
1

Fence: Fee-based Online Balance-aware Routing in
Payment Channel Networks

Xiaojian Wang, Student Member, IEEE, Ruozhou Yu, Senior Member, IEEE, Dejun Yang, Senior Member, IEEE,

Guoliang Xue, Fellow, IEEE, Huayue Gu, Student Member, IEEE, Zhouyu Li, Student Member, IEEE,

and Fangtong Zhou, Student Member, IEEE

AbstractÐScalability is a critical challenge for blockchain-
based cryptocurrencies. Payment channel networks (PCNs) have
emerged as a promising solution for this challenge. However,
channel balance depletion can significantly limit the capacity
and usability of a PCN. Specifically, frequent transactions that
result in unbalanced payment flows from two ends of a channel
can quickly deplete the balance on one end, thus blocking
future payments from that direction. In this paper, we propose
Fence, an online balance-aware fee setting algorithm to prevent
channel depletion and improve PCN sustainability and long-
term throughput. In our algorithm, PCN routers set transaction
fees based on the current balance and level of congestion on
each channel, in order to incentivize payment senders to utilize
paths with more balance and less congestion. Our algorithm is
guided by online competitive algorithm design, and achieves an
asymptotically tight competitive ratio with constant violation in
a unidirectional PCN. We further prove that no online algorithm
can achieve a finite competitive ratio in a general PCN. Extensive
simulations under a real-world PCN topology show that Fence
achieves high throughput and keeps network channels balanced,
compared to state-of-the-art PCN routing algorithms.

Index TermsÐBlockchain, payment channel network, routing,
online algorithm, competitive analysis

I. INTRODUCTION

Thanks to decentralization of the blockchain, cryptocurrencies

such as Bitcoin [40] can execute transactions trustlessly. How-

ever, compared to payment systems like Visa which can handle

24, 000 transactions per second (tx/s) [7], Bitcoin can only

process around 7 tx/s. This scalability issue of the blockchain

is due to the global consensus for every transaction [13].

Off-chain payment channels were proposed as a promising

solution for this challenge. With only two on-chain transac-

tions to open and close a channel respectively, two nodes can

execute many transactions without committing all transactions

to the blockchain. A Payment Channel Network (PCN) is

a network of payment channels, used to execute off-chain

payments between users without a direct channel. A real-world

example is the Bitcoin’s Lightning Network (LN), which has a

capacity of B5, 226 (or $109, 122, 968) as of January 2023 [6].

Payment routing is a key challenge in a PCN. A payment’s

success requires all channels on its payment path to have

Wang, Yu ({xwang244, ryu5}@ncsu.edu) are with North Carolina State
University, Raleigh, NC 27606, USA. Yang (djyang@mines.edu) is with
Colorado School of Mines, Golden, CO 80401, USA. Xue (xue@asu.edu)
is with Arizona State University, Tempe, AZ 85287, USA. Gu, Li, Zhou
({hgu5, zli85, fzhou}@ncsu.edu) are with North Carolina State University,
Raleigh, NC 27606, USA. This research was supported in part by NSF grants
2007083, 2008935 and 2045539.

enough balance for forwarding. Yet, the balance on one direc-

tion of a channel may deplete due to mismatched transaction

flows on both directions [52]. When depletion happens, the de-

pleted end can no longer forward payments until its balance is

replenished via opposite-direction payments. Further, senders

do not know if channels along the selected payment paths

have sufficient balance due to the balance privacy requirement

in a PCN [5]. Hence current PCNs only route payments in a

trial-and-error manner, leading to a low payment success ratio.

Existing work mostly tries to improve the success ratio in

three different ways. Balance probing [59] violates the balance

privacy of a PCN [17]; payment slicing and queueing [49]

raises payment latency, transaction fee and network overhead;

active rebalancing [32] incurs on-chain or forwarding costs.

In this paper, we explore the missed opportunity of using

transaction fees to help the network remain balanced. The

intuition is to indirectly influence the path selection strategy of

senders by dynamically adjusting the transaction fee setting of

routers in the network, thus achieving overall network balance

and increasing long-term throughput. Specifically, routers can

set transaction fees based on their channels’ congestion or im-

balance levels. Senders are incentivized to pick paths that have

lower fees and thus are less congested and more balanced. In-

spired by competitive online algorithm design, we specifically

propose an exponential fee function, such that the transaction

fee increases exponentially with the level of congestion or

imbalance on a channel. Our fee-based approach allows PCN

senders to still pick the minimum-fee path without guessing

the balance of each channel. Furthermore, our algorithm can be

implemented as a decentralized protocol without landmarks or

trusted central servers, and can be easily adjusted to protect the

balance privacy of payment channels. Existing PCN routing

algorithms mostly lack theoretical analysis and solely rely

on empirical performance evaluation, which we propose to

address through the competitive analysis framework [14].

Through theoretical analysis, we show that no online algorithm

can achieve finite competitiveness on a general bidirectional

PCN, and our algorithm can achieve an asymptotically tight

competitive ratio on a unidirectional PCN. We perform ex-

tensive and comprehensive simulation experiments based on

real-world PCN topology and transaction data. Results show

that our algorithm significantly outperforms state-of-the-art

solutions in terms of payment throughput and success ratio,

while keeping the network balanced over the long run.

Our main contributions are summarized as follows:

• We propose a novel algorithm for balance-aware, high-

2

throughput online payment routing in a PCN, which

reacts to channel congestion and imbalance with adaptive

fee setting.

• We prove that our algorithm achieves an asymptotically

tight competitive ratio in a unidirectional PCN, and show

that no online algorithm can achieve a finite competitive

ratio in a general bidirectional PCN.

• Extensive simulations show that our algorithm can im-

prove the throughput while keeping the network balanced,

compared to existing routing and fee setting approaches.

Organization. §II introduces background and related work.

§III presents our system model. §IV proposes our online

balance-aware fee setting algorithm. §V presents competitive

analysis results. §VI explains protocol design details. §VII

shows evaluation results. §VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Payment Channel Network

Cryptocurrencies like Bitcoin [40] and Ethereum [56] have put

forward an innovative permissionless paradigm based on the

blockchain technology. A global consensus protocol is used

for global participants to agree on the state of an append-only

distributed ledger, which is maintained by all the users of the

system. However, global consensus requires high time cost and

computational and storage investment because each individual

transaction needs to be confirmed by a majority of maintainers

of the network. For example, the Bitcoin blockchain can only

process about 7 transactions per second, which is several

orders of magnitude worse than the mature Visa network [7].

As a result, the blockchain-based cryptocurrencies are not

widely used for daily transactions on a large scale.

Some approaches have been put forward to address the

scalability issue. These approaches can be divided into two

tracks: on-chain scaling (Layer 1) and off-chain scaling (Layer

2). On-chain scaling like sharding [18] improves scalability

by dividing the network and the blockchain states into smaller

shards, where consensus is reached within each shard. But

sharding suffers from reduced security and additional overhead

for inter-shard communication, and existing solutions have not

sufficiently addressed these issues [28].

Another track of approach is off-chain scaling which im-

proves the transaction processing rate by moving the consensus

off-chain and requires only a small number of transactions

to be on-chain. One most promising example is the payment

channel network (PCN). A payment channel addresses the

blockchain scalability issue by consolidating many off-chain

transactions into two on-chain transactions [31]. To open a

channel, two users as channel owners publish an on-chain

transaction to deposit into a multi-signature address controlled

by them. Their deposits are then regarded as their initial

balances on the channel. To carry out a payment, both owners

of the channel agree to update the channel balance distribution

based on the payment direction and amount. An infinite num-

ber of transactions (subject to bidirectional channel balances)

can be conducted before the channel is closed and the final

balances committed to the blockchain. For example, suppose

S and D open a channel by each depositing B10 as shown in

10 1010 10

5 155 15

S D

5

Fig. 1. Off-chain payment through channel balance redistribution.

Fig. 1. If S transfers B5 to D, the balance decreases by B5
on S’s side and increases by B5 on D’s side, as approved by

both parties.

A PCN is a set of users inter-connected by payment chan-

nels [31]. When two users do not have a direct channel but

there exists a path of channels connecting them, they can send

payments to each other along the path, subject to the available

balance on all channels along the path. To ensure payment

security, a Hash Timelock Contract (HTLC) can be employed

in LN, which locks the available balance on each channel until

every channel confirms payment success or failure, or when

the timelock expires [31]. Raiden network [9] utilizes smart

contracts on Ethereum to control state changes of this process.

To incentivize owners of intermediate channels for payment

forwarding, each channel owner can charge a transaction fee

based on the transaction amount when forwarding a payment.

Since invention, PCNs have received significant attention

due to its ability to decrease latency, improve throughput and

enhance privacy of the blockchain system. For example, as

of January 2023, the Bitcoin LN already has 16, 041 nodes

and 75, 828 open channels, with a total deposit of B5, 226
($109, 122, 968) in the network [6]. To address challenges in

PCN such as limited security provision, constrained usage

scenario and functionality, and complete path reliance of

payment, various innovative PCN architectures have been

proposed. For instance, payment hub [27], state channel [38],

virtual channel [20], general channel [11], etc.

B. Routing and Rebalancing in PCNs

We first review the categorization of payment routing schemes

that focus on improving the payment success ratio. Then we

introduce limitations of existing rebalancing schemes. We also

list relevant works that control network balance through fee

adjustments, and emphasize the differences and improvements

offered by our approach compared to these existing solutions.

Payment routing’s impact on PCN throughput and success

ratio has been extensively studied [54], [60], [63]. Land-

mark routing is one promising approach in payment routing.

Landmark routing picks several landmarks network-wide, and

routes a payment via one of them [39], [43]. SpeedyMur-

murs [46] extends landmark routing and uses embedding-

based path discovery to reduce overhead and increase through-

put. Yet, landmark-based routing is vulnerable to denial-of-

service attacks due to centralization, and lacks path diversity.

Some proposed congestion control-based approaches to deal

with the imbalance problem. Spider [49] was proposed to

achieve higher throughput via payment slicing and queueing.

However, slicing and/or queuing suffer from high transaction

fees and long waiting and settlement times [13], [42]. Fur-

thermore, Atomic Multipath Payment (AMP) [2] is required

to ensure payment security, which could incur a huge overhead

on routers for keeping per-slice states. APCN [61] mitigates

channel balance depletion and enhances the success ratio

3

with per-user congestion control, relying on hardware trusted

execution environments to deter user misconduct [55].

Other routing schemes have also been explored. Bailout [24]

can re-route ongoing multi-hop payments to allow earlier

unlocking, but it does not focus on improving the payment

success ratio and incurs additional interactions and overhead.

Webflow [62] improves the payment success ratio by achieving

high resource utilization, but it needs semi-centralized web

servers for support and requires extra overhead for routers.

Some recent works focus on applying deep reinforcement

learning to schedule transactions in order to maximize the

long-term throughput [35] and deal with the channel im-

balance [15], or to dynamically generate fee setting strate-

gies [10]. However, learning-based solutions cannot satisfac-

torily learn accurate network conditions due to high dynamics

and unknown information (such as balances) in PCN.

On-chain or off-chain rebalancing has been proposed to ad-

dress balance depletion. On-chain rebalancing requires closing

and reopening the channel, which involves time-consuming

and expensive on-chain operations. Off-chain cycle-based re-

balancing tries to find routing cycles to fulfill rebalancing

requests [32]. The rebalancing process incurs transaction fees

without completing any actual payment, and may make other

channels more unbalanced. Also, it occupies balances on

involved channels during rebalancing. Hence frequent off-

chain rebalancing actually degrades throughput. Some existing

work suggests using smart contracts for rebalancing [25], [29].

However, rebalancing through smart contracts requires extra

deployment costs and interaction with the blockchain.

Most related to our work are several solutions on mitigating

network imbalance with balance-aware fees or routing metrics

[16], [19], [23], [33], [34], [45], [52]. However, they rely on

heuristic fee functions or metrics without support from a theo-

retical framework. So they may only work in restricted settings

and their efficacy can be inadequate in reality. For instance,

Merchant [52] is a balance-aware fee setting scheme with a

linear transaction fee function. OptimizedFees [19] applies a

variable fee based on payment size and channel imbalance.

FixedExpFee [45] introduces a fixed tunable parameter to

reflect channel balance status in the fee function. We evaluated

them in §VII, which performed inferiorly compared to ours.

Notably, most solutions above do not have any theoretical

analysis or guarantee. Spider [49] is the only algorithm with a

throughput-optimal guarantee in a restricted special case, but it

requires breaking down all payments into unit amounts, which

significantly modifies the current PCN architectures and incurs

severe router overhead and high transaction fees. In contrast,

our algorithm only results in minimal modification to user

software, and does not rely on slicing payments to achieve an

asymptotically tight competitive ratio in a unidirectional PCN.

III. SYSTEM MODEL

Table I summarizes notations used in our system model.

A. Network Model

We model a distributed PCN as a directed graph G=(V,E),
where V is the set of nodes, and E is the set of channels. A

directed channel is denoted as uv ∈ E with source node or

TABLE I
NOTATION TABLE OF SYSTEM MODEL

Symbol Definition

G, V,E Network topology, node set and channel set
uv, uv A direct channel from u to v, a bidirectional channel

between u and v
e′, e Opposite-direction and bidirectional channel of e
cuv Capacity of channel uv

b(T, uv) Balance of node u on channel uv at time T
R = {Ri} Set of online arriving payments

Ri =
(si, di, δi, sti, edi)

Payment i: (sender, recipient, payment amount, ar-
rival time, expected completion time)

n Maximum hop count of a valid payment path
P,Pi, Pi Set of all paths with no more than n hops, set of

paths between si and di, and subset of paths for Ri

p, lp A payment path, and the number of hops of the path
δi, δi(e) Payment allocation function over Pi and payment

amount processed along a directed channel e
T ,T Time slots and max payment duration estimation

τ(T, i), κ(T, i) Indicator of payment Ri arrival before time T and
payment Ri being active at time T

ϕe(y), φ(p, δ) Transaction fee function for amount y on channel
e, the total transaction fee of amount δ on path p

ρi, Ci,C Valuation for payment Ri, constant coefficient for
valuation ρi and the upper bound of Ci of all users

owner u. Two opposite-direction channels uv, vu∈E form a

bidirectional channel denoted as uv = vu≜ {uv, vu}, which

is an unordered set. In general, we define e′ as the opposite-

direction channel of e ∈ E, e as the bidirectional channel that

e belongs to, and E as the set of all bidirectional channels. The

capacity of uv is cuv , denoting the total deposit of both owners

at channel opening, and shared by both directed channels.

Consider uniform time slots T =(0, 1, . . . ,T). This uniform

time slot assumption is only for simplicity of illustration, and

can be trivially extended to systems without or with variable

time slots. The instantaneous balance of a channel uv∈E at

time T ∈ T is b(T, uv), denoting the available balance of

node u on channel uv. Let b(0, uv) be the initial balance

of uv upon channel opening. We call {b(T, uv), b(T, vu)}
a balance distribution of channel uv. Note that a node’s

balance may or may not include in-flight transactions that

are in processing. For clarity, we define b(T, uv) to include

all in-flight transactions on uv. Based on Fig. 1, we have

b(T, uv)+b(T, vu)=cuv at any time.

We assume that each PCN node knows the network topol-

ogy from the blockchain [31], but only knows the balances

of its own channels. This complies with real-world PCN

implementations such as the Bitcoin LN [31], where the

network topology is automatically kept by each user’s client

based on channel opening and closing transactions on the

blockchain, while the real-time balance of each channel is

private information and is not disclosed to a non-adjacent

node. A node can be a sender/recipient of payments, a router

forwarding payments for others, or both simultaneously.

B. Payment Model

LetR={R1, . . . , RK} be a set of K online arriving payments,

and define K = {1, . . . ,K}. Without loss of generality, we

assume that the payments in R are ordered based on their

arrival times. Each payment Ri ∈R is denoted by a 5-tuple:

Ri = (si, di, δi, sti, edi), where si and di are the sender and

recipient respectively, δi is the payment amount, and sti and

edi are the arrival time and expected completion time if the

payment succeeds respectively. si, di, δi, sti are known when

4

(a) Linear summation fee

(b) Convolutional fee

Fig. 2. Linear summation fee and convolutional fee setting with final payment
amount B5. ϕi(·) denotes the transaction fee function of ith hop. The total
transaction fee for the payment is denoted by φ(p, 5). The shaded part denotes
the transaction amount range that each node considers when calculating fees.

a payment is initiated, while edi can be estimated based on

sti and the average settlement time in the PCN.

Let n be the maximum hop count of a valid payment

path, and let P be the set of all paths with no more than

n hops. Pi ⊆P denotes the set of paths between si and di.
A path is defined as p ≜ (e1, e2, . . . , elp), where lp is the

number of hops of path p. Let T ≜ maxi∈K{edi − sti} be

the maximum duration estimation of one payment. We define

τ(T, i) ≜ 1sti<T to denote if the payment Ri has arrived

before time T , and κ(T, i) ≜ 1sti≤T≤edi
to denote if the

payment Ri is active at time T by estimation, where 1c is an

indicator function of condition c.

Define a transaction fee function ϕe(y)∈R
∗ for forwarding

an amount of y>0 on channel e; R∗ denotes the non-negative

real number set. Let δ be the final payment amount received by

the recipient along a path p. There are two ways for computing

the transaction fee along the entire path p in the PCN literature:

• Linear summation fee: Total transaction fee φ(p, δ) is

a linear summation of applying the fee function of each

channel on the final payment amount δ along the path:

φlin
elp

(p, δ) = ϕelp
(δ),

φel(p, δ) = ϕel(δ)+φlin
el+1

(p, δ), ∀l<lp,

φlin(p, δ) = φlin
e1(p, δ).

(1)

• Convolutional fee: The transaction fee on channel e ∈ p
is computed by applying the fee function on the sum of

the payment amount, plus the accumulative transaction

fee on all channels after e along the path:

φconv

elp
(p, δ) = ϕelp

(δ),

φel(p, δ)=ϕel(δ+φconv

el+1
(p, δ))+φconv

el+1
(p, δ), ∀l<lp,

φconv(p, δ) = φconv

e1 (p, δ). (2)

The linear summation fee has been widely used in existing

work due to simple computation of end-to-end transaction

fees [16], [19], [52]. However, in practical PCNs such as the

LN, the convolutional fee is used [5], as φe(p, δ) would be the

actual transaction amount that needs to be processed on each

channel e, not just the final payment amount δ. We show two

examples of fee settings with payment amount B5 in Fig. 2.

In linear fee setting, each hop only needs to consider the final

transaction amount in calculating the transaction that it will

charge, as shown in Fig. 2(a). Each hop in the convolutional

fee setting instead needs to consider the final transaction

amount, as well as the transaction fee of all subsequent hops,

as shown in Fig. 2(b). In practice, the first hop of the path

usually does not charge the transaction fee, in which case the

fee function can be temporarily set as ϕe1(·) = 0 for this

hop during routing. Routing based on the linear summation

fee may lead to under-estimated transaction fees and hence

frequent payment failures. We address both fee forms with a

uniform algorithm framework.

When the transaction fee of making a payment through the

PCN is too expensive, a sender will be motivated to use an

alternative method such as the blockchain itself or a traditional

payment method like credit card. In other words, each sender

has an internal valuation ρi = Ciδi for payment Ri, which

is the upper bound of the total transaction fee the sender is

willing to spend for payment amount δi, where Ci is a constant

coefficient. We assume that there is a global upper bound of

the transaction fee coefficients of all senders, denoted as C ≜

maxi∈K{Ci}. It can be computed, for example, by dividing the

average on-chain transaction fee and/or the transaction fee of

using any traditional payment method by the payment amount.

To properly formulate our payment routing problem, we first

define a routing scheme of a successful payment Ri ∈ R:

Definition 1. Given payment Ri ∈ R, a routing scheme

for Ri is defined as a tuple (Pi, δi), where Pi ⊆ Pi is a

subset of paths for Ri, and δi : Pi → R
∗ is a payment

allocation function over Pi that represents the payment amount

allocated on each path in the set Pi. We then define δi(e) ≜∑
p∈Pi:e∈p δi(p) as the payment amount processed along a

directed channel e ∈ E, and similarly δi(e) as the amount

along both directions of e ∈ E.

IV. ONLINE ROUTING DESIGN

In this section, we first motivate and formulate the balance-

aware network weighted throughput maximization problem.

We then design an exponential fee function to instruct each

router’s transaction fee policy. Following the fee setting policy,

we propose a distributed online algorithm for payment routing.

We assume that each sender can obtain the real time fee setting

policies of each router in this section and relax this assumption

in §VI. Table II lists the notations used in this section.

A. Balance-aware Weighted Throughput Maximization

In a PCN, the transaction amount a channel can forward is

limited by both its capacity and balance distribution. Capacity

limits the maximum in-flight transaction amount on both direc-

tions of a channel, while balance limits the amount that can be

forwarded along each direction. Meanwhile, capacity will be

resumed when the in-flight transactions settle, while balance

on a direction is affected by all transactions settled before a

given time, and can only be recharged mostly via opposite-

direction payments. Depletion of either resource will prevent

a payment from being forwarded. Current PCNs with static

fees and minimum-fee routing can lead to frequent depletion

of some channels, while leaving others under-utilized.

Fig. 3 gives an example of channel balance depletion and

underutilization. Suppose S is sending payments to D, and R1

and R2 are two routers that form paths S→R1→D and S→
R2→D respectively. R1 charges a lower fee than R2. In this

case, even if R2 has more balance to support payments from S
to D, S will still use S→R1→D as the default path and deplete

5

TABLE II
NOTATION TABLE OF ROUTING DESIGN

Symbol Definition

ẽ Chanel e’s synthetic channel which ignores transac-
tion fees in updates

βe, αe Balance goal and liquidity parameter of channel e
X = {xi},Φ Outcome of routing payments R w.r.t each payment

Ri’s acceptance state, the demand allocation over
all paths for each Ri

fi,e(p) Transaction amount incurred on e∈p by routing Ri

F =
(Fst, . . . , Fed)

The congestion state on a channel w.r.t. total in-
flight amount on both directions of the channel at
time T ∈ [st, ed].

λ1,e(T, i), λ2,e(i) Capacity utilization of channel e at the time when
the i-th payment arrives, the balance utilization of
channel e at the time when the i-th payment arrives

σ1,e(T, i), σ2,e(i),
σe(i)

Congestion cost at each time T for any bidirectional
e, the imbalance cost for any directed e ∈ E and
channel e’s unit cost upon a payment Ri’s arrival

F1, F2 Two conservativeness parameters of the router in
charge of fee setting

Z Global factor to match valuation and capacity usage
ϕe(δ, σe(i)) Adaptive fee function of channel e with payment

amount δ, upon Ri’s arrival

φlin

i (p, δ),
φlin

i (Pi, δi)

Total fee for sending payment amount δ along path
p and the total fee of a routing scheme (Pi, δi)
using linear fee setting

φconv

i (p, δ),
φconv

i (Pi, δi)
Total fee for sending payment amount δ along path
p and the total fee of a routing scheme (Pi, δi)
using convolutional fee setting

the channel between R1 and D, leaving the channel between

R2 and D underutilized. After depletion, channel R1 → D
cannot be used anymore due to the lack of available balance

on R1’s side, unless there are payments coming from D→R1

or some other rebalancing technique is used.
Given online arriving payments R, a PCN tries to maximize

the total amount of payments successfully settled. Motivated

by the above example, each directed channel uv has a certain

perfectly balanced state, which is the desired state of both

channel owners. For instance, a channel with both sides having

the same balance (equal to half of the channel capacity) can

be regarded as perfectly balanced, if both sides expect to send

an equal amount of transactions to each other in the long

run. For generality, we define a balance goal of a channel

uv with parameter βuv ∈ (0, 1), which defines the balance

distribution that is regarded as ªperfectly balancedº for this

channel. For instance, βuv=0.5 means the channel is perfectly

balanced when each side has half of the total channel capacity

as its balance: b(T, uv) = b(T, vu) = 0.5cuv . To simplify the

description of the problem, we let βuv+βvu=1. In practice,

it is not necessary for the two owners of the channel to

reach a consensus on the balance goal. Our approach remains

applicable without consensus. In the case of βuv+βvu < 1, the

liquidity parameter αe can be adjusted to align with the bal-

ance goals of the channel owners. In the case of βuv+βvu > 1,

our proposed fee setting scheme also guarantees that at least

one owner’s fee setting brings her closer to her desired balance

goal. The owners of each channel also have requirements

for liquidity. They have the motivation to maintain a certain

amount of ªreserved fundº on their channel for unexpected or

urgent payments of their own. We define liquidity requirement

of a channel with liquidity parameter αe ∈ [0, βe), denoting

that the owner would like to keep at least αe · ce minimum

balance on channel e at any time. The channel owner allows

full depletion if αe=0.

R1

R2

0.1

0.2

Depletion

Underutilization

S D

15 515 5

191 191

Fig. 3. Depletion and underutilization of payment channels.

Let X = {xi ∈ {0, 1} |Ri ∈R} be the outcome of routing

payments R, where xi indicates if payment Ri is accepted

or not. Let Φ= {δi(p)∈R
∗ |Ri ∈R, p∈Pi} be the demand

allocation over all paths for each Ri. Define the transaction

amount incurred on e∈p by routing Ri along path p as

fi,e(p) = δi(p) + φe(p, δi(p)). (3)

fi,e(p) is 0 when Ri is not accepted, i.e., when xi = 0. The

balance b(T, e) on channel e at time T by considering all

previously arrived payments before time T is:

b(T, e) = b(0, e)+
∑

i∈K

τ(T, i)xi

∑

p∈Pi

(fi,e′(p)−fi,e(p)) . (4)

Rather than purely optimizing long-term throughput (sum of

successful payment amounts), we instead maximize a weighted

sum, taking into account the potentially different valuation

of each sender. This generalizes the throughput maximization

problem, as throughput maximization can be formulated as

weighted throughput maximization with all valuations Ci = 1.

Definition 2. Given a PCN G and payment setR, the balance-

aware weighted throughput maximization problem can be

formulated as:

max
X,Φ

∑
i∈K

Ciδixi (5)

s.t.
∑

p∈Pi

δi(p) ≥ δixi, ∀i ∈ K; (5a)
∑

i∈K
κ(T, i)

∑
p∈Pi

(fi,e(p) + fi,e′(p)) ≤ ce,

∀T ∈ T , ∀e ∈ E; (5b)

b(T, e) ≥ αece, ∀T ∈ T , ∀e ∈ E. (5c)

Explanation: Our objective is to maximize the weighted

throughput that is the sum of valuations of all accepted

payments based on Eq. (5). To purely maximize total through-

put, one can simply assume Ci is the same for ∀Ri ∈ R.

Constraint (5a) means the total received amount of a payment

should be no less than its payment amount if it has been

served successfully. In other words, payments are either fully

accepted or fully rejected in an atomic manner. Constraint (5b)

limits the total in-flight transaction amount on each channel

by its capacity. The more saturated this constraint is, the more

ªcongestedº the channel is at a time. Constraint (5c) enforces

the liquidity requirement of each owner by ensuring that its

balance is lower bounded by αece.

B. Fee-based Online Routing

To solve the weighted throughput maximization problem in

PCN, we propose a fee-based online routing algorithm. Below,

we first outline and motivate the high-level idea of fee-based

online routing, and then propose our detailed design.

1) Online Routing based on Fee Setting: The transaction

fee was invented to incentivize PCN participants to forward

the payment and compensate for their opportunity cost, which

improves the network stability. The transaction fee of the

channel can be set freely by the channel owners in today’s

6

LN [5]. It would be beneficial if the transaction fee could

reflect the network states, such as the channel’s congestion and

available liquidity, in order to improve routing performance.

Specifically, the dynamically changing fee setting of each

node will affect the routing strategy of each payment, thereby

impacting the congestion or imbalance level of the channels

in the entire network.

Motivation: Routing design via fee setting has several advan-

tages. First, senders are assumed to employ the same routing

strategy as in the current PCN, i.e., they are incentivized to

take the minimum-cost paths. In comparison, most existing

solutions require the senders to follow specific (non-cost-

efficient) routing strategies, such as using K minimum-cost

or non-minimum-cost paths, contradicting the users’ default

behaviors. Second, routing via fee setting requires minimal

changes to routing algorithms of senders, and modification to

router behaviors is only limited to fee setting with minimal

overhead. Moreover, it requires no central coordination, as

every router is able to set its transaction fee function inde-

pendently based on local observations.

2) Solution Overview: Since the PCN does not know future

payments before they arrive, finding the optimal strategy for

maximizing long-term weighted throughput is difficult. Our

idea is to manipulate transaction fees to motivate payment

routing that leads to long-term network balancedness and

reduces congestion. Picking a low-fee path should correspond

to using channels with less congestion and imbalance. If a

path has a fee higher than what a sender is willing to spend,

it should indicate that the path likely has insufficient balance

or is severely congested.

To achieve this goal, we need an adaptive fee setting policy

that reflects the channel status for congestion and balance.

Below, we define two desired properties of such a policy.

Consider a payment R = (s, d, δ, st, ed) arrives at a channel

e. We define the level of congestion that R faces on a

channel during the entire period [st, ed] as the congestion state,

denoted by F = (Fst, Fst+1, . . . , Fed) where each FT denotes

the total in-flight amount on both directions of channel e at

time T ∈ [st, ed]. When comparing two congestion states F

and F̂ , we say that F ≻ F̂ iff FT ≥ F̂T for ∀T ∈ [st, ed],
and there exists T ∈ [st, ed] such that FT > F̂T .

Definition 3. Consider two congestion states F , F̂ and the

same balance distribution on channel e, in which a payment

is charged with two transaction fees ϕe, ϕ̂e respectively. Then,

the fee policy is decongestion-incentive if

F ≻ F̂ ⇒ ϕe > ϕ̂e. (6)

Informally, an owner should charge a higher fee when the

in-flight amount on both directions of the channel is higher.

Definition 4. Consider a payment that can go through either

direction of a bidirectional channel (e or e′) when it arrives.

With the same congestion state on e, consider two balance

distributions {be, be′} and {b̂e, b̂e′}, under which the fees

charged by e and e′ are {ϕe, ϕe′} and {ϕ̂e, ϕ̂e′} respectively.

Then, the fee policy is balance-incentive if

be ≤ b̂e ⇒ ϕe ≥ ϕ̂e, (7)

be/βe ≤ be′/βe′ ⇒ ϕe ≥ ϕe′ , (8)

ᵋ

β

α

ᵋ

β

α ᵋ

β

α

ᵋ

β

α

ᵋ

β

α

ᵋ

β

α

ᵋ

β

α

ᵋ

β

α

ᵋ

β

α

ᵋ

β

α

ᵋ
β

α

R1

R2

10 10

15 5

0.5

ᵋ

0.3

5 15

DS

In-flight

Txs
R3R3

Balance goal βe

Liquidity
requirement αe

b1 b2

Node

Fee

Channel

Node

Fee

Channel

Fig. 4. An example of fee-based routing. There are 3 paths between sender
S and recipient D: path p1 = (S→R1 →D), path p2 = (S→R2 →D),
and path p3 = (S→R3→D). The sender will choose path p2 because the
channel from R2 to D charges a lower fee ε than others.

and additionally, only a negligible fraction of balance distri-

butions would result in strict equalities in both (7) and (8).

Informally, a balance-incentive fee policy satisfies that: 1)

a higher fee is charged when an owner has a lower balance

on its side, and 2) the owner with a balance lower than the

balance goal βece charges a higher fee than the other owner.

Definitions 3 and 4 will be utilized in Lemma 1 to demonstrate

how our designed adaptive fee function achieves these two

properties.

Fig. 4 shows the intuition of the fee-based routing. Assume

all channels have a capacity of B20, and the balance goal is

βe=0.5. There are three paths p1, p2 and p3 from sender S
to recipient D. For p1, since the channel from R1 to D is

unbalanced with R1 having balance lower than its goal, a new

payment through it will exacerbate its imbalance. So R1 would

set a high fee (B0.5). For p3, there are ongoing transactions

on this channel even though this channel is currently in a

balanced state. So R3 would set a high fee (B0.3) to alleviate

possible congestion. For p2, because R2 to D is unbalanced

with R2’s side having more balance, R2 can set a low fee

(e.g., a minimal fee Bε for R2) to attract payments from R2

to D. S will choose the minimum-fee path p2, which will

avoid aggravating the imbalance and congestion on p1 and p3
respectively, and help the channel R2→D be more balanced.

3) Fee Design: Inspired by the online algorithm framework

in [12], we design an exponential fee function to instruct

routing in a PCN. Different from in traditional networks,

online routing in a PCN has two unique challenges. First, the

fee and the payment amount itself share the channel balance

and capacity, and both need to be considered in the online

framework. Second, besides occupying the capacity on each

channel which will resume after the payment completes, a

successful payment will impact the channel balance even after

the payment is completed, continuously affecting all future

payments. The fees need to reflect this long-lasting influence.

To measure the temporary capacity congestion and long-

term (im)balance of a channel, we define two utilization ratios

at the time when the i-th payment in R arrives:

λ1,e(T, i) ≜
∑

j<i
κ(T, j)xj

δj(e)

ce
, ∀T ∈ T , ∀e ∈ E; (9)

λ2,e(i) ≜
βece − b∗(sti, e)

(βe − αe)ce
, ∀e ∈ E, (10)

where b∗(T, e) ≜ b(0, e) +
∑

i∈K τ(T, i)xi(δi(e
′)− δi(e)).

λ1,e(T, i) is the capacity utilization w.r.t. constraint (5b),

which measures the level of congestion based on payments that

are active at time T . λ2,e(i) is the balance utilization w.r.t. con-

straint (5c), which measures the level of imbalance w.r.t. the

7

balance goal βece, based on the current balance that depends

on all payments before sti. In the definition of λ2,e(i), the

numerator defines how much the current balance b∗(sti, e) is

short from the balance goal βece, and the denominator defines

the total balance budget as the balance goal βece minus the

minimum balance requirement αece. Clearly λ1,e(T, i)∈ [0, 1],
while λ2,e(i) ≤ 1 and can be a negative value, meaning the

channel’s balance is exceeding the balance goal.

Our fee function is based on the utilization ratios. Recall

that n is the maximum hop count of a payment. We define a

congestion cost σ1,e(T, i) at each time T for any bidirectional

e ∈ E (Eq. (11)) and an imbalance cost σ2,e(i) for any

directed e ∈ E (Eq. (12)) upon payment Ri’s arrival:

σ1,e(T, i) ≜ Zce(µ
λ1,e(T,i)
1 − 1), (11)

σ2,e(i)≜

{
Z(βe−αe)ce(µ

λ2,e(i)
2 −1), if λ2,e(i)≥0,

0, if λ2,e(i)<0,
(12)

where µ1 = 2(nTF1 + 1) and µ2 = 2(nF2 + 1), F1 and F2

are two conservativeness parameters of the router in charge

of fee setting, and Z is a global factor to match the valuation

and the usage of capacity, in other words, a basis rate for

congestion- or imbalance-incurred costs. We discuss how to

set these parameters in Sec. VI. Note that λ1,e(T, i) and

σ1,e(T, i) are shared by both directions of e ∈ E. Both

cost functions are exponential with respect to their respective

utilizations. As the congestion or imbalance level of channel e
increases, congestion cost or imbalance cost rapidly escalates.

This constrains the passage of transactions exacerbating this

situation, pushing transactions to utilize other channels with

lower congestion and imbalance. The coefficients of the cost

functions indicate the extent to which the usage of capacity

affects their respective costs. When the capacity utilization is

0, the congestion cost is 0; when the balance utilization is 0,

the imbalance cost is 0. Based on these costs, we define the

channel unit cost upon a payment Ri’s arrival as:

σe(i) ≜
∑edi

T=sti

σ1,e(T, i)

ce
+

σ2,e(i)

(βe − αe)ce
, ∀e ∈ E. (13)

Based on Eq. (13), we propose the following adaptive fee

function of channel e with payment amount δ, upon Ri’s

arrival, taking the instantaneous cost of the channel as input:

ϕe(δ, σe(i)) ≜ σe(i) · δ. (14)

Considering the linear summation fee defined in Eq. (1), the

fee for sending payment amount δ along path p is:

φlin

i (p, δ) ≜
∑

e∈p
ϕe(δ, σe(i)), (15)

and the total fee of a routing scheme (Pi, δi) is φlin

i (Pi, δi)≜∑
p∈Pi

φlin

i (p, δi(p)). Eq. (15) comes from the definition in

Eq. (1). Similarly, define the fees under the convolutional

fee for sending payment δ along p and for a routing scheme

(Pi, δi), as φconv

i (p, δ) and φconv

i (Pi, δi) respectively, by using

the definition in Eq. (2) with Eq. (14).

Lemma 1 rigorously proves that our proposed fee function

is designed to assign higher fees in the presence of increased

channel congestion and greater imbalance, and vice versa.

Consider a synthetic channel ẽ which has the same capacity

and initial balance as e, but the channel updates only consider

the payment amounts without transaction fees, i.e., the in-flight

amount is Fẽ =
∑

j<i κ(T, j)δj(e)xj at time T upon Ri’s

arrival, and the balance is bẽ = b∗(sti, e).

Lemma 1. The fee function defined by Eq. (14) is

decongestion-incentive and balance-incentive on channel ẽ.

Proof. As the capacity utilization in Eq. (9) increases with the

total in-flight payment amount, the congestion cost σ1,ẽ(T, i)
is increasing. Hence when channel balances are fixed, the fee

function ϕẽ(δ, σẽ(i)) is decongestion-incentive.

When λ2,ẽ(i) < 0, according to Eq. (12), we have im-

balance cost σ2,ẽ(i) = 0. When λ2,ẽ(i) ≥ 0, the imbalance

cost σ2,ẽ(i) strictly increases with decreasing b∗(sti, ẽ). Hence

Eq. (7) holds given the same congestion state.

For Eq. (8), if b∗(sti, ẽ)/βẽ ≤ b∗(sti, ẽ
′)/βẽ′ , we have

b∗(sti, ẽ) ≤ βẽcẽ and b∗(sti, ẽ
′) ≥ βẽ′cẽ. Then according to

Eq. (10), we have λ2,ẽ(i) ≥ 0 and λ2,ẽ′(i) ≤ 0. So we have

λ2,ẽ(i) ≥ λ2,ẽ′(i) and hence Eq. (8) holds given the same

congestion state. Both equalities hold only when the channel

ẽ is perfect balanced. The lemma follows.

We note that channels e and ẽ differ only by the transaction

fee of each payment. This may make the fee function ϕe(·)
slightly violate the incentive properties on channel e. However,

the violation is bounded by a factor of (1+C) because of the

maximum transaction fee bound C, which can be very small

in practice (e.g., ≤ 0.015%), as we further discuss in Sec. VI.

4) Online Routing Algorithm Design: We propose a scal-

able distributed online fee setting and routing algorithm in

Algorithm 1.

Sender’s algorithm is in Lines 1±5. Upon a payment’s

arrival, the sender finds a minimum-fee path based on either

the linear or convolutional fee, e.g., using Dijkstra’s algorithm

or its variant. The sender then checks if the transaction fee

of the path for its full payment is lower than its valuation. If

the transaction fee is higher, the sender will choose not to use

the PCN for this payment, but instead use alternative means

for payment such as the blockchain itself. If it happens that

the transaction fee of PCN is higher than the blockchain, it

means the network is undergoing significant congestion and

imbalance where almost no payment may succeed, in which

case using the blockchain can actually be a better option for the

user. Otherwise, the sender will attempt to send the payment

along the minimum-fee path.

Each router’s algorithm is in Lines 6±13. Lines 6±7 initialize

the utilizations and fee functions. When a router forwards a

payment, it updates channels’ capacity and balance utilizations

used by this payment, and sets the fee function accordingly.

Remark: Algorithm 1 routes each payment along a single

path, despite that the routing problem (Program 5) and our

fee function in Eq. (15) both consider possible multi-path pay-

ments with demand allocation. The consideration of multi-path

payments are for compatibility with existing PCN protocols,

and/or users and routers who do not follow our algorithm for

routing. As we show later, single-path payments are sufficient

for achieving a non-trivial competitive ratio under a special

circumstance, and show good performance in simulations.

V. ONLINE ROUTING ALGORITHM ANALYSIS

Our online routing algorithm is theoretically analyzed in

this section utilizing the competitive analysis framework.

8

Algorithm 1: Online Routing with Fee Functions

/* Sender algorithm */

Input: Network G, payment Ri, function φ∈{φlin

i , φconv

i }
Output: Decision xi, routing path p if xi = 1

1 Find min-fee path p∗ ← argminp∈Pi
{φ(p, δi)};

2 if p∗ ̸= ∅ and φ(p∗, δi) ≤ Ciδi then

3 δi(p
∗)← δi;

4 return Send Ri (xi = 1) along path p = p∗.

5 else return Reject (xi = 0).

/* Router algorithm */

Input: Bidirectional channel uv
Output: Channel fee announcements

6 Initialize λT,uv(0, 1), λ2,e(1) for ∀e ∈ uv according to

Eqs. (9) and (10)

7 Nodes u, v set and broadcast ϕe(·) for ∀e ∈ uv based

on Eqs. (11)±(14)

8 while payment Ri arrives along e ∈ uv do

9 for ∀T ∈ [sti, edi] do

10 λ1,uv(T, i+ 1)← λ1,uv(T, i) +
δi
cuv

11 λ2,e(i+ 1)← λ2,e(i) +
δi

(βe−αe)ce

12 λ2,e′(i+ 1)← λ2,e′(i)−
δi

(βe′−αe′)ce

13 Nodes u, v set and broadcast ϕe(·) for ∀e ∈ uv.

Competitive analysis has been widely used in analyzing the

performance of online algorithms, for example, in resource

allocation [53], online routing [30], scheduling [48], edge

computing [37], etc. Competitive analysis assesses an online

algorithm’s performance with no complete future knowledge,

by comparing it to an optimal offline algorithm that can antic-

ipate all the requests in advance. Competitive ratio indicates

the worst-case performance of the online algorithm [14].

Definition 5. An online algorithm is (a, b)-competitive (a, b ≥
1) if given any sequence of online arriving payments R, it

achieves at least 1/a of the optimal weighted throughput, while

ensuring that Eqs. (5b) and (5c) are violated by at most a

factor of b.

We first show that our algorithm achieves an asymptotically

tight competitive ratio with a constant violation in a special

case, i.e., when the network consists of only unidirectional

channels. Note that none of the existing works mentioned in

Sec. II-B provided any theoretical guarantee even in this spe-

cial case. Then we prove a negative result for the competitive

ratio of any online algorithm in the general bidirectional PCN

setting to highlight the difficulty of the problem.

A. Competitive Analysis in a Unidirectional PCN

In this subsection, we analyze the performance of our algo-

rithm in a special case, where the PCN consists of only unidi-

rectional channels. In this case, rebalancing through opposite-

direction transactions is impossible. We analyze the competi-

tive ratio of unidirectional PCN to guide our algorithm design

and provide the theoretical guarantee. This is meaningful

given the absence of such guarantees even in a unidirectional

PCN from existing works. This analysis provides invaluable

insights into the design of effective and efficient algorithms

for optimizing network balance, given that the real-world

depletion issues are most commonly caused by temporary

unidirectional transaction flows on bidirectional channels.

In the case of a unidirectional channel, the channel’s initial

balance is always equal to its full capacity, and is monotoni-

cally decreasing with ongoing transactions due to the inability

to rebalance. The competitive ratio analysis under PCN takes

into account both instant capacity and long-term balance

limitations. Specifically, the analysis considers the specific

challenge in PCN where the total transaction amount settled

before a time t affects the balances of the bidirectional channel

for all times after t. This distinguishes the analysis from

traditional network routing, where bandwidth consumption

is only temporary and has no long-term impact beyond a

traffic flow’s duration. Let pi be the payment path chosen by

our routing algorithm for payment Ri with δi(pi) = δi. To

facilitate our analysis, we make two assumptions on ∀Ri ∈ R:

Assumption 1. ZnT ≤ Ci ≤ ZnTF1 + ZnF2.

Assumption 2. δi ≤ min
{

mine∈E{ce}
log2 µ1

, mine∈E{(βe−αe)ce}
log2 µ2

}
.

Recall that Z is a basis rate factor to match the valuation

and the usage of capacity, Ci is the constant coefficient for

valuation of payment Ri, F1 and F2 are conservativeness pa-

rameters of the router w.r.t fee setting, and µ1 = 2(nTF1+1)
and µ2 = 2(nF2 + 1). In short, Assumption 1 bounds the

range of each sender’s valuation, such that any single sender

cannot have a valuation that is too high or too low compared

to others. Assumption 2 upper bounds each payment’s amount,

i.e., the payment amount of each payment cannot be too large

to easily saturate the channel. Note that we allow the total

payment amount of all users to significantly exceed the total

capacity of the network, and our algorithm still outperforms

state-of-the-art algorithms, as shown in the evaluation.

Remark on assumptions: We make these two assumptions to

facilitate our theoretical analysis. For the algorithm to work

in reality, these assumptions do not need to hold strictly.

Notably, these assumptions provide guidelines for setting core

parameters in our algorithm. These parameters can further be

fine-tuned during the actual operation by each router to better

reflect the network condition. In evaluation, we show results

where these assumptions do not hold while our algorithm

still achieves superior performance compared to state-of-the-

art algorithms. In Sec. VI, we will thoroughly discuss how to

set parameters based on guidelines from these assumptions.

In the following, we divide our analysis into three parts:

capacity and balance constraint violation, total weighted

throughput bounds, and competitive ratio. We first present

capacity and balance constraint violation in Lemmas 2 and

3, and then present total weighted throughput bounds in Lem-

mas 4 and 5. Finally, we wrap up all analysis into Theorems 1

and 2 showing the asymptotically tight competitive ratio of our

algorithm. Detailed proofs of these results are in Appendix IX.

1) Capacity and balance constraint violation: In the fol-

lowing, let A denote the set of payments that senders decide

to send based on Algorithm 1. We have Lemma 2 which

shows that the total payment amount (without fees) accepted

by our algorithm will not exceed either the capacity or the

balance constraint, despite the fact that the sender makes

routing decision without any knowledge about the balance or

9

capacity of each channel, but only the fee.

Lemma 2. For ∀e ∈ E and ∀T ∈ T , two inequalities hold:∑
i∈A κ(T, i)δi ≤ ce, and

∑
i∈A τ(T, i)δi ≤ (βe − αe)ce.

Lemma 2 shows that if the balance or capacity constraint

of a channel is violated by accepting a payment, the payment

sender’s valuation must be strictly less than the transaction

fee on this channel. This contradicts with our online routing

algorithm, as the sender would then not choose to send the

payment because of the high fee. Based on Lemma 2, we next

show that each balance or capacity constraint can be violated

by up to a constant factor in our algorithm.

Lemma 3. The transaction amount handled on a channel can

violate constraint (5b) or (5c) by at most a factor of (1+C).

Lemma 3 proves the maximum violation of capacity or

balance constraint for our algorithm by showing that the

transaction amount is also bounded since the transaction fee

is bounded by the valuation.

2) Total weighted throughput bounds: In the following,

we further prove the total weighted throughput achieved by

our algorithm is within a poly-logarithmic factor of the total

weighted throughput of an optimal offline algorithm that

knows all the future payments in advance. The following proof

consists of four pieces: Lemma 4 gives a lower bound on our

algorithm’s total weighted throughput, and Lemma 5 gives an

upper bound of the offline optimal algorithm’s total weighted

throughput. Combining all the results of Lemmas 3−5, The-

orem 1 gives the competitive ratio of our algorithm and

Theorem 2 shows the competitive ratio is asymptotically tight.

Let k be the index of the last payment in A, and Γi
e =∑

T∈T σ1,e(T, i)+σ2,e(i) be the total cost of using up all

the resources on e. Lemma 4 proves a lower bound on our

algorithm’s total weighted throughput, by the final costs in

the network after accepting all payments in A.

Lemma 4. 2 log2(µ1µ2)
∑

i∈A ρj≥
∑

e∈E Γk+1
e . (16)

Through induction and showing that the changes in both

congestion cost and imbalance cost of two adjacent payments

are bounded by the total weighted throughput, we get the lower

bound of the total weighted throughput. Below, Lemma 5

proves a total weighted throughput upper bound that an offline

optimal algorithm can achieve, by the same costs in Lemma 4.

Lemma 5. Let A∗ be the set of payments accepted by an

optimal offline algorithm, and let Q = A∗ \ A be the set of

payments served by the offline algorithm but not by our online

algorithm. Then it satisfies that
∑

i∈Q ρi ≤
∑

e∈E Γk+1
e .

For the payments that are accepted by the offline algorithm

but not accepted by the online algorithm, their valuations are

bounded by the path costs. Because the costs in unidirectional

PCN increase monotonically and the offline algorithm balance

utilization cannot exceed 1, the total weighted throughput of

the optimal offline algorithm is also bounded.

3) Competitive ratio: Based on Lemmas 3-5, we get the

competitive ratio of our algorithm.

Theorem 1. Algorithm 1 is a (O(log nT), 1+C)-competitive

algorithm for the weighted throughput maximization problem

in Program (5).

Further in Theorem 2, we show that this competitive ratio

is in fact asymptotically tight.

Theorem 2. In a unidirectional PCN, any online algorithm

has competitive ratio of Ω(log n).

Theorem 2 shows that for any online algorithm, we can

always design a special payment sequence that dividing the

payments that passed through multiple intermediate nodes

at the previous time into multiple payments with the same

weighted throughput between multiple intermediate nodes.

So that the weighted throughput of the offline algorithm is

Ω(log n) times that of the online algorithm in a unidirectional

PCN. This is because that the offline algorithm can consider

all possible future payment sequences to select the optimal

strategy, whereas the online algorithm cannot.

B. Infinite Competitive Ratio in a General PCN

For the general bidirectional PCN, the problem becomes

increasingly hard. Theorem 3 states that without making any

assumption, there is no online algorithm that can achieve a

finite competitive ratio in a general bidirectional PCN.

Theorem 3. Given any online algorithm A, and an arbitrarily

large a > 0, there exists a sequence of payments R, such that

the competitive ratio of the algorithm A on R is at least a.

VI. DISCUSSIONS ON PROTOCOL DESIGN

This section discusses how to set algorithm parameters and ex-

plains the motivation behind a router following our algorithm

for fee setting and how to address the capacity violation. This

section also gives potential solutions for balance privacy.

Parameter setting. While our theoretical analysis assumes

global knowledge such as all senders’ valuations and future

payment amounts, in practice, the parameters αe, βe, F1, F2,

C, Z and T can be independently decided by each router based

on its own preferences and historical observations.

Specifically, balance goal parameter βe can be negotiated

by channel owners upon opening. The liquidity requirement

αe is set based on a channel owner’s preference. C and Z

relate to the willingness of senders to pay via the PCN. Each

router stores all payments it receives. While valuations {Ci}
are senders’ private information, an empirical upper bound of

each Ci is to divide the current on-chain transaction fee by the

payment amount δi. Indeed, if the off-chain fee exceeds the

on-chain fee, senders may be encouraged to make on-chain

payments instead. C and Z can then be empirically estimated,

the latter based on the left-hand side of Assumption 1. T can

be estimated based on recent successful payments by a router.

Parameters F1 and F2 are two conservativeness parameters

set by each router. The right-hand side of Assumption 1 gives a

baseline for setting the values of F1 and F2 based on estimated

valuations. Based on it, their values can be scaled up or down.

The higher value F1 or F2 has, the more the channel owner

believes that congestion or imbalance will aggravate in the

future, and that a higher fee should be applied in accordance.

These values can be adaptive to how busy the PCN is based

on demand estimations, which is a future work for us.

Fee announcement. In practice, each channel owner can

estimate the average fee for the next estimated period of T,

based on changes in the levels of congestion and imbalance

in the recent past. A window-based method can be used to

update and announce the fee based on a minimum window.

10

The fee updates can be broadcast to all senders via distributed

protocols such as link-state announcements (LSAs) [41] or dis-

tance vector protocols [44]. Alternatively, centralized services

can be used to provide up-to-date fee information, similar to

the directory servers in Tor [8].

Router motivation and capacity violation handling. We

observe that current payment services such as Visa charges

around 2.5% of the payment amount as fees [7]. Instead,

the current LN proportional transaction fee has a median

of 0.015%, two orders of magnitude lower than the tradi-

tional service. Hence having a transaction fee upper bound

of C = 0.015% or slightly higher in our algorithm does

not remove any of the cost-efficiency benefit of PCN, but

is able to result in greatly improved payment success ratio

and throughput, as shown in our evaluations. In practice,

the fee can be set either smaller or larger, as long as it is

defined as an exponential function of the channel utilization

in terms of both imbalance and congestion. For simplicity, a

router can simply set its parameters to make sure the average

fee it charges is approximately the same as its current fee

without our mechanism, based on estimated network con-

gestion/imbalance. The low transaction fee upper bound also

implies that the balance/capacity violation factor (1 + C) is

almost negligible, and can be easily handled by leaving an

additional C·ce margin on each channel. Our fee function may

result in a zero fee when a channel has enough balance and

is idle. To cover up routers’ costs, a small base fee can be set

(as in the current LN) on top of the exponential fee function.

In real PCN, the fee policies of all channels are known to all

of the nodes based on standard fee announcement scheme [5].

As a new technology, the growth of the user base for LN de-

pends on the long-term liquidity and success of payments [57].

As a rational router, rather than solely focusing on maximizing

its own income, it is motivated to maintain good liquidity in its

channels in order to make the network more sustainable and

attract more users. It also wants to maintain a high success

ratio for payments, so that others will trust its service and use

it as a intermediate node [36]. Therefore, in addition to just

earning a maximum award in a short amount of time before

channel depletion, it is important for a channel to consider

its reputation and maintain liquidity. Additionally, in Sec. VII,

we conducted a study on the behavior of routers when they

followed the fee setting function versus when they intention-

ally set lower fees to attract more users and increase their

own income. The results showed that when a small fraction of

routers acted dishonestly, the selfish behavior harmed selfish

routers’ income instead of benefiting them, while having a

negligible impact on the overall network throughput.

We note that despite some proposals for zero fees in LN,

the current LN still utilizes transaction fee as an important

incentive for users to participate as intermediate routers [6].

Balance privacy. Since the fee is related to the balance

distribution of a channel, an attacker may violate the balance

privacy by observing real-time fee changes. We design a

privacy-preserving version of our algorithm to protect the

balance changes on channels. Specifically, we allow channel

owners to announce updated fees every k payments instead

of after every single payment. By aggregating the effects

of k payments on the channel balance, an attacker cannot

infer the exact channel balance difference corresponding to

each on-going transaction. We refer to this scheme as the

k-private fee setting scheme, which is an extension of the

well-known k-anonymity privacy guarantee [21], [22], [26],

[50] to PCN balance privacy. We evaluate the performance of

this privacy-preserving version of our algorithm in Sec. VII

in addition to our original algorithm. We note that this is

likely not the optimal nor the only method for providing

privacy preservation, but just serves as an example of the

compatibility of our algorithm with more complex privacy

preservation techniques. More complex technique can be based

on differential privacy [51] by applying a small random

perturbation to the fee functions, for instance. Other types of

privacy such as sender-recipient privacy can be realized by

existing techniques [46] and hence are omitted in this paper.

VII. PERFORMANCE EVALUATION

A. Experiment Settings

We extended the OMNET++ simulator in [49] for evaluation.

The implementation used the C++ programming language.

The CPU of the experimental machine was Intel(R) Xeon(R)

Gold 5317 CPU @ 3.00GHz with 64-bit operating system and

256GB running memory. Our implementation is available as

open source on GitHub [4].

1) Topology: We extracted a core network with 128 nodes

and 897 edges from a real LN topology snapshot on Oct. 5,

2020 [49]. We kept the largest connected component consisting

of the top 0.4% channels in terms of capacity with both nodes

having degrees larger than 2. Each channel took 30ms (one

time slot) to process and forward a payment. We converted the

channel capacities from Satoshis to C to match the payment

dataset described below. After prepossessing, the minimum

and mean capacities were C4776 and C6285, respectively.

2) Payment workloads: The payment amounts were ran-

domly chosen from a preprocessed real-world credit card

dataset [3] with mean C7.43, median C5.97, and maximum

C22. Payments arrived following a Poisson distribution. Due

to privacy concerns, there is no realistic dataset on transactions

happening on the LN or other PCNs. To realistically reflect

real-world transaction scenarios, we generated a workload

as follows. The workload consisted of two types of sender-

recipient pairs in the network: those who frequently transacting

with each other (the frequently trading source-destination

pairs, such as cryptocurrency exchanges or large companies)

and those who infrequently made transactions (such as normal

users) and were truly randomly selected as source-destination

pairs. In particular, the frequently transacting pairs were

randomly selected during initialization and remained fixed

throughout the workload. Transactions between frequently

transacting nodes were periodically generated to simulate

exchanges or companies transacting with each other in regular

cycles. Each frequently transacting pair swapped their roles

(sender or receiver) every 25, 000 transactions. We designed

this workload to reflect real-world transactions, such as regular

transactions between cryptocurrency exchanges or financial

institutions, which could have a significantly higher volume

11

than between individual users. To model such a workload, we

applied the Pareto principle [47] by designating 20% of nodes

as frequently transacting pairs, responsible for 80% of total

transactions in the network. The rest 20% transactions were

between randomly selected normal user pairs.
3) Privacy preservation and selfishness: As discussed in

Sec. VI, we also evaluated the performance of Fence with

k-private fee setting. Each router only announced its latest

fee per k transactions, and we let the routers each have

asynchronous announcement cycles (by having each router

start from a random initial transaction counter towards k).

We denote this privacy-preserving version of our algorithm

as Fence+. In addition, considering that some nodes may

not follow our fee setting scheme and may selfishly set low

fees to attract users in an attempt to gain higher income,

we introduced two parameters: selfish node ratio and selfish

fee ratio. The selfish node ratio indicates how many routers

in the network are selfish. Following the assumption of the

blockchain, we assume that the majority of nodes in PCN are

honest. Therefore, we set the selfish node ratio to be less than

or equal to 0.5. The selfish fee ratio is the factor by which

these selfish routers set their fees, compared to the original

fee that they should have set by using our fee setting scheme.

4) Comparison algorithms: We evaluated Fence and

Fence+ by comparing to seven different routing algorithms:

• One Shortest Path: This is the default routing algorithm

in LN [5], which finds the shortest path by hop count

using the Dijkstra’s algorithm to send a payment.

• K Shortest Path: This baseline underlies many state-of-

the-art PCN routing algorithms, such as Eclair [1] and

Flash [54], which use Yen’s algorithm [58] to find K
paths with fewest hops between sender and recipient, and

randomly chooses one of them for a payment.

• Landmark Routing: As used in several state-of-the-

art PCN routing schemes [39], [46], landmark routing

chooses K maximum-degree nodes as landmarks. It then

routes each payment via the minimum hop count path

through one of the landmarks.

• Spider Routing [49]: Spider is one of the state-of-the-

art routing schemes that employs congestion control to

regulate the payment rate along K edge-disjoint widest

paths. To avoid the long waiting time and high overhead

for payment slicing and queueing, we chose a non-slicing,

queue-less version of Spider for fair comparison.

• Merchant [52]: Merchant is a recently proposed balance-

aware fee setting scheme, whose high-level idea is similar

to ours, but with a heuristic linear transaction fee function

and without theoretical analysis. For a given balance point

of a channel, if an incoming payment brings the channel

closer to the balance point, then no fee is charged. If an

incoming payment pushes the channel further away from

the balance point, the fee on this channel is proportional

to the distance that the payment pushes from the balance

point, where the distance is measured as the absolute

difference between the current channel balance and the

balance point, divided by the channel capacity and then

multiplied by a constant coefficient. The payments are

sent along the path with minimum fee.

• OptimizedFees [19]: OptimizedFees is a fee policy that

applies a fixed fee plus a variable part which depends on

the size of the payment and the imbalance status of the

channel. The variable part has two slopes: the low slope

slow is applied to payments that decrease the imbalance

of the channel, and the high slope shigh is applied to

payments that increase the imbalance of the channel. The

imbalance is measured as the absolute difference between

the balances on both sides of the channel.

• FixedExpFee [45]: FixedExpFee is a fee policy that

depends on the unidirectional balance of a payment

channel. It introduces a fixed tunable parameter a as the

exponent of the balance in the fee function to reflect the

balance status of the channel, where the reciprocal of the

balance raised to the power of a is used as the coefficient

of the proportional fee.

5) Simulator parameters: According to Sec. VI, we set

βe = 0.5, αe = 0.1, n = 10, T = 20 (time slots), F1 = 1,

F2 = 1. To realistically set the fees and valuations, we

obtained the fee policy of all channels in the preprocessed LN

topology [49], and used the median 0.00015 as our C. This

ensures that the fee policy in our simulation does not deviate

significantly from the current transaction fees in the LN, and

our fees are significantly lower than on-chain or traditional

payment methods. Then we set Z = C/(nT) = 7.5 × 10−7

to match the valuation and the usage of capacity according to

Assumption 1 in Sec. V-A. For each channel, we assumed that

the initial balance was b(0, e) = 0.5ce. For k-private Fence+,

we set k to 100. Both the selfish node ratio and the selfish

fee ratio were set to 0.1 by default. For algorithms involving

finding K paths, we set K = 4. For Merchant, the balance

point was set to 0.5 and the constant coefficient was set to 1.

For OptimizedFees, the fixed fee was 1 Satoshi, slow = 0.01,

and slow = 0.03. For FixedExpFee, the tunable parameter a
was set to 0.5. Each simulation ran for 2, 000, 000 payments,

at a default arrival rate of 100 payments per second. We ran

each setting for 5 times with different seeds to average-out

random noise.

We used the following performance metrics for evaluation.

Payment success ratio denotes the number of successful

payments over the total number of payments. Throughput

success ratio denotes the successful amount over total amount

arrived in the network. Network imbalance is defined as the

sum of normalized balance difference on two sides of each

channel to measure the level of imbalance in the network.

Income ratio is defined as the ratio between the income

received by a node when engaging in selfish behavior and the

income when behaving honestly, which measures the impact

of the selfish behavior on routers’ income.

B. Evaluation Results

Fig. 5 shows the payment and throughput success ratios with

different arrival rates under scenarios without and with selfish

nodes. Specifically, because the misbehavior of selfish nodes

only affects schemes based on fee settings, for the sake of

clarity and readability, we only presented the results of Fence,

Fence+, Merchant, FixedExpFee, and OptimizedFees in the

12

100 300 500 700 900
Workload rate (tx/s)

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 su

cc
. r

at
io

(a) Without selfish

Fence
Fence+
Merchant

Landmark Routing
K Shortest Path
One Shortest Path

Spider Routing
OptimizedFees
FixedExpFee

100 300 500 700 900
Workload rate (tx/s)

(b) With selfish
Fig. 5. Throughput success ratios vs. workload arrival rates.

1 100 200 300 400
Transaction number (×5000)

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 su

cc
. r

at
io

(a) Throughput success ratio

Fence
Fence+
Merchant

Landmark Routing
K Shortest Path
One Shortest Path

Spider Routing
OptimizedFees
FixedExpFee

1 100 200 300 400
Transaction number (×5000)

0
50

100
150
200
250
300
350

Ne
tw

or
k

im
ba

la
nc

e

(b) Network imbalance
Fig. 6. Throughput success ratio and network imbalance over time.

scenario with selfish nodes, where 10% of the nodes intention-

ally set their fees to one-tenth of the original value to attract

more users and attempt to increase their own income, as shown

in Fig. 5(b). As shown in Fig. 5, Fence and Fence+ achieved

better throughput either with or without selfish behaviors. Due

to the privacy preservation consideration, Fence+ performed

less effectively than Fence. This indicates a trade-off between

the utility and security of the proposed fee setting scheme. The

success ratios of FixedExpFee and Merchant decreased with

higher arrival rates because these two mechanisms were more

affected by changes in channel fees, leading to insufficient

fees for forwarding. Comparing Fig. 5(a) with Fig. 5(b),

except for OptimizedFees, all fee-based schemes experienced a

decrease in the throughput success ratio when there were mis-

behaving nodes. The success ratio of OptimizedFees remained

unchanged compared to the scenario without selfishness. This

is because even without selfish behaviors, OptimizedFees only

had limited ability to maintain low network imbalance and

improve payment throughput, as shown in Fig. 6. As a result,

the selfish behaviors had limited impact on its performance.

Fence+ was more sensitive to selfishness compared to Fence.

This is because Fence+ takes into consideration the privacy

and performs periodic, non-real-time announcements of fees.

The misbehavior of certain nodes further hampered the ability

of fees to accurately reflect the current state of the channels,

leading to a decrease in the throughput success ratio. Payment

success ratio results were similar to those of throughput

success ratio, as shown in Fig. 7.

Fig. 6 shows the changes in throughput success ratio and

network imbalance over time in one simulation run. The fee-

based schemes (Fence, Fence+, Merchant, OptimizedFees,

FixedExpFee) had increasing throughput success ratios over

time, while other algorithms (except Spider Routing) generally

had decreasing throughput success ratios. This is because in

100 300 500 700 900
Workload rate (tx/s)

0.2

0.4

0.6

0.8

1.0

Pa
ym

en
t s

uc
c.

 ra
tio

(a) Without selfish

Fence
Fence+
Merchant

Landmark Routing
K Shortest Path
One Shortest Path

Spider Routing
OptimizedFees
FixedExpFee

100 300 500 700 900
Workload rate (tx/s)

(b) With selfish
Fig. 7. Payment success ratios vs. workload arrival rates.

0 0.1 0.2 0.3 0.4 0.5
Selfish node ratio

0.0

0.2

0.4

0.6

In
co

m
e

ra
tio

Income ratio Error bar Payment success ratio

0.97

0.98

0.99

1.00

Pa
ym

en
t s

uc
c.

 ra
tio

(a) Varying selfish node ratio

0 10 110 210 310 410 5

Selfish fee ratio
0.0

0.2

0.4

0.6

In
co

m
e

ra
tio

0.84

0.88

0.92

0.96

1.00

Pa
ym

en
t s

uc
c.

 ra
tio

(b) Varying selfish fee ratio
Fig. 8. Payment success ratio and income ratio under different selfish node
ratio and selfish fee ratio.

the balance-aware fee-based schemes, payments that might

cause channel imbalance could be rejected in the early stage.

Other algorithms blindly accepted payments whenever there

was available balance, leading to high success ratios at the be-

ginning. Over time, the fee based schemes ensured most chan-

nels were relatively balanced, leading to increased throughput

success ratios. The other algorithms suffered from high imbal-

ance on critical channels, which led to degrading success ratios

over time. Overall, Fence and Fence+ kept a low and stable

level of imbalance during the experiment. Fence+ was less

effective than Fence in maintaining network balance due to

the asynchronous fee update frequency, leading to imbalances

in some channels. However, the overall network imbalance

remained relatively low and stable, and the throughput success

ratio was higher than others. OptimizedFees, FixedExpFee and

Merchant kept a comparable or slightly lower level of network

imbalance as Fence, but with a lower throughput success ratio.

This suggested that these algorithms can lead to some channels

being very unbalanced while other channels idle or under-

utilized. One Shortest Path and Spider Routing had both low

throughput success ratio and high network imbalance. For

Spider Routing, congestion control without slicing led to too

many payments being rejected, and hence a low success ratio

was observed.

Fig. 8 illustrates how the selfish node ratio and selfish fee

ratio affect the payment success ratio and the average income

ratio among selfish nodes. In Fig. 8(a), we can observe that

as the selfish node ratio increased, the payment success ratio

showed a slightly decreasing. This is because the presence

of selfish nodes led to channels with low fees being quickly

depleted, preventing more payments from being successful.

Nevertheless, Fig. 8(a) also shows that as the selfish node ratio

increased, the selfish nodes’ income ratio actually decreased.

This means that selfish nodes received lower average income

compared to the income when they honestly. In Fig. 8(b), we

13

100 102 104 106 10810101012

Conservativeness param. F1

0.94

0.95

0.96

0.97

Pa
ym

en
t s

uc
c.

 ra
tio

(a) Varying F1

0.05 0.8 1.6 2.4 3.2 4 4.8
Conservativeness param. F2

0.964
0.966
0.968
0.970
0.972
0.974

Pa
ym

en
t s

uc
c.

 ra
tio

(b) Varying F2

10 2 100 102 104 106

Factor (×7.5 × 10 7)

0.2
0.4
0.6
0.8
1.0

Pa
ym

en
t s

uc
c.

 ra
tio

(c) Varying

0.0001 0.025 0.05 0.075 0.1
Maximum valuation

0.960

0.965

0.970
Pa

ym
en

t s
uc

c.
 ra

tio

(d) Varying
Fig. 9. Payment success ratio under different F1, F2, C and Z.

can observe that some nodes intentionally setting very low

fees led to decrease in payment success ratio, but the selfish

behavior of these nodes did not bring them more income as

the average income ratio of the selfish nodes decreased. Hence

we conclude that in real-world scenarios where routers have

incomplete knowledge of the behaviors of other nodes, they

are incentivized to follow our fee-setting algorithm to achieve

a high income on expectation.
Fig. 9 shows how changes in the conservativeness parame-

ters F1 and F2, the valuation upper bound C and the global

factor Z (for matching valuation and capacity usage) affect

the payment success ratio of Fence. In Fig. 9(a) and (b), we

can observe a similar trade-off for F1 and F2. In Fig. 9(a),

a workload rate of 1000 was used to illustrate changes in

the congestion conservative factor F1 in a more congested

network. A higher F1 (F2) meant the routers were more

conservative on keeping the channel less congested (more

balance) by rejecting payments, which lowered the long-term

throughput of the PCN. In Figs. 9(c) and (d), higher valuation

led to more violations of the balance constraints, lowering

the overall success ratio of Fence. As Z exceeded 7.5×10−7

and increased at a rate of 10 times, the success ratio decreased

significantly. This is because when Z exceeded the point of

C/(nT), the network experienced ªinflationº where the same

valuation can utilize fewer capacity resources than before. This

caused the network to become overly conservative and resulted

in a large number of payments being rejected.

VIII. CONCLUSION

This paper focused on using dynamic balance-aware transac-

tion fees to influence the path selection of users and in turn

achieve network balance and improve throughput in a PCN.

We proposed an exponential fee setting function for incentiviz-

ing users to utilize payment paths with less congestion and

more balance. Our algorithm design was backed by rigorous

theoretical analysis. We proved that no online algorithm can

achieve a finite competitive ratio in a general PCN, and that

our algorithm achieves an asymptotically tight competitive

ratio in a unidirectional PCN. We then discussed how our

algorithm can be turned into a fully distributed protocol with

proper parameter setting, fee update and privacy preservation.

Extensive simulations showed that our algorithm can keep a

PCN balanced and achieve a high throughput, compared to

state-of-the-art PCN routing algorithms.

REFERENCES

[1] ªACINQ/eclair: A Scala Implementation of the Lightning Network,º
accessed 2023-01-19. [Online]. Available: https://github.com/ACINQ/
eclair

[2] ªAtomic Multi-path Payments (AMP),º accessed 2023-01-19. [Online].
Available: https://docs.lightning.engineering/lightning-network- tools/
lnd/amp

[3] ªCredit Card Fraud Detection,º accessed 2023-01-19. [Online].
Available: https://www.kaggle.com/mlg-ulb/creditcardfraud

[4] ªImplementation of Fence.º accessed 2023-05-30. [Online]. Available:
https://github.com/xiaojian-wang/Fence

[5] ªLightning Network In-Progress Specifications,º accessed 2023-01-19.
[Online]. Available: https://github.com/lightning/bolts

[6] ªReal-Time Lightning Network Statistics,º accessed 2023-01-19.
[Online]. Available: https://1ml.com/statistics

[7] ªThe Visa System: Rates, Fees and Rules,º accessed 2023-01-
19. [Online]. Available: https://usa.visa.com/support/small-business/
regulations-fees.html

[8] ªTor Project,º accessed 2023-01-19. [Online]. Available: https:
//www.torproject.org/

[9] ªRaiden Network.º accessed 2023-05-10. [Online]. Available: https:
//raiden-network.readthedocs.io/en/stable/onboarding.html#the-raiden-
protocol

[10] K. Asgari, A. A. Mohammadian, and M. Tefagh, ªDyFEn: Agent-
Based Fee Setting in Payment Channel Networks,º arXiv preprint

arXiv:2210.08197, 2022.
[11] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. HostÂakovÂa, M. Maffei,

P. Moreno-Sanchez, and S. Riahi, ªGeneralized Channels From Limited
Blockchain Scripts and Adaptor Signatures,º in International Conference

on the Theory and Application of Cryptology and Information Security,
2021, pp. 635±664.

[12] B. Awerbuch, Y. Azar, and S. Plotkin, ªThroughput-Competitive On-
Line Routing,º in IEEE FOCS, 1993, pp. 32±40.

[13] Q. Bai, Y. Xu, and X. Wang, ªUnderstanding the Benefit of Being Patient
in Payment Channel Networks,º IEEE Transactions on Network Science

and Engineering, vol. 9, no. 3, pp. 1895±1908, 2022.
[14] A. Borodin and R. El-Yaniv, Online Computation and Competitive

Analysis. Cambridge University Press, 2005.
[15] W. Chen, X. Qiu, Z. Hong, Z. Zheng, H.-N. Dai, and J. Zhang, ªProac-

tive Look-ahead Control of Transaction Flows for High-throughput
Payment Channel Network,º in ACM SoCC, 2022, pp. 429±444.

[16] Y. Chen, Y. Ran, J. Zhou, J. Zhang, and X. Gong, ªMPCN-RP: A
Routing Protocol for Blockchain-based Multi-Charge Payment Channel
Networks,º IEEE Transactions on Network and Service Management,
2021.

[17] G. v. Dam, R. A. Kadir, P. N. Nohuddin, and H. B. Zaman, ªImprove-
ments of the Balance Discovery Attack on Lightning Network Payment
Channels,º in IFIP SEC, 2020, pp. 313±323.

[18] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
ªTowards Scaling Blockchain Systems via Sharding,º in ACM SIGMOD,
2019, pp. 123±140.

[19] G. Di Stasi, S. Avallone, R. Canonico, and G. Ventre, ªRouting Payments
on the Lightning Network,º in IEEE IThings and GreenCom and

CPSCom and SmartData, 2018, pp. 1161±1170.
[20] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. HostÂakovÂa, ªMulti-

party Virtual State Channels,º in Springer EUROCRYPT, 2019, pp. 625±
656.

[21] K. El Emam and F. K. Dankar, ªProtecting privacy using k-anonymity,º
Journal of the American Medical Informatics Association, vol. 15, no. 5,
pp. 627±637, 2008.

[22] K. El Emam, F. K. Dankar, R. Issa, E. Jonker, D. Amyot, E. Cogo,
J.-P. Corriveau, M. Walker, S. Chowdhury, R. Vaillancourt et al., ªA
globally optimal k-anonymity method for the de-identification of health
data,º Journal of the American Medical Informatics Association, vol. 16,
no. 5, pp. 670±682, 2009.

[23] F. Engelmann, H. Kopp, F. Kargl, F. Glaser, and C. Weinhardt, ªTowards
an economic analysis of routing in payment channel networks,º in
Proceedings of the 1st workshop on scalable and resilient infrastructures

for distributed ledgers, 2017, pp. 1±6.
[24] O. Ersoy, P. Moreno-Sanchez, and S. Roos, ªGet Me Out of This

Payment! Bailout: An HTLC Re-routing Protocol,º Cryptology ePrint

Archive, 2022.

14

[25] Z. Ge, Y. Zhang, Y. Long, and D. Gu, ªShaduf: Non-Cycle Payment
Channel Rebalancing,º in ISOC NDSS, 2022.

[26] B. Gedik and L. Liu, ªProtecting location privacy with personalized k-
anonymity: Architecture and algorithms,º IEEE Transactions on Mobile

Computing, vol. 7, no. 1, pp. 1±18, 2007.

[27] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
ªTumblebit: An Untrusted Bitcoin-compatible Anonymous Payment
Hub,º in ISOC NDSS, 2017.

[28] Z. Hong, S. Guo, P. Li, and W. Chen, ªPyramid: A Layered Sharding
Blockchain System,º in IEEE INFOCOM, 2021, pp. 1±10.

[29] Z. Hong, S. Guo, R. Zhang, P. Li, Y. Zhan, and W. Chen, ªCycle:
Sustainable Off-chain Payment Channel Network with Asynchronous
Rebalancing,º in IEEE/IFIP DSN, 2022, pp. 41±53.

[30] P. Jaillet and M. R. Wagner, ªGeneralized Online Routing: New Com-
petitive Ratios, Resource Augmentation, and Asymptotic Analyses,º
Operations research, vol. 56, no. 3, pp. 745±757, 2008.

[31] P. Joseph and T. Dryja, ªThe Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments,º 2016, accessed 2022-08-01. [Online].
Available: https://lightning.network/lightning-network-paper.pdf

[32] R. Khalil and A. Gervais, ªRevive: Rebalancing Off-blockchain Payment
Networks,º in ACM CCS, 2017, pp. 439±453.

[33] S. Lin, J. Zhang, and W. Wu, ªFSTR: Funds Skewness Aware Transac-
tion Routing for Payment Channel Networks,º in IEEE/IFIP DSN, 2020,
pp. 464±475.

[34] Y. Liu, Y. Wu, F. Zhao, and Y. Ren, ªBalanced off-chain payment
channel network routing strategy based on weight calculation,º The

Computer Journal, p. bxad029, 2023.

[35] X. Luo and P. Li, ªLearning-Based Off-Chain Transaction Scheduling
in Prioritized Payment Channel Networks,º IEEE Journal on Selected

Areas in Communications, vol. 40, no. 12, pp. 3589±3599, 2022.

[36] P. McCorry, M. MÈoser, S. F. Shahandasti, and F. Hao, ªTowards Bitcoin
Payment Networks,º in Springer ACISP, 2016.

[37] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, ªDedas: Online
Task Dispatching and Scheduling with Bandwidth Constraint in Edge
Computing,º in IEEE INFOCOM, 2019, pp. 2287±2295.

[38] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, ªSprites
and State Channels: Payment Networks That Go Faster Than Lightning,º
in Springer FC, 2019, pp. 508±526.

[39] P. Moreno-Sanchez, A. Kate, and M. Maffei, ªSilentwhispers: Enforcing
Security and Privacy in Decentralized Credit Networks,º in ISOC NDSS,
2017.

[40] S. Nakamoto, ªBitcoin: A Peer-to-Peer Electronic Cash System,º 2008,
accessed 2022-08-01. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[41] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah, ªFast
Local Rerouting for Handling Transient Link Failures,º IEEE/ACM

Transactions on Networking, vol. 15, no. 2, pp. 359±372, 2007.

[42] N. Papadis and L. Tassiulas, ªPayment Channel Networks: Single-Hop
Scheduling for Throughput Maximization,º in IEEE INFOCOM, 2022,
pp. 900±909.

[43] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun,
ªFlare: An Approach to Routing in Lightning Network,º White Paper,
p. 144, 2016.

[44] C. Qian and S. S. Lam, ªGreedy Distance Vector Routing,º in IEEE

ICDCS, 2011, pp. 857±868.

[45] A. H. J. Ren, L. Feng, S. A. Cheong, and R. S. M. Goh, ªOptimal fee
structure for efficient lightning networks,º in IEEE 24th ICPADS, 2018,
pp. 980±985.

[46] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, ªSettling
Payments Fast and Private: Efficient Decentralized Routing for Path-
based Transactions,º in ISOC NDSS, 2018.

[47] R. Sanders, ªThe pareto principle: Its use and abuse,º Journal of Services

Marketing, vol. 1, no. 2, pp. 37±40, 1987.

[48] H. Shi and L. Chen, ªFrom Spectrum Bonding to Contiguous-resource
Batching Task Scheduling,º IEEE/ACM Transactions on Networking,
2022.

[49] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang,
R. Mittal, G. Fanti, and M. Alizadeh, ªHigh Throughput Cryptocurrency
Routing in Payment Channel Networks,º in USENIX NSDI, 2020, pp.
777±796.

[50] L. Sweeney, ªk-anonymity: A model for protecting privacy,º Interna-

tional journal of uncertainty, fuzziness and knowledge-based systems,
vol. 10, no. 05, pp. 557±570, 2002.

[51] G. van Dam and R. A. Kadir, ªHiding Payments in Lightning Network
with Approximate Differentially Private Payment Channels,º Computers

& Security, vol. 115, p. 102623, 2022.

[52] Y. Van Engelshoven and S. Roos, ªThe Merchant: Avoiding Payment
Channel Depletion Through Incentives,º in IEEE DAPPS, 2021, pp. 59±
68.

[53] G. I. Vineet Goyal and R. Udwani, ªAsymptotically Optimal Compet-
itive Ratio for Online Allocation of Reusable Resources,º in Springer

WINE, 2021, p. 543.
[54] P. Wang, H. Xu, X. Jin, and T. Wang, ªFlash: Efficient Dynamic Routing

for Offchain Networks,º in ACM CoNEXT, 2019, pp. 370±381.
[55] Q. Wang, Y. Zhang, Z. Bao, W. Shi, H. Lei, H. Liu, and B. Chen,

ªSorTEE: Service-Oriented Routing for Payment Channel Networks
with Scalability and Privacy Protection,º IEEE Transactions on Network

and Service Management, 2022.
[56] G. Wood et al., ªEthereum: A Secure Decentralised Generalised Trans-

action Ledger,º Ethereum project yellow paper, vol. 151, no. 2014, pp.
1±32, 2014.

[57] H. Xue, Q. Huang, and Y. Bao, ªEPA-Route: Routing Payment Channel
Network with High Success Rate and Low Payment Fees,º in IEEE

ICDCS, 2021, pp. 227±237.
[58] J. Y. Yen, ªFinding the K Shortest Loopless Paths in a Network,º

management Science, vol. 17, no. 11, pp. 712±716, 1971.
[59] R. Yu, G. Xue, V. T. Kilari, D. Yang, and J. Tang, ªCoinExpress: A Fast

Payment Routing Mechanism in Blockchain-based Payment Channel
Networks,º in IEEE ICCCN, 2018, pp. 1±9.

[60] J. Zhang, Y. Ye, W. Wu, and X. Luo, ªBoros: Secure and Efficient Off-
Blockchain Transactions via Payment Channel Hub,º IEEE Transactions

on Dependable and Secure Computing, 2021.
[61] X. Zhang and C. Qian, ªTowards Aggregated Payment Channel Net-

works,º in IEEE ICNP, 2022, pp. 1±11.
[62] X. Zhang, S. Shi, and C. Qian, ªWebFlow: Scalable and Decentralized

Routing for Payment Channel Networks with High Resource Utiliza-
tion,º arXiv preprint arXiv:2109.11665, 2021.

[63] Y. Zhang and D. Yang, ªRobustPay+: Robust Payment Routing with
Approximation Guarantee in Blockchain-based Payment Channel Net-
works,º IEEE/ACM Transactions on Networking, vol. 29, no. 4, pp.
1676±1686, 2021.

IX. APPENDIX

This section shows the proof of Lemmas 2−5 and Theo-

rems 1−3. Notations used in this section are listed in Table III.

Proof of Lemma 2
Proof. We prove by contradiction. Assume a channel e has

balance constraint violated for the first time after payment Ri

is sent by the sender. This means that the balance utilization

λ2,e(i + 1) > 1. According to the balance utilization update

policy in Algorithm 1, we have λ2,e(i)>1−δi/((βe−αe)ce).
According to Assumption 2, we have

λ2,e(i) > 1− 1/log2 µ2. (17)

Inserting Eq. (17) into Eq. (12), we can get an inequality

about imbalance cost

σ2,e(T, i)>Z(βe−αe)ce(µ
1− 1

log2 µ2
2 −1)=Z(βe−αe)cenF2.

Similarly, if the capacity constraint at T is violated, we can

get an inequality about congestion cost

σ1,e(T, i) > ZcenTF1.

Let σunit
1,e (T, i) =

σ1,e(T,i)
Zce

and σunit
2,e (i) =

σ2,e(i)
Z(βe−αe)ce

.

Consider only one time slot and only one channel’s cost:

Zσunit

1,e (T, i) + Zσunit

2,e (i) > ZnTF1 + ZnF2.
According to Assumption 1, we have:

ρi = Ciδi ≤ ZnTF1δi + ZnF2δi < φlin

i (pi, δi) ≤ φconv

i (pi, δi).
The last inequality above is because, by definition, for the

same payment amount on the same path, the convolutional

fee is always no less than the linear summation fee given the

same fee function ϕe(·) on any channel e. With either linear

or convolutional fees, this contradicts with the condition for

the sender to send a payment in Line 2 of Algorithm 1.

15

TABLE III
NOTATION TABLE OF APPENDIX

Symbol Definition

A,A∗ Accepted payments set of Algorithm 1 and the
optimal offline algorithm

k The index of the last payment in A
σunit

1,e (T, i), σ
unit

2,e (i) Unit congestion and imbalance cost

Γi
e The total cost of using up all the resources on e

Πi The increase in network-wide cost caused by an
accepted payment Ri

∆1,e(T),∆2,e The difference in congestion and imbalance cost
between two adjacent payments

Q The set of payments served by the offline algo-
rithm but not by Algorithm 1

P ∗

i The path set that offline algorithm serves Ri ∈ Q
E∗

i The channel set used by the offline algorithm
δ∗i (e) The contribution of payment Ri to the channel e

ponli The minimum-fee path for Ri when Algorithm 1
tries to serve Ri

Rτ All payments arriving at time T =τ
ξτ , η Weighted throughput obtained by an online al-

gorithm from payments in Rτ , its cumulative
weighted throughput until time τ

Sτ The amortized weighted throughput of the algo-
rithm until T = τ

Proof of Lemma 3
Proof. Following definition of the valuation in payment

model III-B, the total transaction fee of a forwarded payment

Ri is bounded by C·δi. This means that the transaction amount

on a channel e, which is the payment amount plus the transac-

tion fee incurred on e and any channel after e along the path,

is bounded by (1 + C)δi, i.e., fi,e(pi) ≤ (1 + C)δi, ∀i ∈ A.

For constraint (5b), we have
∑

i∈A κ(T, i)δi ≤ ce according

to Lemma 2. Therefore, we have∑
i∈A

κ(T, i)fi,e(pi)≤
∑

i∈A
κ(T, i)(1 + C)δi≤ce(1 + C).

Constraint (5c) follows a similar proof.

Proof of Lemma 4
Proof. We prove by induction on k. Before the first transaction

comes (k = 0), since the unidirectional channel’s initial

balance is equal to its capacity, we have b(0, e) = ce, and

hence Eq. (16) is true.

Let Πi =
∑

T∈T

∑
e∈p(σ1,e(T, i + 1) − σ1,e(T, i)) +∑

e∈p(σ2,e(i+1)−σ2,e(i)) be the increase in network-wide

cost caused by an accepted payment Ri. To prove Eq. (16),

we first show that Πi ≤ 2ρi(log2 µ1 + log2 µ2), ∀Ri ∈ A.

For ease of expression, we define ∆1,e(T) ≜

Zceµ
λ1,e(T,i)
1

(
2

δi
ce

log2 µ1 − 1
)

. Based on Eq. (11), we

have σ1,e(T, i + 1) − σ1,e(T, i) = ∆1,e(T) which is the

difference in congestion cost between two adjacent payments.

Similarly, ∆2,e ≜ Z(βe − αe)ceµ
λ2,e(i)
2

(
2

δi log2 µ2
(βe−αe)ce −1

)
.

Given that the imbalance cost is defined with two conditions,

we must consider the various cases that may arise when ad-

jacent payments are in different segments. Based on Eq. (12),

when λ2,e(i), λ2,e(i+1) ≥ 0, we have σ2,e(i+1)−σ2,e(i) =
∆2,e; when λ2,e(i) < 0, we have σ2,e(i+1)−σ2,e(i) < ∆2,e.

Therefore, we always have

σ1,e(T, i+ 1)− σ1,e(T, i) = ∆1,e(T), and

σ2,e(i+ 1)− σ2,e(i) ≤ ∆2,e (18)

According to Assumption 2, the fact that 2x − 1 ≤ x for

0 ≤ x ≤ 1, and the definition of σ1,e(T, i), we have
∑

T∈T

∑

e∈pi

∆1,e(T)≤ log2 µ1

∑

e∈pi

∑

T∈T

Zδi

(
σunit

1,e (T, i) + 1
)
.

Based on Line 2 in Algorithm 1 and Assumption 1, under

linear summation fee, we have Z
∑

e∈pi

∑
T∈T σunit

1,e (T, i)δi ≤

φlin

i (pi, δi)≤ρi and Z
∑

T∈T

∑
e∈p δi≤ZnTδi≤Ciδi=ρi.∑

T∈T

∑
e∈pi

∆1,e(T) ≤ 2ρi log2 µ1. (19)

Under convolutional fee, Eq. (19) still holds, as the convolu-

tional fee (and ρi) is no less than the linear summation fee.

Following the same derivation as above, we have∑
e∈pi

∆2,e ≤ 2ρi log2 µ2. (20)

Combining Eqs. (18)±(20), Eq. (16) holds.

Proof of Lemma 5
Proof. Suppose the offline algorithm uses path set P ∗

i to serve

payment Ri ∈ Q. The contribution of this payment to the

channel e ∈ E∗
i is δ∗i (e) =

∑
p∈P∗

i :e∈p δ
∗
i (p), where E∗

i is

the channel set used by the offline algorithm. We note that

for the payments that are served by offline algorithm, their

contribution to the channel is also constrained by (5b) and

(5c).

Suppose ponli is the minimum-fee path for Ri when Algo-

rithm 1 tries to serve Ri. Since this payment is not served by

the online algorithm, we know φlin

i (ponli , δi) > ρi according to

Line 2 of Algorithm 1, and thus
∑

i∈Q

ρi <
∑

i∈Q

∑

e∈ponl

i

δiΓ
i
e

(βe − αe)ce
≤

∑

i∈Q

∑

p∈P∗

i

∑

e∈p

δ
∗
i (p)Γ

i
e

(βe − αe)ce

≤
∑

e∈E∗

i

Γk+1
e

∑

i∈Q

δ∗i (e)

(βe − αe)ce
≤

∑

e∈E

Γk+1
e .

The first inequality is due to definition of the fee functions.

The second inequality is because ponli is the minimum-fee path

for Ri. The third inequality is because the costs monotonically

increase in a unidirectional PCN. The fourth inequality is due

to the offline balance utilization being bounded by 1.

Proof of Theorem 1
Proof. The optimal offline profit is less than or equal to∑

i∈Q ρi +
∑

i∈A ρi. Based on Lemmas 4 and 5, we have
∑

i∈Q
ρi +

∑
i∈A

ρi ≤ (2 log2 µ1µ2 + 1)
∑

i∈A
ρi.

So the competitive ratio of Algorithm 1 is a=(2 log2 µ1µ2+
1). Based on Lemma 3, Algorithm 1 is (O(log nT), 1+C)-
competitive in this unidirectional graph special case.

Proof of Theorem 2
Proof. We construct an example graph on which any online

algorithm has competitive ratio of Ω(log n). Consider a line

graph with nodes V = {v1, . . . , vn+1} and channels E =
{(v1, v2), (v2, v3), . . . , (vn, vn+1)}, where b(0, e) = βece = 1
and αe = 0 for all channels. Assume n is a power of 2.

Assume each payment takes unit time to complete, and has

equal payment amount of 1/ log2 n (asymptotically satisfying

Assumption 2) and unit valuation (Ci = 1). At time T =0,

there are log2 n payments arriving, each from v1 to vn. At

T =1, there are two groups each consisting of log2 n payments

arriving; the first group is from v1 to vn/2, and the second

group is from vn/2+1 to vn. At T = τ , there are 2τ groups

each with log2 n payments arriving, and all group-j payments

are from node vjn/2τ to v(j+1)n/2τ . All groups of payments

arriving at each time T saturate all channels, while the number

16

of payments arriving at time T is twice of that at time T−1.

Let Rτ be all payments arriving at time T =τ .

Let ξτ be weighted throughput obtained by an online

algorithm from payments in Rτ , and let η =
∑

κ≤τ ξκ be

its cumulative weighted throughput until time T = τ . At

time T = τ , it takes 2−τn balance to achieve unit weighted

throughput. The total balance budget of the network is n.

Hence the cumulative balance up to time T = log2 n satisfies

that
∑log2 n

τ=0 2−τnξτ ≤ n. Define Sτ = η/2τ as the amortized

weighted throughput of the algorithm until T = τ . We have∑log2 n
τ=0 Sτ =

∑log2 n
τ=0 2−τ

∑τ
κ=0 ξκ ≤

∑log2 n
τ=0 2 · 2−τ ξτ ≤ 2.

Taking the average, we have at least one τ ≤ log2 n satisfying

Sτ ≤ 2/ log2 n. The online algorithm accumulates at most∑τ
κ=0 ξκ = Sτ · 2

τ ≤ 2τ+1/ log2 n weighted throughput until

time T = τ . Meanwhile, an offline algorithm can simply

accept all payments in Rτ , reject all others, and obtain 2τ

weighted throughput.

Proof of Theorem 3
Proof. We construct an example graph on which any online

algorithm has a infinite competitive ratio. Consider a network

with a single bidirectional channel between nodes v0 and v1
with a capacity of c. Initially, b(0, v0v1) = 0.5c + ϵ, and

b(0, v1v0) = 0.5c − ϵ, where ϵ > 0 can be arbitrarily small.

Without loss of generality, consider αe = 0. At T = 0, a

payment from v0 to v1 with amount ϵ arrives. If A rejects

it, since this could be the only payment in R and an offline

algorithm can accept it, the competitive ratio is infinity. If A

accepts it, then we assume that at each time T = 1, 2, . . . , a

payment with amount 0.5c+ϵ arrives, in alternating directions

between v0 and v1, starting from v0 to v1 initially. Clearly

A cannot accept any of these payments due to insufficient

balance on either side. An offline algorithm, by rejecting the

first payment at T = 0, can accept all subsequent payments,

since two consecutive payments simply cancel out each other.

If R contains ⌈ a·ϵ
0.5c+ϵ⌉+1 payments as above, the competitive

ratio of A is at least a. The theorem follows.

Xiaojian Wang (Student Member 2021) received
her B.E. degree from Taiyuan University of Technol-
ogy, China, in 2017 and received her M.S. degree in
Computer Science from University of West Florida,
FL, USA and Taiyuan University of Technology,
China, in 2020. She is now a Ph.D. student in
the department of Computer Science, College of
Engineering at North Carolina State University. Her
research interests include payment channel network,
security, blockchain, edge computing and so on.

Ruozhou Yu (Student Member 2013, Member 2019,
Senior Member 2021) is an Assistant Professor of
Computer Science at North Carolina State Uni-
versity, USA. He received his PhD degree (2019)
in Computer Science from Arizona State Univer-
sity, USA. His research interests include internet-
of-things, cloud/edge computing, smart networking,
algorithms and optimization, distributed machine
learning, security and privacy, blockchain, and quan-
tum networking. He has served or is serving on the
organizing committees of IEEE INFOCOM 2022-

2023 and IEEE IPCCC 2020-2023, as a TPC Track Chair for IEEE ICCCN
2023, and as members of the technical committee of IEEE INFOCOM 2020-
2024 and ACM Mobihoc 2023. He is a recipient of the NSF CAREER Award
in 2021.

Dejun Yang (Senior Member, IEEE) received the
B.S. degree in computer science from Peking Uni-
versity, Beijing, China, and the Ph.D. degree in
computer science from Arizona State University,
Tempe, AZ, USA.
He is currently an Associate Professor of Computer
Science with the Colorado School of Mines, Golden,
CO, USA. His research interests include the Inter-
net of Things, networking, and mobile sensing and
computing with a focus on the application of game
theory, optimization, algorithm design, and machine

learning to resource allocation, security, and privacy problems.
Prof. Yang has received the IEEE Communications Society William R.
Bennett Prize in 2019. He has served as the TPC Vice-Chair for Information
Systems for IEEE International Conference on Computer Communications
(INFOCOM). He currently serves an Associate Editor for the IEEE Trans-
actions on Mobile Computing, IEEE Transactions on Network Science and
Engineering, and IEEE Internet of Things Journal.

Guoliang Xue (Member 1996, Senior Member
1999, Fellow 2011) is a Professor of Computer
Science in the School of Computing and Aug-
mented Intelligence at Arizona State University.
His research interests span the areas of Internet-
of-things, cloud/edge/quantum computing and net-
working, crowdsourcing and truth discovery, QoS
provisioning and network optimization, security and
privacy, optimization and machine learning. He re-
ceived the IEEE Communications Society William
R. Bennett Prize in 2019. He is an Associate Editor

of IEEE Transactions on Mobile Computing, as well as a member of the
Steering Committee of this journal. He served on the editorial boards of
IEEE/ACM Transactions on Networking and IEEE Network Magazine, as
well as the Area Editor of IEEE Transactions on Wireless Communications,
overseeing 13 editors in the Wireless Networking area. He has served as
VP-Conferences of the IEEE Communications Society. He is the Steering
Committee Chair of IEEE INFOCOM.

Huayue Gu (Student Member 2021) received her
M.S. degree from the University of California, River-
side, CA, USA, in 2021. Currently, she is a Ph.D.
student in the Computer Science department at North
Carolina State University. Her research interests are
quantum networking, quantum communication, data
analytics, etc.

Zhouyu Li (Student Member 2021) received his
B.S. degree from Central South University, Chang-
sha, China, in 2019 and his M.S. degree from
Georgia Institute of Technology, Atlanta, U.S., in
2020. Currently, he is a Ph.D. student of Com-
puter Science at North Carolina State University.
His research interests include privacy, cloud/edge
computing, network routing, etc.

Fangtong Zhou (Student Member 2021) received
her B.E. degree (2018) in Electrical Engineering and
Automation from Harbin Institute of Technology,
Harbin, China and M.S. degree (2020) in Electrical
Engineering from Texas A&M University, College
Station, Texas, USA. Currently she is a Ph.D candi-
date in the School of Computer Science at North
Carolina State University. Her research interests
include machine learning in computer networking,
like federated learning, reinforcement learning for
resource provisioning, etc.

	Introduction
	Background and Related Work
	Payment Channel Network
	Routing and Rebalancing in PCNs

	System model
	Network Model
	Payment Model

	Online Routing Design
	black Balance-aware Weighted Throughput Maximization
	Fee-based Online Routing
	Online Routing based on Fee Setting
	Solution Overview
	Fee Design
	Online Routing Algorithm Design

	Online Routing Algorithm Analysis
	Competitive Analysis in a Unidirectional PCN
	Capacity and balance constraint violation
	Total black weighted throughput bounds
	Competitive ratio

	Infinite Competitive Ratio in a General PCN

	Discussions on Protocol Design
	Performance Evaluation
	Experiment Settings
	Topology
	Payment workloads
	Privacy preservation and selfishness
	Comparison algorithms
	Simulator parameters

	Evaluation Results

	Conclusion
	References
	Appendix
	Biographies
	Xiaojian Wang
	Ruozhou Yu
	Dejun Yang
	Guoliang Xue
	Huayue Gu
	Zhouyu Li
	Fangtong Zhou

