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Abstract. We study the convergence rate of the discrete-time simulated an-
nealing process (xk; k = 0, 1, . . .) for approximating the global optimum of a

given function f . We prove that the tail probability P(f(xk) > min f + δ)) de-

cays polynomial in cumulative step size, and provide an explicit rate through
a non-asymptotic bound in terms of the model parameters. Our argument ap-

plies the recent development on functional inequalities for the Gibbs measure

at low temperatures – the Eyring–Kramers law. The result leads to a condi-
tion on the step size to ensure the convergence. Finally, we perform numerical

experiments to corroborate our theoretical result.

1. Introduction. Simulated annealing (SA) includes a set of stochastic optimiza-
tion methods, whose goal is to find the global minimum of a function f : Rd → R, in
particular when f is nonconvex. These methods have many applications in physics,
operations research and computer science; see e.g. [9, 21, 36]. The stochastic ver-
sion of SA, independently proposed by [20] and [4], considers a stochastic process
related to f which is subject to thermal noise. When simulating this process, one
decreases the temperature slowly over time. When this is done right, the stochastic
process escapes from saddle points and local optima, and converges to the global
minimum of f with high probability.

In this paper, we study the convergence rate of the discrete-time SA process
(xk; k = 0, 1, . . .) defined by

xk+1 = xk −∇f(xk)ηk +
√
2τΘk

ηkZk, x0
d
= µ0(dx), (1)

where ηk is the step size at iteration k, Θk :=
∑

j≤k ηj is the cumulative step size

up to iteration k, τΘk
is the cooling schedule at iteration k, (Zk; k = 0, 1, . . .) are in-

dependent and identically distributed standard normal vectors, and µ0(dx) is some
initial distribution. The algorithm (1) can be regarded as the Euler–Maruyama
discretization of the continuous-time SA process, or the following SA adapted over-
damped Langevin equation ([15]):

dXt = −∇f(Xt)dt+
√
2τt dBt, X0

d
= µ0(dx), (2)
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where (Bt; t ≥ 0) is a standard Brownian motion in Rd. For τt ≡ τ constant
in time, the scheme (1) is known as the unadjusted Langevin algorithm (ULA)
which approximates the Gibbs measure ντ (dx) ∝ exp(−f(x)/τ)dx. The ULA was
introduced by [16, 29], and further studied by [8, 11, 32].

The goal of this paper is to study the decay in time of the tail probability of (1),
i.e. the deviation bound

P(f(xk) > min f + δ),

under suitable conditions on the function f , the discretization scheme ηk,Θk, and
the cooling schedule τΘk

. There are two motivations for studying this problem.

• First, there are growing interests in the interplay between sampling and op-
timization ([22, 23, 31]). The idea is to approximate the global optimum
in nonconvex problems via Langevin dynamics-based stochastic gradient de-
scent ([5, 12, 31, 38]), along with its variants using non-reversibility ([18])
and replica exchange ([6, 10]). Specifically, one aims to approximate min f by
Ef(xτ

k) where (xτ
k; k = 0, 1, . . .) is the ULA with a small, fixed temperature

parameter τ . A drawback of this approach is that one needs to simulate mul-
tiple (many) sample paths to estimate Ef(xτ

k). By contrast, the advantage
of using SA processes is that for a suitable choice of time-dependent τΘk

, the
process xk converges almost surely to min f as k → ∞. Thus, one only needs
to simulate one sample path to approximate min f .

• Second, there have been recent research efforts in developing various noisy
gradient-based algorithms ([5, 13, 17, 19]) aiming at escaping saddle points and
finding a local minimum of f as a surrogate. While finding a local surrogate
has been proved to be sufficient in many machine learning problems, global
optimization is important in its own right with applications ranging from
finding Nash equilibria in various games ([27]) to curriculum learning ([1]).
Compared with the gradient-based methods, SA sets finding global minima
as the priority, if at the cost of longer exploration time.

The main tool in our analysis is the Eyring–Kramers law, which is a set of
functional inequalities for the Gibbs measure at low temperatures (see Section 3.1
for details). To study the convergence rate of the discrete-time SA, it will be helpful
to understand the long time behavior of its continuous analogue. It is well known
([7, 15]) that the correct order of τt for the process (2) to converge to the global
minimum of f is (ln t)−1, and there is a phase transition related to the critical depth
E∗ of the function f :

(a) If lim supt→∞ τt ln t ≤ E with E < E∗, then lim supt→∞ P(f(Xt) ≤ min f +
δ) < 1.

(b) If E ≤ lim inft→∞ τt ln t ≤ lim supt→∞ τt ln t < ∞ with E > E∗, then

lim
t→∞

P(f(Xt) ≤ min f + δ) = 1.

The formal definition of the critical depth E∗ will be given in Assumption 2; see
also Figure 1 below for an illustration when f is a double-well function. Roughly
speaking, E∗ is the largest hill one needs to climb starting from a local minimum
to the global minimum. We refer to [35] for background and further references.

Building upon earlier works ([24, 25, 26]), [35] derive a non-asymptotic bound
for the tail probability of the continuous-time SA (2) via a “four-step” analysis
using the Eyring–Kramers law as a key technical tool. Their result is summarized
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Figure 1. Illustration of the critical depth of a double-well func-
tion.

as follows. To simplify the notation, we henceforth assume throughout this paper
that

min
Rd

f(x) = 0,

i.e. the global minimum of f is 0 by considering f −min f .

Theorem A. Assume that τt is decreasing in t, τt ∼ E
ln t with E > E∗, and

d
dt

(
1
τt

)
= O

(
1
t

)
as t → ∞. Then, under some assumptions on the function f , for

any δ > 0 there exists C > 0 independent of t such that

P(f(Xt) > δ) ≤ Ct−min( δ
E , 12 (1−

E∗
E )).

Going back to the discrete-time SA process (1), a natural question is whether
there is a similar convergence rate and under what additional conditions especially
on the step size ηk. Our main result, which answers these questions, is outlined as
follows. The precise statement of the result will be given in Section 2.

Theorem B. Assume that τt is decreasing in t, τt ∼ E
ln t with E > E∗, and

d
dt

(
1
τt

)
= O

(
1
t

)
as t → ∞. Also assume that Θk → ∞ and lim sup ηk+1Θk < ∞

as k → ∞. Then, under some assumptions on the function f , for any δ > 0 there
exists C > 0 independent of t such that

P(f(xk) > δ) ≤ CΘ
−min( δ

E , 12 (1−
E∗
E ))

k .

This result of a non-asymptotic deviation bound for the discrete-time SA process
is new to our best knowledge, and its proof is more involved and delicate than its
continuous-time counterpart ([35]) due to the discretization errors. It also gives a
practical guidance on the choice of step size: the condition Θk → ∞ indicates that
the step size cannot be chosen too small, while the condition lim sup ηk+1Θk < ∞
suggests that the step size cannot be chosen too large. For instance, ηk = k−θ

with θ ∈ [ 12 , 1] satisfies the conditions in the theorem to ensure the convergence.

Also note that the rate min
(
δ
E , 1

2 (1−
E∗
E )
)
is smaller than 1

2 . Empirical results in
Section 5 suggest that this rate is optimal, but it remains open to prove a matching
lower bound. We leave the problem for future work.

The dependence of the constant C on the dimension d is another interesting
problem. It is also a subtle problem, since most analysis including the Eyring–
Kramers law uses Laplace’s method, while the latter may fail if both the dimension
d and the inverse temperature 1/τ tend to infinity [34]. As explained in [35, Remark
1], an upper bound for C is exponential in d. This suggests the convergence rate
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is exponentially slow as the dimension increases, which aligns with the fact that
finding the global minimum of a general nonconvex function is NP-hard.

Note that the discrete-time SA (1) belongs to the general class of stochastic
gradient descent algorithms of the form:

xk+1 = xk − ak∇f(xk) + bkZk, x0
d
= µ0(dx),

where (ak; k = 0, 1, . . .) and (bk; k = 0, 1, . . .) are two positive deterministic se-
quences. Most of the existing literature (e.g. [5, 31]) deals with ULA or its vari-
ants with a fixed (though small) temperature parameter τ , corresponding to the
strongly perturbed condition where ak/b

2
k is assumed to be of a constant order. It

is clear that the discrete SA process (1) does not satisfy the strongly perturbed
condition under which the process xk would converge in distribution to a diffuse
measure instead of a Dirac mass. On the other hand, [14] show that for ak = 1

k and

bk = b√
k log log k

with some large b > 0, the process f(xk) converges in probability

to min f ; however, they do not give any convergence rate. [30] proves, under the
annealing condition that ak/(b

2
k ln k) is of a constant order, that 4ak

b2k
(f(xk)−min f)

converges in distribution to a Gamma random variable. This corresponds to the
central limit theorem or small deviation regime (δ = δk ↓ 0), while in this paper
we are concerned with large deviation regime (δ is fixed) which is more practically
meaningful. Indeed, the special time-annealing nature of the perturbation term in
the discrete SA process makes the problem more challenging, which is the reason
why the Eyring–Kramers asymptotics in low temperatures is needed. For instance,
the condition lim sup ηk+1Θk < ∞ stems from the one-iteration estimate via the
Eyring–Kramers formula.

The remainder of the paper is organized as follows. Section 2 presents the as-
sumptions and our main result. Section 3 provides background on functional in-
equalities, and sketches the main idea in proving Theorem A for the convergence
rate of the continuous-time SA process. The latter is useful for the reader to un-
derstand the main difficulty in extending the idea to the discrete-time case. The
main result (Theorem 1) is proved in Section 4. Results of numerical experiments
on global optimization are reported in Section 5. We conclude in Section 6.

2. Main result. In this section, we make precise the informal statement in the in-
troduction by presenting the main result of the paper. We first collect the notations
that will be used throughout this paper.

– | · | is the Euclidean norm of a vector, and a · b is the scalar product of vectors
a and b.

– For a function f : Rd → R, ∇f , ∇2f and ∆f are its gradient, Hessian and
Laplacian respectively.

– a ∼ b means that a/b → 1 as some problem parameter tends to 0 or ∞.
Similarly, a = O(b) means that a/b is bounded as some problem parameter
tends to 0 or ∞.

We use C for a generic constant which depends on problem parameters (δ, f, E . . .),
whose values may change from line to line.

Next, we present a few assumptions on the function f . These assumptions are
standard in the study of metastability; see [24, 25].
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Assumption 1. Let f : Rd → R be smooth, bounded from below, and satisfy the
conditions:

(i) f is non-degenerate on the set of critical points. That is, for some C > 0,

|ξ|
C

≤ |∇2f(x)ξ| ≤ C|ξ| for each x ∈ {z : ∇f(z) = 0} and ξ ∈ Rd.

(ii) There exists C,C ′ > 0 such that

lim inf
|x|→∞

|∇f(x)|2 −∆f(x)

|x|2
≥ C, inf

x
∇2f(x) ≥ −C ′.

Let us make a few comments on Assumption 1. The condition (ii) is a version
of the dissipative condition, and it implies that f has at least quadratic growth
at infinity. This is a necessary and sufficient condition to obtain the log-Sobolev
inequality (see [33, Theorem 3.1.21]) which is key to convergence analysis. The
conditions (i) and (ii) imply that the set of critical points is discrete and finite
[24, Remark 1.6]. In particular, it follows that the set of local minimum points
{m1, . . . ,mN} is also finite, with N the number of local minimum points of f .

Define the saddle height f̂(mi,mj) between two local minimum points mi,mj by

f̂(mi,mj) := inf

{
max
s∈[0,1]

f(γ(s)) : γ ∈ C[0, 1], γ(0) = mi, γ(1) = mj

}
. (3)

See Figure 1 for an illustration of the saddle height f̂(m0,m1) when f is a double-
well function with m0 the global minimum and m1 the local minimum.

Assumption 2. Let m1, · · · ,mN be the positions of the local minima of f .

(i) m1 is the unique global minimum point of f , and m1, . . . ,mN are ordered in
the sense that there exists δ > 0 such that

f(mN ) ≥ f(mN−1) ≥ · · · ≥ f(m2) ≥ δ and f(m1) = 0.

(ii) For each i, j ∈ {1, . . . , N}, the saddle height between mi,mj is attained at

a unique critical point sij of index one. That is, f(sij) = f̂(mi,mj), and
if {λ1, . . . , λn} are the eigenvalues of ∇2f(sij), then λ1 < 0 and λi > 0 for
i ∈ {2, . . . , n}. The point sij is called the communicating saddle point between
the minima mi and mj.

(iii) There exists p ∈ [N ] such that the energy barrier f(sp1) − f(mp) dominates
all the others. That is, there exists δ > 0 such that for all i ∈ [N ] \ {p},

E∗ := f(sp1)− f(mp) ≥ f(si1)− f(mi) + δ.

The dominating energy barrier E∗ is called the critical depth.

The above two assumptions are also imposed in the continuous-time counterpart
of [35]. To get the convergence result for the discrete-time simulated annealing, we
need an additional condition on the function f .

Assumption 3. The gradient ∇f is globally Lipschitz, i.e. |∇f(x) − ∇f(y)| ≤
L|x− y| for some L > 0.

The convergence result for the discrete-time SA process (1) is stated as follows,
whose proof is deferred to Section 4.
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Theorem 1. Let f satisfy Assumptions 1, 2 & 3, and let µ0 satisfy the moment
condition: for each p ≥ 1, there exists Cp > 0 such that∫

Rd

f(x)pµ0(dx) ≤ Cp. (4)

Assume that τt is decreasing in t, τt ∼ E
ln t with E > E∗, and

d
dt

(
1
τt

)
= O

(
1
t

)
as

t → ∞. Moreover, assume that Θk → ∞ and

lim sup ηk+1Θk < ∞, (5)

as k → ∞. Then for each δ, ε > 0, there exists C > 0 independent of t such that

P(f(xk) > δ) ≤ CΘ
−min( δ

E , 12 (1−
E∗
E ))+ε

k . (6)

3. Preliminaries. In this section, we recall some basic results of functional in-
equalities and explain how these results are applied in the setting of SA. We also
highlight the “four step” analysis in proving the continuous-time counterpart of
Theorem 1, which sheds light on how we prove in the discrete setting and under the
difference.

3.1. Functional inequalities and the Eyring-Kramers law. Let ντ be the
Gibbs measure with landscape f(·) and temperature τ defined by

ντ (dx) =
1

Zτ
exp

(
−f(x)

τ

)
dx, (7)

where Zτ :=
∫
Rd exp(−f(x)/τ)dx is the normalizing constant. It is well known

that under suitable conditions on f , ντ (dx) is the stationary distribution of the
overdamped Langevin equation

dXt = −∇f(Xt)dt+
√
2τ dBt, X0

d
= µ0(dx). (8)

The difference between the overdamped Langevin process (8) and the continuous-
time SA (2) is that the temperature τt of the latter is decreasing in time. Due to
the time dependence, the limiting distribution of the solution to (2) is unknown.
As we will see in Section 3.2, the idea is to approximate (2) by a process of Gibbs
measures with temperature τt. Since τt decreases to 0 in the limit, the problem
boils down to studying Gibbs measures at low temperatures.

Now we present functional inequalities of Gibbs measures at low temperatures
(τ → 0). Let µ and ν be two probability measures on Rd such that µ is absolutely
continuous relative to ν, with dµ/dν being the Radon-Nikodym derivative. Define
the relative entropy or KL-divergence H(µ|ν) of µ with respect to ν by

H(µ|ν) :=
∫

log

(
dµ

dν

)
dµ =

∫
dµ

dν
log

(
dµ

dν

)
dν, (9)

and the Fisher information I(µ|ν) of µ with respect to ν by

I(µ|ν) := 1

2

∫ ∣∣∣∣∇(dµ

dν

)∣∣∣∣2(dµ

dν

)−1

dν. (10)

We say that a probability measure ν satisfies the log-Sobolev inequality (LSI) with
constant α > 0, if for all probability measures µ with I(µ|ν) < ∞,

H(µ|ν) ≤ 1

α
I(µ|ν). (11)
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The constant α is called the LSI constant for the probability measure ν. For in-
stance, the LSI constant α = 1 for ν the multivariate Gaussian with mean 0 and
covariance matrix Id.

Assume that the Gibbs measure ντ defined by (7) satisfies the LSI with constant
ατ > 0. The subscript ‘τ ’ in ατ suggests the dependence of the LSI constant on the
temperature τ , and we are interested in the asymptotics of ατ at low temperatures
as τ → 0. This problem was considered by [24, Corollary 3.18], where a sharp lower
bound for ατ as τ → 0 was derived.

Lemma 1. Let f satisfy Assumptions 1 & 2. Then the Gibbs measure ντ defined
by (7) satisfies the LSI with constant ατ > 0 such that

ατ ∼ C exp

(
−E∗

τ

)
as τ → 0, (12)

where C > 0 depends on f, d.

The Eyring–Kramers law provides an estimate on the spectral gap of the over-
damped Langevin equation (8). Lemma 1 is the LSI version of the Eyring–Kramers
law, which is stronger than the spectral gap estimate implied by the Poincaré in-
equality ([2, 3]).

Define the Wasserstein distance W2(µ, ν) between µ and ν by

W2(µ, ν) := inf
Π

√∫
|x− y|2Π(dx, dy), (13)

where the infimum is over all joint distributions Π coupling µ and ν. We say that
a probability measure ν satisfies Talagrand’s inequality with constant γ > 0, if for
all probability measure µ with H(µ|ν) < ∞,

W2(µ, ν) ≤
√

2

γ
H(µ|ν). (14)

It follows from [28, Theorem 1] that the LSI implies Talagrand’s inequality with
the same constant, namely, if ν satisfies the LSI with constant α > 0, then ν also
satisfies Talagrand’s inequality with constant γ = α. Combining with Lemma 1,
we get a lower bound estimate of Talagrand’s inequality constant for the Gibbs
measure ντ .

Lemma 2. Let f satisfy Assumptions 1 & 2. Then the Gibbs measure ντ defined
by (7) satisfies Talagrand’s inequality with constant γτ > 0 such that

γτ ∼ C exp

(
−E∗

τ

)
as τ → 0 (15)

where C > 0 depends on f, d.

3.2. Proof sketch of Theorem A. Here we sketch the proof of Theorem A pro-
vided in [35], which will help understand the proof techniques in Section 4.

Let µt be the probability measure of Xt defined by (2). The key idea is to
compare µt with the time-dependent Gibbs measure ντt given by

ντt(dx) =
1

Zτt

exp

(
−f(x)

τt

)
dx,

where Zτt :=
∫
Rd exp(−f(x)/τt) is the normalizing constant. Note that ντt will

concentrate on the minimum point of f as t → ∞ since τt → 0 as t → ∞. We
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will see that ντt is close to µt in some sense as t → ∞. The proof of Theorem A is
broken into four steps.

Step 1: Reduce µt to ντt . Let (X̃t; t ≥ 0) be a process whose distribution is ντt
at time t. By a simple coupling argument and Pinsker’s inequality, we have

P(f(Xt) > δ) ≤ P(f(X̃t) > δ) +
√
2H(µt|ντt). (16)

So the problem boils down to estimating P(f(X̃t) > δ) and H(µt|ντt).

Step 2: Long-time behavior of f(X̃t). Apply Laplace’s method to show that
for each ε ∈ (0, δ), there exist C > 0 independent of t such that

P(f(X̃t) > δ) ≤ Ct−
δ−ε
E . (17)

Step 3: Differential inequality for H(µt|ντt). Apply the Fokker–Planck equa-
tion of the over-damped Langevin equation and integration by parts to show

d

dt
H(µt|ντt) ≤ −2τtI (µt|ντt) +

d

dt

(
1

τt

)
Ef(Xt) (18)

for any τt decreasing in t.

Step 4: Estimating H(µt|ντt) via the Eyring–Kramers law. There are two
terms on the right hand side of (18). It is easy to show that

Ef(Xt) ≤ C(1 + t)ε. (19)

Hence, by Lemma 1 and the inequalities (18), (19), we have

d

dt
H(µt|ντt) ≤ −2τtαtH(µt|ντt) +

C

t
Ef(Xt)

≤ −Ct−(
E∗
E −ε)H(µt|ντt) + Ct−1+ε,

where αt is the LSI constant for the Gibbs measure ντt . By Grönwall’s inequality,
we get

H(µt|ντt) ≤ Ct−1+E∗
E +2ε. (20)

Combining (16), (17) and (20) proves Theorem A.

4. Proof of Theorem 1. This section is devoted to the proof of Theorem 1. While
the essential idea is built upon that employed for the continuous-time SA process
sketched in Section 3.2, subtle additional analysis is called for due to discretization.

Recall that ηk is the step size at iteration k, and Θk =
∑

j≤k ηj is the cumulative

step size up to iteration k. Let µk be the probability density of xk defined by (1),
and

ντΘk
(dx) =

1

ZτΘk

exp

(
−f(x)

τΘk

)
dx, (21)

where ZτΘk
:=
∫
Rd exp(−f(x)/τΘk

)dx is the normalizing constant. We divide the
proof into four steps.

Step 1: Reduce µk to ντΘk
. This step is similar to Steps 1 & 2 for the continuous-

time case described in Section 3.2. Let (x̃k; k ≥ 0) be a sequence whose distribution
is ντΘk

at epoch k, living on the same probability space as (xk; k ≥ 0). Fix δ > 0.
The same argument as in (16) shows that

P(f(xk) > δ) ≤ P(f(x̃k) > δ) +
√

2H(µk|ντΘk
). (22)
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Assume that Θk → ∞ and τΘk
∼ E

lnΘk
as k → ∞ with E > E∗. Similar to (17),

we get a bound for the first term on the right hand side of (22). That is, for each
ε ∈ (0, δ), there exists C > 0 independent of t such that

P(f(x̃k) > δ) ≤ CΘ
− δ−ε

E

k . (23)

So it remains to estimate H(µk|ντΘk
), which is the task of the next three steps.

Step 2: Continuous-time coupling. To make use of continuous-time tools, we
couple the sequence (xk; k ≥ 0) by a continuous-time process (Xt; t ≥ 0) such that
(XΘk

; k ≥ 0) has the same distribution as (xk; k ≥ 0). To do this, define the
process X by

dXt = −∇f(xk)dt+
√
2τΘk

dBt, t ∈ [Θk,Θk+1), (24)

where we identify XΘk
with xk. So X on [Θk,Θk+1) is Brownian motion with

drift −∇f(xk) and covariance
√
2τΘk

Id. As mentioned in Step 3, Section 3.2, the
Fokker–Planck equation plays an important role in the analysis of the continuous-
time SA process. It is desirable to get a version of the Fokker–Planck equation for
the coupled process (24). The result is stated as follows.

Lemma 3. For t ∈ [Θk,Θk+1), the probability density µt of Xt defined by (24)
satisfies the following equation:

∂µt

∂t
= ∇ ·

(
τΘk

ντΘk
∇
(

µt

ντΘk

))
+∇ · (µt E[∇f(xk)−∇f(Xt)|Xt = x]) . (25)

Proof. Let µt|s(x|y) be the conditional probability P(Xt = x|Xs = y). By condi-
tioning on XΘk

= xk, we have

∂µt|Θk
(x|xk)

∂t
= ∇ · (µt|Θk

(x|xk)∇f(xk)) + τΘk
∆µt|Θk

(x|xk). (26)

Integrating (26) against µΘk
and using the fact that µt|Θk

(x|xk)µΘk
(xk) =

µt(x)µΘk|t(xk|x), we get

∂µt

∂t
= ∇ · (µt(x)E[∇f(xk)|Xt = x]) + τΘk

∆µt. (27)

Further by the Fokker–Planck equation of the overdamped Langevin equation, we
have

∇ ·
(
τΘk

ντΘk
∇
(

µt

ντΘk

))
= ∇ · (µt∇f(x)) + τΘk

∆µt. (28)

Combining (27) and (28) yields (25).

There are two terms on the right hand side of (25). The first term is the usual
Fokker–Planck term, while the second term corresponds to the discretization error.

Step 3: One-step analysis of H(µk|ντΘk
). Here we use the coupled process (24)

to study the one-step decay of H(µk|ντΘk
).

Lemma 4. Let f satisfy Assumptions 1, 2 & 3, and assume that the condition
(4) for µ0 holds. Assume that τt is decreasing in t, τt ∼ E

ln t with E > E∗, and
d
dt

(
1
τt

)
= O

(
1
t

)
as t → ∞. Also assume that Θk → ∞ and ηk+1Θk → 0 as

k → ∞. Then, for each ε > 0, there exist C,C ′ > 0 independent of t such that

H(µk+1|ντΘk+1
) ≤

(
1− Cηk+1Θ

−(E∗
E +ε)

k

)
H(µk|ντΘk

)
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+ C ′(η2k+1 + η3k+1 lnΘk + ηk+1Θ
−1+ε
k ). (29)

Proof. Write

H(µk+1|ντΘk+1
) = H(µk+1|ντΘk

)︸ ︷︷ ︸
(a)

+(H(µk+1|ντΘk+1
)−H(µk+1|ντΘk

))︸ ︷︷ ︸
(b)

. (30)

We first use the coupled process (24) to study the term (a). Note that

d

dt
H(µt|ντΘk

)

=

∫
∂µt

∂t
ln

(
µt

ντΘk

)
dx+

∫
µt

d

dt
ln

(
µt

ντΘk

)
dx

=

∫
∇ ·
(
τΘk

ντΘk
∇
(

µt

ντΘk

))
ln

(
µt

ντΘk

)
dx

+

∫
∇ · (µt E[∇f(xk)−∇f(Xt)|Xt = x]) ln

(
µt

ντΘk

)
dx︸ ︷︷ ︸

(c)

+
d

dt

∫
µt(dx)

= −2τΘk
I(µt|ντΘk

) + (c), (31)

where we use (25) in the second equation, and the fact that∫
∇ ·
(
τtντt∇

(
µt

ντt

))
ln

(
µt

ντt

)
dx = −2τtI(µt|ντt)

in the third equation. Now we need to estimate the term (c) in (31). By integration
by parts and the fact that a · b ≤ 1

τΘk

|a|2 + τΘk

4 |b|2, we get

(c) = E
(
(∇f(Xt)−∇f(xk)) · ∇ ln

(
µt

ντΘk

))
≤ 1

τΘk

E|∇f(Xt)−∇f(xk))|2 +
τΘk

4
E
∣∣∣∣∇ ln

(
µt

ντΘk

)∣∣∣∣2
≤ L2

τΘk

E|Xt − xk|2 +
τΘk

2
I(µt|ντΘk

), (32)

where the expectation E is with respect to µt(dx), and L is the Lipschitz constant
of ∇f in Assumption 3. Recall from (24) that

Xt − xk = −∇f(xk)(t−Θk) +
√
2τΘk

(t−Θk)Z,

where Z is standard normal. Hence

E|Xt − xk|2 = (t−Θk)
2E|∇f(xk)|2 + 2τΘk

(t−Θk)d

≤ η2k+1E|∇f(xk)|2 + CτΘk
ηk+1. (33)

According to Lemma 2, ντΘk
satisfies Talagrand’s inequality with constant γτΘk

∼
κ exp(−E∗/τΘk

). Moreover, by [37, Lemma 10],

E|∇f(xk)|2 ≤ C

γτΘk

H(µk|ντΘk
) + C. (34)

Combining (32) with (33), (34) and the fact that τΘk
∼ E

lnΘk
as k → ∞, we have

(c) ≤ C

(
η2k+1Θ

E∗
E

k lnΘk

)
H(µk|ντΘk

)+C(ηk+1+ η2k+1 lnΘk)+
τΘk

2
I(µt|ντΘk

). (35)
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Injecting (35) into (31) and further by Lemma 1, we get

d

dt
H(µt|ντΘk

)

≤ −3

2
τΘk

I(µt|ντΘk
) + C ′

(
η2k+1Θ

E∗
E

k lnΘk

)
H(µk|ντΘk

) + C ′(ηk+1 + η2k+1 lnΘk)

≤ −3

2
CΘ

−(E∗
E +ε)

k H(µt|ντΘk
) + C ′

(
η2k+1Θ

E∗
E +ε

k H(µk|ντΘk
) + (ηk+1 + η2k+1 lnΘk)

)
.

Now by a Grönwall argument, we have

H(µk+1|ντΘk
)

≤ e−
3
2Cηk+1Θ

−(
E∗
E

+ε)

k

(
(1 + C ′η3k+1Θ

E∗
E +ε

k )H(µk|ντΘk
) + C ′(η2k+1 + η3k+1 lnΘk)

)
≤ e−

5
4Cηk+1Θ

−(
E∗
E

+ε)

k H(µk|ντΘk
) + C ′(η2k+1 + η3k+1 lnΘk)

≤
(
1− Cηk+1Θ

−(E∗
E +ε)

k

)
H(µk|ντΘk

) + C ′(η2k+1 + η3k+1 lnΘk), (36)

where we use the fact that ηk+1Θ
E∗
E

k → 0 as k → ∞ in the second inequality.
Now we consider the term (b) in (30). Note that

H(µk+1|ντΘk+1
)−H(µk+1|ντΘk

) = ln

(
ZτΘk+1

ZτΘk

)
+

(
1

τΘk+1

− 1

τΘk

)
Ef(xk+1)

≤ C
ηk+1

Θk
Ef(xk+1), (37)

since τt is decreasing in t, and d
dt

(
1
τt

)
= O

(
1
t

)
as t → ∞. We claim that for each

ε > 0, Ef(xk+1) ≤ C ≤ CΘε
k. We argue by contradiction and assume that the

sequence (Ef(xk), k = 0, 1, . . .) is unbounded. Choose C > 0 sufficiently large, and
let Ef(xk+1) be the first term exceeding C. By Assumption 3,

f(xk+1) ≤f(xk)− ηk|∇f(xk)|2 +
√
2τΘk

ηk∇f(xk) · Zk

+
L

2
|ηk∇f(xk) +

√
2τΘk

ηkZk|2.

Further by taking expectation, we get

Ef(xk+1)− Ef(xk) ≤ −ηk

(
1− ηkL

2

)
E|∇f(xk)|2 + LdτΘk

ηk. (38)

Thus, Ef(xk+1) − Ef(xk) ≤ LdτΘk
ηk which implies that Ef(xk) > C − 1 for k

large enough. Next we prove that E|∇f(xj)|2 is bounded from below as j → ∞.
By Assumption 1, f has quadratic growth at infinity. This implies that for x
sufficiently large, say |x| > R, we have |∇f(x)|2 > Af(x) for some A > 0. Take
C ′ sufficiently large so that Ef(xk) > C ′ implies that E(f(xj)1{xj>R}) > C ′/2.

Consequently, E|∇f(xj)|2 ≥ E(|∇f(xj)|21{xj>R}) > AC ′/2. Combining with (38),
we have Ef(xk) > Ef(xk+1) ≥ C. This contradicts the fact that Ef(xk+1) is the
first term exceeding C. Now by (37), we get

H(µk+1|ντΘk+1
)−H(µk+1|ντΘk

) ≤ Cηk+1Θ
−1+ε
k . (39)

Combining (30) with (36), (39) yields (29).
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Step 4: Estimating H(µk|ντΘk
). We use Lemma 4 to derive an estimate for

H(µk|ντΘk
). Under the condition (5), the term ηk+1Θ

−1+ε
k dominates η2k+1, η

3
k+1 lnΘk

as k → ∞. Thus, the recursion (29) yields

H(µk+1|ντΘk+1
) ≤

(
1− Cηk+1Θ

−(E∗
E +ε)

k

)
H(µk|ντΘk

) + C ′ηk+1Θ
−1+ε
k .

Since E∗/E < 1, a similar argument as in Step 4 in Section 3.2 shows that

H(µk+1|ντΘk+1
)−CΘ

−(1−E∗
E

−2ε)

k+1 ≤
(
1−C′ηk+1Θ

−(E∗
E

+ε)

k

)(
H(µk|ντΘk

)−CΘ
−(1−E∗

E
−2ε)

k

)
.

Applying the above inequality recursively, we get

H(µk|ντΘk
) ≤ CΘ

−(1−E∗
E

−2ε)

k +

k−1∏
j=k0

(
1− C′ηjΘ

−(E∗
E

+ε)

j

)(
H(µk|ντΘk0

)−CΘ
−(1−E∗

E
−2ε)

k0

)
.

(40)

By the sum-integral trick, we have

k∑
j=k0

ηjΘ
−(E∗

E +ε)
j ≥

∫ Θk

Θk0

z−(E∗
E +ε)dz,

which diverges to ∞ as E > E∗ and Θk → ∞ as k → ∞. Combining (40) and the

fact that
∏

j(1− xj) ≤ e−
∑

j xj yields

H(µk|ντΘk
) ≤ CΘ

−(1−E∗
E −2ε)

k . (41)

By injecting (23) and (41) into (22) we obtain (6). The proof is complete.

5. Numerical results. This section presents numerical experiments to corrobo-
rate our main result, Theorem 1. We consider two nonconvex functions commonly
used in global optimization:

Ackley function: for xxx = (x1, . . . , xd) ∈ Rd,

f(xxx) = −a exp

−b

√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1), (42)

where a, b, c > 0 are parameters, and d is the dimension. The Ackley function
attains its global minimum at xxx∗ = (0, . . . , 0) with f(xxx∗) = 0. In the sequel, we
take a = 20, b = 0.2, c = 2π and d = 2 for numerical experiments.

Rastrigin function: for xxx = (x1, x2) ∈ R2,

f(xxx) = 20 + x2
1 + x2

2 − 10 cos(2πx1)− 10 cos(2πx2). (43)

The Rastrigin function attains its global minimum at xxx∗ = (0, 0) with f(xxx∗) = 0.
See Figure 2 for the landscape of the Ackley and the Rastrigin function in R2.
Experiments for the Ackley function: It is clear that the Ackley function
satisfies Assumptions 1 – 3. Further we choose ηk = k−0.7, Θk =

∑
j≤k ηj (so that

Θk → ∞ and ηk+1Θk → 0), and τΘk
= E

log(1+Θk)
for some range of E. It follows

from the deviation bound (6) that

P(f(xk) ≥ δ) ≤

{
CΘ

− 1
2 (1−

E∗
E )+ϵ

k for E∗ ≤ E < E∗ + 2δ,

CΘ
− δ

E+ϵ

k for E ≥ E∗ + 2δ.



SIMULATED ANNEALING 13

Figure 2. The landscape of the Ackley and the Rastrigin function
in R2. Left: Ackley function with a = 20, b = 0.2, c = 2π; Right:
Rastrigin function.

In general, the exact value of E∗ is intractable, and to the best of our knowledge, no
previous work has considered how to estimate the critical depth E∗ of a nonconvex
function. With different values of E we expect to observe different patterns of the
discrete SA algorithm, and this provides a way to find the numerical value of E∗ as
we will explain.

We initialize the process with x0 = (1.0, 1.0), and consider for the range of
values δ ∈ {0.02, 0.03, . . . , 0.50}, and E ∈ {0.02, 0.04, 0.06, ..., 2.00}. For each pair
of (E, δ), we run the discrete SA process (1) for 5000 times to generate Monte–

Carlo estimates of the tail probabilities for the first 20000 iterations, that is p
(k)
E,δ :=

P(f(xk) ≥ δ), k = 1, 2, ..., 20000. Denote these estimates

PE,δ = (p
(1)
E,δ, p

(2)
E,δ, ..., p

(20000)
E,δ ) and Θ = (Θ1,Θ2, ...,Θ20000).

It is key to note that the discrete SA process may get trapped in a local minimum
if the value of E is too small compared to E∗. To illustrate, Figure 3 displays an
extract of the Monte–Carlo estimates PE,0.5 for different E’s.

Figure 3. Monte Carlo estimates PE,0.5 for E ∈
{0.02, 0.04, 0.06, ..., 2.00}.



14 WENPIN TANG AND YUHANG WU AND XUN YU ZHOU

For small E’s (e.g. 0.02 – 0.10), the Monte Carlo estimates p
(k)
E,0.5 remains un-

changed for all k. The sequence p
(k)
E,0.5, k = 1, 2, ..., 20000 is observed to be decreas-

ing from E = 0.14 on. This suggests an estimate of E∗ which lies between 0.12 and
0.14. Moreover, with the estimates PE,δ recorded, we take the logarithmic values
and run linear regressions of form:

log p
(k)
E,δ = βE,δ logΘk + γE,δ.

The estimated −β̂E,δ then approximates the decay rate of the tail probability

P(f(xk) ≥ δ) relative to Θk. For each pair of (E, δ), we compare −β̂E,δ (dubbed

“coef” in the legends) and δ
E . As shown in Figure 4, for all values of δ, as the

value of E becomes large, −β̂E,δ fits perfectly with δ
E . We also observe “peaks” in

the “coef” curves before they coincide with the respective δ
E curves. This is due to

the fact that for E∗ ≤ E < E∗ + 2δ, the rate 1
2 (1 − E∗

E ) increases as E increases.

Moreover, the “peaks” occur later when δ is larger since the term δ
E comes into

dominance later.

(a) δ = 0.02 (b) δ = 0.05 (c) δ = 0.1

(d) δ = 0.2 (e) δ = 0.3 (f) δ = 0.4

Figure 4. Ackley: plots of β̂δ,E and δ
E against E for different δ’s.

Experiments for the Rastrigin function: We also choose ηk = k−0.7, Θk =∑
j≤k ηj , and τΘk

= E
log(1+Θk)

for some range of E. We initialize the process with

x0 = (1.0, 1.0) and consider for the range of values δ ∈ {0.02, 0.03, . . . , 0.50}, and
E ∈ {0.05, 0.10, 0.15, ..., 27.00}. For each pair of (E, δ), we run the discrete SA (1)
for 20000 iterations for 5000 times. The results are similar to those for the Ackley
function, as displayed in Figure 5. In particular, the estimated E∗ lies between 0.05
and 0.10, which is consistent with the fact that the Rastrigin function is flatter than
the Ackley function.

6. Conclusion. In this paper, we study the convergence rate of discrete SA pro-
cesses. The main tool is functional inequalities for the Gibbs measure at low tem-
peratures. We prove that the tail probability exhibits a polynomial decay in time
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(a) δ = 3 (b) δ = 5 (c) δ = 7

(d) δ = 9 (e) δ = 11 (f) δ = 13

Figure 5. Rastrigin: plots of β̂δ,E and δ
E against E for different

δ’s.

and provide a non-asymptotic deviation bound. The decay rate is given as a func-
tion of the model parameters. More importantly, we derive a condition on the step
size to ensure the convergence to the global minimum. This condition is useful in
tuning the step size as illustrated by numerical experiments.

There are a few directions to extend this work. One is to study the discrete SA
with heavy-tailed perturbation under a suitable cooling schedule. Another direc-
tion is to study the dependence of the convergence rate in the dimension d. Both
problems are challenging but worth exploring.
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