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ARTICLE INFO ABSTRACT

Keywords: We study the incentive properties of the two primary approaches to incorporating unit-commitment decisions in
OR in energy wholesale electricity markets. One approach is centralized unit commitment, wherein generating firms provide
Bi-level optimization complex multi-part offers that specify their non-convex fixed and variable operating costs. The market operator

Power-system economics
Unit commitment
Economic dispatch

uses these offers to co-optimize unit-commitment and economic-dispatch decisions. The second approach is
self-commitment, whereby firms determine unit-commitment decisions for their generating units individually
and submit simple offers for the provision of energy. Operators of self-committed markets determine generator
dispatch based on the merit order of the simple offers.

Comparing the incentive properties of the two market designs is challenging because the offer-optimization
problem for a firm that participates in a centrally committed market is a bi-level model with binary variables
in the lower-level problem. To address this challenge, we develop a computationally efficient approach to
solve such a problem and illustrate the method with examples. We use the examples to compare the incentive
properties of the two market designs. Our examples show that the profit of the profit-maximizing firm does not
differ significantly between the two market designs but that system costs can be higher under a self-committed
design. These cost differences are because the complex offers and discriminatory payment schemes that are
used under centrally committed designs can mitigate incentives for the profit-maximizing firm to exercise
market power.

1. Introduction algorithm. Hobbs et al. (2001) survey such models and algorithmic
developments. Scarf (1990, 1994) notes a pricing challenge with cen-

Designing wholesale electricity markets raises the question of how trally committed designs—uniform linear pricing can be economically
unit-commitment decisions are co-ordinated amongst generators. Ex- confiscatory, due to the non-convex costs and constraints that govern
isting markets use two primary approaches. Some markets, especially generator operations. O’Neill et al. (2005), Sioshansi (2014) discuss
those in United States of America, employ a centrally committed design. make-whole payments as a common mechanism to address this chal-
With such a design, unit-commitment decisions are made by a market lenge. Make-whole payments are discriminatory transfers from the MO
operator (MO), which receives complex offers from firms that specify to each generator to ensure that the latter earns non-negative profit (on

the basis of the offers that the generator submits to the market). In most
cases, the costs of make-whole payments are socialized to customers.
Another common design, especially in Europe and Australia, are
self-committed wholesale electricity markets. Generating firms in such
markets determine individually the commitments of their units and

the non-convex costs and constraints of their generating units. Muck-
stadt and Koenig (1977) give a formative application of Lagrangian
relaxation (LR) to solve the model that underlies a centrally committed
market. Baldick (1995) gives a generalized formulation of the model,
which accounts for a broad array of constraints, and refines the LR
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submit simple offers that specify prices at which the units provide
energy. Operators of self-committed markets determine the dispatch of
generating units based on the merit order of the simple offers. Because
self-committed markets rely upon simple offers being submitted into
the market, the onus is upon generating firms to ensure that the
offers yield revenues that recover their non-convex costs. Imran and
Kockar (2014) compare the designs of European and North Amer-
ican electricity markets, including with respect to the treatment of
unit-commitment decisions.

There are works that examine these two market designs. Johnson
et al. (1997), Sioshansi et al. (2008a) show that using LR to solve the
market model that underlies a centrally committed design can impact
the profits of individual generating units. Profit differences arise be-
cause solutions that yield similar total cost can give different prices and
unit-commitment and dispatch decisions. Sioshansi and Tignor (2012)
demonstrate that these profit impacts under a centrally committed
design can be most pronounced for generators with greater operational
flexibility. Elmaghraby and Oren (1999) consider the treatment of
intertemporal constraints and non-convex costs under a self-committed
design. They propose a horizontal market-clearing procedure to address
these aspects of the market-clearing problem. Sioshansi et al. (2008b)
show that even with truthful cost revelation, a self-committed design
yields productive-efficiency losses. Ahlqvist et al. (2022) compare the
two designs, including their relative merits vis-a-vis supply and demand
flexibility, resource remuneration, and market power and efficiency.

These works that examine the two market designs assume truthful
revelation by the participating generating firms. We know of two
works that compare the market designs while considering strategic
behavior with asymmetric information between generating firms and
the MO. Sioshansi and Nicholson (2011) characterize and compare
Nash equilibria under the two market designs assuming two symmetric
firms that compete during a single operating period. Duggan, Jr. and
Sioshansi (2019) extend the work of Sioshansi and Nicholson (2011)
by relaxing the duopoly assumption, assuming a symmetric oligopoly
with an arbitrary number of firms.

This paper relaxes the assumptions of these previous works and
explores strategic behavior by a single firm that participates in a
market with one of the two designs, i.e., the offers of the other firms
are fixed. Specifically, we relax the symmetric-firm assumption by
assuming that generating firms have the same capacities but can have
different production costs. We consider also multiple as opposed to
a single operating period. Multiple operating periods complicate the
profit-maximizing behavior of the strategic firm under a centrally
committed design in two ways. First, it is typical for the MO to use
the same so-called long-lived offers to clear the market during multiple
operating periods (e.g., 24 hour-long periods is common of many day-
ahead wholesale electricity markets). Second, the determination of any
make-whole payment that a generator receives depends upon revenue
and cost across multiple operating periods. Our modeling approach
allows the strategic firm to account for these complexities.

We cast our problem as a bi-level optimization model, which
has the strategic firm’s profit maximization as the upper-level and
the MO’s market clearing as the lower-level problem. There is an
extensive literature that applies bi-level optimization to model strate-
gic behavior in markets, especially when the lower-level problem is
convex. Fampa et al. (2008) propose a penalty-based heuristic and
a mixed-integer-linear program (MILP), which uses binary expansion,
to solve a bi-level problem with economic dispatch in the lower
level. Gabriel and Leuthold (2010) consider a quadratic lower-level
model and employ a linearization technique, which is based on a set
of discrete generation levels, to obtain an MILP formulation for their
problem. Hobbs et al. (2000) model profit-maximizing firms competing
in a transmission-constrained market and solve the model using a
penalty-based interior-point method. Barroso et al. (2006) discretize
the strategy sets of market participants and compute Nash equilibria of
the resultant game. Bakirtzis et al. (2007) assume that generating firms
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use stepped offers to participate in an energy market. Ruiz and Conejo
(2009) model the lower level of a bi-level model as a multi-period
optimal-power-flow problem that considers uncertainty in consumers’
bids and rival generators’ offers. Kozanidis et al. (2013) incorporate
unit-commitment decisions into the lower-level market clearing of a
bi-level model. They use parametric integer optimization to develop a
problem-specific algorithm that exploits the relationship between the
offers that are submitted by the strategic firm and total system cost.

Our paper has two primary contributions to this existing literature.
First, we provide an efficient algorithm to compute optimal offers by a
strategic market participant under a centrally committed design. This
is our primary technical contribution, which addresses the challenge of
having binary variables in the lower level of a bi-level model. Second,
we use numerical examples to compare centrally and self-committed
designs for wholesale electricity markets. In particular, we examine the
extent to which a strategic generating firm can manipulate its offers
under the two market designs to impact prices, profits, settlement costs,
and other market-performance metrics.

The remainder of the paper is organized as follows. Section 2
presents the formulations of bi-level models for a profit-maximizing
generator under the two market designs and assumptions that are
common to the market designs. Section 3 applies standard approaches
to convert the bi-level model for the self-committed market into an
equivalent single-level optimization problem. Section 4 examines the
properties of a centrally committed market and develops an algorithm
to solve the bi-level model that corresponds to this case. The appendix
provides a proof of a proposition that underlies this analysis. Section 5
extends the algorithm that is developed in Section 4 to the case of
a centrally committed design with make-whole payments. Section 6
presents numerical examples that we use to compare the two market
designs. Section 7 concludes.

2. Model assumptions and formulations

This section provides assumptions and formulations of bi-level op-
timization models for a profit-maximizing firm that participates in
centrally and self-committed markets.

2.1. Model notation

Under both designs, we assume that the market consists of a set, G,
of generating firms and let j € G be a generic generating-firm index.
We let i € G denote the index of the strategic generator, the offers of
which are optimized in our models. For notational ease, we assume that
each generating firm owns a single generator. As is common, the MO’s
market model is assumed to use hourly operating periods. We let 7 and
t € T denote the set of hours in the MO’s model horizon and the time
index, respectively.

We introduce the following assumption regarding the treatment of
transmission constraints in the MO’s model.

Assumption 1. The market model includes no binding transmission
constraints and treats all generators and load as being at a single
transmission-network node.

Assumption 1 is needed for model tractability. Including transmis-
sion constraints would hamper significantly our analysis of a centrally
committed market design. In addition, Yao et al. (2004) note that trans-
mission constraints can complicate the derivation of profit-maximizing
strategies by strategic generating firms. In some cases it can be optimal
for a firm to follow a strategy that congests or decongests a transmission
line infinitesimally. Such strategies can be difficult to capture using
the bi-level modeling approach that we employ. An implication of
Assumption 1 is that our work does not capture added firm-behavior
complexities that are associated with the use of locational marginal
pricing in some wholesale electricity markets.

Next, we define the following parameters, which are common to
both market designs.



Y. Jiang and R. Sioshansi

b maximum energy offer ($/MWh)

cjf fixed operating cost of firm j ($/hour)

< variable operating cost of firm j ($/MWh)
D, hour-+ demand (MW)

K generator production capacity (MW)

Generators are assumed to have the same capacities but different
costs. Generation costs are non-convex, because V; € G, firm j incurs a
fixed cost of cjf if it is committed during a given hour. Otherwise, if it
is shutdown during that hour, it incurs no cost during that hour but its
production during that hour must be zero.

2.2. Model of self-committed design

To formulate firm i’s profit-maximization under a self-committed
design, first we define b;.' as firm j’s energy offer ($/MWh). For all
jEGCteT weletu 7 denote firm j’s hour-¢ unit-commitment status.
u;, is equal to 1 is firm j is online during hour ¢ and is equal to zero
otherwise. For all j € G, b7 and u;, are treated as fixed parameters in
the MO’s lower-level problem. 5! and u; ,, V¢ € T are variables in firm i’s
upper-level profit-maximization problem, whereas Vj € G,j #i,t € T,
b7 and u;, are treated as parameters by firm i. We define also x;, as
firm j’s hour-r power output (MW). For all j € G,r € T, x iiisa variable
that is determined in the MO’s lower-level model, which is formulated
as:

min ) Bx;, ¢h)
JjeCteT

SLY X, =DVEET (o) 2
Jj€G
0<x;, <KusVjEGIET  (aj,.a}): 3

where the decision variables are x inVi€EGLeET and the Lagrange-
multiplier set that is associated with each constraint set is in parenthe-
ses to its right. Objective function (1) minimizes the cost of operating
the system, based on the supply offers that are submitted by the
generating firms (i.e., it may be that b/’f + cj” for some j € §). Constraint
set (2) ensures hourly load balance and (3) enforces production limits.
If u;; =0 for some j € J,t € T, then x;, must equal zero as well.

Firm i’s bi-level profit-maximization problem is:

max Z [(w, — )X, — cl.fu[',] ()]
teT’
.60 < b7 < B° (5)
u, €{0,1;vteT 6)
(1)-(3); )

where the decision variables are u;,, Vt € T, b!, and all of the variables
of (1)—(3). Objective function (4) maximizes firm i’s profit. We use
the standard convention that V¢ € 7, the Lagrange multiplier, w,, that
is associated with hour-r load-balance requirement (2) sets the hour-
energy price. Constraint (5) imposes standard restrictions on firm i’s
energy offer. Constraint set (6) requires that firm i’s unit-commitment
decisions be binary. Because we are modeling a self-committed design,
firm i makes its own unit-commitment decisions as opposed to those
decisions being made by the MO. Constraint set (7) embeds the MO’s
market-clearing model within firm /’s profit maximization. This is
necessary, because the MO’s model determines the values of x;, and
w,VteT.

2.3. Model of centrally committed design

To formulate a model for a centrally committed design, we retain
the same notation as is used for the self-committed market. In addition,
Vj € ¢, we define b{ as firm j’s fixed-cost offer ($/hour), which is
treated as a parameter in the MO’s model, and 5/ as the maximum

27

European Journal of Operational Research 317 (2024) 25-42

fixed-cost offer ($/hour), which is a parameter. Under a centrally
committed design, the MO’s model is:

min Z (b;.’xj,, + bjfuj,,) 8
JjEGeT

s.t. Z Xj;=DyVteT 9)
Jj€g
0<x;,<Ku;;VjEGIET (10)
u;, €{0,15Vj €G1eT,; 11)

where the decision variables are x it and u i Vi EGtE 7. Objective
function (8) minimizes the cost of operating the system, which in-
cludes non-convex fixed-cost offers. Although they impose an ancillary
cost upon customers, make-whole payments are not included normally
in the MO’s objective function. Make-whole payments are excluded
from (8) because including them would cause the MO to clear the
market as a monopsonist, which is economically inefficient. Constraint
set (9) ensures hourly load balance, (10) enforces production limits,
and (11) imposes integrality on unit-commitment decisions.
Firm i’s profit-maximization problem is:

max Y [(n, ) u,.,,] 12)
teT
s.L0< B <B° 13)
0<b/ <b 14
(8)-(11); (15)

where the decision variables are by, b'if , and all of the variables of (8)—
(11). Objective function (12) maximizes firm i’s profit. For all t € T,
we let 7, denote the hour-r energy price. Problem (8)-(11) does not
have well defined dual variables or Lagrange multipliers, because of the
integrality restrictions. We impose a standard assumption in Section 4
on how to set marginal prices, which behave similarly to w,, V¢ €
7 under a self-committed design. Constraints (13) and (14) impose
standard limits on firm i’s offer and (15) embeds the MO’s model as
the lower-level problem.

2.4. Additional assumptions

We conclude this section by introducing the following two addi-
tional assumptions that underlie our analysis.

Assumption 2. Under a self-committed market design firm i knows
the values of »¥ and U, Vi €Gj#iteT, with certainty. Under a
centrally committed market design firm i knows the values of b;.’ and

bjf ,Vj € G, j# i, with certainty.

Assumption 2 is needed to make analysis of a centrally committed
design tractable. Assumption 2 can be viewed as related to the defini-
tion of a Nash equilibrium. Nash, Jr. (1950) defines a Nash equilibrium
as assuming that each player predicts perfectly the strategies of its
rivals and selecting a strategy from which it has no profitable unilateral
deviation. So long as firm i’s rival select b}L.' and u i VIEGj#iteT
under a self-committed design to maximize their individual profits, a
solution to (4)—(7) satisfies this definition. The same can be said of a
solution to (12)-(15), so long as b;’ and b}f , Vj € G,j # i maximize the
individual profits of firm i’s rivals.

Assumption 2 makes (4)-(7) and (12)—(15) static in nature, due to
the assumed sequence of events. Specifically, under a self-committed
design, firm i’s rivals are assumed to choose b;.’ and u i ViEGj#itE
T, which is followed by firm i’s profit-maximizing choice of 4! and ;,,
Vt € T and then the MO determining prices and production levels. A
centrally committed design has a similar sequence of events. Firm i’s
rivals choose bj”. and b{ , Vj € G,j # i, which is followed by firm i’s
profit-maximizing choice of 5! and bif , and the MO determining prices,
commitments, and production levels.
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Assumption 3. Under a self- and centrally committed market design,
respectively, if (1)—(3) or (8)-(11) have multiple optimal solutions, one
that is preferable to firm i is chosen.

Assumption 3 states that if there are multiple optimal solutions, the
MO chooses a market-clearing solution that maximizes firm i’s profit.
This assumption is key to the standard approach that we employ to
analyze firm i’s profit-maximization under a self-committed design (cf.
Section 3 for details). As such, it is natural to adopt this assumption for
analysis of a centrally committed design.

3. Equivalent single-level formulation of (4) -(7)

The standard approach to make (4)-(7) computationally tractable
is to recast it as an equivalent single-level model, which can be solved
using off-the-shelf optimization software. Problem (1)-(3) is a convex
linear optimization. Thus, Sioshansi and Conejo (2017) note that an
optimal solution to (1)-(3) can be characterized by its necessary and
sufficient Karush—-Kuhn-Tucker (KKT) conditions, which are:

b;'—w,—a;t+a/,=O;VjEQ,teT ae)
(2) a7
0<x;,la;, 20:VjeCreT (18)
XS Kuj, Laf, 20Vj€GreT. 19

Conditions (18)—(19) include complementary-slackness

requirements that are non-convex. Hereafter, we assume that (18)-
(19) are convexified using the approach that Fortuny-Amat and McCarl
(1981) propose, which entails the use of auxiliary specially-ordered-set
variables.

Thus, we can convert (4)-(7) into an equivalent single-level prob-
lem which consists of (4)-(6) and (16)—(19). The replacement of (7)
with (16)—(19) relies, implicitly, upon Assumption 3. This reliance
stems from the property that if (7) has multiple optimal solutions, (4)-
(6) and (16)—(19) necessarily selects one that maximizes firm i’s profit.
Constraints (5)—(6) and (16)-(19) yield a convex feasible region, but (4)
is non-convex because it contains bi-linear terms in which o, and x;,
are multiplied. We obtain an exactly equivalent convexification of (4)
by noting that by (16):

2 [(co, —c))x;, — c’.fu,-’,] = Z [(blv —a, + a;ft - cf) Xi - cl.fu,-‘,] R

teT teT
and that by (18) and (19):

- ) f _
Z [(b[" —a, + a:t - cf) Xip =€ u,-,,] =

teT
Z (b;’x,-’, + Ku,-’,a;rr —c/x;, — cl.fu,-‘,> . (20)
teT
The strong-duality equality for (1)-(3) is:
Z bix;, = 2 (D,w, - 2 K”j,t“}f,) ; 2D
jecteT teT J€G
Substituting (21) into (20) gives:
Z [(w, —e))x;, — Cif“i.r] = Z |:th1
teT teT
- E (b;’x/ ; + Ku; tx ) -, — cifuiv,] ; (22)
JEG.j#i

which is convex and linear in the decision variables of (4)-(7). Thus,
a computationally efficient approach to solving (4)-(7) is to solve the
single-level mixed-integer linear optimization problem:
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max Z |:D,a), - z (b;’xj, + Kuj,a] ) —clx, - Ci/”i,r] 23)
teT JEG,j#i
5.t.(5)-(6), (16)-(19). (24)

Because (23) is equal exactly to (4), solving (23)-(24) gives an exact
solution to (4)—(7).

4. Properties of and solution algorithm for centrally committed
design

The analysis of (12)-(15) is more complicated than what is pre-
sented in Section 3. The complexity arises because (8)—(11) has binary
variables, meaning that there are no computationally tractable op-
timality conditions with which to replace (15). Thus, our approach
to analyzing (12)-(15) is to prove characteristics of an optimal so-
lution to (8)—(11), which are used to develop a solution algorithm
for (12)-(15).

We begin with the following assumption, which eliminates cases
wherein demand is an exact integer multiple of the firms’ capacities,
which would raise technical challenges without added insights.

Assumption 4. For all t € 7, D, is not an integer multiple of K.

For all r € 7, we define r, = D, — K - | D,/K] as the hour-t residual
demand. By Assumption 4, r, € (0,K), V1 € T.

We let (x*,u*) denote an optimal solution to (8)-(11) and Vt € T
we partition the generating firms into the sets, ¢/, g,M ,and ¢7. ¢! is
the set of hour--inframarginal generators and x;, =K, Vj€ ¢l. gM
is the set of hour-r-marginal generators and x e (0,K), Vj € QM
By Assumption 4, GM is non- empty vieT. F1na11y, ¢V is the set of
hour-t-inactive generators and x*, =0, Vj € QV

Next, we prove the followmg lemma, which shows that all hour-t
marginal generators have the same energy offer.

Lemma 1.

Fordllt€T and j, h € GM, we have that bj”. = b

Proof. Suppose for contradiction that 3r € 7 and j,h € g,M with
j # h and that, without loss of generality, j and & are labeled such
that bj” < bz The value of (8) is reduced if x 1s decreased by e and

, is increased by e where e is sufficiently small that xj —e > 0 and
+ € < K. This gives the desired contradiction. []

We add the following assumption that hourly energy prices are
equal to the energy offer of the marginal unit(s).
Assumption 5. For all t € T, #, is equal to b; for some j € M.

The following lemma shows the relationship between the energy
offers of inframarginal and marginal generators.

Lemma 2. Fordllt€7,!€¢!, and h € GM we must have by < by,

Proof. Following from Lemma 1 we have that Vs € 7, the optimized
value of:

Z (bjbx], +b; u],)

Jjeg
equals:

) / ) 1 v
> (k+0])+br- (D-K-[d!])+ X b
jeg! jecM

where i € GM. Suppose for contradiction that 3/ € ¢/ such that
bl” > bZ' This contradicts the optimality of (x*,u*), because the value
of (8) is reduced by making generator / marginal and generator &

inframarginal. []

Now we show the following key property of an optimal solution to
firm i’s bi-level profit-maximization problem.
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Proposition 1. Suppose that (b,.f *, b? *) is an optimum of (12)-(15). Then
A(x*,u*) that is an optimum of (8)—(11), satisfies Assumption 3, and has
x;‘J € {0,r,,K},VteT.

Proof. Suppose for contradiction that 3z € 7 such that xf,r ¢ {0,r,,K}.
We can consider the following two cases.

First, suppose that xir € (0,r,). In such a case, we must have
|Q£4| > 2 to satisfy (9). We define ¢ = r, — x*_and by (9) we must

iT
have:
) +e€.

> sk (%]

jecM j#i

g]

Thus, we must have that:
D
M\ g k)
G\ ()] 2 [ 2 J

We let G, C Qi” be a (possibly empty) proper subset of Qﬂ” such that
i ¢ G, and:

~ D
o= |%|-
Such a subset is guaranteed to exist by (25). Consider an alternative
solution, (%,i), to (8)-(11) where %, = x;‘, and i, = u}?t, vVt # 1,
%,=Kanda;, =1,Vj€ G'uG,, %, =r andii,, =1,and %, , = 0 and
i, =0,Vj¢& gi U G, Ui. Such a solution improves the value of (8) by:

+ 1. (25)

gl

g]

b H
/ J
JECYNG, j#i
which is non-negative.
Next, suppose that x{ € (r;,K), in which case we must have
|g£4 | > 2 to satisfy (9). Firm i’s hour-z profit is:

f
(0, — c,.”)x:‘J —-c.

We can consider two cases, which depend upon the sign of @, — ¢;. If
o, —c/ 20, consider an alternative solution to (8)-(11) in which x;, is
increased by e and:

DI

jeGM j#i

is decreased by ¢, where ¢ is sufficiently small so as not to violate (10).
Such an alternative solution does not change the value of (8), because
by Lemma 1 we have that b}* = b}f, Vj e gi" . However, this alternative
solution increases firm i’s profit. This contradicts (x*,u*) satisfying
Assumption 3. If @, —¢/ < 0, consider an alternative solution to (8)—(11)
in which x} _ is decreased by ¢ and:

DI
jeGM j#i
is increased by e, where ¢ is sufficiently small so as not to violate (10).
Such an alternative solution does not change the value of (8). However,
this alternative solution increases firm i’s profit, which contradicts
(x*,u*) satisfying Assumption 3. []

Proposition 1, which relies upon the assumption that all generators
have the same K-MW capacity, reduces the complexity of (12)—(15)
considerably. Problem (12)-(15) is simplified, because by Proposi-
tion 1, (12)—(15) has at most 3!7! candidate optimal solutions. Next,
we introduce the following lexicographic assumption on an optimal
solution, (x*,u*), to (12)-(15), which simplifies the subsequent analysis
without loss of generality.

Assumption 6. The firms are ordered lexicographically by fixed-cost
offer and then by index so that an optimal solution, (x*,u*), to (12)-(15)
has [GM|=1,VI€T.

29

European Journal of Operational Research 317 (2024) 25-42

Assumption 6 and its lexicographic ordering can be satisfied without
loss of generality. To see this, suppose that a solution, (X,a), with
|QtM| > 2 for some 7 € T, is optimal to (12)-(15). By Lemmata 1 and 2
we must have bj”. = by, Vj.he ¢M and b}’ <by,vj e ¢/ and h € gM.
Place the elements of GM into a lexicographic order by the values of
bjf ,Vje g,M and break ties by indices. Consider an alternative solution
in which the first [GM| — 1 members of GM are assigned to ¢! and the
final member remains in GM but produces r, MW during hour . Such
a solution can be no more costly than (%, @) is.

Next, we define the following metric with which to compare the
offers of two firms and state the subsequent lemma, which we do not
prove, because it follows trivially from the definition and the principle
of optimality.

Definition 1. We say that firm j is weakly less expensive than firm &
when producing m MW, which we denote as j <, h, if bim + bj[ <
bym + bi. We define firm j being cost-equivalent to and weakly more
expensive than firm i, which are denoted as j =, h and j >, A,
respectively, analogously.

Lemma 3. Suppose that (x*,u*) is optimal to (12)-(15) and gives the
partitions, (G/,GM.GV), Vi € T. Then V1 € T we have j <g h, Vj € G/
andhe ¢/ and j <, h,VjeGM and heg).

Next, we consider optimal solutions to two variants of (8)—(11). The
first removes firm i from the set of candidate generators and V¢ € 7,
we let (Q,’ '_,Q[M ’_,Q:/ ') denote the resultant hour-s partition of the
firms. The second has firm i with arbitrarily small offers among the
set of candidate generators (i.e., firm i is inframarginal V¢ € 7 such
that D, > K and is marginal during other hours) and V¢ € 7, we let
(g,’ + Q,M ‘+,QIV ") denote the resultant hour-r partition of the firms. For
notational ease, we give the following definition of the indices of the
unique marginal generators during each hour under these two sets of
partitions.

Definition 2. For all + € 7 and the resultant partitions,
©/7.6)"7.6/"7) and (6", 6", ¢/, we define j and jM*, re-
spectively, as the index of the unique firms that are members of QTM .
and g,M +,

We prove now the following two lemmata, which show important
relationships between the two sets of partitions.

Lemma 4. For allt € T such that Q,I’_ #0,3j € QII'_ such that:

¢i* = (g \ ) v

Proof. If for any given r € 7 we have Qt[ '~ # ¢ then we must have
D, > K, which means that Q,I A By its definition, i is an element of
QI’ *. Thus, all we must show is that Vj € g,’ *+ with j # i, we must have
that j € G/,

Suppose, for contradiction, that 3 € Qt’ * with j#iand j ¢ G,I .
By Assumption 6 we must have:

|t

Thus, there must be A,k € Q,I” with k # h and h, k & G,I’Jr. At least one
of h or k must be a member of QXV*, because by Assumption 6, GM+
is a singleton. Without loss of generality, we assume that h € G, ™,
meaning that either k € ¢+ or k = j*. Let us assume that j = j*~
If k = th ", the lexicographic ordering of Assumption 6 is violated.
Conversely, if k € ¢+, we know that jM* # j*~, because of our
assumption that j = th ", Thus, we have either that le * e Q,I "~ or

th”' € Q:/’_. However, we cannot have th'+ € Qtl "7, as this would
violate the lexicographic ordering of Assumption 6. On the other hand,
if th *e g,V’* the principle of optimality requires:

) St v ) s s
bIK + b + b;MJr e < by K + by +bir + b7 (26)
1
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where the strict inequality is required by imposing the lexicographic-

ordering requirement of Assumption 6 on the partition,
(Ql’ -, Q,M ~,¢""7). However, (26) violates the optimality of the partition,
© ¢ ¢ i/ 7). Thus, we can have neither j"* € ¢/~ nor thJ’ €
Q,V 7, which means that k ¢ er * and that we must have j € Qt .

However, because h € QII "~ and h e QtV'Jr, we must have j = h, which
violates the lexicographic ordering of Assumption 6. []

Lemma 5. Forallt € T exactly one of following holds: either jM *e Q,I .
or g™ =gM+.

Proof. For any r € 7 both statements cannot hold simultaneously,
because by Assumption 6 both QIM "~ and QTM " are singletons. Thus, we
must show that it is impossible for neither statement to hold.

Suppose for contradiction that 3r € 7 for which neither statement
holds. Then, th * e g‘;/”. By Lemma 4 this requires that th -
Q{’*, which implies that th” € QtV'*. However, having th T e QtV’Jr
contradicts the lexicographic ordering of Assumption 6. []

Lemma 4 shows that if QrI’_ is non-empty for a given + € T,
then Qtl "~ and Q,’ + differ exactly by one firm (i.e., firm i becomes
a member of Q,’ * and one member of g{ '~ becomes a member of
QTM + or QIV’J“). Lemma 5 states that V¢ € 7, a firm that is inactive
under the partition, (g -.cM Q,V "7), cannot become marginal under
the partition, (QIJr QM+ G'h.

Proposition 1 provides a theoretical foundation with which to de-
velop an algorithm to solve (12)-(15). Specifically, one can com-
pute firm i’s profit under each of the 3!7! candidate solutions that
Proposition 1 characterizes and select the optimal one. Enumerating
completely all 37! solutions is computationally costly. Moreover, this
technique does not connect firm i’s offers to the resultant production
allocation. Thus, we derive necessary and sufficient conditions that
provide this linkage.

To do so, we begin with the following definition.

For all + €

Definition 3. 7 and the resultant partition,

(¢",6M~, 6", such that G~ # 6, we define:
jzl '~ = arg max b”K + bf
JGG
Next, we let:
% = (’A‘i,l’ ”A‘i.ITI) ;

denote a candidate set of production levels for firm i, which is of the
form that is given by Proposition 1. We define the following constraint
set, By, that relates firm i’s offer to %;. The subsequent proposition
shows that 3; is necessary and suff1c1ent for the offer, (bf bY), to yield
%; as firm i’s productlon levels that are given by (8)-(11).

For each € T, there are three possible hour-r production levels.
We add different constraints to B; depending upon the desired value
of %,;,. The totality of these constraints Vi € T gives the set, B; . We
begin with the case of %;, = 0. In such a case, we add the mequahtles

bYr, +b] > max { <b’f1ﬁ - b”.M»7> K+b/, - beﬁ,o}
J; Jy J; Jr
B0 b, 27)
J; i
YK + b/ > max { <bj”»Mﬁ_ - b/”.) o+ b/f_ﬁMy_ - b{,o}
13 t

+bUK + b/ Vj €GP (28)
to By..

If X;, = r,, there are two possible cases. First, if th T2k j,I T, we
add the inequalities:
br, +b/ < B rit b-ij ) (29)

1

1

30
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by > bV € Gl (30)
WK+b 80, r+b >, K+b + b+ b (31)
i i leﬁ 4 jM.f = jrlf jl.f it i
to By,. Otherwise, if th <k j,I '~, we add the inequalities:
B+ bl <0 r b, + <bL_',7_ -, ) K+b/, v, (32)
Jt Jy Jy Jt /x Ji

b 2 0%, (33)

J
BUK + b/ + N> M+blr, +b: (34)
to By, where:
M= max (b”.K+bf.");

= J J

/E(G )\{/,
and:
N = min (b;’r, + bjf) .

je{j,’" }UQ‘}/”
Finally, if %;, = K, there are two possible cases. First, if th Tt j[M +
we add the inequalities:
BYK + b + b/”_M_+ r+b,, < bj”_M,+K +b7 0+, (35)
t Ji t t t t

BBy 36)

Jr
to By,. Otherwise, if th T = th *, we add the inequalities:
WK +b' <bK+b/ 37

i i =7p p

B <Y, (38)

J
BUK +b) + br, + b) > bIK + 5] + By ori bij}; (39

t

t

to B;,, where p € g{ “and p ¢ GTI . Such a firm, p, is guaranteed to

exist by Lemma 4.

Proposition 2. For any set of firm-i production levels, %;, that is of the
form that is characterized by Proposition 1, the constraint set, By, which
is defined by (27)-(39), is necessary and sufficient to have %; be optimal
in (8)-(11).

The proof of Proposition 2 is provided in the appendix in three parts,
which correspond to showing the necessity and sufficiency of By, for
hours, t € 7, such that %;, =0, %;, =r,, and %;, = K.

Proposition 2 connects firm i’s upper-level variables, which consti-
tutes its offer, to a commitment and dispatch schedule that it wants
to receive from the lower-level MO problem. However, Proposition 2
provides constraints that the offers must satisfy, not an optimal set of
offers. Hence, we introduce the following auxiliary problem:

(13)-(14);

which we denote as Pé“(fc,). We prove in the following 