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ABSTRACT: We report the temperature-dependent spin switching of
dicopper oxo nitrosyl [Cu,(0)(NO)]*" complexes and their influence on
hydrogen atom transfer (HAT) reactivity. Electron paramagnetic resonance
(EPR) and Evans method analysis suggest that [Cu,(O)(NO)]** complexes
transition from the S = 1/2 to the S = 3/2 state around ca. 202 K. At low
temperatures (198 K) where S = 3/2 dominates, a strong correlation _
between the rate of HAT (ky,r) and the population of the S = 1/2 state was
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complexes proceeds by the § = 1/2 isomer. Installation of functional groups
that introduce an unsymmetric secondary coordination environment
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accelerates the HAT rates through perturbation of the spin equilibria.
Given the often unsymmetric coordination sphere of bimetallic active sites in natural proteins, we anticipate that similar strategies

could be employed by metalloenzymes to control HAT reactions.

B INTRODUCTION

Metalloenzymes utilize high-energy metal oxo species to cleave
strong aliphatic C—H bonds with high fidelity.”” Under-
standing the key features that impact the metal oxo’s hydrogen
atom transfer (HAT) reactivity could inform the design of
synthetic catalysts that mimic nature’s enzymes. A contro-
versial theory that explains the metal oxo’s HAT reactivity is
the two-state reactivity model. This model suggests that metal
oxo species can undergo spin-crossing along the reaction
coordinates from reactants to products (Figure 1A).”~® The
origin of the two-state HAT reactivity was traced to the fact
that FeV=0,"""* Mn"=0,'*"'¢ and Cr'=0" species have
a dense manifold of spin states with very close energies. Some
of these spin states can provide particularly low energy paths
for otherwise difficult HAT processes under one-state
scenarios (Figure 1A).

Despite the popular use of the two-state reactivity model in
explaining the reactivity pattern of bond activation, exper-
imentally probing two-state oxidative reactivity remains
difficult."*™*" This is mainly due to the challenges associated
with isolating the highly reactive metal oxo species at two
different spin states. To provide evidence for the two-state
reactivity of metal oxo species, one approach involves
systematically varying the electronic properties of substrates
and comparing rates of HAT and oxygen atom transfer
(OAT).""'®?! If HAT and OAT occur on two different spin
states, then opposite trends in their rates are expected.
Nonetheless, clear examples of two-state HAT reactivity,
where the barriers of HAT fluctuate at different spin states
(Figure 1A), remain rare.
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Only a limited number of systematic studies have been
conducted on HAT by geometrically analogous metal oxo
complexes at different spin states.””>* Nam et al. investigated
the HAT reactivity of a series of non-heme iron(IV) oxo
species and found that the S = 2 species abstracts H atoms
faster than the S = 1 species.”> > However, Kojima® and
Que”” have reported Ru oxo and Fe oxo species that exhibit
similar HAT rates at different spin states. Seminal work by Que
et al. showed that an open-core high-spin [Fe"—O—Fe"V'=
O]* species oxidizes hydrocarbons 6 orders of magnitude
faster than the diamond-core low-spin delocalized [Fe®*(u-
0),Fe*$]** analog (Figure 1B).”® The spin state change from S
=1 to S = 2 was considered to be a potential contributor to the
drastically different HAT reactivity. Recently, Wang et al.
reported HAT rate enhancements of similar magnitude with an
open-core [Co™"—0—Co"V=0]*" species; but no spin state
change was observed in this case.”’

A common limitation of these studies is that the metal oxo
complexes being compared in each case have either different
coordination environments or charges, making it difficult to
attribute the HAT rate enhancement to the change in spin
state alone. Herein, we report the two-state HAT reactivity of a
series of dicopper oxo nitrosyl [Cu,(O)(NO)]** complexes.
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Figure 1. (A) Influence of two spin states on HAT barriers (X # Y).
(B) Comparison of HAT reactivity of open and closed core diiron oxo
species reported by Que et al.?¢ (C) Spin switching of [RLCu,(O)-
(NO)J** from S = 3/2 to S = 1/2 state, which is more reactive toward
HAT.

Spectroscopic analysis revealed that [Cu,(O)(NO)]** com-
plexes exist in the S = 1/2 state at high temperature and the S
= 3/2 state at low temperature (Figure 1C). The mechanism of
HAT by [Cu,(O)(NO)]** is consistent with a two-state
reactivity model illustrated in Figure 1A. Despite the S = 3/2
being more stable, the HAT reaction occurs through a fast pre-
equilibrium between the S = 3/2 and S = 1/2 states, followed
by a rate-limiting HAT step on the S = 1/2 surface.
Perturbation of the symmetry in the secondary coordination
environment was found to shift the spin equilibrium, which
influences the HAT reactivity. As unsymmetric environments
are prevalent in metalloenzymes, our study suggests that even
minor changes in the secondary coordination sphere can alter
the spin population of metal oxo species. This could be a
strategy leveraged by nature to control the HAT rates.

B RESULTS AND DISCUSSION

Spin Switching of Dicopper Oxo Nitrosyl Species. In
our previous studies, we prepared the symmetric ["LCu,(O)-
(NO)]*" species (Fi§ure 1C) by activating nitrite or NO at the
dicopper center.”®” This complex exhibits HAT, C—H
hydroxylation, and S-nitrosation reactivity.””*' We initially
assigned [MLCu,(0)(NO)]** as an S = 1/2 species based on
the S = 1/2 EPR signal around 300 mT and the N=O" stretch
at 1554 cm™'. However, a recent computational study by

Yoshizawa and Shiota proposed an alternative S = 3/2 state for
the ["LCu,(O)(NO)]*" complex.””

Encouraged by their work, we further examined the EPR of
[MLCu,(0)(NO)J** at low temperature (5 K) and high
microwave power (2.0 mW) and observed an S = 3/2 signal at
g = 1.95. Spectral simulation of the § = 3/2 signal allowed us to
determine zero-field splitting parameters of D = 0.2 cm™' and
E/D = 0.3 (Figure 2, red). Temperature-dependent EPR
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Figure 2. Simulated (gray) and experimental (black) EPR spectra of
["LCu,(0)(NO)]** at § K with high microwave power (2.0 mW).
Both the S = 1/2 signal (blue, g, = 1.76, 8 =209, g =228, A, =550,
weight = 44%) and the S = 3/2 signal (red, g,,= 1.95, D = 0.2 cm™,
E/D = 0.3, weight = 56%) are observed.

saturation studies from S to 25 K (see the Supporting
Information, Figures S66—S69) suggest that the s;in-switching
behavior is best explained by valence isomerism,””** where the
S =1/2 and S = 3/2 states have different valence arrangement
due to reversible electron transfers between Cu ions and the
redox-active nitrosyl ligand. Valence isomerization is often
observed when the energy levels of the ligand frontier orbitals
lie close to the valence electrons of the metal ions. Copper
nitrosyl complexes are expected to satisfy these criteria.”’

We next investigated the spin state of ["LCu,(O)(NO)]**
in solution as a function of temperature by gerforming a series
of Evans method studies (Figure 3).°° A solution of
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Figure 3. ji.q versus temperature (K) plot for [FLCu,(O)(NO)]**
determined by the solution Evans method study in acetone-dq (blue),
THF-dg (black), and DCM-d, (red).

https://doi.org/10.1021/jacs.3c04510
J. Am. Chem. Soc. 2023, 145, 17779-17785


https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04510/suppl_file/ja3c04510_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c04510?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

[MLCu,(0)(NO)]** in acetone-d4 (blue) exhibits a 4 of 1.75
(rmT = 0.44 cm® K mol™") at 233 K, consistent with an S = 1/
2 spin state (expected p.y = 1.73). However, when the
temperature is decreased to 173 K, the ["LCu,(O)(NO)]**
complex undergoes spin switching to the S = 3/2 state, as
evidenced by the observed p g of 3.87 (expected p 4 = 3.87).
Importantly, similar spin-transition behaviors were observed in
both THF-dg (black) and DCM-d, (red), suggesting that the
spin transition is not due to the coordination of solvent
molecules.

CASSCF Calculations of S = 1/2 and S = 3/2 States.
The approximately 1:1 distribution of S = 1/2 and § = 3/2
state determined by the Evans method and EPR studies
contradicts the previous density functional theory (DFT)
study by Yoshizawa and Shiota (B3LYP/6-311G**), which
suggests the S = 1/2 state is more stable than the S = 3/2 state
by 28 kcal/mol.** Accurate DFT calculation of spin-state
splitting is challenging, and the results are highly sensitive to
the nature of the functionals.”’ >° To address this issue, we
performed state-averaged CASSCF calculations on the crystal
structure of [MLCu,(O)(NO)]* using a [13e, 150] active
space (see Supporting Information for details). To account for
significant dynamical correlation in such systems, we
performed strongly contracted N-electron valence perturbation
theory (SC-NEVPT2) calculations on top of CASSCFE.*

The calculation reveals a doublet/quartet splitting of 0.16
kcal/mol with a def2-SVP basis set and 12 kcal/mol with a
def2-TZVP basis set. These doublet/quartet splitting energies
are much smaller compared to those predicted by DFT.*
However, they are still higher than the experimental values,
perhaps due to the solid-state or solution environment of the
[MLCu,(O)(NO)]** structure, zero-point vibrational effects,
and approximations in the SC-NEVPT2/SA-CASSCF method.
Analysis of the SA-CASSCF spin density for the S=1/2 and S
= 3/2 states shows that the unpaired electron is localized on
the bridging oxo ligand (Figure 4).

Synthesis of Unsymmetric Dicopper Oxo Nitrosyl
Complexes. Local magnetic and electric fields are known to
influence the relative energies of different spin states.”"**
Therefore, we hypothesize that modification of the secondary
coordination environment may shift the spin equilibria of
[RLCu,(O)(NO)J** complexes."”** To test this hypothesis,
we introduced substituents (R) with different electronic
properties at the 4-position of the catechol linker (Scheme
1) to perturb the symmetric environment of the [Cu,(O)-
(NO)]** complexes. We selected five [FLCu,(O)(NO)]*
derivatives (R = ‘Bu, F, NH, NMe,, and pyrrolidinyl
(Pyrr)) that can be isolated as pure microcrystalline materials
for magnetism and reactivity studies.

The unsymmetric ligands (*L) were synthesized and utilized
to prepare the corresponding dicopper complexes
[RLCu',(MeCN),]BArf, (BArf = tetrakis(3,5-bis-
(trifluoromethyl)phenyl)borate). 'H and *C NMR character-
ization and elemental analysis support the formation of
dicopper(LI) acetonitrile complexes. (See Supporting In-
formation.) Cyclic voltammetry of the new dicopper(LI)
complexes in MeCN with 0.1 M TBACIO, electrolyte shows
that the quasi-reversible redox couples of Cu""Cu'/Cu'Cu' are
located within a +36 mV window of the parent
[M"LCu',(MeCN),]*" complex, indicating that altering R has
minimal effects on the redox properties of the dicopper core.
This result is consistent with the weakly coordinating nature of
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Figure 4. Analysis of ["LCu,(O)(NO)]** spin density for the (A) S =
1/2 and (B) S = 3/2 states computed using SA-CASSCF (13e, 150)
with the def2-TZVP basis set. The numbers next to each orbital plot
indicate eigenvalues of spin density; arrows denote spin projection.

Scheme 1. Synthesis of Unsymmetric [*LCu,(0)(NO)]**
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the catechol linker to the Cu center (average Cu—O distance
2.757 A in [MLCu,(0)(NO)]*").*®

Treatment of [RLCu',(MeCN),]** species with four
equivalents of NO in acetone at 233 K resulted in the
formation of red [*LCu,(O)(NO)]** complexes, as evidenced
by the increase in the UV—vis features at 525 nm (& ~ 2500
M~ em™).* EPR studies demonstrated that all of the
[*LCu,(0)(NO)]* complexes coexist in S = 1/2 and S = 3/2
states. These new [*LCu,(O)(NO)]** complexes are stable at
233 K and can be isolated as microcrystalline materials from
49% to 68% yields.

An Evans method study was performed on the five
unsymmetric [FLCu,(O)(NO)]** complexes. We found that
the spin transition temperature (T} ,,) from the S = 1/2 to the
S = 3/2 spin state varies significantly based on the R group on
the catechol linker (Figure S). The data were fitted with a

https://doi.org/10.1021/jacs.3c04510
J. Am. Chem. Soc. 2023, 145, 17779-17785


https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04510/suppl_file/ja3c04510_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04510/suppl_file/ja3c04510_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04510/suppl_file/ja3c04510_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04510?fig=sch1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c04510?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

pubs.acs.org/JACS

4.5
H
t
4 . . Bu
3.5 4 hd
.
o .
=
S 340 ° ° E
e o L .
25 L o N o o
hd ] hd L]
. .
2 4 Y ¢ [ ] ° '
* . o f o e o
15 ) ® o o o o o
170 185 200 215 230

Temperature (K)

Figure S. Plots of . determined by variable-temperature Evans
method studies for [RLCu,(O)(NO)]** where R = H (black), ‘Bu
(blue), Pyrr (gray), NMe, (green), NH, (orange), and F (purple).

standard solution spin transition model (see Supporting
Information).*® The symmetric ["LCu,(O)(NO)]** has the
highest transition temperature T/, of 202 K, while the T,/
decreases to 188, 180, 177, 175, and 173 K for R = ‘Bu, Pyrr,
NMe,, NH,, and F, respectively (Table 1). This finding shows
that the distribution between the S = 1/2 and S = 3/2 isomers
is sensitive to the secondary coordination environment of the
[Cu,(O)(NO)J* core. An unsymmetric environment appears
to induce a decrease in T, regardless of whether the
substituent is electron donating or withdrawing.

HAT Reactivity of Dicopper Complexes. The
[*LCu,(0)(NO)]*" series allows us to investigate how the
spin distributions of S = 1/2 and S = 3/2 impact HAT
reactivity. Specifically, we monitored the reaction between
[*LCu,(O)(NO)]** and the hydrogen atom donor 1,4-
cyclohexadiene (Scheme 2). "H NMR analysis of the reaction
mixture of [*LCu,(O)(NO)]** and cyclohexadiene showed
that all of the [*LCu,(O)(NO)]*" complexes oxidize cyclo-
hexadiene to benzene in high yields (77—91%). Second-order
HAT rate constants (ky,r) were determined using UV—vis
spectroscopy under pseudo-first-order conditions with an
excess amount of C—H substrate at 198 K (see the Supporting
Information, Table 1).

Interestingly, the HAT rates of the [FLCu,(O)(NO)]*
complexes do not follow any trend predicted by the Hammett
parameters (Figure 6A,B). Plots of In(kysy) versus Opara OF
Opeta Show weak correlations (R* = 0.16 and 0.0016), and we
did not observe a V-shaped Hammett 7plot that would suggest a
change in the reaction mechanism.”’~*’ Previous studies by
Karlin suggested that electron-rich dicopper bis-u-oxo/peroxo
species abstract H atoms faster compared to electron-poor
ones.’° "% However, Figure 6C shows that the second-order
HAT rates do not correlate with the redox potentials of
dicopper (LI) complexes either. Surprisingly, the two most
reactive species, R = F and NH,, contain opposing electronics,
and the symmetric ["LCu,(O)(NO)]** exhibits the slowest

Scheme 2. HAT Reactivity of [Cu,(0)(NO)]** Complexes
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Figure 6. Plots of the logarithm of HAT rates by [*LCu,(O)(NO)]**
where R = H, ‘Bu, Pyrr, NMe,, NH,, and F vs (A) 6,,e0y (B) Oparas (©)
E,,, potential of dicopper(LI) precursors, and (D) the kyyp (mM™
s7!) vs the k,./(1 + Keq) at 198 K.

HAT rate. Besides Hammett parameters, we attempted to
determine the O—H BDFE values of [*LCu,(O)(NO)]*, as
they are valuable in understanding the trend of HAT rates.
However, due to the instability of [Cu,(OH)(NO)]*" species,
we could not measure the pK, value of the O—H moiety
reliably.

In considering an alternative interpretation for the trend of
the HAT rate, we hypothesize that one spin state of
[Cu,(O)(NO)J** species is more reactive toward HAT than
the other. At the temperature the HAT rates were measured
(198 K), the S = 3/2 state of [Cu,(O)(NO)]** complexes is
more stable (Figure S), and they must access the HAT-active S
= 1/2 state through a spin transition (Figure 7). Based on this
proposed mechanism, the spin population of S = 1/2 versus S
= 3/2 influences HAT rates as a pre-equilibrium step with the
following rate law expression (see Supporting Information):*”

Table 1. Characterization of the [*LCu,(0)(NO)]** Complexes

R H Pyrr
Eyj (mV) 15 17
T/ (K) 202 188
K 141 0.241
kgar (mM™' s71) 027(2) 0.35(1)
ke (mM™! s71) 3.12(1) 5.22(1)

17782

NMe, ‘Bu NH, F

S1 S0 36 49

180 177 17§ 173

0.183 0.444 0.0974 0.0540

0.40(1) 0.45(0) 0.60(1) 1.11(7)

5.66(2) 6.08(3) 6.14(1) 15.6(3)
https://doi.org/10.1021/jacs.3c04510
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Figure 7. Energy profile for the HAT reaction of [Cu,(O)(NO)]**
species with the computed KIE;¢ for S = 1/2 and S = 3/2. The
experimental KIE,,, (16.6) is consistent with § = 1/2 being the more
reactive HAT state.

kH.AT = kint/(1 + Keq) (1)
K= [Quartet/ Doublet] (2)

where ky,r is the observed second-order rate constant of
hydrogen atom transfer. K., is the equilibrium constant
between the S = 3/2 state and S = 1/2 state, and it can be
calculated with AH and AS of the spin transition at 198 K
(Table 1; see Supporting Information). ki, is the intrinsic
HAT rate on the HAT-active spin surface. An approximation
of the trend of ki, as the S = 1/2 isomer can be made by
measuring the rate of HAT at 233 K, as the populations of S =
1/2 are >95% for all [Cu,(O)(NO)]** derivatives at this
temperature. If the HAT reaction follows the mechanism
outlined in Scheme 2, then ky,p should exhibit a linear
correlation with k,./(1 + Keq) according to eq 1. Indeed, we
found a strong correlation between ky,r and 1/(1 + Keq) with
R* = 0.9881 (Figure 6D), validating the HAT mechanism
proposed in Scheme 2.

Determination of the HAT-Active Spin State via KIE.
To provide further evidence for the two-state HAT reactivity,
we set out to verify if S = 1/2 is the HAT-active state using
kinetic isotope effect (KIE) experiments. Shaik et al. showed
that DFT-computed KIE values could be used to identify the
HAT-active spin state.”> > Accordingly, we performed a KIE
study of HAT from 1,4-cyclohexadiene to ["LCu,(NO)(0)]*
in acetone at —40 °C. An experimental KIE of 16.6 was
determined using 1,4-cyclohexadiene and cyclohexadiene-dg
(Figure S46). Tunneling corrected kinetic isotope effect values
(KIEpc) were computed for both S = 1/2 and S = 3/2 states
using DFT at the UBP86/TZVP level with Grimme’s three-
body dispersion correction (D3). The calculated free energy
HAT barrier at the S = 1/2 surface is ca. 2.05 kcal/mol lower
than that of the S = 3/2 surface, consistent with the
experimental observation that S = 1/2 is the HAT-active
state (Figure 7). The KIE1¢ was then calculated using the total

rate constants according to eq 37399738
_ (k)
TC —
(*"*(D)) 3)

where ¥*k,(H) and *k,(D)>>*? are the calculated total rate
constants at the spin multiplicity (2S + 1) based on the HAT

barriers (see Supporting Information eqs S12—S16). The
resulting KIE1( at the doublet spin surface is 22.0, while that
for the quartet surface is 51.0. Therefore, the experimental KIE
of 16.6 is consistent with S = 1/2 being the more HAT-active
spin state for HAT (Figure 7).

B CONCLUSION

In summary, we reported the spin-switching behavior of
[Cu,(O)(NO)]* between S = 1/2 and S = 3/2 isomers and its
influence on the HAT reactivity. EPR and Evans method study
demonstrated that the S = 1/2 and S = 3/2 isomers are nearly
degenerate, with § = 3/2 being more stable at low
temperatures. Kinetic studies, along with tunneling-corrected
KIE calculations, suggest that [Cu,(O)(NO)]*" undergoes a
rapid spin transition from the S = 3/2 to S = 1/2 state, where
HAT occurs as the rate-limiting step. This mechanism is
reminiscent of Mayer’s report on spin-forbidden HAT from
the Co(Il) imidazoline complex to the phenoxyl radical
(RO.).39

The spin transition temperature and spin equilibrium are
sensitive to the secondary coordination environment of the
dicopper complex. Installation of a remote functional group
shifts T/, from ca. 202 K in a symmetric ligand environment
to ca. 173 K in an unsymmetric environment. Though it is
unclear how the substituents shift the spin equilibria, spin
partition clearly influences the rate of HAT in this case since
the S = 1/2 state is more reactive toward HAT than the S = 3/
2 state. Given the often unsymmetric coordination sphere of
bimetallic active sites in natural proteins, we anticipate that
similar strategies could be employed in nature to control HAT
reactions in metalloenzymes. Although the rate enhancement
of HAT in our case is modest, the additive effect of many
unsymmetric features around bimetallic sites might result in
appreciable HAT enhancements. This will be the subject of our
future studies.
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