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Abstract— Efficient point cloud compression is essential for
applications like virtual and mixed reality, autonomous driving,
and cultural heritage. This paper proposes a deep learning-based
inter-frame encoding scheme for dynamic point cloud geometry
compression. We propose a lossy geometry compression scheme
that predicts the latent representation of the current frame
using the previous frame by employing a novel feature space
inter-prediction network. The proposed network utilizes sparse
convolutions with hierarchical multiscale 3D feature learning to
encode the current frame using the previous frame. The proposed
method introduces a novel predictor network for motion com-
pensation in the feature domain to map the latent representation
of the previous frame to the coordinates of the current frame to
predict the current frame’s feature embedding. The framework
transmits the residual of the predicted features and the actual
features by compressing them using a learned probabilistic fac-
torized entropy model. At the receiver, the decoder hierarchically
reconstructs the current frame by progressively rescaling the
feature embedding. The proposed framework is compared to the
state-of-the-art Video-based Point Cloud Compression (V-PCC)
and Geometry-based Point Cloud Compression (G-PCC) schemes
standardized by the Moving Picture Experts Group (MPEG). The
proposed method achieves more than 88 % BD-Rate (Bjgntegaard
Delta Rate) reduction against G-PCCv20 Octree, more than 56 %
BD-Rate savings against G-PCCv20 Trisoup, more than 62%
BD-Rate reduction against V-PCC intra-frame encoding mode,
and more than 52% BD-Rate savings against V-PCC P-frame-
based inter-frame encoding mode using HEVC. These significant
performance gains are cross-checked and verified in the MPEG
working group.

Index Terms— Point cloud, compression, PCC, deep learning,
neural network.

I. INTRODUCTION

POINT cloud (PC) is a 3D data representation that is
Aessential for tasks like virtual reality (VR) and mixed
reality (MR), autonomous driving, cultural heritage, etc. PCs
are a set of points in 3D space, represented by their 3D
coordinates (x, y, z) referred to as the geometry. Each point
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may also be associated with multiple attributes such as color,
normal vectors, and reflectance. Depending on the target
application and the PC acquisition methods, the PC can be
categorized into point cloud scenes and point cloud objects.
Point cloud scenes are typically captured using LiDAR sensors
and are often dynamically acquired. Point cloud objects can be
further subdivided into static point clouds and dynamic point
clouds. A static PC is a single object, whereas a dynamic
PC is a time-varying PC where each instance of a dynamic
PC is a static PC. Dynamic time-varying PCs are used in
AR/VR, volumetric video streaming, and telepresence and can
be generated using 3D models, i.e., CGI, or captured from
real-world scenarios using various methods such as multiple
cameras with depth sensors surrounding the object. These PCs
are dense photo-realistic point clouds that can have a massive
amount of points, especially in high precision or large-scale
captures (millions of points per frame with up to 60 frames per
second (FPS)). Therefore, efficient point cloud compression
(PCC) is particularly important to enable practical usage in
VR and MR applications. This paper focuses on geometry
compression for the dense dynamic point clouds. Temporally
successive point cloud frames share some similarities, motion
estimation is key to effective compression of these sequences.
However, these frames may have different numbers of points,
and exhibit no explicit association between points over time.
Performing motion estimation, motion compensation, and
effective compression of such data is, therefore, a challenging
task.

The Moving Picture Experts Group (MPEG) has approved
two PCC standards [1], [2]: Geometry-based Point Cloud
Compression (G-PCC) [3] and Video-based Point Cloud
Compression (V-PCC) [4]. G-PCC includes octree-geometry
coding as a generic geometry coding tool and a predictive
geometry coding (tree-based) tool which is more targeted
toward LiDAR-based point clouds. G-PCC is still developing
a triangle meshes or triangle soup (trisoup) based method
to approximate the surface of the 3D model. V-PCC on the
other hand encodes dynamic point clouds by projecting 3D
points onto a 2D plane and then uses video codecs, e.g., High-
Efficiency Video Coding (HEVC), to encode each frame over
time. MPEG has also proposed common test conditions (CTC)
to evaluate test models [5].

Deep learning solutions for image and video encoding have
been widely successful [6]. Recently, similar deep learning-
based PC geometry compression methods [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18] have been shown
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to provide significant coding gains over traditional method-
ologies. Point cloud compression represents new challenges
due to the unique characteristics of PC. For instance, the
unstructured representation of PC data, the sparse nature of
the data, as well as the massive number of points per PC,
specifically for dense photo-realistic PC, makes it difficult
to exploit spatial and temporal correlation. The current deep
learning-based PC geometry compression solutions are all
intra-prediction methods for static point clouds and fail to
utilize inter-prediction coding gains by predicting the current
frame using previously decoded frames.

Inter-prediction schemes in video compression are very
successful in performing motion compensation to achieve
impressive results. However, similar motion compensation for
dynamic point clouds is not possible because the coordinates
between different frames of a point cloud sequence are differ-
ent due to non-uniform sampling in the spatial-temporal space
of the point cloud geometry. Performing motion estimation
across frames with changing voxels occupancy is challenging
and hence the deep-learning solutions struggle to perform
motion compensation on dynamic point cloud frames. To this
end, we propose a novel inter-frame point cloud compres-
sion scheme that successfully performs motion compensation.
Following MPEG’s PCC category guidelines, our work seeks
to target dense dynamic point clouds used for VR/MR and
immersive telecommunications. Sparse dynamically acquired
LiDAR-based point clouds are a very different point cloud
category that is out of the scope of this work. Our contributions
are summarized as follows:

« A novel deep learning-based framework is proposed for
point cloud geometry inter-frame encoding similar to
P-frame encoding in video compression.

« We propose a novel inter-prediction module (predictor
network) that learns a feature embedding of the current
PC frame from the previous PC frame. The network
utilizes hierarchical multiscale feature extractions and
employs a generalized sparse convolution (GSConv) with

arbitrary input and output coordinates to perform motion
compensation in the feature domain by mapping the latent
features from the coordinates of the first frame to the
coordinates of the second frame. The inter-prediction
module is the first deep learning module that successfully
enables the effective transferring of features between
point cloud frames with different coordinates.
Experimental results show the proposed method achieving
more than 88% BD-Rate gains against G-PCCv20 (octree),
more than 56% BD-Rate gains against G-PCC (trisoup), more
than 34% BD-Rate gains against state-of-the-art deep learning-
based point cloud geometry compression method, more than
62% BD-Rate gains against V-PCCv18 intra-frame mode, and
more than 52% BD-Rate gains against V-PCCv18 P-frame-
based (low-delay) inter-frame mode which uses HEVC.

II. BACKGROUND

Our research is most closely related to three research
topics: point cloud geometry compression, deep learning-based
video inter-frame coding, and deep learning-based point cloud
compression.

Prior non-deep learning-based point cloud geometry com-
pression mostly includes octree-based, triangle mesh-based,
and 3D-to-2D projection-based methodologies. Octree-based
methods are the most widely used point cloud encoding
methods [19], [20], [21]. Octree provides an efficient way
to partition the 3D space to represent point clouds and is
especially suitable for lossless coding. In these methods,
the volumetric point cloud is recursively divided into octree
decomposition until it reaches the leaf nodes. Then the
occupancy of these nodes can be compressed through an
entropy context modeling conditioned on neighboring and
parent nodes. Thanou et al. [22] implemented octree-based
encoding for time-varying point clouds that can predict graph-
encoded octree structures between adjacent frames. MPEG’s
G-PCC standard [1] also employs an octree-based compression
method known as octree geometry codec and is specifically
devoted to sparse point clouds. G-PCC encoding can fur-
ther be complemented by triangle meshes (a.k.a., triangle
soups) which are locally generated together with the octree
to terminate the octree decomposition prematurely. This helps
reconstruct object surfaces with finer spatial details and is
known as the trisoup geometry codec [23].

3D-to-2D projection-based methods. Traditional 2D image
and video coding have demonstrated outstanding efficiency
and have been widely used in standards which have motivated
works to project 3D objects to multiple 2D planes and leverage
popular image and video codecs for compact representation.
MPEG’s V-PCC [2] standard is one such 3D-to-2D projection-
based solution that is specifically designed for dense, as well
as, dynamic PCs. The V-PCC standard projects the points
and the corresponding attributes onto planes and then uses
a state-of-the-art video codec, such as HEVC, to encode point
clouds. V-PCC has both intra-frame coding as well as inter-
frame coding [24] where the previously decoded frames are
employed to encode the next frames. We have recently also
had some works for dynamic point cloud compression [25],
[26], [27]. However, their results are still lacking and the
performance is not comparable to V-PCC.

Deep learning-based models for image and video encod-
ing can learn an optimal non-linear transform from data along
with the probabilities required for entropy coding the latent
representation into a bitstream in an end-to-end fashion. For
image compression, autoencoders [28] were initially adopted
and the best results were achieved by employing variational
autoencoders with side information transmission and applying
an autoregressive model [29]. Deep learning solutions for
video compression methods usually employ 3D autoencoders,
frame interpolation, and/or motion compensation via optical
flow. 3D autoencoders are an extension of deep learned
image compression. Frame interpolation methods use neural
networks to temporally interpolate between frames in a video
and then encode the residuals [30]. Motion compensation via
optical flow is based on estimating and compressing optical
flow which is applied with bilinear warping to a previously
decoded frame to obtain a prediction of the frame currently
being encoded [31]. Current deep learning-based PCC takes
inspiration from the deep learning-based image compression
methods but so far has not been able to implement inter-frame
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prediction models commonly used in video encoding. Our
work is the first method that takes inspiration from the frame
interpolation-based methods in video encoding to perform
inter-frame encoding for dynamic point clouds.

Deep learning-based Geometry PCC can be broadly catego-
rized into: voxelization-based methods, octree-based methods,
point-based methods, and sparse tensors-based methods.
Voxelization-based methods were employed in the earlier
approaches, including Quach et al. [7], Wang et al. [§],
Guarda et al. [9] and Quach et al. [10]. These methods voxelize
the PC and then divide it into smaller blocks typically of
64 x 64 x 64 voxels. Then 3D convolutions are applied using
autoencoder architectures to compress these blocks into latent
representations. These methods usually employ a focal loss
or a weighted binary cross-entropy loss to train their model.
However, these methods also have to process empty voxels
which are usually the majority of the voxels and are, therefore,
computational and memory inefficient.

Octree-based deep learning methods employ octree rep-
resentation to encode the PCs leading to better consumption
of storage and computation. These methods employ entropy
context modeling to predict each node’s occupancy prob-
ability conditioned on its neighboring and parent nodes.
MuSCLE [11] and OctSqueeze [12] employ Multi-Layer Per-
ceptrons (MLPs) to exploit the dependency between parent and
child nodes. VoxelContext-Net [13] employs both neighbors
and parents as well as voxelized neighborhood points as
context for probability approximation. Recently, OctAtten-
tion [14] has been introduced that increases the receptive field
of the context model by employing a large-scale transformer-
based context attention module to estimate the probability of
occupancy code. All of these methods encode the point cloud
in a lossless manner and show promising results, particularly
on sparse LiDAR-based point clouds.

Point-based methods directly process raw point cloud
data without changing their representation or voxelizing them.
They typically employ PointNet [32] or PointNet++ [33]
type architectures that process raw point clouds using point-
wise fully connected layers. These methods are typically
patch-based methods that employ farthest point sampling to
subsample and a knn search to find per point feature embed-
ding to build an MLP-based autoencoder. However as seen in
some of these works [15], [16], [34], the coding efficiency
of such point-wise models is still relatively low and fails
to generalize to large-scale dense point clouds. Furthermore,
these methods require a lot of pre and post-processing making
the encoding process computationally inefficient.

Recent sparse convolution-based methods [17], [18], [35]
have shown really good results especially for denser photo-
realistic point clouds. Sparse convolutions exploit the inherent
sparsity of point cloud data for complexity reduction allowing
for very large point clouds to be processed by a deeper sparse
convolutional network. This allows the network to better
capture the characteristics of sparse and unstructured points
and better extraction of local and global 3D geometric features.
However, all of these works employ intra-frame encoding
for static point clouds. We employ sparse convolution-based
autoencoder architecture similar to [17] and design a sparse
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convolutional inter-frame prediction module that encodes the
next PC frame using the previously decoded PC frame similar
to P-frame prediction in video encoding.

III. PROPOSED METHOD

The proposed lossy inter-frame point cloud geometry com-
pression framework is illustrated in Fig. 1. We employ sparse
tensors and sparse convolutions to decrease the computa-
tional complexity of the network so it can process two PC
frames. The solution takes inspiration from the PCGCv2 [17]
multiscale point cloud geometry compression (PCGC) work.
PCGCv2 is an intra-frame point cloud compression scheme
suitable for static point clouds. The proposed inter-frame com-
pression framework employs an encoder and decoder network
similar to PCGCv2 along with a novel inter-prediction module
to predict the feature embedding of the current PC frame
from the previous PC frame. The proposed inter-prediction
module employs a specific version of generalized sparse
convolution [36] with different input and output coordinates
denoted as GSConv to perform motion estimation in the
feature domain. The inter-prediction module is a standalone
module that can be employed with different network archi-
tectures. The residual between the predicted and ground truth
features are calculated and then these residuals along with
the three-times downsampled coordinates are transmitted to
the receiver. The three-times downsampled coordinates are
losslessly encoded by an octree encoder using G-PCC [3],
whereas the residual features are encoded in a lossy manner
using factorized entropy model to predict the probability
distribution for arithmetic coding. It should be noted that in
our system, the encoder and prediction network is present
both at the transmitter as well as the receiver. We train the
networks with joint reconstruction and bit-rate loss to optimize
rate distortion. We provide a detailed description of all our
modules in subsequent discussions.

A. Problem Formulation and Preprocessing

We adopt sparse convolutions for low-complexity tensor
processing and build our system using Minkowski Engine [36].
Each point cloud frame is converted into a sparse tensor P.
Each point cloud tensor P = {C,, F,}, is represented by a
set of coordinates C = {(xy, yu, 2n)}n and their associated
features F = {f (xn, Yu, Zn)}n. Only the occupied coordinates
are kept in a sparse tensor. To initialize the input point
cloud as geometry only, we assign feature f(x,y,z) =1 to
each occupied coordinate. Given a dynamic point cloud with
multiple frames, P!, our goal is to convert them into a
latent representation with the smallest possible bitrate. We use
P-frame encoding where the current frame is encoded using
the prediction from the previous frame. We denote the Encoder
network as E, and the Decoder network as D.

B. Feature Extraction

Our encoder and decoder network is shown in Fig. 2.
We utilize the Inception-Residual Block (IRB) [37] for fea-
ture extraction in all our networks. Each IRB contains three
Inception-Residual Network (IRN) similar to PCGCv2 [17].
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Fig. 1. System model. The previously decoded frame ;;1 is employed to encode a feature embedding of the current frame P2. Multiscale features from
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P! and three-times downsampled coordinates C32 s from P? are passed to the Predictor network to learn a feature embedding P32 s = {C32 s F32 4s)- The

current frame’s three-times downsampled coordinates C32 s are transmitted in a lossless manner using an octree encoder. The predicted downsampled features
F32d  and the original downsampled features F%d , are subtracted to obtain the residual features R2, . The residual is transmitted in a lossy manner using a

learned entropy model. The same Encoder and Predictor module are used throughout the system. Q, AE, and AD stand for quantization, arithmetic encoder,
and arithmetic decoder respectively.
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Fig. 2. Encoder and decoder network. The encoder network takes the original point cloud sparse tensor P, and creates sparse features at four different
scales: Pogs, Pras, Paas. and P3gg. Where P3;, denotes three-times downsampled sparse tensor containing both the coordinates C34, and their respective
features F3,45. The decoder network takes the three-times downsampled sparse tensor and hierarchically reconstructs the original point cloud by progressively

rescaling. The decoder upsamples the sparse tensor one scale at a time using transpose convolution followed by classification and pruning to prune out the
false voxels.

We employ a multiscale re-sampling with downscaling at the to upsample the PC tensor and generate newer voxels. After
encoder and upscaling at the decoder. This helps exploit the each upsampling, the probability of voxel occupancy p, is
sparsity of the PC while encoding 3D geometric structural predicted and a binary classification loss is employed. The
variations into feature attributes of the latent representation. geometry at the decoder is reconstructed by employing a
The encoder is used as a feature extraction module to obtain classification and pruning layer to prune false voxels and
PC tensors at four different scales capturing multiscale features extract true occupied voxels using binary classification after
at different level of details: Pygy, Pias, Pads, P3as = E(P). each upscaling. We employ binary cross-entropy loss for voxel
Where Pjqs represents a sparse tensor P that has been down-  occupancy classification as the distortion loss in each pruning
sampled j times. layer at the decoder:

1
Lce=—= ) —(Oylogpy, + (1 —0y)log(l —py)) (1)
C. Point Cloud Reconstruction N ; ! ’ ! '

The decoder receives a three-times downsampled PC tensor where O, is the ground truth of whether the voxel v is
and upsamples it hierarchically to reconstruct the original PC  occupied (1) or unoccupied (0).
tensor by employing a different reconstruction loss at each One example of a classification and pruning layer is shown
scale: P = D(Psg;). Decoder employs transpose convolution in Fig. 3. In this example, the input sparse tensor P, has
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shape = 139,244 x 3

shape = 139, 244 x 64
shape = 139,244 x 3
shape = 139,244 x 1

Conv 1x33

shape = 52,612 x 3
shape = 52, 612 x 64

Py

Fig. 3. Example of classification and pruning layer with input sparse tensor
P, and output sparse tensor P.. Binary classification is applied to P, to chose
the top voxels and prune false voxels from P, to obtain Pe.

coordinates C, of shape 139,244 x 3 and their corresponding
features of shape 139,244 x 64. We pass P, through a convolu-
tion of channel size 1 to obtain sparse tensor P, with features
Fp, of shape 139,244 x 1. From Fj we select the top k features
(in this example k = 52,612) with the highest probability
of occupancy (p,) and their corresponding coordinates using
binary voxel classification. The false coordinates and their
corresponding features are then pruned from P, to obtain
P.. The binary cross entropy loss is employed at each of the
pruning layers and is applied to tensor Pp so the true voxels
could have a higher p, and the false voxels have a lower
pv- Then the top k voxels with the highest probability of
occupancy (p,) are chosen and the rest of the false voxels
are pruned out. k is a metadata calculated at the encoder
and losslessly transmitted to the receiver with a very small
overhead along with other overhead bits. k determines the
number of occupied voxels at each scale for that particular
frame which is employed during point cloud reconstruction at
the decoder.

D. Overall System Model

This subsection intends to explain the working of the overall
system framework shown in Fig. 1. In our work, we denote
the current PC frame as_ P? while the previously decoded PC
frame is denoted by P!. The same encoder and prediction
module are used throughout the system to decrease the number
of parameters. Previously decoded frame P! is passed through
the encoder to obtain multiscale tensors PO1 s> Pl1 ds? le s P31 s+
The current frame (P?) is also passed through the encoder to
obtain three-times downsampled tensor containing coordinates
and features: Pfd = {C%d o 32ds}' Current frame’s three-times
downsampled coordinates (C3 41s) and the multiscale features
from the previous frame are passed to the prediction network
to obtain current frame’s predicted three-times downsampled

tensor P32ds = {C3 o0 13 ds} The predicted downsampled

features F32ds and the original downsampled features F3 g are
subtracted to obtain the residual features R%ds. The residual
is transmitted in a lossy manner using a factorized entropy
model [28]. The current frame’s three-times downsampled
coordinates C32ds are transmitted in a lossless manner using
an octree encoder like G-PCC [3]. Three-times downsampled
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coordinates C32d5 is much smaller than the original geometry
(e.g. for the 8iVFB dataset [38], the C32ds is about 16 times
smaller than C?). At the receiver, the previously decoded frame
P! and the three-times downsampled coordinates C%d are

used to predict P dY The residual R3 45 18 added with P; dY
to obtain the current frame’s three-times downsampled tensor
representation P32ds. The decoder progressively rescales P32dY
to obtain the current decoded frame PZ. Encoder and decoder
architecture can on their own be used without the prediction
module for intra-frame PC compression.

E. Inter-Prediction Module

Until now, efficient motion estimation for dynamic point
clouds has not been possible due to the difference in the
occupied coordinates between point cloud frames. We propose
a novel deep learning-based inter-frame predictor network that
can predict the latent representation of the current frame from
the previously reconstructed frame as shown in Fig. 4. This is
the first inter-prediction module that is capable of performing
motion estimation of 3D coordinates across frames such as to
learn the current frame’s feature embedding. The framework
does not explicitly performs motion estimation of distinct 3D
points across multiple frames. Instead, it learns the appropriate
weights to perform motion compensation for 3D points in the
feature domain. We do not employ explicit loss function for
motion estimation but perform end-to-end training.

The multiscale features from the previous frame,
Pold 5 P1 ds P21d 5 P31d 5> and the three downsampled coordinates

from the current frame, C3 1gs are fed to the prediction
network to obtain current frame’s B\dicted three-times
downsampled tensor P32dY {C3dg, 3 ds} The prediction
network downscales the input three times while concatenating
it with the corresponding scale features. Finally a version of
Generalized Sparse Convolution (GSC) is employed to map

features from C31 45 1O C32dx obtain the tensor P32ds.

GSC is defined in [36] as a generalized version of
sparse convolution that incorporates all discrete convolutions
as special cases. Let xI" € RM" be an N™-dimensional
input feature vector in a D-dimensional space at u € RP
(a D-dimensional coordinate), and convolution kernel weights
be W e RK”*N*"xN" The conventional dense convolution
in D-dimension is defined in [36] as:

XM= > Wixlh, foru e ZP (2)
ieVP(K)

where VP (K) is the list of offsets in D-dimensional hypercube
centered at the origin with kernel size K. The generalized
sparse convolution is defined in [36] as:

out __ §
xu -

ieNDu,cin)

W; xu+l for u e C°" 3)

where NP is a set of offsets that define the shape of a kernel
and NP (u, C™") = {i|lu+i € C'",i € N'P} as the set of offsets
from the current center, u, that exist in C™". C" and C°%
are predefined input and output coordinates of sparse tensors.
In GSC, the input and output coordinates are not necessarily
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Fig. 5. Comparison between the two generalized sparse convolutions
employed in the proposed framework. Shown in 2D with blue as the output
coordinates (C°") and green as the input coordinates (C™).

the same and the shape of the convolution kernel is arbitrarily
defined with /7.

The proposed framework employs convolution kernel shape
(NP) of a 3 x 3x3 cuboid. The framework employs two kinds
of generalized sparse convolutions which are shown in Fig. 5.
Sparse convolutions denoted by Conv has the same input (C'™™)
and output (C°") coordinates as shown in Fig. 5a and is
employed in encoder, decoder and predictor networks. Sparse
convolution denoted by GSConv has different input (C™) and
output (C°") coordinates as shown in Fig. 5b and is employed
only once in the predictor network.

GSConv is employed towards the end of the predictor
network to map the features from the input coordinates C:,} ds
to the output coordinates C%ds while applying a convolution
operation. GSConv performs motion estimation in the feature
domain by translating the latent features from the down-
sampled coordinates of Pl e, C31 4 (o the downsampled
coordinates of P2, i.e., C32ds. This way the GSConv enables us
to predict learned features for the current frame coordinates
using the previous frames multi-scale coordinates.

E Training

During training, we optimize the Lagrangian loss, i.e.,
Jloss =R+ AD (4)

where R is the compressed bit rate and D is the distortion loss.
We employ three binary cross-entropy losses at three different
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scales such that the total distortion loss is:

D = L1(Paas, Pais) + L2(Pias, Pras) + L3(P, P)  (5)

where the ground-truth P,;; and P4y are obtained by voxel
or quantization-based downsampling of the original point
cloud P.

The three downsampled coordinates C32ds are transmitted
losslessly using Octree encoder in G-PCC [3] and consumes
a very small amount of bits (i.e., around 0.024 bpp for 8iVFB
dataset [38]). We subtract the three downsampled predicted

features F32d5 from the original three downsampled features
F32ds to obtain the residual features R%ds.

The residual features R% 45 are quantized before encoding.
Note that the quantization operation is non-differentiable,
thus during training, we approximate the quantization process
by adding a uniform noise u ~ U(—0.5,0.5). Quantized
residual features (lets call them f) are encoded by an arith-
metic encoder using a fully factorized probabilistic entropy
model [29] to estimate the probability distribution of f, i.e.,
P o fl#), where ¢ are the learnable parameters. Then the
bpp of encoding f is approximated as:

R= % > log, p s (fle®) 6)
1
where N is the number of points, and i is the index of
channels.

IV. EXPERIMENTS
A. Experimental Setup

For a fair comparison, we closely follow MPEG’s common
test conditions (CTC) [5] and employ the same diverse datasets
recommended by MPEG for deep learning-based dynamic
point cloud compression. The performance of our framework
has already been cross-checked and verified by the MPEG
3DG EE 5.3 working group experts.

1) Training Dataset: We train the proposed model using
three sequences longdress, loot, and queen. Sequences long-
dress and loot are from 8i Voxelized Full Bodies dataset
(8iVFB v2) [38], while sequence queen is from Techni-
color (https://www.technicolor.com/fr). Each sequence has
300 frames with a frame rate of 30 fps. Each sequence has
a 10-bit precision with around 800,000 to 1,000,000 points
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TABLE 1
BD-RATE GAINS AGAINST THE STATE-OF-THE-ART METHODS USING D1 DISTORTION MEASUREMENTS
G-PCC (octree) | G-PCC (trisoup) | PCGCv2 [17] | V-PCC intra | V-PCC inter

basketball -89.15 -60.28 -32.45 -60.46 -48.82

exercise -88.77 -64.91 -35.44 -62.08 -48.30

model -86.25 -56.75 -33.69 -61.93 -51.80

redandblack -88.99 -48.11 -28.31 -59.33 -55.58

soldier -90.21 -52.73 -40.16 -66.51 -43.60

Average -88.77 -56.69 -34.08 -62.69 -52.44

TABLE II B. Experimental Results
REPORTED ENVIRONMENT/FRAMEWORK VARIABLES . . .
Our framework and environment variables are shown in
Parameter Value T:
able II.

GPU Type RTX 3090 Ti . ) )
CPU Type 11th Gen Intel® Core™ i9-11900F 1) GoP Structure: In video coding, a group of pictures,
Framework Pytorch or GOP structure, specifies the order in which intra- and inter-
ggfcft;ri‘zge system Ubuntu 250'04 LTS frames are arranged. In the experiments for our framework, the
Loss functions BCE loss intra-frame (I frame) is encoded using PCGCv2 [17] and the
Learning rate policy Adam inter-frame (P frame) is encoded using the proposed frame-

4111 1 1 1

A values

No. of parameters
Peak Memory Usage (GPU)

2,033,000
15 GB

per point cloud frame. To decrease computational complexity
during training, we divide the PC frames into smaller chunks
by applying the same kd-tree partition on two consecutive
frames.

2) Evaluation Dataset: We evaluate the performance of the
proposed framework on five sequences: redandblack, soldier,
basketball, exercise, and model. Sequences redandblack and
soldier are from 8i Voxelized Full Bodies dataset (8iVFB v2)
[38], while sequences basketball, exercise, and model are from
Owlii Dynamic Human Textured Mesh Sequence Dataset [39].
Each sequence has a frame rate of 30 fps. The 10-bit preci-
sion datasets were employed in our experiments. Since deep
learning-based inter-frame compression schemes process mul-
tiple frames at a time and hence have limited GPU memory,
it is advised to use a maximum of 10-bit precision point
clouds.

3) Training Strategy: We train our network with A =
Lol 1 11 The Adam optimizer is utilized with
a learning rate decayed from 0.0008 to 0.00001. We train
the model for around 40,000 batches with a batch size of 5.
We conduct all the experiments on a GeForce RTX 3090 GPU
with 24GB memory.

4) Evaluation Metric: The bit rate is evaluated using bits
per point (bpp), and the distortion is evaluated using point-
to-point geometry (D1) Peak Signal-to-Noise Ratio (PSNR),
and point-to-plane geometry (D2) PSNR. For some point
clouds, the normals are not available which are required for
D2-PSNR calculation. We employ Open3D’s normal estima-
tion using 20 neighboring points by employing covariance
analysis. The geometry PSNRs are obtained using MPEG’s
pc_error tool [40]. The peak value p is set as 1023 for all
the datasets. We plot rate-distortion curves and calculate the
BD-Rate (Bjgntegaard Delta Rate) [41] gains using D1-PSNR
over different methods.

work. In the results, the I frame is encoded after 32 frames and
the rest of the 31 frames are encoded as inter-frames P frame.

2) Baseline Setup: We compare our method to the state-
of-the-art deep learning intra-frame encoding PCGCv2 [17],
MPEG’s G-PCC (octree as well as trisoup) [3] methods,
as well as MPEG’s video-based V-PCC method (inter and
intra-frame encoding) [4]. We utilize G-PCC’s latest reference
implementation TMC13-v20, and for V-PCC the latest imple-
mentation TMC2-v18 which uses the HEVC video codec.
V-PCC inter-frame low-delay setting which involves P-frame
encoding is employed for a fair comparison to the proposed
P-frame encoding method. Two extra points for higher bpp
have been added for V-PCC.

3) Performance Evaluation: Table 1 shows the BD-Rate
gains of the proposed method over the state-of-the-art using
D1-PSNR. The lower the BD-Rate value, the more the
improvement is. Our method achieves significant gains com-
pared to G-PCC with an average of 88.77% BD-Rate
gains against G-PCC (octree), 56.69% BD-Rate improvement
over G-PCC (trisoup). Compared to the deep learning-based
model PCGCv2, we achieve a 34.08% BD-Rate improvement.
Compared to the V-PCC, we achieve a 62.69% BD-Rate
improvement over intra-frame encoding mode and 52.44%
BD-Rate improvement over inter-frame encoding mode. The
proposed method outperforms V-PCC inter-frame mode across
all rates for dense photo-realistic point clouds. Please note
that in a previous version of this publication, we showed a
91.68% BD-Rate gains against G-PCC (octree) and 84.41%
BD-Rate improvement over G-PCC (trisoup) but those gains
were against TMC13-v14 but now we have updated G-PCC
results to TMC13-v20.

The DI1-PSNR and D2-PSNR rate-distortion curves are
shown in Fig. 6 and Fig. 7 respectively. As can be seen,
the proposed method has significant coding gains compared
with the deep learning-based model PCGCv2. It should be
noted that compared with PCGCv2, our method performs
much better at higher PSNR and still performs better than
PCGCv2 at lower PSNRs. This is because both the proposed
method and PCGCv2 transmit the three downsampled coor-
dinates in a lossless manner and their corresponding features
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Fig. 6. Rate-distortion curves using D1 PSNR comparison with the state-of-the-arts plotted for five different sequences and their average.
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Fig. 7. Rate-distortion curves using D2 PSNR comparison with the state-of-the-arts plotted for five different sequences and their average.

in a lossy manner. However, at lower PSNRs, most of the which is because trisoup performs better for denser point
bits are consumed by coordinates (i.e., around 0.024 bpp) clouds whereas octree performs better for sparse LiDAR-
which constitutes the majority of the bitrate. At higher PSNR  based point clouds. When compared with V-PCC, we can
values most of the bitrates are due to features. Our inter- see that the proposed method achieves a much higher PSNR
frame prediction network transmits only the residual of the for the same bitrate for all of the sequences and bitrates.
features and, hence, can significantly decrease the feature bits As expected, the V-PCC inter-frame encoding mode performs
transmitted leading to much higher gains at higher PSNR and  better than V-PCC intra-frame encoding mode. The sequences
bitrates. that have the most movement (i.e., redandblack) the V-PCC

The proposed method also significantly outperforms G-PCC inter and V-PCC intra modes perform pretty similarly whereas
(octree) as well as G-PCC (trisoup). We can notice that the sequence with the least amount of movement (i.e., soldier)
G-PCC trisoup performs much better than G-PCC octree the V-PCC inter-frame encoding method performed much

Authorized licensed use limited to: Auburn University. Downloaded on April 30,2024 at 04:52:10 UTC from IEEE Xplore. Restrictions apply.



592

Ours 0.129bpp
0.124mm, 73.74dB

G-PCC (T) 0.125bpp  G-PCC (O) 0.223bpp
0.609mm, 63.20dB

Ground Truth 0.271mm, 69.22dB

Fig. 8.  Qualitative visual comparison of sequence “soldier” for different
methods. The color error map describes the point-to-point distortion measured
in mm, and the numbers above represent the bitrate, mean error measured in
mm, and D1 PSNR.

better than V-PCC intra-frame encoding method. We can see
a similar pattern between our proposed inter-frame method
and PCGCv2 which is an intra-frame method. We see that our
proposed inter-frame method has the most improvement over
PCGCv2 on the soldier sequence and the least improvement
over PCGCv2 on the redandblack sequence. Our Prediction
module maps the features extracted from the previous frame
to the coordinates extracted from the current frame. In this
way, when the motion between adjacent frames is small, the
performance is significantly improved.

4) Visual Results: Visual comparison of dense point clouds
for geometry only is difficult since it is difficult to differentiate
the quality by viewing only the points without color/attribute.
The best and most common way to visualize the reconstruction
results is to view the per-point distortion error. A qualitative
comparison with the proposed method and G-PCC is presented
in Fig. 8. Point clouds are colored with the point-to-point
reconstruction error for visualization. As can be seen in the
visual results too, our method has a much better reconstruction
quality compared to G-PCC. Another thing to notice is that the
proposed method has very few outliers and generates points
very close to the surface of the original point cloud.

C. Runtime Comparison

We compare the runtime of different methods in Table III.
We use an Intel Core i9-11900F CPU and an Nvidia GeForce
GTX 3090 GPU. G-PCC runtime is computed for the highest
bitrate on a CPU. While both PCGCv2 and Our method utilize
the GPU. Due to the diversity in platforms, e.g., CPU vs. GPU,
Python vs. C/C++, etc, the running time comparison only
serves as the intuitive reference to have a general idea about
the computational complexity. As can be seen, our method
experiences a slight increase in runtime due to processing
two PC frames at a time. However, the increased complexity
is still minimal given that our network is an inter-frame
prediction scheme. PCGCv2 has about 778 thousand parame-
ters, whereas, the proposed method has about 2,033 thousand
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TABLE III

AVERAGE RUNTIME (PER FRAME) OF DIFFERENT
METHODS USING 8iVFBv2 PCs

G-PCC (O) | G-PCC (T) | PCGCv2 [17] | Ours

Enc (s) 1.50 5.625 0.258 0.364

Dec (s) 0.42 1.61 0.537 0.714
TABLE IV

PARTITIONING THE POINT CLOUD INTO A SMALLER NUMBER OF BLOCKS.
TESTED ON SOLDIER SEQUENCE

# of blocks | PSNR bpp
1 74.56 | 0.1944
2 74.52 | 0.1987
4 74.48 | 0.2055
8 74.35 | 0.2158

parameters which is still a relatively small network. The
runtime complexity can be optimized by migrating to a C++
implementation and simplifying the framework.

D. Ablation Study: Block Size

Even though in our evaluations, we have used the full point
cloud during inference. We wanted to see the effects on PSNR
and bitrate of dividing the point cloud into smaller blocks
for encoding. The purpose is to demonstrate that if needed,
a large point cloud can be partitioned into blocks for process-
ing. During the encoding, we save the coordinate bitstream,
feature bitstream, number of points, and the entropy model
header information into four different files. Overall bitrate is
decided by the collective size of these files. Once we divide
the point cloud into blocks, each block would be encoded
separately into four different files so we should expect to see
a higher overhead involved. kd-tree partitioning is employed
to divide each point cloud into multiple blocks and encoded
the blocks independently. The results of this experiment on
soldier sequence are shown in Table IV. We notice that
partitioning the point cloud into smaller blocks decreases the
PSNR slightly. However, the difference is minimal. We also
notice that the bitrate increases a bit but that could be from
the overhead of saving the information in lots of files (e.g.
for 8 # of blocks, we have a total of 24 files encoded,
whereas, for 1 block, we have a total of 4 files encoded).
It is possible to merge these files into a single file to decrease
the overhead. However, that is out of the scope of the current
work.

V. CONCLUSION

This work proposes a deep learning-based inter-frame com-
pression scheme for dynamic point clouds that encodes the
current frame using the decoded previous frame. We employ an
encoder to obtain multi-scale features and a decoder to hierar-
chically reconstruct the point cloud by progressive scaling. The
paper introduces a novel inter-prediction module that predicts
the latent representation of the current frame by mapping
the latent features of the previous frame to the downsampled
coordinates of the current frame using a specific version of
generalized sparse convolution (GSConv) with an arbitrary
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input and output coordinates. The proposed method effectively
performs motion estimation across frames for dynamic point
clouds and encodes and transmits only the residual of the
predicted features and the actual features. Sparse convolutions
are employed to reduce the space and time complexity which
allows the network to process two consecutive point cloud
frames per inference. Exhaustive experimental results show
more than 88% BD-Rate gains over the state-of-the-art MPEG
G-PCC (octree), more than 56% BD-Rate gains over G-PCC
(trisoup), more than 34% BD-Rate gains over intra-frame
network PCGCv2, more than 62% BD-Rate improvement over
MPEG V-PCC intra-frame encoding mode, and more than
52% BD-Rate improvement over MPEG V-PCC inter-frame
encoding mode. The proposed method has been verified in
MPEG’s cross-check.
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