Dual Timescale Orchestration System for Elastic Control of
NextG Cloud-Integrated Networks

Quirino Pagliuca®, Luciano Jerez Chaves', Pasquale Imputato™, Antonia Tulino**, Jaime Llorca*}
*University of Naples Federico II, Italy
TUniversidade Federal de Juiz de Fora, Brazil
fNew York University, USA

Abstract—The confluence of advanced networking (5G/6G) and
distributed cloud technologies (edge/fog computing) are rapidly trans-
forming next-generation networks into highly distributed computation
platforms, especially suited to host emerging resource-intensive and
latency-sensitive services (e.g., smart transportation/city/factory, real-
time computer vision, augmented reality). In this paper, we leverage
the recently proposed Cloud Network Flow (CNF) modeling and
optimization framework to design a novel two-timescale orchestration
system for the joint control of communication and computation
resources in cloud-integrated networks. The Long-Term Controller
solves a properly constructed CNF optimization problem at a longer
timescale that determines i) the end-to-end CNF routes (defining data
paths and processing locations) for each service chain and ii) the
associated allocation of communication and computation resources.
The Short-Term Controller uses a local control policy to adjust the
allocation of communication and computation resources based on
queue state observations at a shorter timescale. Driven by the lack
of proper simulation tools, we also develop new ns-3 features that
allow modeling and simulation of cloud-integrated networks equipped
with both communication and computation resources hosting arbitrary
service chains. Finally, we integrate the proposed orchestration system
into ns-3 to evaluate and analyze the dynamic orchestration of a set
of representative service chains over a hierarchical cloud-integrated
network.

Index Terms—5G, 6G, cloud networks, edge computing, service
orchestration, network modeling, network simulation, ns-3

I. INTRODUCTION

Next-generation (NextG) networks are expected to support a
wide range of service classes, each with its own set of stringent
quality of service/experience (QoS/QoE) requirements [1]. While
5G/6G technologies are evolving to enable high throughput, low
latency, and reliable access networks, distributed cloud networking
has emerged as a preeminent paradigm for enabling a flexi-
ble cloud-integrated core network. Built upon the foundations
of Software-Defined Networking (SDN) and Network Function
Virtualization (NFV), it enables the integrated evolution of network
and cloud infrastructure into a general-purpose, highly-distributed
compute platform capable of hosting next-generation resource-
intensive and latency-sensitive services (e.g., industrial automation,
smart transportation, mixed reality) in the form of elastic and
disaggregated software functions. These functions can be instanti-
ated at multiple locations across the device-edge-cloud continuum,
elastically scaled in response to changing conditions, and flexibly
interconnected through a programmable network fabric, as illus-
trated in Fig.1.

Fig. 1: Cloud-integrated network hosting a mixed reality service with
tracking and rendering functions running over the device-edge-cloud
continuum.

A. Joint cloud-network orchestration

While distributed cloud networking offers a significant advance-
ment in the industry, the complexity and dynamic nature of manag-
ing network and cloud resources within this paradigm necessitates
a unified approach [2]. The co-design and orchestration of cloud
and network resources are fundamental to i) optimizing system
performance, ii) enhancing flexibility, and iii) reducing operational
costs. Operating in isolation, these resources may be underutilized
or overtaxed, leading to inefficiencies and reduced QoS. A unified
orchestration system harmonizes the use of cloud and network
capabilities to support the communication and computation re-
quirements of NextG services, accommodating dynamic network
conditions and traffic demands. Ultimately, using a joint design
and orchestration approach can enable optimal resource allocation,
leading to increased cost-effectiveness and improved QoS.

To this end, in this paper we leverage Cloud Network Flow
(CNF), a unified mathematical framework designed for the model-
ing and optimization of integrated compute-communication sys-
tems such as cloud-integrated networks [3]-[5]. As described
in Section III, CNF allows modeling the end-to-end service
distribution problem (function placement, flow routing, resource
allocation) as a single flow problem over a properly constructed
cloud network graph.

B. Dual timescale control

While CNF provides a common framework for the joint orches-
tration of cloud and network resources, the resulting optimiza-
tion problems do not come without complexity and scalability
challenges. In this paper, our goal is to address the complexity
around end-to-end optimization and control of NextG cloud-
integrated networks via a dual-timescale orchestration system that
leverages the advantages of centralized and distributed control
policies, cooperating at different timescales. The rationale be-
hind this approach is that the centralized controller can leverage
global system information, compute optimal configurations, and
establish consistent policies across the cloud-network continuum
albeit slower reactions and scalability limitations. On the other
hand, local controllers can provide faster reactions in response to
dynamic changes in network conditions and service demands albeit
possibly converging to sub-optimal global configurations. A proper
combination of centralized optimization algorithms and distributed
control policies is expected to strike a desirable balance between
optimal and responsive configurations.

C. Cloud-network simulation tools

Accurate performance evaluation is also a challenge. Indeed,
cloud network orchestration solutions need to be properly evalu-
ated to identify performance gains, limitations, and directions for
future investigations. While numerical evaluation help in assessing
the goodness of proposed solutions, it does not take into account
the complexity of the whole network stack. On the other hand,
experimentation on real networks presents higher complexity and
costs. In this context, simulation or emulation tools supporting
SDN/NFV realistic modeling and QoS performance evaluation are
lacking or have limited support. Indeed, tools like Mininet or ns-
3, which allow a full stack network performance evaluation, have
only limited support for SDN networks [6].

D. Contributions

In this work, we present a practical proposal for a dual-
timescale SDN/NFV orchestration system along with its modeling
and evaluation via the ns-3 network simulator. Key contributions
can be summarized as:

o the design of a CNF Orchestration System (OS) to jointly
optimize end-to-end service flow routing and processing along
with the associated allocation of communication and compu-
tation resources;

o the design of a dual-timescale control strategy combining
long-term optimization and short-term control policies;

o the design of extensions to ns-3 to support both SDN and
NFV that allows simulating arbitrary service chains running
over a distributed cloud-integrated network;'

« the ns-3 implementation of the proposed CNF OS;

o and a preliminary performance evaluation to validate the
models and get insights into the CNF OS behavior.

The ns-3 extensions will be incorporated into the OFSwith13 module.
We are in the process of releasing the new OFSwitch13 module through
the ns-3 app store.

The paper is organized as follows. Section II presents related
work. Section III briefly describes the CNF framework. Section IV
presents the proposed CNF OS. Section V presents the dual-
timescale control strategies. Section VI describes the ns-3 imple-
mentation of the CNF OS. Section VII presents simulation results
illustrating the benefit of the new CNF OS. Finally, Section VIII
states concluding remarks.

II. RELATED WORK

In the context of future softwarized 5G/6G networks, the work
in [2] presents a comprehensive discussion on QoE management.
It introduces a generalized QoE provisioning ecosystem for ser-
vices in softwarized 5G/6G and beyond networks. While QoE is
supported by network QoS and complex queueing systems [7],
the key technologies enabling QoE management are SDN and
NFV which play a critical role in modern communication sys-
tems [8]-[10]. SDN/NFV networks offer highly flexible and dy-
namic architectures that can adapt to changing network conditions
and requirements. This flexibility enables intelligent strategies to
support QoE, as network resources can be efficiently allocated and
managed based on user demands and application needs.

The need for advanced management through orchestration sys-
tems for SDN/NFV networks is discussed in [11]. The work also
discusses the need for proper modeling and evaluation of proposed
solutions. Authors in [8] propose a cost-efficient optimized orches-
tration system that addresses the whole life-cycle management of
different Service Function Chains (SFCs). The system considers
QoS parameters, such as end-to-end delay, bandwidth, and jitter,
along with actual capacities of network functions deployed across
multiple cloud/edge locations, taking into account availablecom-
putation resources. In [12], authors propose a mathematical model
for optimizing the embedding of SFCs (implemented in P4),
while considering functional and QoS requirements associated with
embedding requests. The model accounts for various types of
processing devices with different properties, including process-
ing delay and supported features. In [13], authors propose an
online orchestration methodology for a multi-user edge service.
The orchestrator’s goal is to simultaneously maximize QoS and
minimize resource consumption. They provide a mathematical
formulation to compute an optimal offline policy and derive an
online approach using a model-free Deep Reinforcement Learning
(DRL) framework.

At the time of writing, there are no readily available models for
simulating SDN/NFV-baed cloud-integrated networks or orchestra-
tion systems. For example, simulators like Mininet or ns-3 offer
limited support for SDN’s main functionalities [6]. Our work lies
within ongoing efforts in research and development to enhance
QoE management in SDN/NFV networks. Specifically, we focus
on the modeling and performance evaluation of SDN/NFV cloud-
integrated networks and their complex orchestration systems.

III. THE UNDERLYING CLOUD NETWORK FLOW FRAMEWORK

The proposed CNF OS leverages the recently introduced CNF
modeling, optimization, and control framework that allows jointly

optimizing function placement, flow routing, and computation-
communication resource allocation by solving a single flow prob-
lem on a properly constructed cloud network graph [3]-[5]. Key
to the CNF framework is the definition of two graphs, the Service
Graph (SG), and the Cloud Network Graph (CNG), representing
the services’ requirements and the cloud network infrastructure
capabilities, respectively.

The SG vertices represent service functions and the SG edges
represent data streams (or commodities) that are input/output
to/from the corresponding service functions. Service functions
impose computation rate requirements (e.g., CPU, memory) and
service commodities communication rate requirements (e.g., band-
width). An example of a service graph for an augmented reality
service is shown in Fig. 2.

On the other hand, the CNG vertices and edges represent cloud
network nodes and links, respectively. Importantly, cloud network
links include communication links, representing the capability to
send information from one node to another, as well as production,
consumption, and computation links, representing the capability
to produce, consume, and process information at a given node,
respectively. Each cloud network link is characterized by its
associated capacity and cost. A generic CNG node is represented
in Fig. 3.

Given the proper definition of SG and CNG, CNF allows solving
the end-to-end service distribution (function placement, flow rout-
ing, and associated allocation of computation and communication
resources) as a single flow problem. CNF is in essence a gener-
alization of Multi-Commodity-Flow (MCF) for the optimization
of arbitrary services over cloud-integrated networks. Several CNF
optimization algorithms have been designed to solve what is
referred to as the service distribution problem, whose goal is to
find the function placement, flow routing, and associated allocation
of cloud and network resources that guarantees QoS requirements
while minimizing overall resource cost [3]—[5]. Alternatively, CNF
control policies have been designed to dynamically adjust flow
routing, scheduling, and resource allocation in response to dynamic
changes in network conditions and service demands [14]-[16].
Our goal is to design a dual timescale orchestration system that
exploits CNF optimization algorithms at the centralized long-term
controller and CNF dynamic control policies at the distributed
short-term controllers.

IV. THE CNF ORCHESTRATION SYSTEM

In the following section, we present the CNF OS and its main
components, as illustrated in Fig. 4. The Application Layer (AL)
extracts the service demands, in terms of the sequence of service

Source Destination
function function
@ —0—0—0
> > > >
Tracking Composition Rendering

Fig. 2: Example of a service graph (SG) for a mixed reality service
with source, processing and destination functions.

Production node

d
.N Consumption node
Communication node

E forward

Computation node
process

p

Fig. 3: Generic cloud network graph (CNG) node with production,
consumption computation, and communication links representing the
potential capabilities of producing, consuming, computing, and sending
data over the network.

functions and associated resource requirements for each service,
encodes them into an SG, and sends it the the Control Layer (CL).
The CL also receives as input the CNG, which is a description
provided by the Infrastructure Layer (IL) of the cloud network
topology and associated resource capacities and costs. The CL is
responsible for providing the necessary inputs to both Long-Term
Control (LTC) and Short-Term Control (STC) agents. Operating
over a longer timescale, the LTC agent takes as input the SG
and the CNG and computes an optimal solution to the underlying
CNF optimization problem that includes end-to-end CNF routes
(data paths and service processing locations) for each service chain
and the associated allocation of communication and computation
resources. The LTC output is then used by the IL to configure the
end-to-end CNF routes and overall resource allocation on the CN
infrastructure. On the other hand, the STC agent interacts with the
IL on a shorter timescale. The STC is responsible for adjusting
the allocation of communication and computation resources based
on near real-time network state information (queue states, available
resource capacities, and costs). We highlight that the CNF solution
computed by the LTC determines the CNF routes and resource
allocation needed to support the required service rates (as given in
the SG) with minimum overall resource cost. However, the LTC
is constrained to work at a timescale that allows collecting global
system information. On the other hand, the STC is designed to
work at a shorter timescale, using local but more granular system
information such as queue states, to provide fast reactions that are
more suitable to address end-to-end latency requirements.

V. OPTIMIZATION AND CONTROL STRATEGIES

In the following, we describe the specific choices of long-term
optimization algorithm and distributed control policy for our first
implementation of the proposed CNF OS.

A. Long-term optimization

For the long-term controller, we choose to use a mixed-integer
linear programming (MILP) solver to directly solve the underlying
CNF optimization problem. Let G = (V, £) denote the CNG, with

Control
Plane

Capacities

Resource
and Costs

Long-Term Control

Communication
Resources

Applications)

1 Application Requirements

Short-Term Control

Resource Queue States

Allocation

Resource Available
Autoscaling Resource
E2E CNF Capacities
Routes and Costs

Computation Storage
Resources Resources

Fig. 4: Architecture diagram for the proposed dual-timescale CNF-based orchestration system.

V and & representing the set of nodes and links, respectively. Recall
that each link e = (u,v) € £ can represent production, consump-
tion, communication, or computation resources, each characterized
by its capacity c. (in resource blocks), its resource block capacity
b (in flow units), and its cost w. (in cost per resource block).
Note that depending on the nature of link e (e.g., communication,
computation) the flow and resource block capacity units may be of
different dimensions [3], [4]. Finally, we use V¢ C V to specify the
set of communication nodes within the CNG, and 6~ (u) C V and
5% (u) C V to denote the set of incoming and outgoing neighbors
of node wu, respectively.

The SG is denoted by R = (Z, K), with Z and X denoting the
set of functions and commodities (or data streams), respectively.
Furthermore, X (k) denotes the set of input commodities required
to produce commodity k, K° the set of source commodities, and
K% the set of destination commodities. Finally, s(k) € V, k € K*
denotes the CN node hosting source commodity & and d(k) €
V,k € K% the CN node requesting destination commodity k.
Importantly, each commodity & € K is characterized by its
communication rate requirement (in communication flow units,
e.g., Mbps). In addition, each commodity k& € K\K? is also
characterized by its computation rate requirement (in computation
flow units, e.g., CPU cycles per second). Accordingly, we denote
by RF the rate of commodity k when it goes over edge e. This
way, RF takes value equal to the communication rate of k& when
e is a communication link, the computation rate of commodity k
when e is a computation link, and zero otherwise. Note also that
the rates (communication or computation) of a given commodity in
a service chain can be derived by multiplying the rate of the source
commodity times appropriate communication and computation
scaling factors. In Sec. VI, such scaling factors play an important
role in properly implementing service functions in ns-3.

Let’s now define the following decision variables:

o f¥: fraction of commodity k traversing link e
o Ye: number of resource blocks allocated to link e

Then, the CNF optimization problem can be formulated as
follows:

min X:yewe (1a)
eef
sty fhe= Y fh Yue Vi, ke K (b
veS— (u) vest (u)
b = fi Vue Ve kek,leX(k) (lo)
fh = Vk e K® s =s(k) (1d)
faa=1 Vke K% d=dk) (le)
> FERE <yecd <ce Vee& (f)
ke

feelo,1],y. e z* Vec & kek (lg

In (1), (1a) defines the resource allocation cost function to be
minimized, (1b) denotes generalized flow conservation constraints
(where incoming and outgoing neighbors can include commu-
nication nodes, as well as local production, consumption, and
computation nodes), (1c) service chaining constraints (stating the
need to have every input commodity in X (k) going into the
local computation node p when producing commodity k£ at node
u), (1d)-(le) service source and destination locations, and (1f)
capacity constraints. Finally, we note that the domain of the flow
variables can be [0,1] or {0,1} depending on the splittable or
unsplittable nature of the service flows. We also remark that the
combinatorial nature of the resulting MILP is one of the reasons it
is used at the LTC, which only runs at periodic long-term intervals.
Nonetheless, efficient CNF approximation algorithms can also be

used to compute close-to-optimal solutions to the above MILP
in polynomial time in order to match the LTC timescale to the
network scale [4], [5].

B. Short-Term Control

The solution to the CNF optimization problem that the LTC
computes is designed to minimize the total resource cost while
keeping queuing delays bounded via the satisfaction of the capacity
constraints 1f (where allocated resources always cover average
service rates). However, actual queuing delays will depend on
the actual distribution of packet arrivals and associated queue
lengths. Hence, in order to control end-to-end service delays, we
introduce distributed STC agents designed to adjust the initial
resource allocation solution in response to real-time variations of
queueing states.

While we plan to investigate advanced control policies, e.g.,
leveraging data-driven reinforcement learning techniques, in this
first implementation of the CNF OS, we choose a simple threshold-
based control policy. Local STC agents constantly monitor the
TX queue usage on outgoing links. If the queue usage exceeds a
predefined threshold value, the STC agent increases the resource
allocation of the respective link by one resource block (up to
the maximum number of resource blocks available for that link).
With this granular heuristic policy, we expect to quickly reduce
queuing delays with a controlled impact on total cost. From an
implementation point of view, the increase of resource allocation
by the STC agents can be achieved through SDN link aggregation.
Finally, we highlight that while the STC agents work locally at a
shorter time scale, the LTC agent operates at a central controller
and evaluates at a longer timescale the goodness of the actions
decided by the STC agents.

VI. THE CNF OS IMPLEMENTATION IN NS-3

To model the CNF OS into ns-3, we first describe the CNG
and SG graphs through a JSON file. Then, a custom JSON reader
provides the input to ns-3 simulation script to properly configure
the ns-3 simulation environment. Starting at the IL, we model
the CNG vertices and edges as ns-3 nodes and links. Production,
computation, and consumption CNG nodes are configured as
standard ns-3 host nodes. In turn, communication CNG nodes,
which are responsible for packet forwarding, are configured as
ns-3 OpenFlow switches, allowing traffic routing at a flow-based
granularity.

At the AL, we model the SG vertices (service functions) as
custom ns-3 stateless applications running over UDP/IP protocols.
These applications can generate, process, and consume network
traffic (service commodities). The choice of instantiating applica-
tions over the UDP protocol is motivated by the implementation
of stateless functions and the possibility of scaling the traffic
flow in each processing function to reflect different communi-
cation/computation commodity demands. In particular, we model
each processing function as a forwarding application that uses
the communication and computation scaling factors described
in Sec. V to adjust output traffic throughput according to the
properties of each service function. The JSON file also brings

information on function availability, describing in which CNG
nodes we can install instances of the SG functions. As cloud
network resources are modeled into CNG links, it is possible to
have copies of SG functions on different nodes ready for usage.
Besides, to model service function isolation, we use dedicated
computation links to connect multiple computation host nodes
to the same communication switch. For the CL, we leverage the
capabilities of the OFSwitch13 module for ns-3 [6] to implement
a custom SDN controller that interacts with the LTC agent and
globally configures infrastructure resources. Precisely, the LTC
agent described in Sec. V-A is implemented in Python with support
of the PuLP library. The interaction between the SDN controller
and LTC happens with the support of the ns3-ai module [17],
which facilitates the data exchange between ns-3 and Python-based
frameworks. When the LTC agent generates a new output, the
SDN controller sends OpenFlow messages to the communications
switches to (re)configure CNF routes and (re)allocate cloud net-
work resources. On the other hand, the STC is implemented at
every communication node, monitoring local outgoing queues and
increasing resource allocation locally when necessary. We recall
that the LTC agent is able to configure CNF routes and allocate
resources through proper configuration of SDN rules from the CL,
while distributed STC agents update resource allocation based on
real-time local queue observations.

VII. PERFORMANCE EVALUATION
A. Simulation setting

We conducted a preliminary performance evaluation of the
proposed CNF OS through ns-3 simulations. The goal was to
validate the implemented CNF OS along with the optimization
strategies and the new features implemented in ns-3. For the cloud
network, we considered the CNG represented in Fig. 5, consisting
of five communication nodes (in black), eleven computation nodes
(in yellow), two production nodes (in red), and two consumption
nodes (in blue). Communication nodes include one core cloud
node (node 3), two edge cloud nodes (nodes 1 and 2), and two
access nodes (nodes 4 and 5). Each computation node represents a
cluster of computation resources reserved for the execution of one
or more service functions at the given communication node, with
the capacity and cost of its incoming link denoting the maximum
number of available resource blocks and the cost per resource
block, respectively. We set the capacity of all links to 100 resource
blocks, except for computation link (1,11) which has a capacity
of 6 resource blocks in order to observe possible congestion-
driven rerouting solutions.The capacity per resource block is set
to 10 Mbps for all communication links and to 10 Mhz for all
computation links. Finally, the cost per resource block is set to 10
for all communication links and 20 for all computation links.

For the set of services, we consider the SG represented in Fig. 6,
consisting of five service chains. The ¢-th service is identified
through a source function having ID ¢-0 and a destination node
having ID ¢-9. Intermediate processing functions have ID i-n,
where n denotes the function type. Functions of types 1 and 2 have
computation and communication scaling factors of 1.2. Functions
of type 3 have computation scaling factor 1.5 and communication

KEY MAP

® I

Production C i C i Ce icati Zero-Cost & Communication ~ Computation
Nodes Nodes Nodes Nodes Infinite-Capacity Links Links Links

Fig. 5: Representation of the CNG used in the performance evaluation.

scaling factor 0.8. Functions of types 4 and 5 have scaling factors
of 0.4 and 1.2 for computation and communication, respectively.

It is important to note that the source and destination functions
of each service chain need to be mapped to CNG production
and consumption nodes, respectively. In our evaluation, source
functions 10, 20 and 40 are mapped to production node 40, source
functions 30 and 50 to production node 50, destination functions
19, 39 and 49 to consumption node 49, and destination functions
29 and 59 to consumption node 59. In addition, we assume
processing functions with ID ¢-n for any ¢ can be instantiated
at computation nodes j-n for any j.

Each service chain is characterized by its source traffic rate
during the simulation period (lasting 80 s) as shown in Fig. 7, with
service 1 having non-constant source rate while the other services
keep a constant source rate. Services 4 and 5 are representative of
background traffic.

We evaluated two scenarios:

e LTC-only, where the centralized LTC agent is prompted to
evaluate potential resource reallocation and service rerouting
at every LT-interval of 25s;

o Joint LTC-STC, where, in addition to the LTC agent, dis-
tributed STC agents operate at every ST-slot of 2s to dynam-
ically adjust resource allocation to match real-time service
demand variations.

At the beginning of each simulation scenario, the LTC agent
solves the CNF optimization problem for the cloud network initial
state, providing the initial end-to-end routes for each service chain
and the initial total resource allocation. Results are averaged over
four simulation runs using different seeds.

B. Simulation results

1) LTC-only scenario: Fig. 8 shows the results for the LTC-
only scenario. Fig. 8a shows the measured end-to-end latency
for each service throughout the simulation, while Fig. 8b shows
the total cost of allocated resources in the same time interval.
Recall that the LTC agent determines the optimal solution to the
CNF optimization problem at each LT-interval (25s) in order to
accommodate changes in service 1 demand, which increases its
source rate three times during the entire simulation (at 10s, 20s
and at 30s; see Fig. 7).

service 1

e
v/

\
¢
))

C

2\ (=) L
=7 o S

@ Functions

service 5

KEY MAP @ Sources

G_;- Destinations
Fig. 6: Representation of the SG used in the performance evaluation.

50
48
46
44
42
40
38
36
34
32
30
28 Service ID
26
24
22
20
18
16
14
12
10

Source rate (Mbps)
s wN R

oNn O

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0

Simulation time (s)

Fig. 7: Service source rates during the simulation time.

At the beginning of the simulation, the LTC agent determined the
CNF routes and minimal resource requirement (which amounted
to 830 cost units) to support initial service rates. When service 1
increased its source rate by 20% at 10s, the network successfully
managed the new load, owing to the fact that the initially allocated
resource blocks are still sufficient to support the heightened load.

However, at the 20 s mark, service 1 further increased its source
rate, resulting in the load of link (1,11) surpassing its allocated
capacity. Consequently, the end-to-end service delays start going
up, especially that of service 1, which reaches a delay of 345 ms.
The end-to-end delays continued to escalate until the simulation
reached 25s. At this point, the LTC agent is prompted to reassess
and implement a new solution. Importantly, this solution involved
a reallocation of service 2 (functions 21 and 23) from edge node 1
to edge node 2 to relieve the congestion link (1,11). In terms of
resource allocation, while the total allocation increased to 900 cost
units, the allocation at link (1, 11) is adjusted down, rectifying the
previous over-allocation which had exceeded the requirements for
processing service 1 alone. At 30s, service 1 further augmented
its traffic demand, once again exceeding the allocated resources,
which caused another increase in latency. This uptrend persisted
until a peak value of 940 ms at the 50s mark. At 50s, the LTC

1000
950 1
900
850
800+
750+
700+
650
600
550
500
450+
400
350
300
2507
200+
150
1004

50

End-to-end delay (ms)

] T T T T T T T T T T T T T T T
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0

Simulation time (s)

(a) End-to-end service latency (ms).

Service ID

uRwN e

1000

950

Total allocated cost

750 N T T N T N T T N ™ N T N
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0

Simulation time (s)

(b) Total resource allocation cost.

Fig. 8: End-to-end service latencies and total allocated cost during the simulation time for the LTC-only scenario.

~
=}
S

“to-end delay (ms) "~

400 D % wmo B mo #o ®e Eo we £ :
N Simulation time (s) N
350 e, Simulation tme G :

End-to-end delay (ms)

0
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0

Simulation time (s)

(a) End-to-end service latency (ms).

Service ID

U WN

1000

900

850

Total allocated cost

800

750 T T T T T T T T
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0

Simulation time (s)

(b) Total resource allocation cost.

Fig. 9: End-to-end service latencies and total allocated cost during the simulation time for the joint LTC-STC scenario.

agent revised the solution, increasing the total allocated resources
to a total cost of 950. This adjustment effectively reduced the end-
to-end delays to their minimal levels. Finally, when the LTC was
engaged at 75s , the network had already achieved a steady state.
Consequently, no notable changes were observed, neither in the
latency metrics nor in the resource allocation cost.

2) Joint LTC-STC scenario: Fig. 9 shows the results for the
joint LTC-STC scenario. Fig. 9a shows the per-service end-to-
end latency during the simulation time, while Fig. 9b shows the
total allocated cost during the same time period. We remark that,
in this scenario, the centralized LTC agent continues to operate
at every LT-interval (25s) while the resource allocation can be
further adjusted at every ST-slot (2s) by the distributed STC
agents. Note how end-to-end latencies appear bounded below 145

ms for the whole simulation period, while the total allocated
cost smoothly follows changes in the service traffic demands.
We analyzed simulation logs to derive the LTC agents’ behavior.
More specifically, at the beginning of the simulation, STC agents
started slightly increasing the allocation of resource blocks to better
accommodate initial service traffic demands. At 12s, the STC
agent at node 1 further increased the allocated resource blocks of
link (1,4) to face the increased service 1 source rate effectively,
keeping latencies under control. At time 20s, the STC agent at
node 4 increased the resource allocation of link (4, 1), quickly
reacting to the second increase in service 1 source rate. At time
22s, the STC agent at node 1 effectively increased the allocated
resource blocks in links (1,12) and (1, 13), avoiding waiting until
time 25s, as in the LTC-only scenario, and significantly reducing

the total end-to-end delays. At 25s, the LTC redetermined the
optimal solution (as in the previous experiment). Then, starting
from 30 s the STC agent at node 1 increased the allocated resource
blocks of links (1,11) and (1,12) to keep service 1 delay under
control. A new solution from the LTC was prompted at time
50s confirming the goodness of the actions decided by the STC
agents (indeed, it increased the allocated resources by only a
few additional resource blocks). Finally, at time 66s the STC
agents decided to slightly increase the allocated resource blocks
(in response to slight fast queue length variations), with the LTC
agent redetermining the minimum required resource blocks at the
time 75s.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a dual timescale orchestration system
to efficiently address the end-to-end service distribution problem in
NextG cloud-integrated networks. We designed a centralized LTC
agent that computes the optimal solution to the underlying CNF
optimization problem at each long-term interval, and distributed
STC agents that use a local control policy to adjust resource
allocation decisions at each short-term timeslot based on real-time
queue state information. In order to properly evaluate and simulate
the proposed CNF OS, we introduced key new features within
ns-3 to support the modeling and simulation of SDN/NFV cloud-
integrated networks equipped with flexible orchestration systems.
We then implemented the proposed CNF OS along with its LTC
and STC systems in ns-3, and conducted a preliminary perfor-
mance evaluation. Simulation results show that the proposed CNF
OS can effectively reroute service traffic and elastically allocate
resources in response to changes in service demands. In particular,
the centralized LTC agent is able to compute and configure end-
to-end routes and overall resource allocation to support service
rates with minimal cost, while distributed STC agents effectively
complement the LTC agent by providing fast resource allocation
adjustments based on real-time queue state information to keep
end-to-end service latencies under control. Ongoing and future
research directions include more advanced STC strategies , and
performance evaluations in large-scale cloud-integrated networks.

ACKNOWLEDGMENTS

This work was partially supported by the European Union under
the Italian National Recovery and Resilience Plan (NRRP) of
NextGenerationEU, partnership on “Telecommunications of the
Future” (PE0O0000001 - program “RESTART”) and by the US
National Science Foundation under grant CNS-2148315.

REFERENCES

[1] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless
networks: A comprehensive survey,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 3, pp. 1617-1655, 2016.

[2] A. A. Barakabitze and R. Walshe, “SDN and NFV
for QoE-driven multimedia services delivery: The
road towards 6G and beyond networks,” Computer
Networks, vol. 214, p. 109133, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1389128622002523

[3]

[4]

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Barcelo, A. Correa, J. Llorca, A. M. Tulino, J. L. Vicario, and
A. Morell, “IoT-cloud service optimization in next generation smart
environments,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 4077-4090, 2016.

H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch,
“Approximation algorithms for the NFV service distribution prob-
lem,” in IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, 2017, pp. 1-9.

K. Poularakis, J. Llorca, A. M. Tulino, and L. Tassiulas,
“Approximation algorithms for data-intensive service chain
embedding,” in Proceedings of the Twenty-First International
Symposium on Theory, Algorithmic Foundations, and Protocol

Design for Mobile Networks and Mobile Computing,
ser. Mobihoc’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 131-140. [Online]. Available:

https://doi.org/10.1145/3397166.3409149

L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, “OFSwitch13:
Enhancing ns-3 with OpenFlow 1.3 support,” in Proceedings of the
2016 Workshop on Ns-3, ser. WNS3’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 33—40. [Online].
Available: https://doi.org/10.1145/2915371.2915381

P. Imputato and S. Avallone, “Traffic differentiation and multiqueue
networking in ns-3,” in Proceedings of the 2017 Workshop
on Ns-3, ser. WNS3 ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 79-86. [Online]. Available:
https://doi.org/10.1145/3067665.3067677

M. Bagaa, T. Taleb, J. Bernabe, and A. Skarmeta, “QoS and resource-
aware security orchestration and life cycle management,” IEEE Trans-
actions on Mobile Computing, vol. 21, no. 08, pp. 2978-2993, aug
2022.

M. Gramaglia, 1. Digon, V. Friderikos, D. von Hugo, C. Mannweiler,
M. A. Puente, K. Samdanis, and B. Sayadi, “Flexible connectivity and
QoE/QoS management for 5G networks: The 5G NORMA view,” in
2016 IEEE International Conference on Communications Workshops
(ICC), 2016, pp. 373-379.

P. Krishnan, K. Jain, P. G. Jose, K. Achuthan, and R. Buyya,
“SDN enabled QoE and security framework for multimedia
applications in 5G networks,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 17, no. 2, apr 2021. [Online]. Available:
https://doi.org/10.1145/3377390

P. Demestichas, A. Georgakopoulos, K. Tsagkaris, and S. Kotrotsos,
“Intelligent 5G networks: Managing 5G wirelessmobile broadband,”
IEEE Vehicular Technology Magazine, vol. 10, no. 3, pp. 41-50, 2015.
H. Harkous, B. A. Hosn, M. He, M. Jarschel, R. Pries, and
W. Kellerer, “Performance-aware orchestration of P4-based hetero-
geneous cloud environments,” I[EEE Transactions on Network and
Service Management, pp. 1-1, 2023.

C. Quadri, A. Ceselli, and G. P. Rossi, “Multi-user edge service
orchestration based on deep reinforcement learning,” Computer
Communications, vol. 203, pp. 30-47, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366423000737
H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal
dynamic cloud network control,” IEEE/ACM Transactions on Net-
working, vol. 26, no. 5, pp. 2118-2131, 2018.

J. Zhang, A. Sinha, J. Llorca, A. M. Tulino, and E. Modiano, “Optimal
control of distributed computing networks with mixed-cast traffic
flows,” IEEE/ACM Transactions on Networking, vol. 29, no. 4, pp.
1760-1773, 2021.

Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Ultra-reliable dis-
tributed cloud network control with end-to-end latency constraints,”
IEEE/ACM Transactions on Networking, vol. 30, no. 6, pp. 2505—
2520, 2022.

H. Yin, P. Liu, K. Liu, L. Cao, L. Zhang, Y. Gao, and
X. Hei, “Ns3-ai: Fostering artificial intelligence algorithms for
networking research,” in Proceedings of the 2020 Workshop on
Ns-3, ser. WNS3 2020. New York, NY, USA: Association

for Computing Machinery, 2020, p. 57-64. [Online]. Available:
https://doi.org/10.1145/3389400.3389404

