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Abstract— Efficient point cloud compression is essential for
applications like virtual and mixed reality, autonomous driving,
and cultural heritage. This paper proposes a deep learning-based
inter-frame encoding scheme for dynamic point cloud geometry
compression. We propose a lossy geometry compression scheme
that predicts the latent representation of the current frame
using the previous frame by employing a novel feature space
inter-prediction network. The proposed network utilizes sparse
convolutions with hierarchical multiscale 3D feature learning to
encode the current frame using the previous frame. The proposed
method introduces a novel predictor network for motion com-
pensation in the feature domain to map the latent representation
of the previous frame to the coordinates of the current frame to
predict the current frame’s feature embedding. The framework
transmits the residual of the predicted features and the actual
features by compressing them using a learned probabilistic fac-
torized entropy model. At the receiver, the decoder hierarchically
reconstructs the current frame by progressively rescaling the
feature embedding. The proposed framework is compared to the
state-of-the-art Video-based Point Cloud Compression (V-PCC)
and Geometry-based Point Cloud Compression (G-PCC) schemes
standardized by the Moving Picture Experts Group (MPEG). The
proposed method achieves more than 88% BD-Rate (Bjøntegaard
Delta Rate) reduction against G-PCCv20 Octree, more than 56%
BD-Rate savings against G-PCCv20 Trisoup, more than 62%
BD-Rate reduction against V-PCC intra-frame encoding mode,
and more than 52% BD-Rate savings against V-PCC P-frame-
based inter-frame encoding mode using HEVC. These significant
performance gains are cross-checked and verified in the MPEG
working group.

Index Terms— Point cloud, compression, PCC, deep learning,
neural network.

I. INTRODUCTION

A
POINT cloud (PC) is a 3D data representation that is

essential for tasks like virtual reality (VR) and mixed

reality (MR), autonomous driving, cultural heritage, etc. PCs

are a set of points in 3D space, represented by their 3D

coordinates (x, y, z) referred to as the geometry. Each point
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may also be associated with multiple attributes such as color,

normal vectors, and reflectance. Depending on the target

application and the PC acquisition methods, the PC can be

categorized into point cloud scenes and point cloud objects.

Point cloud scenes are typically captured using LiDAR sensors

and are often dynamically acquired. Point cloud objects can be

further subdivided into static point clouds and dynamic point

clouds. A static PC is a single object, whereas a dynamic

PC is a time-varying PC where each instance of a dynamic

PC is a static PC. Dynamic time-varying PCs are used in

AR/VR, volumetric video streaming, and telepresence and can

be generated using 3D models, i.e., CGI, or captured from

real-world scenarios using various methods such as multiple

cameras with depth sensors surrounding the object. These PCs

are dense photo-realistic point clouds that can have a massive

amount of points, especially in high precision or large-scale

captures (millions of points per frame with up to 60 frames per

second (FPS)). Therefore, efficient point cloud compression

(PCC) is particularly important to enable practical usage in

VR and MR applications. This paper focuses on geometry

compression for the dense dynamic point clouds. Temporally

successive point cloud frames share some similarities, motion

estimation is key to effective compression of these sequences.

However, these frames may have different numbers of points,

and exhibit no explicit association between points over time.

Performing motion estimation, motion compensation, and

effective compression of such data is, therefore, a challenging

task.

The Moving Picture Experts Group (MPEG) has approved

two PCC standards [1], [2]: Geometry-based Point Cloud

Compression (G-PCC) [3] and Video-based Point Cloud

Compression (V-PCC) [4]. G-PCC includes octree-geometry

coding as a generic geometry coding tool and a predictive

geometry coding (tree-based) tool which is more targeted

toward LiDAR-based point clouds. G-PCC is still developing

a triangle meshes or triangle soup (trisoup) based method

to approximate the surface of the 3D model. V-PCC on the

other hand encodes dynamic point clouds by projecting 3D

points onto a 2D plane and then uses video codecs, e.g., High-

Efficiency Video Coding (HEVC), to encode each frame over

time. MPEG has also proposed common test conditions (CTC)

to evaluate test models [5].

Deep learning solutions for image and video encoding have

been widely successful [6]. Recently, similar deep learning-

based PC geometry compression methods [7], [8], [9], [10],

[11], [12], [13], [14], [15], [16], [17], [18] have been shown
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to provide significant coding gains over traditional method-

ologies. Point cloud compression represents new challenges

due to the unique characteristics of PC. For instance, the

unstructured representation of PC data, the sparse nature of

the data, as well as the massive number of points per PC,

specifically for dense photo-realistic PC, makes it difficult

to exploit spatial and temporal correlation. The current deep

learning-based PC geometry compression solutions are all

intra-prediction methods for static point clouds and fail to

utilize inter-prediction coding gains by predicting the current

frame using previously decoded frames.

Inter-prediction schemes in video compression are very

successful in performing motion compensation to achieve

impressive results. However, similar motion compensation for

dynamic point clouds is not possible because the coordinates

between different frames of a point cloud sequence are differ-

ent due to non-uniform sampling in the spatial-temporal space

of the point cloud geometry. Performing motion estimation

across frames with changing voxels occupancy is challenging

and hence the deep-learning solutions struggle to perform

motion compensation on dynamic point cloud frames. To this

end, we propose a novel inter-frame point cloud compres-

sion scheme that successfully performs motion compensation.

Following MPEG’s PCC category guidelines, our work seeks

to target dense dynamic point clouds used for VR/MR and

immersive telecommunications. Sparse dynamically acquired

LiDAR-based point clouds are a very different point cloud

category that is out of the scope of this work. Our contributions

are summarized as follows:

• A novel deep learning-based framework is proposed for

point cloud geometry inter-frame encoding similar to

P-frame encoding in video compression.

• We propose a novel inter-prediction module (predictor

network) that learns a feature embedding of the current

PC frame from the previous PC frame. The network

utilizes hierarchical multiscale feature extractions and

employs a generalized sparse convolution (GSConv) with

arbitrary input and output coordinates to perform motion

compensation in the feature domain by mapping the latent

features from the coordinates of the first frame to the

coordinates of the second frame. The inter-prediction

module is the first deep learning module that successfully

enables the effective transferring of features between

point cloud frames with different coordinates.

Experimental results show the proposed method achieving

more than 88% BD-Rate gains against G-PCCv20 (octree),

more than 56% BD-Rate gains against G-PCC (trisoup), more

than 34% BD-Rate gains against state-of-the-art deep learning-

based point cloud geometry compression method, more than

62% BD-Rate gains against V-PCCv18 intra-frame mode, and

more than 52% BD-Rate gains against V-PCCv18 P-frame-

based (low-delay) inter-frame mode which uses HEVC.

II. BACKGROUND

Our research is most closely related to three research

topics: point cloud geometry compression, deep learning-based

video inter-frame coding, and deep learning-based point cloud

compression.

Prior non-deep learning-based point cloud geometry com-

pression mostly includes octree-based, triangle mesh-based,

and 3D-to-2D projection-based methodologies. Octree-based

methods are the most widely used point cloud encoding

methods [19], [20], [21]. Octree provides an efficient way

to partition the 3D space to represent point clouds and is

especially suitable for lossless coding. In these methods,

the volumetric point cloud is recursively divided into octree

decomposition until it reaches the leaf nodes. Then the

occupancy of these nodes can be compressed through an

entropy context modeling conditioned on neighboring and

parent nodes. Thanou et al. [22] implemented octree-based

encoding for time-varying point clouds that can predict graph-

encoded octree structures between adjacent frames. MPEG’s

G-PCC standard [1] also employs an octree-based compression

method known as octree geometry codec and is specifically

devoted to sparse point clouds. G-PCC encoding can fur-

ther be complemented by triangle meshes (a.k.a., triangle

soups) which are locally generated together with the octree

to terminate the octree decomposition prematurely. This helps

reconstruct object surfaces with finer spatial details and is

known as the trisoup geometry codec [23].

3D-to-2D projection-based methods. Traditional 2D image

and video coding have demonstrated outstanding efficiency

and have been widely used in standards which have motivated

works to project 3D objects to multiple 2D planes and leverage

popular image and video codecs for compact representation.

MPEG’s V-PCC [2] standard is one such 3D-to-2D projection-

based solution that is specifically designed for dense, as well

as, dynamic PCs. The V-PCC standard projects the points

and the corresponding attributes onto planes and then uses

a state-of-the-art video codec, such as HEVC, to encode point

clouds. V-PCC has both intra-frame coding as well as inter-

frame coding [24] where the previously decoded frames are

employed to encode the next frames. We have recently also

had some works for dynamic point cloud compression [25],

[26], [27]. However, their results are still lacking and the

performance is not comparable to V-PCC.

Deep learning-based models for image and video encod-

ing can learn an optimal non-linear transform from data along

with the probabilities required for entropy coding the latent

representation into a bitstream in an end-to-end fashion. For

image compression, autoencoders [28] were initially adopted

and the best results were achieved by employing variational

autoencoders with side information transmission and applying

an autoregressive model [29]. Deep learning solutions for

video compression methods usually employ 3D autoencoders,

frame interpolation, and/or motion compensation via optical

flow. 3D autoencoders are an extension of deep learned

image compression. Frame interpolation methods use neural

networks to temporally interpolate between frames in a video

and then encode the residuals [30]. Motion compensation via

optical flow is based on estimating and compressing optical

flow which is applied with bilinear warping to a previously

decoded frame to obtain a prediction of the frame currently

being encoded [31]. Current deep learning-based PCC takes

inspiration from the deep learning-based image compression

methods but so far has not been able to implement inter-frame
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prediction models commonly used in video encoding. Our

work is the first method that takes inspiration from the frame

interpolation-based methods in video encoding to perform

inter-frame encoding for dynamic point clouds.

Deep learning-based Geometry PCC can be broadly catego-

rized into: voxelization-based methods, octree-based methods,

point-based methods, and sparse tensors-based methods.

Voxelization-based methods were employed in the earlier

approaches, including Quach et al. [7], Wang et al. [8],

Guarda et al. [9] and Quach et al. [10]. These methods voxelize

the PC and then divide it into smaller blocks typically of

64 × 64 × 64 voxels. Then 3D convolutions are applied using

autoencoder architectures to compress these blocks into latent

representations. These methods usually employ a focal loss

or a weighted binary cross-entropy loss to train their model.

However, these methods also have to process empty voxels

which are usually the majority of the voxels and are, therefore,

computational and memory inefficient.

Octree-based deep learning methods employ octree rep-

resentation to encode the PCs leading to better consumption

of storage and computation. These methods employ entropy

context modeling to predict each node’s occupancy prob-

ability conditioned on its neighboring and parent nodes.

MuSCLE [11] and OctSqueeze [12] employ Multi-Layer Per-

ceptrons (MLPs) to exploit the dependency between parent and

child nodes. VoxelContext-Net [13] employs both neighbors

and parents as well as voxelized neighborhood points as

context for probability approximation. Recently, OctAtten-

tion [14] has been introduced that increases the receptive field

of the context model by employing a large-scale transformer-

based context attention module to estimate the probability of

occupancy code. All of these methods encode the point cloud

in a lossless manner and show promising results, particularly

on sparse LiDAR-based point clouds.

Point-based methods directly process raw point cloud

data without changing their representation or voxelizing them.

They typically employ PointNet [32] or PointNet++ [33]

type architectures that process raw point clouds using point-

wise fully connected layers. These methods are typically

patch-based methods that employ farthest point sampling to

subsample and a knn search to find per point feature embed-

ding to build an MLP-based autoencoder. However as seen in

some of these works [15], [16], [34], the coding efficiency

of such point-wise models is still relatively low and fails

to generalize to large-scale dense point clouds. Furthermore,

these methods require a lot of pre and post-processing making

the encoding process computationally inefficient.

Recent sparse convolution-based methods [17], [18], [35]

have shown really good results especially for denser photo-

realistic point clouds. Sparse convolutions exploit the inherent

sparsity of point cloud data for complexity reduction allowing

for very large point clouds to be processed by a deeper sparse

convolutional network. This allows the network to better

capture the characteristics of sparse and unstructured points

and better extraction of local and global 3D geometric features.

However, all of these works employ intra-frame encoding

for static point clouds. We employ sparse convolution-based

autoencoder architecture similar to [17] and design a sparse

convolutional inter-frame prediction module that encodes the

next PC frame using the previously decoded PC frame similar

to P-frame prediction in video encoding.

III. PROPOSED METHOD

The proposed lossy inter-frame point cloud geometry com-

pression framework is illustrated in Fig. 1. We employ sparse

tensors and sparse convolutions to decrease the computa-

tional complexity of the network so it can process two PC

frames. The solution takes inspiration from the PCGCv2 [17]

multiscale point cloud geometry compression (PCGC) work.

PCGCv2 is an intra-frame point cloud compression scheme

suitable for static point clouds. The proposed inter-frame com-

pression framework employs an encoder and decoder network

similar to PCGCv2 along with a novel inter-prediction module

to predict the feature embedding of the current PC frame

from the previous PC frame. The proposed inter-prediction

module employs a specific version of generalized sparse

convolution [36] with different input and output coordinates

denoted as GSConv to perform motion estimation in the

feature domain. The inter-prediction module is a standalone

module that can be employed with different network archi-

tectures. The residual between the predicted and ground truth

features are calculated and then these residuals along with

the three-times downsampled coordinates are transmitted to

the receiver. The three-times downsampled coordinates are

losslessly encoded by an octree encoder using G-PCC [3],

whereas the residual features are encoded in a lossy manner

using factorized entropy model to predict the probability

distribution for arithmetic coding. It should be noted that in

our system, the encoder and prediction network is present

both at the transmitter as well as the receiver. We train the

networks with joint reconstruction and bit-rate loss to optimize

rate distortion. We provide a detailed description of all our

modules in subsequent discussions.

A. Problem Formulation and Preprocessing

We adopt sparse convolutions for low-complexity tensor

processing and build our system using Minkowski Engine [36].

Each point cloud frame is converted into a sparse tensor P .

Each point cloud tensor P = {Cn, Fn}n is represented by a

set of coordinates C = {(xn, yn, zn)}n and their associated

features F = { f (xn, yn, zn)}n . Only the occupied coordinates

are kept in a sparse tensor. To initialize the input point

cloud as geometry only, we assign feature f (x, y, z) = 1 to

each occupied coordinate. Given a dynamic point cloud with

multiple frames, P i , our goal is to convert them into a

latent representation with the smallest possible bitrate. We use

P-frame encoding where the current frame is encoded using

the prediction from the previous frame. We denote the Encoder

network as E , and the Decoder network as D.

B. Feature Extraction

Our encoder and decoder network is shown in Fig. 2.

We utilize the Inception-Residual Block (IRB) [37] for fea-

ture extraction in all our networks. Each IRB contains three

Inception-Residual Network (IRN) similar to PCGCv2 [17].
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Fig. 1. System model. The previously decoded frame P̃1 is employed to encode a feature embedding of the current frame P2. Multiscale features from

P̃1 and three-times downsampled coordinates C2
3ds

from P2 are passed to the Predictor network to learn a feature embedding P̂2
3ds

= {C2
3ds

, F̂2
3ds

}. The

current frame’s three-times downsampled coordinates C2
3ds

are transmitted in a lossless manner using an octree encoder. The predicted downsampled features

F̂2
3ds

and the original downsampled features F2
3ds

are subtracted to obtain the residual features R2
3ds

. The residual is transmitted in a lossy manner using a
learned entropy model. The same Encoder and Predictor module are used throughout the system. Q, AE, and AD stand for quantization, arithmetic encoder,
and arithmetic decoder respectively.

Fig. 2. Encoder and decoder network. The encoder network takes the original point cloud sparse tensor P , and creates sparse features at four different
scales: P0ds , P1ds , P2ds , and P3ds . Where P3ds denotes three-times downsampled sparse tensor containing both the coordinates C3ds and their respective
features F3ds . The decoder network takes the three-times downsampled sparse tensor and hierarchically reconstructs the original point cloud by progressively
rescaling. The decoder upsamples the sparse tensor one scale at a time using transpose convolution followed by classification and pruning to prune out the
false voxels.

We employ a multiscale re-sampling with downscaling at the

encoder and upscaling at the decoder. This helps exploit the

sparsity of the PC while encoding 3D geometric structural

variations into feature attributes of the latent representation.

The encoder is used as a feature extraction module to obtain

PC tensors at four different scales capturing multiscale features

at different level of details: P0ds, P1ds, P2ds, P3ds = E(P).

Where Pjds represents a sparse tensor P that has been down-

sampled j times.

C. Point Cloud Reconstruction

The decoder receives a three-times downsampled PC tensor

and upsamples it hierarchically to reconstruct the original PC

tensor by employing a different reconstruction loss at each

scale: P̃ = D( SP3ds). Decoder employs transpose convolution

to upsample the PC tensor and generate newer voxels. After

each upsampling, the probability of voxel occupancy pv is

predicted and a binary classification loss is employed. The

geometry at the decoder is reconstructed by employing a

classification and pruning layer to prune false voxels and

extract true occupied voxels using binary classification after

each upscaling. We employ binary cross-entropy loss for voxel

occupancy classification as the distortion loss in each pruning

layer at the decoder:

LBC E =
1

N

∑

v

−(Ov log pv + (1 − Ov) log(1 − pv)) (1)

where Ov is the ground truth of whether the voxel v is

occupied (1) or unoccupied (0).

One example of a classification and pruning layer is shown

in Fig. 3. In this example, the input sparse tensor Pa has
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Fig. 3. Example of classification and pruning layer with input sparse tensor
Pa and output sparse tensor Pc . Binary classification is applied to Pb to chose
the top voxels and prune false voxels from Pa to obtain Pc .

coordinates Ca of shape 139,244 × 3 and their corresponding

features of shape 139,244×64. We pass Pa through a convolu-

tion of channel size 1 to obtain sparse tensor Pb with features

Fb of shape 139,244×1. From Fb we select the top k features

(in this example k = 52,612) with the highest probability

of occupancy (pv) and their corresponding coordinates using

binary voxel classification. The false coordinates and their

corresponding features are then pruned from Pa to obtain

Pc. The binary cross entropy loss is employed at each of the

pruning layers and is applied to tensor Pb so the true voxels

could have a higher pv and the false voxels have a lower

pv . Then the top k voxels with the highest probability of

occupancy (pv) are chosen and the rest of the false voxels

are pruned out. k is a metadata calculated at the encoder

and losslessly transmitted to the receiver with a very small

overhead along with other overhead bits. k determines the

number of occupied voxels at each scale for that particular

frame which is employed during point cloud reconstruction at

the decoder.

D. Overall System Model

This subsection intends to explain the working of the overall

system framework shown in Fig. 1. In our work, we denote

the current PC frame as P2 while the previously decoded PC

frame is denoted by P̃1. The same encoder and prediction

module are used throughout the system to decrease the number

of parameters. Previously decoded frame P̃1 is passed through

the encoder to obtain multiscale tensors P1
0ds, P1

1ds, P1
2ds, P1

3ds .

The current frame (P2) is also passed through the encoder to

obtain three-times downsampled tensor containing coordinates

and features: P2
3ds = {C2

3ds, F2
3ds}. Current frame’s three-times

downsampled coordinates (C2
3ds) and the multiscale features

from the previous frame are passed to the prediction network

to obtain current frame’s predicted three-times downsampled

tensor P̂2
3ds = {C2

3ds, F̂2
3ds}. The predicted downsampled

features F̂2
3ds and the original downsampled features F2

3ds are

subtracted to obtain the residual features R2
3ds . The residual

is transmitted in a lossy manner using a factorized entropy

model [28]. The current frame’s three-times downsampled

coordinates C2
3ds are transmitted in a lossless manner using

an octree encoder like G-PCC [3]. Three-times downsampled

coordinates C2
3ds is much smaller than the original geometry

(e.g. for the 8iVFB dataset [38], the C2
3ds is about 16 times

smaller than C2). At the receiver, the previously decoded frame

P̃1 and the three-times downsampled coordinates C2
3ds are

used to predict P̂2
3ds . The residual R̂2

3ds is added with P̂2
3ds

to obtain the current frame’s three-times downsampled tensor

representation SP2
3ds . The decoder progressively rescales SP2

3ds

to obtain the current decoded frame P̃2. Encoder and decoder

architecture can on their own be used without the prediction

module for intra-frame PC compression.

E. Inter-Prediction Module

Until now, efficient motion estimation for dynamic point

clouds has not been possible due to the difference in the

occupied coordinates between point cloud frames. We propose

a novel deep learning-based inter-frame predictor network that

can predict the latent representation of the current frame from

the previously reconstructed frame as shown in Fig. 4. This is

the first inter-prediction module that is capable of performing

motion estimation of 3D coordinates across frames such as to

learn the current frame’s feature embedding. The framework

does not explicitly performs motion estimation of distinct 3D

points across multiple frames. Instead, it learns the appropriate

weights to perform motion compensation for 3D points in the

feature domain. We do not employ explicit loss function for

motion estimation but perform end-to-end training.

The multiscale features from the previous frame,

P1
0ds, P1

1ds, P1
2ds, P1

3ds , and the three downsampled coordinates

from the current frame, C2
3ds , are fed to the prediction

network to obtain current frame’s predicted three-times

downsampled tensor P̂2
3ds = {C2

3ds, F̂2
3ds}. The prediction

network downscales the input three times while concatenating

it with the corresponding scale features. Finally a version of

Generalized Sparse Convolution (GSC) is employed to map

features from C1
3ds to C2

3ds obtain the tensor P̂2
3ds .

GSC is defined in [36] as a generalized version of

sparse convolution that incorporates all discrete convolutions

as special cases. Let x in
u ∈ R

N in
be an N in-dimensional

input feature vector in a D-dimensional space at u ∈ R
D

(a D-dimensional coordinate), and convolution kernel weights

be W ∈ R
K D×N out×N in

. The conventional dense convolution

in D-dimension is defined in [36] as:

xout
u =

∑

i∈VD(K )

Wi x in
u+i for u ∈ Z

D (2)

where VD(K ) is the list of offsets in D-dimensional hypercube

centered at the origin with kernel size K . The generalized

sparse convolution is defined in [36] as:

xout
u =

∑

i∈N D(u,C in)

Wi x in
u+i for u ∈ Cout (3)

where N D is a set of offsets that define the shape of a kernel

and N D(u, C in) = {i |u+i ∈ C in, i ∈ N D} as the set of offsets

from the current center, u, that exist in C in . C in and Cout

are predefined input and output coordinates of sparse tensors.

In GSC, the input and output coordinates are not necessarily
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Fig. 4. Prediction network. Takes in four multiscale features from the previous frame and the three-times downsampled coordinates of the current frame

(C2
3ds

) to learn the current frame’s feature embedding P̂2
3ds

.

Fig. 5. Comparison between the two generalized sparse convolutions
employed in the proposed framework. Shown in 2D with blue as the output

coordinates (Cout) and green as the input coordinates (C in).

the same and the shape of the convolution kernel is arbitrarily

defined with N D .

The proposed framework employs convolution kernel shape

(N D) of a 3×3x3 cuboid. The framework employs two kinds

of generalized sparse convolutions which are shown in Fig. 5.

Sparse convolutions denoted by Conv has the same input (C in)

and output (Cout) coordinates as shown in Fig. 5a and is

employed in encoder, decoder and predictor networks. Sparse

convolution denoted by GSConv has different input (C in) and

output (Cout) coordinates as shown in Fig. 5b and is employed

only once in the predictor network.

GSConv is employed towards the end of the predictor

network to map the features from the input coordinates C1
3ds

to the output coordinates C2
3ds while applying a convolution

operation. GSConv performs motion estimation in the feature

domain by translating the latent features from the down-

sampled coordinates of P1, i.e., C1
3ds to the downsampled

coordinates of P2, i.e., C2
3ds . This way the GSConv enables us

to predict learned features for the current frame coordinates

using the previous frames multi-scale coordinates.

F. Training

During training, we optimize the Lagrangian loss, i.e.,

Jloss = R + λD (4)

where R is the compressed bit rate and D is the distortion loss.

We employ three binary cross-entropy losses at three different

scales such that the total distortion loss is:

D = L1(P̃2ds, P2ds) + L2(P̃1ds, P1ds) + L3(P̃, P) (5)

where the ground-truth P2ds and P1ds are obtained by voxel

or quantization-based downsampling of the original point

cloud P .

The three downsampled coordinates C2
3ds are transmitted

losslessly using Octree encoder in G-PCC [3] and consumes

a very small amount of bits (i.e., around 0.024 bpp for 8iVFB

dataset [38]). We subtract the three downsampled predicted

features F̂2
3ds from the original three downsampled features

F2
3ds to obtain the residual features R2

3ds .

The residual features R2
3ds are quantized before encoding.

Note that the quantization operation is non-differentiable,

thus during training, we approximate the quantization process

by adding a uniform noise µ ∼ U(−0.5, 0.5). Quantized

residual features (lets call them f̄ ) are encoded by an arith-

metic encoder using a fully factorized probabilistic entropy

model [29] to estimate the probability distribution of f̄ , i.e.,

p f̄ |φ( f̄ |φ), where φ are the learnable parameters. Then the

bpp of encoding f̄ is approximated as:

R =
1

N

∑

i

log2 p f̄ |φ(i)( f̄ |φ(i)) (6)

where N is the number of points, and i is the index of

channels.

IV. EXPERIMENTS

A. Experimental Setup

For a fair comparison, we closely follow MPEG’s common

test conditions (CTC) [5] and employ the same diverse datasets

recommended by MPEG for deep learning-based dynamic

point cloud compression. The performance of our framework

has already been cross-checked and verified by the MPEG

3DG EE 5.3 working group experts.

1) Training Dataset: We train the proposed model using

three sequences longdress, loot, and queen. Sequences long-

dress and loot are from 8i Voxelized Full Bodies dataset

(8iVFB v2) [38], while sequence queen is from Techni-

color (https://www.technicolor.com/fr). Each sequence has

300 frames with a frame rate of 30 fps. Each sequence has

a 10-bit precision with around 800,000 to 1,000,000 points
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TABLE I

BD-RATE GAINS AGAINST THE STATE-OF-THE-ART METHODS USING D1 DISTORTION MEASUREMENTS

TABLE II

REPORTED ENVIRONMENT/FRAMEWORK VARIABLES

per point cloud frame. To decrease computational complexity

during training, we divide the PC frames into smaller chunks

by applying the same kd-tree partition on two consecutive

frames.

2) Evaluation Dataset: We evaluate the performance of the

proposed framework on five sequences: redandblack, soldier,

basketball, exercise, and model. Sequences redandblack and

soldier are from 8i Voxelized Full Bodies dataset (8iVFB v2)

[38], while sequences basketball, exercise, and model are from

Owlii Dynamic Human Textured Mesh Sequence Dataset [39].

Each sequence has a frame rate of 30 fps. The 10-bit preci-

sion datasets were employed in our experiments. Since deep

learning-based inter-frame compression schemes process mul-

tiple frames at a time and hence have limited GPU memory,

it is advised to use a maximum of 10-bit precision point

clouds.

3) Training Strategy: We train our network with λ =
1
10

, 1
9
, 1

6
, 1

4
, 1

2.5
, 1

1.5
, 1. The Adam optimizer is utilized with

a learning rate decayed from 0.0008 to 0.00001. We train

the model for around 40,000 batches with a batch size of 5.

We conduct all the experiments on a GeForce RTX 3090 GPU

with 24GB memory.

4) Evaluation Metric: The bit rate is evaluated using bits

per point (bpp), and the distortion is evaluated using point-

to-point geometry (D1) Peak Signal-to-Noise Ratio (PSNR),

and point-to-plane geometry (D2) PSNR. For some point

clouds, the normals are not available which are required for

D2-PSNR calculation. We employ Open3D’s normal estima-

tion using 20 neighboring points by employing covariance

analysis. The geometry PSNRs are obtained using MPEG’s

pc_error tool [40]. The peak value p is set as 1023 for all

the datasets. We plot rate-distortion curves and calculate the

BD-Rate (Bjøntegaard Delta Rate) [41] gains using D1-PSNR

over different methods.

B. Experimental Results

Our framework and environment variables are shown in

Table II.

1) GoP Structure: In video coding, a group of pictures,

or GOP structure, specifies the order in which intra- and inter-

frames are arranged. In the experiments for our framework, the

intra-frame (I frame) is encoded using PCGCv2 [17] and the

inter-frame (P frame) is encoded using the proposed frame-

work. In the results, the I frame is encoded after 32 frames and

the rest of the 31 frames are encoded as inter-frames P frame.

2) Baseline Setup: We compare our method to the state-

of-the-art deep learning intra-frame encoding PCGCv2 [17],

MPEG’s G-PCC (octree as well as trisoup) [3] methods,

as well as MPEG’s video-based V-PCC method (inter and

intra-frame encoding) [4]. We utilize G-PCC’s latest reference

implementation TMC13-v20, and for V-PCC the latest imple-

mentation TMC2-v18 which uses the HEVC video codec.

V-PCC inter-frame low-delay setting which involves P-frame

encoding is employed for a fair comparison to the proposed

P-frame encoding method. Two extra points for higher bpp

have been added for V-PCC.

3) Performance Evaluation: Table I shows the BD-Rate

gains of the proposed method over the state-of-the-art using

D1-PSNR. The lower the BD-Rate value, the more the

improvement is. Our method achieves significant gains com-

pared to G-PCC with an average of 88.77% BD-Rate

gains against G-PCC (octree), 56.69% BD-Rate improvement

over G-PCC (trisoup). Compared to the deep learning-based

model PCGCv2, we achieve a 34.08% BD-Rate improvement.

Compared to the V-PCC, we achieve a 62.69% BD-Rate

improvement over intra-frame encoding mode and 52.44%

BD-Rate improvement over inter-frame encoding mode. The

proposed method outperforms V-PCC inter-frame mode across

all rates for dense photo-realistic point clouds. Please note

that in a previous version of this publication, we showed a

91.68% BD-Rate gains against G-PCC (octree) and 84.41%

BD-Rate improvement over G-PCC (trisoup) but those gains

were against TMC13-v14 but now we have updated G-PCC

results to TMC13-v20.

The D1-PSNR and D2-PSNR rate-distortion curves are

shown in Fig. 6 and Fig. 7 respectively. As can be seen,

the proposed method has significant coding gains compared

with the deep learning-based model PCGCv2. It should be

noted that compared with PCGCv2, our method performs

much better at higher PSNR and still performs better than

PCGCv2 at lower PSNRs. This is because both the proposed

method and PCGCv2 transmit the three downsampled coor-

dinates in a lossless manner and their corresponding features
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Fig. 6. Rate-distortion curves using D1 PSNR comparison with the state-of-the-arts plotted for five different sequences and their average.

Fig. 7. Rate-distortion curves using D2 PSNR comparison with the state-of-the-arts plotted for five different sequences and their average.

in a lossy manner. However, at lower PSNRs, most of the

bits are consumed by coordinates (i.e., around 0.024 bpp)

which constitutes the majority of the bitrate. At higher PSNR

values most of the bitrates are due to features. Our inter-

frame prediction network transmits only the residual of the

features and, hence, can significantly decrease the feature bits

transmitted leading to much higher gains at higher PSNR and

bitrates.

The proposed method also significantly outperforms G-PCC

(octree) as well as G-PCC (trisoup). We can notice that

G-PCC trisoup performs much better than G-PCC octree

which is because trisoup performs better for denser point

clouds whereas octree performs better for sparse LiDAR-

based point clouds. When compared with V-PCC, we can

see that the proposed method achieves a much higher PSNR

for the same bitrate for all of the sequences and bitrates.

As expected, the V-PCC inter-frame encoding mode performs

better than V-PCC intra-frame encoding mode. The sequences

that have the most movement (i.e., redandblack) the V-PCC

inter and V-PCC intra modes perform pretty similarly whereas

the sequence with the least amount of movement (i.e., soldier)

the V-PCC inter-frame encoding method performed much
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Fig. 8. Qualitative visual comparison of sequence “soldier” for different
methods. The color error map describes the point-to-point distortion measured
in mm, and the numbers above represent the bitrate, mean error measured in
mm, and D1 PSNR.

better than V-PCC intra-frame encoding method. We can see

a similar pattern between our proposed inter-frame method

and PCGCv2 which is an intra-frame method. We see that our

proposed inter-frame method has the most improvement over

PCGCv2 on the soldier sequence and the least improvement

over PCGCv2 on the redandblack sequence. Our Prediction

module maps the features extracted from the previous frame

to the coordinates extracted from the current frame. In this

way, when the motion between adjacent frames is small, the

performance is significantly improved.

4) Visual Results: Visual comparison of dense point clouds

for geometry only is difficult since it is difficult to differentiate

the quality by viewing only the points without color/attribute.

The best and most common way to visualize the reconstruction

results is to view the per-point distortion error. A qualitative

comparison with the proposed method and G-PCC is presented

in Fig. 8. Point clouds are colored with the point-to-point

reconstruction error for visualization. As can be seen in the

visual results too, our method has a much better reconstruction

quality compared to G-PCC. Another thing to notice is that the

proposed method has very few outliers and generates points

very close to the surface of the original point cloud.

C. Runtime Comparison

We compare the runtime of different methods in Table III.

We use an Intel Core i9-11900F CPU and an Nvidia GeForce

GTX 3090 GPU. G-PCC runtime is computed for the highest

bitrate on a CPU. While both PCGCv2 and Our method utilize

the GPU. Due to the diversity in platforms, e.g., CPU vs. GPU,

Python vs. C/C++, etc, the running time comparison only

serves as the intuitive reference to have a general idea about

the computational complexity. As can be seen, our method

experiences a slight increase in runtime due to processing

two PC frames at a time. However, the increased complexity

is still minimal given that our network is an inter-frame

prediction scheme. PCGCv2 has about 778 thousand parame-

ters, whereas, the proposed method has about 2,033 thousand

TABLE III

AVERAGE RUNTIME (PER FRAME) OF DIFFERENT

METHODS USING 8iVFBv2 PCs

TABLE IV

PARTITIONING THE POINT CLOUD INTO A SMALLER NUMBER OF BLOCKS.
TESTED ON SOLDIER SEQUENCE

parameters which is still a relatively small network. The

runtime complexity can be optimized by migrating to a C++

implementation and simplifying the framework.

D. Ablation Study: Block Size

Even though in our evaluations, we have used the full point

cloud during inference. We wanted to see the effects on PSNR

and bitrate of dividing the point cloud into smaller blocks

for encoding. The purpose is to demonstrate that if needed,

a large point cloud can be partitioned into blocks for process-

ing. During the encoding, we save the coordinate bitstream,

feature bitstream, number of points, and the entropy model

header information into four different files. Overall bitrate is

decided by the collective size of these files. Once we divide

the point cloud into blocks, each block would be encoded

separately into four different files so we should expect to see

a higher overhead involved. kd-tree partitioning is employed

to divide each point cloud into multiple blocks and encoded

the blocks independently. The results of this experiment on

soldier sequence are shown in Table IV. We notice that

partitioning the point cloud into smaller blocks decreases the

PSNR slightly. However, the difference is minimal. We also

notice that the bitrate increases a bit but that could be from

the overhead of saving the information in lots of files (e.g.

for 8 # of blocks, we have a total of 24 files encoded,

whereas, for 1 block, we have a total of 4 files encoded).

It is possible to merge these files into a single file to decrease

the overhead. However, that is out of the scope of the current

work.

V. CONCLUSION

This work proposes a deep learning-based inter-frame com-

pression scheme for dynamic point clouds that encodes the

current frame using the decoded previous frame. We employ an

encoder to obtain multi-scale features and a decoder to hierar-

chically reconstruct the point cloud by progressive scaling. The

paper introduces a novel inter-prediction module that predicts

the latent representation of the current frame by mapping

the latent features of the previous frame to the downsampled

coordinates of the current frame using a specific version of

generalized sparse convolution (GSConv) with an arbitrary
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input and output coordinates. The proposed method effectively

performs motion estimation across frames for dynamic point

clouds and encodes and transmits only the residual of the

predicted features and the actual features. Sparse convolutions

are employed to reduce the space and time complexity which

allows the network to process two consecutive point cloud

frames per inference. Exhaustive experimental results show

more than 88% BD-Rate gains over the state-of-the-art MPEG

G-PCC (octree), more than 56% BD-Rate gains over G-PCC

(trisoup), more than 34% BD-Rate gains over intra-frame

network PCGCv2, more than 62% BD-Rate improvement over

MPEG V-PCC intra-frame encoding mode, and more than

52% BD-Rate improvement over MPEG V-PCC inter-frame

encoding mode. The proposed method has been verified in

MPEG’s cross-check.
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