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ABSTRACT. We study the convergence rate of the discrete-time simulated an-
nealing process (z; k = 0,1,...) for approximating the global optimum of a
given function f. We prove that the tail probability P(f(xg) > min f +§)) de-
cays polynomial in cumulative step size, and provide an explicit rate through
a non-asymptotic bound in terms of the model parameters. Our argument ap-
plies the recent development on functional inequalities for the Gibbs measure
at low temperatures — the Eyring—Kramers law. The result leads to a condi-
tion on the step size to ensure the convergence. Finally, we perform numerical
experiments to corroborate our theoretical result.

1. Introduction. Simulated annealing (SA) includes a set of stochastic optimiza-
tion methods, whose goal is to find the global minimum of a function f : R* — R, in
particular when f is nonconvex. These methods have many applications in physics,
operations research and computer science; see e.g. [9, 21, 36]. The stochastic ver-
sion of SA, independently proposed by [20] and [4], considers a stochastic process
related to f which is subject to thermal noise. When simulating this process, one
decreases the temperature slowly over time. When this is done right, the stochastic
process escapes from saddle points and local optima, and converges to the global
minimum of f with high probability.

In this paper, we study the convergence rate of the discrete-time SA process
(zx; k=0,1,...) defined by

Trt1 =2k — VI(xp)me + /270, 2k, Xo 4 o (dzx), (1)
where 7 is the step size at iteration k, O := Zj<k 7; is the cumulative step size
up to iteration k, 7e, is the cooling schedule at iteration k, (Zy; k = 0,1,...) are in-
dependent and identically distributed standard normal vectors, and po(dz) is some
initial distribution. The algorithm (1) can be regarded as the Euler-Maruyama
discretization of the continuous-time SA process, or the following SA adapted over-
damped Langevin equation ([15]):

dX, = —Vf(X)dt + V2 dB,, Xo < po(dz), (2)
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where (B;;t > 0) is a standard Brownian motion in R?. For 7; = 7 constant
in time, the scheme (1) is known as the unadjusted Langevin algorithm (ULA)
which approximates the Gibbs measure v, (dz) o exp(—f(x)/7)dx. The ULA was
introduced by [16, 29], and further studied by [8, 11, 32].

The goal of this paper is to study the decay in time of the tail probability of (1),
i.e. the deviation bound

P(f (x1,) > min f + ),

under suitable conditions on the function f, the discretization scheme 7y, O, and
the cooling schedule 7, . There are two motivations for studying this problem.

e First, there are growing interests in the interplay between sampling and op-
timization ([22, 23, 31]). The idea is to approximate the global optimum
in nonconvex problems via Langevin dynamics-based stochastic gradient de-
scent ([5, 12, 31, 38]), along with its variants using non-reversibility ([18])
and replica exchange ([6, 10]). Specifically, one aims to approximate min f by
Ef(x}) where (zf; k = 0,1,...) is the ULA with a small, fized temperature
parameter 7. A drawback of this approach is that one needs to simulate mul-
tiple (many) sample paths to estimate Ef(x7). By contrast, the advantage
of using SA processes is that for a suitable choice of time-dependent 7o, , the
process xj converges almost surely to min f as k — oo. Thus, one only needs
to simulate one sample path to approximate min f.

e Second, there have been recent research efforts in developing various noisy
gradient-based algorithms ([5, 13, 17, 19]) aiming at escaping saddle points and
finding a local minimum of f as a surrogate. While finding a local surrogate
has been proved to be sufficient in many machine learning problems, global
optimization is important in its own right with applications ranging from
finding Nash equilibria in various games ([27]) to curriculum learning ([1]).
Compared with the gradient-based methods, SA sets finding global minima
as the priority, if at the cost of longer exploration time.

The main tool in our analysis is the Eyring—Kramers law, which is a set of
functional inequalities for the Gibbs measure at low temperatures (see Section 3.1
for details). To study the convergence rate of the discrete-time SA, it will be helpful
to understand the long time behavior of its continuous analogue. It is well known
([7, 15]) that the correct order of 7; for the process (2) to converge to the global
minimum of f is (Int)~!, and there is a phase transition related to the critical depth
E, of the function f:

(a) If limsup, , . 7t Int < E with E < E,, then limsup,_, . P(f(X:) < min f +
0) < 1.

(b) If E <liminf; o 7¢Int <limsup, . 7t Int < oo with E > E,, then

tliJ?oP(f(Xt) <min f+¢) = 1.

The formal definition of the critical depth E, will be given in Assumption 2; see
also Figure 1 below for an illustration when f is a double-well function. Roughly
speaking, F, is the largest hill one needs to climb starting from a local minimum
to the global minimum. We refer to [35] for background and further references.
Building upon earlier works ([24, 25, 26]), [35] derive a non-asymptotic bound
for the tail probability of the continuous-time SA (2) via a “four-step” analysis
using the Eyring-Kramers law as a key technical tool. Their result is summarized
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FIGURE 1. Illustration of the critical depth of a double-well func-
tion.

as follows. To simplify the notation, we henceforth assume throughout this paper
that
min f(z) =0,

i.e. the global minimum of f is 0 by considering f — min f.

Theorem A. Assume that 1y is decreasing in t, T, ~ % with E > E,., and

% (T%) =0 (%) as t — oo. Then, under some assumptions on the function f, for

any 6 > 0 there exists C > 0 independent of t such that
P(f(X,) > ) < Ot~ ™n(#:30-%)),

Going back to the discrete-time SA process (1), a natural question is whether
there is a similar convergence rate and under what additional conditions especially
on the step size n,. Our main result, which answers these questions, is outlined as
follows. The precise statement of the result will be given in Section 2.

Theorem B. Assume that 1, is decreasing in t, 74 ~ % with E > E,, and

t
as k — o0o. Then, under some assumptions on the function f, for any § > 0 there
ezists C' > 0 independent of t such that

% (T%) =0 (l) as t — 0o. Also assume that O — 0o and lim sup 7,110, < 00

: 5 1 Ey
B(f(xx) > 0) < cO, ™ (ES0=F)),

This result of a non-asymptotic deviation bound for the discrete-time SA process
is new to our best knowledge, and its proof is more involved and delicate than its
continuous-time counterpart ([35]) due to the discretization errors. It also gives a
practical guidance on the choice of step size: the condition O — oo indicates that
the step size cannot be chosen too small, while the condition limsup 7,410 < oo
suggests that the step size cannot be chosen too large. For instance, n, = k¢

with 6 € [1,1] satisfies the conditions in the theorem to ensure the convergence.
Also note that the rate min (%, %( — %)) is smaller than % Empirical results in

Section 5 suggest that this rate is optimal, but it remains open to prove a matching
lower bound. We leave the problem for future work.

The dependence of the constant C' on the dimension d is another interesting
problem. It is also a subtle problem, since most analysis including the Eyring—
Kramers law uses Laplace’s method, while the latter may fail if both the dimension
d and the inverse temperature 1/7 tend to infinity [34]. As explained in [35, Remark
1], an upper bound for C is exponential in d. This suggests the convergence rate
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is exponentially slow as the dimension increases, which aligns with the fact that
finding the global minimum of a general nonconvex function is NP-hard.

Note that the discrete-time SA (1) belongs to the general class of stochastic
gradient descent algorithms of the form:

Tpt1 = Tk — apVf(zg) + 02k, xo 4 po(dz),

where (ax; k = 0,1,...) and (by; & = 0,1,...) are two positive deterministic se-
quences. Most of the existing literature (e.g. [5, 31]) deals with ULA or its vari-
ants with a fixed (though small) temperature parameter 7, corresponding to the
strongly perturbed condition where ay/ b% is assumed to be of a constant order. It
is clear that the discrete SA process (1) does not satisfy the strongly perturbed
condition under which the process x; would converge in distribution to a diffuse
measure instead of a Dirac mass. On the other hand, [14] show that for aj, = ¢ and
b = W with some large b > 0, the process f(xx) converges in probability
to min f; however, they do not give any convergence rate. [30] proves, under the
annealing condition that aj /(b7 Ink) is of a constant order, that %(f(xk) —min f)
converges in distribution to a Gamma random variable. This co)}responds to the
central limit theorem or small deviation regime (6§ = d J 0), while in this paper
we are concerned with large deviation regime (0 is fixed) which is more practically
meaningful. Indeed, the special time-annealing nature of the perturbation term in
the discrete SA process makes the problem more challenging, which is the reason
why the Eyring—Kramers asymptotics in low temperatures is needed. For instance,
the condition limsup 7,410, < oo stems from the one-iteration estimate via the
Eyring—Kramers formula.

The remainder of the paper is organized as follows. Section 2 presents the as-
sumptions and our main result. Section 3 provides background on functional in-
equalities, and sketches the main idea in proving Theorem A for the convergence
rate of the continuous-time SA process. The latter is useful for the reader to un-
derstand the main difficulty in extending the idea to the discrete-time case. The
main result (Theorem 1) is proved in Section 4. Results of numerical experiments
on global optimization are reported in Section 5. We conclude in Section 6.

2. Main result. In this section, we make precise the informal statement in the in-
troduction by presenting the main result of the paper. We first collect the notations
that will be used throughout this paper.

— || is the Euclidean norm of a vector, and a - b is the scalar product of vectors
a and b.

— For a function f : R? = R, Vf, V2f and Af are its gradient, Hessian and
Laplacian respectively.

— a ~ b means that a/b — 1 as some problem parameter tends to 0 or oco.
Similarly, a = O(b) means that a/b is bounded as some problem parameter
tends to 0 or oo.

We use C for a generic constant which depends on problem parameters (6, f, E. . .),
whose values may change from line to line.

Next, we present a few assumptions on the function f. These assumptions are
standard in the study of metastability; see [24, 25].
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Assumption 1. Let f : R? — R be smooth, bounded from below, and satisfy the
conditions:

(i) f is non-degenerate on the set of critical points. That is, for some C > 0,

% < |V2f(x)€| < C|¢|  for each z € {z: Vf(z) =0} and € € R%

(i) There exists C,C" > 0 such that
2 _
V@R - Af()

|z|—o00 |£L'|2

>C, infV3f(z)>-C".

Let us make a few comments on Assumption 1. The condition (i7) is a version
of the dissipative condition, and it implies that f has at least quadratic growth
at infinity. This is a necessary and sufficient condition to obtain the log-Sobolev
inequality (see [33, Theorem 3.1.21]) which is key to convergence analysis. The
conditions (7) and (i7) imply that the set of critical points is discrete and finite
[24, Remark 1.6]. In particular, it follows that the set of local minimum points
{mi,...,mp} is also finite, with N the number of local minimum points of f.

~

Define the saddle height f(m;, m;) between two local minimum points m;, m; by
Flma,my) = inf{ max f(1(s)) : 7 € C[0, 1], 7(0) = mi, 7(1) = mg} LB

s€[0,1]

~

See Figure 1 for an illustration of the saddle height f(mg,m1) when f is a double-
well function with mg the global minimum and m; the local minimum.

Assumption 2. Let mq,--- ,mpy be the positions of the local minima of f.

(i) mq is the unique global minimum point of f, and mq,...,my are ordered in
the sense that there exists § > 0 such that

fmn) = f(my—1) = -+ > f(mg) 26 and  f(mi1) =0.

(i1) For each i,j € {1,...,N}, the saddle height between m;, m; is attained at
a unique critical point s;; of index one. That is, f(si;) = f(mi,mj), and
if {\,..., An} are the eigenvalues of V2 f(si;), then Ay < 0 and \; > 0 for
i €{2,...,n}. The point s;; is called the communicating saddle point between
the minima m; and m;.

(tii) There exists p € [N] such that the energy barrier f(sp1) — f(myp) dominates
all the others. That is, there exists 6 > 0 such that for alli € [N]\ {p},

E. = f(sp1) = f(mp) 2 f(sir) = f(mi) + 6.
The dominating energy barrier E, is called the critical depth.

The above two assumptions are also imposed in the continuous-time counterpart
of [35]. To get the convergence result for the discrete-time simulated annealing, we
need an additional condition on the function f.

Assumption 3. The gradient V[ is globally Lipschitz, i.e. |Vf(z)— Vf(y)| <
Lz — y| for some L > 0.

The convergence result for the discrete-time SA process (1) is stated as follows,
whose proof is deferred to Section 4.
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Theorem 1. Let f satisfy Assumptions 1, 2 & 3, and let pg satisfy the moment
condition: for each p > 1, there exists Cp, > 0 such that

| s@rutin) <, (@

Assume that 1, is decreasing in t, T, ~ % with £ > E,, and % (%) =0 (%) as
t — 00. Moreover, assume that O — oo and
lim sup 7110k < o0, (5)

as k — oo. Then for each 6, > 0, there exists C' > 0 independent of t such that
(6)

3. Preliminaries. In this section, we recall some basic results of functional in-
equalities and explain how these results are applied in the setting of SA. We also
highlight the “four step” analysis in proving the continuous-time counterpart of
Theorem 1, which sheds light on how we prove in the discrete setting and under the
difference.

- min(%,%(lf%))Jre

P(f(zx) > 6) < CO,

3.1. Functional inequalities and the Eyring-Kramers law. Let v, be the
Gibbs measure with landscape f(-) and temperature 7 defined by

v (dz) = Zi exp (-ﬂf)) da, (7)

where Z, := [, exp(—f(z)/7)dz is the normalizing constant. It is well known
that under suitable conditions on f, v,.(dz) is the stationary distribution of the
overdamped Langevin equation

dX, = —Vf(X,)dt + V27 dB,, X2 po(da). (8)

The difference between the overdamped Langevin process (8) and the continuous-
time SA (2) is that the temperature 7, of the latter is decreasing in time. Due to
the time dependence, the limiting distribution of the solution to (2) is unknown.
As we will see in Section 3.2, the idea is to approximate (2) by a process of Gibbs
measures with temperature 7;. Since 7 decreases to 0 in the limit, the problem
boils down to studying Gibbs measures at low temperatures.

Now we present functional inequalities of Gibbs measures at low temperatures
(1 — 0). Let  and v be two probability measures on R? such that y is absolutely
continuous relative to v, with du/dv being the Radon-Nikodym derivative. Define
the relative entropy or KL-divergence H (u|v) of p with respect to v by

H(uly) == /log (?j)du: /Z—l:log (?Ij)du, (9)

and the Fisher information I(u|v) of u with respect to v by

() = %/ v(j‘y‘) 2(‘;’;‘) T (10)

We say that a probability measure v satisfies the log-Sobolev inequality (LSI) with
constant o > 0, if for all probability measures p with I(u|v) < oo,

H(ulv) < 1) (11)
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The constant « is called the LSI constant for the probability measure v. For in-
stance, the LSI constant @ = 1 for v the multivariate Gaussian with mean 0 and
covariance matrix I;.

Assume that the Gibbs measure v, defined by (7) satisfies the LST with constant
a, > 0. The subscript ‘77 in «, suggests the dependence of the LSI constant on the
temperature 7, and we are interested in the asymptotics of o, at low temperatures
as 7 — 0. This problem was considered by [24, Corollary 3.18], where a sharp lower
bound for «; as 7 — 0 was derived.

Lemma 1. Let f satisfy Assumptions 1 & 2. Then the Gibbs measure v, defined
by (7) satisfies the LSI with constant a; > 0 such that

r ~ Cexp <*> as T — 0, (12)
7'
where C' > 0 depends on f,d

The Eyring—Kramers law provides an estimate on the spectral gap of the over-
damped Langevin equation (8). Lemma 1 is the LSI version of the Eyring—Kramers
law, which is stronger than the spectral gap estimate implied by the Poincaré in-
equality ([2, 3]).

Define the Wasserstein distance Wa(u, v) between p and v by

Wa(p, v) := inf \//|x y2P(dx, dy), (13)

where the infimum is over all joint distributions II coupling p and v. We say that
a probability measure v satisfies Talagrand’s inequality with constant v > 0, if for
all probability measure p with H(ulv) < oo,

Walia) < |2 H o). (14)

It follows from [28, Theorem 1] that the LSI implies Talagrand’s inequality with
the same constant, namely, if v satisfies the LSI with constant o > 0, then v also
satisfies Talagrand’s inequality with constant v = a. Combining with Lemma 1,
we get a lower bound estimate of Talagrand’s inequality constant for the Gibbs
measure V.

Lemma 2. Let f satisfy Assumptions 1 & 2. Then the Gibbs measure v, defined
by (7) satisfies Talagrand’s inequality with constant v > 0 such that

E,
¥r ~ Cexp <—> as ™ — 0 (15)
T
where C' > 0 depends on f,d

3.2. Proof sketch of Theorem A. Here we sketch the proof of Theorem A pro-
vided in [35], which will help understand the proof techniques in Section 4.

Let u; be the probability measure of X; defined by (2). The key idea is to
compare p; with the time-dependent Gibbs measure v,, given by

v, (dx) = ZL exp <f7(_f)> dz,

where Z;, := [.exp(—f(x)/7) is the normalizing constant. Note that v, will
concentrate on the minimum point of f as t — oo since » — 0 as t — oo. We
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will see that v, is close to y; in some sense as t — co. The proof of Theorem A is
broken into four steps.

Step 1: Reduce y; to v,,. Let ()Z’t; t > 0) be a process whose distribution is v,
at time ¢. By a simple coupling argument and Pinsker’s inequality, we have

P(f(Xy) > 0) < P(f(Xy) > 8) + V2H (pevr,). (16)
So the problem boils down to estimating P(f(X;) > 8) and H(j|vs,).

Step 2: Long-time behavior of f()?t) Apply Laplace’s method to show that
for each € € (0, ), there exist C' > 0 independent of ¢ such that

P(f(X;) > 8) < Ct~°F". (17)

Step 3: Differential inequality for H(u:|v,,). Apply the Fokker—Planck equa-
tion of the over-damped Langevin equation and integration by parts to show

) < =200 Gulro) + (5 ) BACE) (18)

dt Tt
for any 7¢ decreasing in t.
Step 4: Estimating H(y|v;,) via the Eyring—Kramers law. There are two
terms on the right hand side of (18). It is easy to show that

Ef(X;) < C(1+1)°. (19)
Hence, by Lemma 1 and the inequalities (18), (19), we have
d C
S (pelvr,) < =2m0aH (pelvr,) + - Ef(Xe)
< ot (F ) H(uv,,) + Ot
where o is the LSI constant for the Gibbs measure v,,. By Gronwall’s inequality,

we get
E

H(pylvr,) < Ct71E T2 (20)
Combining (16), (17) and (20) proves Theorem A.

4. Proof of Theorem 1. This section is devoted to the proof of Theorem 1. While
the essential idea is built upon that employed for the continuous-time SA process
sketched in Section 3.2, subtle additional analysis is called for due to discretization.

Recall that 7y, is the step size at iteration k, and O = > j<k Mj 1s the cumulative
step size up to iteration k. Let puy be the probability density of x;, defined by (1),

and
exp (-120) as (21)

'I—(_)’c

Vro, (dz) =

where Z;, = [paexp(—f(x)/7o,)dx is the normalizing constant. We divide the
proof into four steps.

Step 1: Reduce py to v, . This step is similar to Steps 1 & 2 for the continuous-
time case described in Section 3.2. Let (Zx; k > 0) be a sequence whose distribution
is v, at epoch k, living on the same probability space as (xg; k > 0). Fix 6 > 0.
The same argument as in (16) shows that

P(f(zx) > 6) <P(f(Zx) > 6) + \/2H (u|vre,)- (22)
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Assume that O — oo and 7, ~ ﬁ as k — oo with £ > E,. Similar to (17),
we get a bound for the first term on the right hand side of (22). That is, for each
e € (0,9), there exists C' > 0 independent of ¢ such that
_s-e
P(f(zr) >9) <CO, * . (23)
So it remains to estimate H (j|vr,, ), which is the task of the next three steps.

Step 2: Continuous-time coupling. To make use of continuous-time tools, we
couple the sequence (zy; k > 0) by a continuous-time process (Xy; ¢ > 0) such that
(Xo,; k > 0) has the same distribution as (zx; & > 0). To do this, define the
process X by

dXt = —Vf(l'k)dt + \/ 2T(_)kdBt, te [Gk, ®k+1), (24)

where we identify Xg, with z;. So X on [Of,04+1) is Brownian motion with
drift —V f(zy) and covariance /27g, I5. As mentioned in Step 3, Section 3.2, the
Fokker—Planck equation plays an important role in the analysis of the continuous-
time SA process. It is desirable to get a version of the Fokker—Planck equation for
the coupled process (24). The result is stated as follows.

Lemma 3. For t € [O,0ky1), the probability density p; of X; defined by (24)
satisfies the following equation:

0
o=V (o, V(L)) 9 BV S) ~ VAKX =) (25)
Proof. Let piy5(x|y) be the conditional probability P(X; = z|X, = y). By condi-
tioning on Xg, = =1, we have

e, (7|71

O = V- (e (@le) V(wr)) + 70, Ao (alex).  (26)
Integrating (26) against pe, and using the fact that uye, (v|rr)pe,(zr) =
e () oy e (zk|z), we get

Ot 9 (o) BIV S @r) X = 2]) + 7o A (27)

Further by the Fokker—Planck equation of the overdamped Langevin equation, we
have

V- (o T () = 9 (910 + 7, A 28)
Combining (27) and (28) yields (25). O

There are two terms on the right hand side of (25). The first term is the usual
Fokker—Planck term, while the second term corresponds to the discretization error.

Step 3: One-step analysis of H(ju|v-, ). Here we use the coupled process (24)
to study the one-step decay of H (pu|vr,, ).

Lemma 4. Let f satisfy Assumptions 1, 2 & 3, and assume that the condition
(4) for po holds. Assume that 7y is decreasing in t, T4 ~ % with E > FE,, and

Tr t

k — oco. Then, for each € > 0, there exist C,C" > 0 independent of t such that

_(Ex
H(ppslvs,,) < (1 — O}, F +6)>H(Mk|’/mk>

%(1) = O(l) as t — oo. Also assume that ©p — oo and Nx110r — 0 as
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+ C' M + M1 MOk + me10,779). (29)
Proof. Write
H(piialvn, ) = H(pg1lve,) + (H (g1 |ve,, ) = H(pelvs, ) - (30)
(a) (b)
We first use the coupled process (24) to study the term (a). Note that

d
dt (/‘Lt|1/7'r—)k)

e e d Hi
_ / L <mG' dz + / ()
Z/V~ (T@A:V-,—e V( o ))ln( a )dm

' VTF)k I/T“)k

+ [V @B ) - VX = (L Jars 5 [ tan

I/-,—eA

(c)
= 727—(—);VI(,ut|V‘ro ) + (C), (31)

where we use (25) in the second equation, and the fact that

/v (Wﬂ <“:>>1 ( >deTt (uelvr,)

in the third equation. Now we need to estlmate the term (c) in (31). By integration
by parts and the fact that a-b < — |a|2 + 2= [b|?, we get

Mt
VTek

(@ =E((v4(x) - V1) Tin

2
1 T
< —EIVF(X,) = VI (ze)]? + e’“E‘VIn ( He )
To, 4 V‘r@k
< —xp|® + 2 (pe|vr, ), (32)
T@k

where the expectation E is with respect to pu;(dz), and L is the Lipschitz constant
of Vf in Assumption 3. Recall from (24) that

Xt —ap = =Vf(zr)(t — O) + /270, (t —O)Z,
where Z is standard normal. Hence
E|X; — 2 = (t — O)’E|V f(21)]? + 276, (t — Ox)d
< N1 EIV f (i) |? + CTo i1 (33)

According to Lemma 2, v, satisfies Talagrand’s inequality with constant v, ~
kexp(—E./Te,). Moreover, by [37, Lemma 10],

E[V f(zx)® <

H(pklvr,, ) + C. (34)

To,

Combining (32) with (33), (34) and the fact that 7o, ~ ﬁ as k — oo, we have

(© = O(Ia6F MO ) Hunlvn, )+ Clnan 1 60) + 1l ). (35)
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Injecting (35) into (31) and further by Lemma 1, we get

d
@H(ﬂt |Vr@k )

3 B
< —57'@;3](,Ut|”r@k) + (77134-1@;59 In @k> H(:U’k)‘l/‘f'ek) + C’(nk+1 + 771%-9-1 In©y)
3 _(Ex Ex
< —500, F I H v, ) + ¢ (niﬂ@,f TH (v, ) + (s + 141 In @w).
Now by a Gronwall argument, we have
H(/J’k“rl'VT@k)
30,0 (B 13 ot /092 3
< e 2T (1+ C'n 10,7 ) H (pr|vrg, ) + C (M1 + Mgy InOp)

,(&«Fs)
< e 4OmnO T (g lvry ) + Oy + 1y InO))

_(Ex
< (1 O, *5))H<uk|umk> Oy 41ty Oy, (36)

Ex
where we use the fact that 7,410,” — 0 as k — oo in the second inequality.
Now we consider the term (b) in (30). Note that

Zr,, 1 1
H(/lk+1|Vm+]) — H(pr41|vr,,) =In <Z‘f'ek) + (Tem - M)Ef(xkﬂ)
< CREEf(vy01), (37)
k

Tt t

e >0, Ef(zpq1) < C < COF. We argue by contradiction and assume that the
sequence (Ef(zy), k =0,1,...) is unbounded. Choose C' > 0 sufficiently large, and
let Ef(zk4+1) be the first term exceeding C'. By Assumption 3,

flarer) <fae) — el V(@) + 270,V f (k) - Zk

L
+ 5\77kvf(ffk) + /270, e Zk %
Further by taking expectation, we get

since 73 is decreasing in t, and % (i> =0 (l) as t — oco. We claim that for each

(o) ~ Bf (o) < - (1= 0 )EIVS@P + Laram (68)

Thus, Ef(zgt+1) — Ef(zr) < Ldre,m; which implies that Ef(xzy) > C — 1 for k
large enough. Next we prove that E|V f(z;)[? is bounded from below as j — oc.
By Assumption 1, f has quadratic growth at infinity. This implies that for z
sufficiently large, say |z| > R, we have |V f(z)|? > Af(z) for some A > 0. Take
C' sufficiently large so that Ef(z) > C’ implies that E(f(z)1{.,>r)) > C'/2.
Consequently, E|V f(x;)[* > E(|V f(2;)[*1(s,>r}) > AC’/2. Combining with (38),
we have Ef(zr) > Ef(xg41) > C. This contradicts the fact that Ef(z11) is the
first term exceeding C. Now by (37), we get

Hiugsa v, ) — Hlgsalvn,,) < Ci 1051, (39)
Combining (30) with (36), (39) yields (29). O
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Step 4: Estimating H(ux|vr, ). We use Lemma 4 to derive an estimate for

)
H (pg|vs,, ). Under the condition (5), the term Nk+10; 1T dominates Nas1s Mesr N Oy
as k — oo. Thus, the recursion (29) yields

— (x4 _
Hlacnlvn, ) < (1= a5 ) Gl ) + O
Since E./F < 1, a similar argument as in Step 4 in Section 3.2 shows that

—(1—Ex o , (Ex . 1-Ex o
H(M’C+1‘V76k+1)_cek-l<—l . ) < (1_0 77k+19k< o )> (H('ukwmk) “Oy 3 >)

Applying the above inequality recursively, we get

(1 Be gy Tl (Es . (1 Bx o
H(pilvry,) < 0O, 0 ] (170'%@].%“) (H(Nk‘l/mkn)*CGkU(l 3 “).

Jj=ko
(40)
By the sum-integral trick, we have

k O

E N
3 nj(__)j‘(f‘i‘&) 2/ B g,
j=ko Oko

which diverges to oo as E > E, and © — 0o as k — oco. Combining (40) and the
fact that [[;(1 — ;) <e” 25 % yields

By _og
H(pglvr,,) < COLUTF %),

By injecting (23) and (41) into (22) we obtain (6). The proof is complete.

(41)

5. Numerical results. This section presents numerical experiments to corrobo-
rate our main result, Theorem 1. We consider two nonconvex functions commonly
used in global optimization:

Ackley function: for £ = (z1,...,14) € R%,

d

1

y > x| —exp ( ZCOS i ) +a+exp(l), (42)
i=1

where a,b,c > 0 are parameters, and d is the dimension. The Ackley function
attains its global minimum at * = (0,...,0) with f(z*) = 0. In the sequel, we
take a = 20, b = 0.2, ¢ = 27 and d = 2 for numerical experiments.

=

f(@)=—aexp|—

Rastrigin function: for z = (z1,22) € R?,
f(@) =20+ 2% + 22 — 10 cos(27x1) — 10 cos(27ms). (43)

The Rastrigin function attains its global minimum at * = (0,0) with f(z*) = 0.
See Figure 2 for the landscape of the Ackley and the Rastrigin function in R2.
Experiments for the Ackley function: It is clear that the Ackley function
satisfies Assumptions 1 — 3. Further we choose n = k=07, ©) = > j<k M (so that
O — o0 and 7410, — 0), and 7o, =
from the deviation bound (6) that

m for some range of E. It follows

Ex
co *YEN g B, < E < B, +20,

P(f(xk) 2 0) < S
co,* for E > E, + 26.
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F1GURE 2. The landscape of the Ackley and the Rastrigin function
in R2. Left: Ackley function with a = 20, b = 0.2, ¢ = 2; Right:
Rastrigin function.

In general, the exact value of F, is intractable, and to the best of our knowledge, no
previous work has considered how to estimate the critical depth E, of a nonconvex
function. With different values of ¥ we expect to observe different patterns of the
discrete SA algorithm, and this provides a way to find the numerical value of E, as
we will explain.

We initialize the process with zg = (1.0,1.0), and consider for the range of
values 6 € {0.02,0.03,...,0.50}, and FE € {0.02,0.04,0.06, ...,2.00}. For each pair
of (E, 0), we run the discrete SA process (1) for 5000 times to generate Monte—

Carlo estimates of the tail probabilities for the first 20000 iterations, that is pg))é =
P(f(zx) > 9), k=1,2,...,20000. Denote these estimates

Pgs = (pgfé,pgfg, ---,pgfsooo)) and  © = (©1, 02, ..., O20000)-

It is key to note that the discrete SA process may get trapped in a local minimum
if the value of E' is too small compared to E,. To illustrate, Figure 3 displays an
extract of the Monte—Carlo estimates Pg o 5 for different E’s.

K 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

0.02 01418 0.1418 0.1418 0.1418 01418 0.1418 01418 0.1418 0.1418 0.1418 0.1418 0.1418 0.1418 0.1418 0.1418 0.1418 0.1418 0.1418 0.1418 0.1418
0.04 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508
0.06 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368 0.1368
0.08 0.1324 0.1324 0.1324 0.1324 01324 0.1324 01324 0.1324 01324 0.1324 0.1324 0.1324 0.1324 01324 0.1324 01324 0.1324 0.1324 0.1324 0.1324

0.10 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300

1.92 08110 07426 07118 06800 06716 06512 06402 06396 06286 06146 06204 06006 06092 06094 05918 05942 05894 05778 0.5886 0.5792
1.94 08088 07456 0.7274 06858 06766 0.6556 0.6454 06450 06394 06284 06128 06096 0.6024 06142 06086 0.5944 05886 05948 05946 0.5748
1.96 08176 07548 07294 06934 06932 06672 06608 06498 06326 06432 06264 06230 06178 06140 06128 06112 06092 06110 05972 0.5806
1.98 08228 07648 07210 0.6982 06858 0.6766 06604 06478 06488 06462 06338 06292 06178 06086 0.6250 06072 06044 06024 05930 0.6002

2.00 08276 07696 07348 07208 06902 06606 06590 06676 06486 06384 06460 0.6290 0.6266 0.6200 0.6262 0.6222 0.6138 0.6012 0.6010 0.6144

FIGURE 3. Monte Carlo estimates Pggs for FE €
{0.02,0.04,0.06, ..., 2.00}.
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For small E’s (e.g. 0.02 — 0.10), the Monte Carlo estimates p%i)o_g) remains un-

changed for all k. The sequence p(;’)(m, k=1,2,...,20000 is observed to be decreas-
ing from F = 0.14 on. This suggests an estimate of F, which lies between 0.12 and
0.14. Moreover, with the estimates Pg s recorded, we take the logarithmic values
and run linear regressions of form:

logp%i)g = Pp,slog Ok + 78,5

The estimated —BE,J then approximates the decay rate of the tail probability
P(f(x1) > 0) relative to ©y. For each pair of (E, §), we compare —fg.s (dubbed
“coef” in the legends) and %. As shown in Figure 4, for all values of ¢, as the
value of E becomes large, -8 5,5 fits perfectly with %. We also observe “peaks” in
the “coef” curves before they coincide with the respective % curves. This is due to
the fact that for F, < E < E, + 20, the rate %( — %) increases as F increases.
Moreover, the “peaks” occur later when ¢ is larger since the term % comes into
dominance later.

s
12 ‘ — coef 23 — coef — coef

delta/E detta/E |, delta/E
10| | 20

15 3
109 | 21
0.2 \\ 0.5 \ 1 J«’\\\
— N ! —

0.0 ————— 0.0 T - o1 I—
000 025 050 075 1.00 125 150 175 2.00 000 025 050 075 1.00 125 150 175 200  0.00 025 050 075 1.00 125 150 175 2.00
E E E

(A) 6 =0.02 (B) 6 = 0.05 (c) 6=0.1

10 20
—— coef 15.0 coef —— coef
delta/E

8 125 delta/E delta/E

A e — — S —

— 0.0{ — - ol ——
000 025 050 075 1.00 125 150 175 2.00 000 025 050 075 1.00 1.25 150 175 200 000 025 050 075 1.00 125 150 175 2.00
E E E

(D) 6 =0.2 (E) 6=0.3 (F) =04

FI1GURE 4. Ackley: plots of 557 g and % against F for different §’s.

Experiments for the Rastrigin function: We also choose n, = k77, O, =
ngk n;, and T, = m for some range of E. We initialize the process with
xo = (1.0,1.0) and consider for the range of values § € {0.02,0.03,...,0.50}, and
E € {0.05,0.10,0.15,...,27.00}. For each pair of (E, §), we run the discrete SA (1)
for 20000 iterations for 5000 times. The results are similar to those for the Ackley
function, as displayed in Figure 5. In particular, the estimated F, lies between 0.05
and 0.10, which is consistent with the fact that the Rastrigin function is flatter than
the Ackley function.

6. Conclusion. In this paper, we study the convergence rate of discrete SA pro-
cesses. The main tool is functional inequalities for the Gibbs measure at low tem-
peratures. We prove that the tail probability exhibits a polynomial decay in time
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12 2.00
—— coef — coef 25 —— coef
101 delta/E 175 delta/E \‘ delta/E
\ 150 20l Y
08 \
\ 125{ \ \“\
0.6 \ 1.00 \\\ 15 \M
04 \\‘ 075 N 10 ‘A\\\
= 050 \\ L
0.2 ~—— ~
S~ 025 — 0.5 \\\ .
00 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
E E E
(A) 6 =3 (B)6=5 (©)6=17

35 —— coef —— coef
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3.0 delta/E |\ delta/E delta/E

15 v 2 \“\\ ) o
~ .
1.0 \\\\ i \\\‘ . ) T
05 —~— T o
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(D) 6=9 (E) 6 =11 (F) 6 =13

FIGURE 5. Rastrigin: plots of B(;, g and % against E for different
d’s.

and provide a non-asymptotic deviation bound. The decay rate is given as a func-
tion of the model parameters. More importantly, we derive a condition on the step
size to ensure the convergence to the global minimum. This condition is useful in
tuning the step size as illustrated by numerical experiments.

There are a few directions to extend this work. One is to study the discrete SA
with heavy-tailed perturbation under a suitable cooling schedule. Another direc-
tion is to study the dependence of the convergence rate in the dimension d. Both
problems are challenging but worth exploring.
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