. We prove that our methodology is guaranteed to find
an optimal solution and demonstrate the model and its computational
efficiency using numerical examples.

Our examples demonstrate trade-offs between the two market de-
signs. A self-committed design is relatively simple, with firms internal-
izing their non-convex costs into energy offers. This simplicity and the
lack of a discriminatory make-whole payment through which firms can
recover their non-convex costs yield two undesirable properties. For
one, the strategic firm is incentivized to submit higher offers under a
self-committed design. This property is reflected in the threshold value
of cv

i
beyond which firm i matches firm 2’s offer being lower under a

self-committed design. This property gives rise to greater productive
efficiency losses under a self-committed design. The second property
is that under a self-committed design, firms must rely upon increasing
the uniform energy price to increase their profits. The discriminatory
nature of make-whole payments under a centrally committed design
reduces firm i’s incentives to increase the energy price. This property
is reflected by the higher settlement costs under a self-committed
design with higher values of cv

i
. A centrally committed design allowing

firm i to increase its profit with a reduced cost impact appears to be
consistent with the theory of two-part tariffs. Tirole (1988) shows that a
monopolist can use a two-part tariff to extract surplus without reducing
social welfare. On the other hand, firm i is able to manipulate its offers
under a centrally committed design to receive make-whole payments,
even when it earns a positive rent from energy payments. We study the
effect on market-participant behavior of long- versus short-lived offers.
Strategic-firm profit increases with the latter, but productive-efficiency
losses under a centrally committed design are eliminated. It is unclear
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whether this is a general result or specific to our example and further
study is needed before drawing broad market-design conclusions.

We compare the computational performance of our solution method
to that of Huppmann and Siddiqui (2018). Both methods grow ex-
ponentially in the problem size, but our method scales better in our
computational test due to its having two inherent advantages. First,
our method grows only with the number of time periods. The method
of Huppmann and Siddiqui (2018) grows with the number of time
periods and firms. Moreover, as the problem size increases, more of the
subproblems that must be solved under our methodology are infeasible
and can be excluded from consideration.

Our model is a stylized simplification of actual wholesale electricity
markets. Relaxing our simplifying assumptions provides many avenues
for further research. We assume that firms have equal capacities and we
neglect intertemporal constraints and costs, e.g., ramping constraints
or a fixed cost to keep a generator online between one hour and the
next. These assumptions facilitate the development of Algorithms 1
and 2, because they limit firm i to three possible production levels
during each hour. A second simplification is that we compute a static
partial equilibrium, whereby a single firm optimizes its offer, taking the
offers and behavior of its rivals as fixed. As such, it is challenging to
compare the two market designs if firm i’s rivals have non-zero fixed
costs, because we must make a behavioral assumption about how those
costs are incorporated into energy offers under a self-committed design.
Relaxing these assumptions, for instance by finding a Nash equilibrium
with multiple strategic firms, may reveal additional insights into the
relative merits of the two market designs. An alternative avenue for
further work is to relax Assumption 2 and optimize firm i’s offers under
uncertainty regarding its rivals’ behavior. Another simplifying assump-
tion is that the profit-maximizing firm has only price as a strategic
variable. Allowing the profit-maximizing firm to determine the quantity
that it offers could provide an additional degree of freedom to exercise
market power. Tirole (1988) discusses such a finding in comparing the
stylized Bertrand and Nash–Cournot models of competition.

Another limitation of our work is that it compares the two market
designs solely from the perspective of short-run system and market
operations and on the basis of cost and operational efficiency alone.
There are other considerations, which are beyond the scope of our
work, but which may be valuable areas of future study and comparison
of the two market designs. One consideration is the allocation of the
cost of make-whole (or any other discriminatory) payments that are
necessitated by non-convexities in unit-commitment decisions. Most
centrally committed markets socialize these costs to customers in a
pro rata or similar simple fashion, which may be neither efficient,
individually rational, nor incentive compatible. O’Neill et al. (2017)
propose a pricing scheme, which ensures non-negative economic gains
to each agent that clears the market. The use of such a pricing scheme
likely would change profit-maximizing behavior by the strategic gen-
erator (and our findings). Moreover, the complexity of such a pricing
scheme may make the simplicity of the self-committed design desirable.
As another example of a consideration that is beyond the scope of
our work, Mays et al. (2021) examine the impacts of discriminatory
payments in centrally committed designs upon generator-entry and -
exit decisions. They demonstrate that such payments can distort these
decisions and the resultant capacity mix, whereas pricing schemes that
increase uniform prices to reduce discriminatory payments may support
higher capacity levels. Including these considerations in a comparison
between self- and centrally committed designs would be an important
extension of our work. While our model assumes fixed capacity levels,
it may be possible to extend it by including capacity decisions into the
upper-level problems of the two market designs.
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Appendix A. Proof of Proposition 2

Proof "t * Ă such that x̂i,t = 0. We let (õ̂I
t
, õ̂M

t
, õ̂V

t
) denote a partition

that is optimal in (8)–(11) and let ĵM
t
denote the unique member of

õ̂M
t
. We show that we must have:
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which implies (27) as well. In addition, "g * õ
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To prove the sufficiency of (27)–(28) we show that if the inequalities
hold, x̂i,t = 0 is weakly preferable to x̂i,t = rt and x̂i,t = K in terms of
minimizing (8). To show this, consider the partition, (õI,−

t
,õ

M,−
t

,õ
V ,−
t

),
which by definition excludes firm i. Suppose, for contradiction, that
when firm i is included it is optimal for i to replace jM,−

t
as the marginal

generator. For this to be true, #j * õ
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such that j >K j
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the optimality of replacing j
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with i as the marginal generator.
Finally, suppose for contradiction that when firm i is added to the

candidate set of generators that it is optimal for i to replace a member
of õI,−
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as an inframarginal generator. For this to be optimal, #j * õ
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increases
the value of (8) weakly, which contradicts the optimality of having i

replace a member of õI,−
t
. Thus, (27)–(28) are sufficient to ensure that

x̂i,t = 0 is optimal in (8)–(11). ¦
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Proof "t * Ă such that x̂i,t = rt. We let (õ̂
I
t
, õ̂M
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t
) denote a partition

that is optimal in (8)–(11) and assume that i is the unique member of
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otherwise (9) is violated by at least one of (õ̂I

t
, õ̂M

t
, õ̂V

t
) or

(õI,−
t

,õ
M,−
t

,õ
V ,−
t

). We consider now the two cases that depend upon the
relationship between j

M,−
t

and j
I,−
t
.

First, consider the case wherein j
M,−
t

eK j
I,−
t
, which implies that

j
M,−
t

eK j, "j * õ
I,−
t
. In this case we have that jM,−

t
+ õ̂I

t
. Otherwise,

if jM,−
t

* õ̂I
t
, #j * õ

I,−
t

with j + õ̂I
t
and j

M,−
t

eK j, which violates
the lexicographic requirement of Assumption 6 if the inequality holds
as an equality and violates the optimality of õ̂I

t
if the inequality is

strict. To prove that (29)–(31) is necessary, we begin by showing by
contradiction that we must have:
1
ℎ*õ̂I

t

(
bv
ℎ
K + b

f

ℎ

)
=

1
ℎ*õ

I,−
t

(
bv
ℎ
K + b

f

ℎ

)
. (A.1)

Suppose to the contrary that the left-hand side of (A.1) is smaller. In
such a case, given that jM,−

t
+ õ̂I

t
, the partition, (õI,−

t
,õ

M,−
t

,õ
V ,−
t

), vio-
lates its definition. Conversely, suppose that the left-hand side of (A.1)
is larger. This case yields a contradiction as well, because the partition,
(õ̂I

t
, õ̂M

t
, õ̂V

t
), violates its definition. Thus, by (A.1) we have that õ̂I

t
=

õ
I,−
t
. Applying the principle of optimality to (8)–(11) gives:

1
ℎ*õ

I,−
t

(
bv
ℎ
K + b

f

ℎ

)
+ bv

i
rt + b

f

i
d

1
ℎ*õ

I,−
t

(
bv
ℎ
K + b

f

ℎ

)
+ bv

j
M,−
t

rt + b
f

j
M,−
t

;

which yields (29). We have also that:
1

ℎ*õ
I,−
t

(
bv
ℎ
K + b

f

ℎ

)
+ bv

i
rt + b

f

i

d
1

ℎ*
(
õ
I,−
t

L{i}
)
ö{g}

(
bv
ℎ
K + b

f

ℎ

)
+ bv

g
rt + bf

g
;

for all g * õ
I,−
t
, which gives (30). Finally, we have:

1
ℎ*õ

I,−
t

(
bv
ℎ
K + b

f

ℎ

)
+ bv

i
rt + b

f

i

d
1

ℎ*
(
õ
I,−
t

L{i}
)
ö
{
j
I,−
t

}
(
bv
ℎ
K + b

f

ℎ

)
+ bv

j
M,−
t

rt + b
f

j
M,−
t

;

which gives (31).
To prove sufficiency of (29)–(31) for the case wherein j

M,−
t

eK j
I,−
t
,

consider a partition in which õ
I,−
t

are the inframarginal units, i is
marginal, and õ

V ,−
t

Lõ
M,−
t

are the inactive units. By (29) we know that
this partition gives a weakly smaller value of (8) than (õI,−

t
,õ

M,−
t

,õ
V ,−
t

)

does. This means that having x̂i,t = rt is better than having x̂i,t = 0.
If the MO has x̂i,t = K, then #j * õ

M,−
t

L õ
V ,−
t

that is selected to be
the marginal unit. Such a j is selected to be the marginal unit because
by (30) switching i and ℎ, "ℎ * õ

I,−
t

weakly increases the value of (8).
Similarly, "j * õ

M,−
t

L õ
V ,−
t

and g * õ
I,−
t
, switching j and g weakly

increases the value of (8) by Lemma 3 and due to the assumption
that jM,−

t
eK j

I,−
t
. Finally, we know from Lemma 3 that jM,−

t
drt

g,

"g * õ
V ,−
t
. Inequality (31) implies that having i as an inframarginal

unit and j
M,−
t

as a marginal unit gives a weakly higher value of (8)
compared to having j

I,−
t

as an inframarginal unit and i as a marginal
unit. Thus, by appealing to the definition of jI,−

t
, we can argue that

having x̂i,t = K is suboptimal in (8)–(11).
We consider now the other case wherein j

M,−
t

<K j
I,−
t
. We show the

necessity of (32)–(34) by arguing that we must have:

õ̂I
t
=
(
õ
I,−
t

L õ
M,−
t

)
ö
{
j
I,−
t

}
. (A.2)

To show this equivalence, note that by Lemma 3 we have that j dK ℎ,
"j * õ

I,−
t

and ℎ * õ
V ,−
t
, by assumption we have that jM,−

t
<K j

I,−
t
, and

by definition we have that jI,−
t

eK j, "j * õ
I,−
t
. As such, we conclude

that having õ̂I
t
as is given by (A.2) is an inframarginal-generator set

that minimizes (8). Therefore, applying the principle of optimality
to (8)–(11) gives:
1
j*õ̂I

t

(
bv
j
K + b

f

j

)
+ bv

i
rt + b

f

i
d

1
j*õ

I,−
t

(
bv
j
K + b

f

j

)
+ bv

j
M,−
t

rt + b
f

j
M,−
t

;

which yields (32) after rearranging terms. Furthermore, we have that:
1
j*õ̂I

t

(
bv
j
K + b

f

j

)
+ bv

i
rt + b

f

i

d
1

j*
(
õ̂I
t
L{i}

)
öõ

M,−
t

(
bv
j
K + b

f

j

)
+ bv

j
M,−
t

rt + b
f

j
M,−
t

;

which implies (33). Finally, using the definitions of M and N that are
given following the definition of (34), we have:
1
j*õ̂I

t

(
bv
j
K + b

f

j

)
+ bv

i
rt + b

f

i
d

1
j*

(
õ̂I
t
L{i}

)
ö{M∗}

(
bv
j
K + b

f

j

)
+N ;

where:

M∗ = argmax
j*

(
õ
I,−
t

Lõ
M,−
t

)
ö
{
j
I,−
t

}
(
bv
j
K + b

f

j

)
;

from which (34) follows.
To show the sufficiency of (32)–(34) if jM,−

t
<K j

I,−
t
, we assume

that (32)–(34) and consider a partition wherein:
(
õ
I,−
t

L õ
M,−
t

)
ö
{
j
I,−
t

}
;

is the inframarginal-generator set, i is marginal, and:

õ
V ,−
t

L
{
j
I,−
t

}
;

is the inactive-generator set. If (32) holds, then this partition gives a
weakly lower value of (8) than the partition, (õI,−

t
,õ

M,−
t

,õ
V ,−
t

), does.
By definition, the partition, (õI,−

t
,õ

M,−
t

,õ
V ,−
t

), corresponds to a case
wherein x̂i,t = 0. To show that x̂i,t = rt yields a weakly lower value
of (8) compared to x̂i,t = K, we note that by Lemma 2 we have that
bv
j
M,−
t

e bv
j
, "j * õ

I,−
t
. Thus, (33) implies that bv

i
e bv

j
, "j * õ

I,−
t
. As

such, for any:

j *
(
õ
I,−
t

L õ
M,−
t

)
ö
{
j
I,−
t

}
;

it cannot improve the value of (8) to switch i and j by having i as
an inframarginal generator and j as a marginal generator. Thus, for
x̂i,t = K to be optimal in (8)–(11), there must exist:

ℎ * õ
V ,−
t

L
{
j
I,−
t

}
; (A.3)

and:

j *
(
õ
I,−
t

L õ
M,−
t

)
ö
{
j
I,−
t

}
; (A.4)

such that it is optimal in (8)–(11) for ℎ to become marginal and j to
become inactive, because by Lemma 3, the definition of jI,−

t
, and the

assumption that jM,−
t

<K j
I,−
t

we have that j dK ℎ for all:

j *
(
õ
I,−
t

L õ
M,−
t

)
ö
{
j
I,−
t

}
;

and for all:

ℎ * õ
V ,−
t

L
{
j
I,−
t

}
.

However, by (34), there is no pair, j and ℎ, that satisfies:

bv
i
K + b

f

i
+ bv

ℎ
rt + b

f

ℎ
< bv

j
K + b

f

j
+ bv

i
rt + b

f

i
;

meaning that there is no pair, j and ℎ, that satisfies (A.3) and (A.4) and
which does not increase the value of (8) if ℎ becomes marginal and j

becomes inactive. Thus, having x̂i,t = rt weakly reduces the value of (8)
relative to having x̂i,t = K. ¦
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Proof "t * Ă such that x̂i,t = K. We let (õ̂I
t
, õ̂M

t
, õ̂V

t
) denote a partition

that is optimal in (8)–(11) and let ĵM
t
denote the unique member of õ̂M

t
.

By assumption we have that i * õ̂I
t
. We know that:

|||õ̂
I
t

||| =
|||õ

I,+
t

||| ;
otherwise (9) is violated by at least one of (õ̂I

t
, õ̂M

t
, õ̂V

t
) or

(õI,+
t

,õ
M,+
t

,õ
V ,+
t

). Indeed, we can argue that the partitions, (õ̂I
t
, õ̂M

t
, õ̂V

t
)

and (õI,+
t

,õ
M,+
t

,õ
V ,+
t

), are equal exactly to one another. To do so, we
begin by noting that by the definitions of the two partitions, we have:
1

j*õ̂I
t
ö{i}

(
bv
j
K + b

f

j

)
+ bv

ĵM
t

rt + b
f

ĵM
t

=
1

j*õ
I,+
t

ö{i}

(
bv
j
K + b

f

j

)
+ bv

j
M,+
t

rt + b
f

j
M,+
t

.

As such, from the lexicographic requirement of Assumption 6 we have
that õ̂I

t
ö {i} = õ

I,+
t

ö {i} and ĵM
t

= j
M,+
t

. Thus, we must have that
õ̂I
t
= õ

I,+
t

and õ̂V
t
= õ

V ,+
t
. We consider now the two possible cases that

are implied by Lemma 5, and which differ based on whether jM,−
t

and
j
M,+
t

are equal or not.
We consider first the case wherein j

M,−
t

� j
M,+
t

. By Lemmata 4
and 5 we must have that j

M,+
t

* õ
I,−
t

and õ
V ,+
t

= õ
M,−
t

L õ
V ,−
t
. To

show the necessity of (35)–(36), we note from applying the principle
of optimality to (8)–(11) that:
1

j*õ
I,+
t

(
bv
j
K + b

f

j

)
+ bv

j
M,+
t

rt + b
f

j
M,+
t

d
1

j*õ
I,−
t

(
bv
j
K + b

f

j

)
+ bv

j
M,−
t

rt + b
f

j
M,−
t

.

Combining this inequality with the fact that jM,+
t

* õ
I,−
t

gives (35).
Moreover, we have that:
1

j*õ
I,+
t

(
bv
j
K + b

f

j

)
+ bv

j
M,+
t

rt + b
f

j
M,+
t

d
1

j*
(
õ
I,+
t

L
{
j
M,+
t

})
ö{i}

(
bv
j
K + b

f

j

)
+ bv

i
rt + b

f

i
;

which implies (36).
To show the sufficiency of (35)–(36), suppose that they hold and

consider the partition, (õI,+
t

,õ
M,+
t

,õ
V ,+
t

). If (35) holds then the value
of (8) is weakly lower under this partition as opposed to under the
partition, (õI,−

t
,õ

M,−
t

,õ
V ,−
t

), which is equivalent to having x̂i,t = 0. Thus,
having x̂i,t = K is a weak improvement over having x̂i,t = 0. On the
other hand, for the MO to select x̂i,t = rt then #j * õ

M,+
t

L õ
V ,+
t

that
is selected to be an inframarginal generator. If j = j

M,+
t

is selected to
be inframarginal, (36) implies that the value of (8) increases weakly
compared to having i as an inframarginal generator. We can show also
that selecting a firm, j * õ

V ,+
t
, to be inframarginal weakly increases the

value of (8) by arguing that "j * õ
M,−
t

L õ
V ,−
t

we have that jM,+
t

dK j.
To show this, recall that by Lemmata 4 and 5, õV ,+

t
= õ

M,−
t

L õ
V ,−
t
.

Based on the definition of the partition, (õI,−
t

,õ
M,−
t

,õ
V ,−
t

), and because
we know that jM,+

t
* õ

I,−
t
, Lemma 3 implies that jM,+

t
dK j, "j * õ

V ,−
t
.

Furthermore, Lemma 2 implies that bv
j
M,+
t

d bv
j
M,−
t

. Thus, from the

definition of the partition, (õI,+
t

,õ
M,+
t

,õ
V ,+
t

), and Lemma 3 we have that
j
M,+
t

drt
j
M,−
t

, because j
M,−
t

* õ
V ,+
t
. Thus, we have that jM,+

t
dK j

M,−
t

,

which completes the argument that jM,+
t

dK j, "j * õ
M,−
t

L õ
V ,−
t
.

We consider now the other case wherein j
M,−
t

= j
M,+
t

. In this case,
by Lemma 4 #p * õ

I,−
t

such that:

õ
I,+
t

=
(
õ
I,−
t

L {i}
)
ö {p}.

Thus, õV ,+
t

= õ
V ,−
t

L {p}. To show the necessity of (37)–(39), we note
that by applying the principle of optimality to (8)–(11) we have:
1

j*õ
I,+
t

(
bv
j
K + b

f

j

)
+ bv

j
M,+
t

rt + b
f

j
M,+
t

d
1

j*
(
õ
I,+
t

L{p}
)
ö{i}

(
bv
j
K + b

f

j

)
+ bv

j
M,+
t

rt + b
f

j
M,+
t

;

which gives (37). We have also that:
1

j*õ
I,+
t

(
bv
j
K + b

f

j

)
+ bv

j
M,+
t

rt + b
f

j
M,+
t

d
1

j*
(
õ
I,+
t

L
{
j
M,+
t

})
ö{i}

(
bv
j
K + b

f

j

)
+ bv

i
rt + b

f

i
;

which yields (38). Finally, we have:
1

j*õ
I,+
t

(
bv
j
K + b

f

j

)
+ bv

j
M,+
t

rt + b
f

j
M,+
t

d
1

j*
(
õ
I,+
t

L{p}
)
ö{i}

(
bv
j
K + b

f

j

)
+ bv

i
rt + b

f

i
;

which implies (39).
To show the sufficiency of (37)–(39), we assume that they hold and

consider the partition, (õI,+
t

,õ
M,+
t

,õ
V ,+
t

). Due to (37) and the assump-
tion for this case that jM,−

t
= j

M,+
t

, we know that the value of (8) is
weakly lower under the partition, (õI,+

t
,õ

M,+
t

,õ
V ,+
t

), as opposed to the
partition, (õI,−

t
,õ

M,−
t

,õ
V ,−
t

), which corresponds to having x̂i,t = 0. Thus,
having x̂i,t = K is a weak improvement from the MO’s perspective over
having x̂i,t = 0. For it to be optimal for the MO to select x̂i,t = rt then
#j * õ

M,+
t

LõV ,+
t

that is selected to be an inframarginal generator. If (38)
holds, then selecting j = j

M,+
t

to become an inframarginal generator
increases weakly the value of (8) compared to having x̂i,t = K. Consider
the other case in which j * õ

V ,+
t

= õ
V ,−
t

L{p} is selected to become an in-
framarginal generator. We can show making such a j an inframarginal
generator increases the value of (8) weakly by showing that selecting
j = p to become inframarginal increases the value of (8) weakly.
Considering the case of j = p is sufficient, because p * õ

I,−
t

and by
Lemma 3 we have that p dK g, "g * õ

V ,−
t
. Inequality (39) implies that

having x̂i,t = rt and j = p as an inframarginal generator increases the
value of (8) weakly compared to the partition, (õI,+

t
,õ

M,+
t

,õ
V ,+
t

). ¦
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