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Abstract—There has been an increasing consensus that the
emerging metaverse world relies on high efficiency visual data
compression techniques for effective data storage, ultra-low
delay interaction and ubiquitous communication. This paper
provides a comprehensive survey on the recent advances of the
visual data compression technology and standard, which could
play essential roles in building the metaverse. In particular,
we will review the visual data compression methodologies and
standards, and present our vision on how the interactive coding
could more efficiently support the metaverse. Finally, we discuss
the distinguished requirements and fundamental challenges on
the data compression for metaverse, and envision the future
technology trend.

Index Terms—Metaverse, visual data compression, interactive
communication

I. INTRODUCTION

The term “Metaverse” was first coined in Neal Stephenson’s

science fiction snow crash [1], which utilizes the prefix “meta”

(meaning more comprehensive) to depict the word “universe”.

It illustrates a virtual realm that is achieved with the duality

of the physical world by providing immersive inter-operations

among users through individual avatars and specifically de-

signed hardwares. In recent years, the digitalization in omni-

directional aspects of the real world has been regarded as the

future of the Internet, aiming to provide seamless access and

realistic communication beyond physical limitations in various

fields, such as medicine [2], education [3], industry [4], and

entertainment [5]. To achieve such an omnidirectional digital-

ization with promising user experience, the metaverse relies

heavily on fundamental visual data compression techniques to

support versatile communication and effective storage. More

specifically, typical scenarios in communications include the

interactions between humans and the virtual world, or between

different virtual objects from one or multiple virtual worlds.

Human beings can even exchange and interact through the

virtual world, augmenting more immersive experience with

reality. Moreover, the data compression technologies can also

enable the recording of the virtual world history, such that any

moment in the metaverse can be recovered in the future.

To empower the visual-centered applications in the meta-

verse and cultivate its ecosystem, three-dimensional (3-D)

visual representations, such as point cloud [6], mesh [7], 360

degree virtual reality (VR) video [8], and Neural Radiance

Fields [9], have been recognized to be more promising beyond

the traditional 2D image in vividly rendering the virtual

world. Considering the application scope of metaverse is far

beyond conventional visual communication, there is no doubt

that the application-specific visual data compression methods

are highly desired. More specifically, there is an increasing

consensus that the real-time interaction among human avatars

imposes stringent challenges on the ultra-low delay compres-

sion, and the storage requirement typically demands ultra high

efficiency compression technologies. As such, new challenges

arising from the interaction and synchronization between the

metaverse and the physical world, or within the metaverse,

will certainly impact the new development of visual data

compression methods.

This paper provides the review on visual data compression

for metaverse, with the goals of surveying a wide spectrum of

existing technologies and standards. It has been exciting to ob-

serve that the theoretical development and novel techniques on

visual data coding, could support a wide variety of applications

in metaverse. With the quick evolution of the compression

methodologies in the era of Artificial Intelligence (AI), we also

discuss how the AI powered compression technologies can be

made best use of in these applications. Finally, we envision

both the promise and challenges, when adopting these state-

of-the-art compression schemes in the coming metaverse.

II. VISUAL DATA COMPRESSION TECHNOLOGY

Developing algorithms that can effectively compress the

visual signals is now an intense focus of research. Considering

the application scenarios of the metaverse, we introduce a wide

variety of inventive compression schemes that operate under

different application domains, to clarify how visual data can

be effectively represented to pragmatically build the metaverse

communication and storage systems.

A. Hybrid Video Coding

Video compression is typically characterized by the

throughput of the channel and the distortion of reconstructed
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videos. The hybrid coding framework, which has been widely

adopted in dominated video coding standards, play the key

role in improving the video coding performance. The state-

of-the-art video coding standards including VVC [10] and

AVS3 [11] which are dedicated to 4K/8K video compres-

sion, could deliver the ever best coding performance at the

expense of high computational complexity. On top of VVC,

the Enhanced Compression Model (ECM) was also developed

towards the next generation video coding standard. These

sophisticated designed video compression algorithms aim to

remove redundancies, including spatial, temporal, statistical,

and perceptual redundancies in video sequences. In particular,

the predictive video coding framework adopts advanced intra

and inter prediction techniques [12], such that spatial and

temporal redundancies are removed, and only residuals are

coded. Subsequently, the residuals are transformed, quantized,

and entropy-coded [13], and encoded residuals with the side

information are finally conveyed in the compact bitstream.

Various rate-distortion optimization technologies [14] have

been designed to ensure optimal coding performance, and

deep learning techniques have also been incorporated into the

encoder/decoder, to improve the performance of the hybrid

coding framework [15], [16]. One dominate type of visual data

in Metaverse could be the synthetic data rendered by comput-

ers. Recently, screen content coding has attracted numerous

attentions and the associated coding technologies such as

intra block copy prediction, palette prediction, and transform

skip have been investigated and adopted in the extension of

HEVC [17] and VVC standards [18]. The optimization of

screen content encoder has also received attentions, by replac-

ing the distortion measure or optimizing the bit allocation [19],

[20]. Although the elaborately designed hybrid coding frame-

work has achieved remarkable progress in traditional 2D video

compression, how to properly incorporate them into metaverse

communication to support a vast assortment of applications is

still non-trivial.

B. High Dimensional Data Compression

High-dimensional visual data representations that depict the

world from multiple views are critical in providing pleas-

ant immersive experiences. In recent years, diverse high-

dimensional visual data types, such as multiview video [21],

point cloud [22], light field [23], and 360-degree virtual reality

(VR) video [8], have been developed beyond the traditional 2D

frames to vividly render the virtual environment. However, the

bottleneck of utilizing such high-dimensional visual data lies

in how to compactly represent them in an effective way.

One straightforward way for compressing these data is to

reshape them into 2D-frame-like video sequences, such that we

could resort to the mature video coding schemes. Given the

decoded video sequence, the inverse operation for projecting

back to high-dimension data is subsequently performed at the

decoder. For example, the light field data could be decomposed

according to view directions and subsequently re-arranged

into an inter-correlated video sequence which can be further

encoded by VVC. The Video-based Point Cloud Compression

(V-PCC) scheme [24], [25] suggests projecting the 3-D point

cloud into different 2-D maps, and 2-D video codecs can

be utilized to faithfully compress them. The 2-D to 3-D

remapping is conducted at the V-PCC decoder [26]. Such a

geometry conversion is also an essential part during the com-

pression of 360-degree video in the VVC standard. Another

line in compressing the high-dimensional data is exploiting the

geometry characteristics. Typically, the Geometry-based Point

Cloud Compression (G-PCC) scheme [27] uses the pruned

octree form to efficiently approximate the original data [28].

Recently, inspired by the fantastic progress of deep learning,

the end-to-end high-dimensional visual data coding framework

has also been widely studied with favorable performance

achieved [29]–[31].

C. Model-based Coding

Model-based coding (MBC) leverages the analysis-synthesis

techniques which exploit the intrinsic statistics and structural

information, showing the very promising possibility for low

bitrate visual communication. More specifically, hand-crafted

models have been employed to economically describe struc-

tural representations at the encoder side, whilst the compact

feature representation can further facilitate the reconstruction

of target videos via the synthesis models at the decoder

side. The earliest work of MBC could be dated back to

1950’s when Schreiber et al. [32] designed a complete TV

bandwidth reduction system, which can compactly project the

video content into the edge information. The decoded edge

can be further used to synthesize the original video signal.

From then on, the MBC technique has been developed from

the perspective of different granularity levels, including pixel-

based coding, block-based coding, mesh-based coding, region-

based coding, object-based coding, knowledge-based coding

and perceptual coding. Early MBC techniques mainly adopted

traditional pulse code modulation model [33], block based

translation model [34], [35] and triangle mesh model [36], [37]

to actualize pixel/block/mesh based video coding. Besides,

region-based coding [38], [39] also played an important role

in the following evolution of MBC. Moreover, object-based

coding [40]–[42] belonging to a further prolongation of region-

based coding could describe an identified object in a more

precise way, achieving better rate-distortion performance. Re-

garding knowledge-based coding [43]–[45], the specific object,

especially for talking face or moving body, enjoyed the strong

priors via parameterized models. Perceptual coding [46]–[48],

which is proposed based on the characteristics of human visual

system, attempted to achieve significant compression gains by

incorporating perception models into the codecs. However, the

video reconstruction quality of MBC techniques are govern

by these conventional analysis and synthesis models, thus

hindering their practical applications.

D. Learning-based Visual Coding

The deep neural networks, including convolutional neural

network (CNN) [49], variational autoencoder (VAE) [50]

and generative adversarial network (GAN) [51], have greatly
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Fig. 1. The roadmap of visual data compression technologies over the past decade.

advanced the paradigm of visual compression, such that the

visual data in metaverse can be promisingly characterized into

a latent code, the abstract visual concepts (e.g., structure) or

semantic representations (e.g., landmark or keypoint). Along

this vein, the high-quality visual communication under ultra-

low bandwidth can be actualized in the metaverse. Accord-

ingly, the learning-based visual coding techniques can be

categorized into end-to-end compression, conceptual coding

and generative compression. End-to-end compression [52]–

[54] aims to utilize the deep learning models to jointly opti-

mize entire encoder/decoder by considering the rate-distortion

trade-off, delivering the promising perceptual rate-distortion

performance. Regarding conceptual coding [55], [56], a novel

analysis-friendly compression paradigm is able to encode

images into highly-abstract and fully-interpretable concepts,

and high-quality images are reconstructed in a deep synthesis

manner to support various vision tasks. Recently, the latest

generative compression schemes [57], [58] have also achieved

the competitive rate-distortion performance. Unlike conceptual

coding algorithms, generative compression schemes directly

transform the images into very compact representations that

can be used to reconstruct images with generative models.

However, these learning-based visual coding techniques are

still faced with the unprecedented challenges, including how to

quantify the visual quality of the compressed visual data from

a technically sound way in the specific application scenarios,

and how these quality measures can be used to optimize the

entire coding framework.

E. Feature Coding

The end-edge-cloud computing paradigm of the metaverse

pushes the intelligent computing capabilities from the cloud

to the network edges and end users, such that the decentral-

ized, collaborative and intelligent communication paradigm

inspires new visual coding schemes. The virtual entities of

the metaverse leverage the machine intelligence to under-

stand the visual information. Therefore, feature compression,

which naturally accommodates the end-edge-cloud computing,

has received great attentions. The remarkable approaches,

referred to as Analyze-then-Compress (ATC) [59] and digital

retina [60], lay the foundation for compact feature repre-

sentation. The standards of Compact Descriptors for Visual

Search (CDVS) [61] and Compact Descriptors for Video

Analysis (CDVA) [62] have also been finalized to facilitate

visual retrieval and analytics. With the unprecedented suc-

cess of deep learning-based feature extractors, the compact

representation of deep learning features has also been widely

studied. The local and global features can both be compressed

based on the philosophy of hybrid video coding [63]. The

lossy compression of intermediate features was proposed for

intelligent sensing [64] and collaborative intelligence [65].
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In particular, the bit allocation based on Pareto optimization

has been proposed for multi-stream feature communication

systems [66]. Moreover, a lightweight compression algorithm

for the intermediate feature is designed for splitting neural

networks [67]. Targeting at video compression toward ma-

chine vision, the exploration of video coding for machines

(VCM) [68] was also with a series of works focusing on

feature coding [69], [70].

III. CHALLENGES & RESEARCH DIRECTIONS

Remarkable progress has been made in the field of visual

data compression in the past decades, evidenced by these

advanced compression algorithms which achieve very promis-

ing compression performance on natural images/videos/high

dimensional data. Nevertheless, this does not necessarily mean

that the visual data compression research for metaverse has

reached a sufficient level of maturity, especially when con-

sidering the arising new application scenarios and challenges

from metaverse.

First, metaverse could be greatly benefited from the tra-

ditional cloud gaming infrastructure, where the visual data

could be rendered from the cloud and transmitted to the client

side for decoding [71]. Herein, the compression performance

becomes the bottleneck, as it is always desirable to convey

the visual data with high quality and low bitrate consumption,

to accommodate the dynamically varying bandwidth. The

research on joint rendering and compression in the cloud-edge-

end infrastructure enables the collaboraitve rendering at cloud,

edge and thin client sides. In particular, the rendering tasks can

be coherently scheduled, to jointly optimize the rate-distortion-

delay-complexity. This direction is still in preliminary stages,

and there is a large space to explore in the future.

Second, the interactive coding that is featured with ultra

low delay and high compression performance is vital for

metaverse. To this end, it is highly expected that the visual

data could be analyzed in a scientifically sound way, and repre-

sented in a style that is friendly for interactive coding [72]. The

alternative but promising solutions are conceptual coding and

semantic coding, which could be naturally supportive for the

interactivity with promising performance due to the representa-

tion capability with the deep neural networks. Though existing

research results have shown the promise, these methods often

suffer from generalization problem.

Third, in most of the compression algorithms and stan-

dards discussed, the inputs are natural visual data. Besides

these, the compression algorithms can be extended to an

even broader range of applications. The compression of AI

generated content (AIGC), which are becoming increasingly

important, has not received sufficient attentions. Other types

of signals, such as spiking signals, could play prominent

roles in facilitating the brain-computer interface. However, the

spike signal compression is still in the infancy age. The new

challenges arising from the metaverse could also impact the

new development of the compression algorithms.

IV. CONCLUSIONS AND FUTURE REMARKS

In this paper, we have conducted a thorough review of visual

data compression techniques for use in the metaverse. Rather

than covering all existing algorithms and standards, we have

focused on those that have the most potential to be applied in

the metaverse and highlighted the main challenges that should

be addressed in the future. It is clear that the development of

new applications and requirements in the metaverse will drive

advances in compression technology, which will also shape

the future of the metaverse.
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[7] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3d mesh com-
pression: Survey, comparisons, and emerging trends,” ACM Computing

Surveys (CSUR), vol. 47, no. 3, pp. 1–41, 2015.

[8] Y. Zhou, L. Tian, C. Zhu, X. Jin, and Y. Sun, “Video coding optimization
for virtual reality 360-degree source,” IEEE J. Sel. Top. Signal Process.,
vol. 14, no. 1, pp. 118–129, 2019.

[9] B. Mildenhall et al., “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–
106, 2021.

[10] B. Bross et al, “Overview of the versatile video coding (VVC) standard
and its applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 31,
no. 10, pp. 3736–3764, 2021.

[11] J. Zhang et al, “Recent development of AVS video coding standard:
AVS3,” in 2019 IEEE PCS, pp. 1–5.

[12] M. Lei et al., “Look-ahead prediction based coding unit size pruning
for VVC intra coding,” in 2019 IEEE ICIP, pp. 4120–4124.

[13] Y. Fan, Y. Zeng, H. Sun, J. Katto, and X. Zeng, “A pipelined 2d trans-
form architecture supporting mixed block sizes for the VVC standard,”
IEEE Trans. Circuits Syst. Video Technol., pp. 1–1, 2019.

[14] S. Wang, A. Rehman, Z. Wang, S. Ma, and W. Gao, “SSIM-motivated
rate-distortion optimization for video coding,” IEEE Trans. Circuits Syst.

Video Technol., vol. 22, no. 4, pp. 516–529, April 2012.

[15] Y. Zhang, T. Shen, X. Ji, Y. Zhang, R. Xiong, and Q. Dai, “Residual
highway convolutional neural networks for in-loop filtering in HEVC,”
IEEE Trans. Image Process., vol. 27, no. 8, pp. 3827–3841, Aug 2018.

[16] N. Yan, D. Liu, H. Li, B. Li, L. Li, and F. Wu, “Convolutional neu-
ral network-based fractional-pixel motion compensation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 29, no. 3, pp. 840–853, March 2019.

[17] D. Flynn et al, “Overview of the range extensions for the HEVC
standard: Tools, profiles, and performance,” IEEE Trans. Circuits Syst.

Video Technol., vol. 26, no. 1, pp. 4–19, 2016.

363

Authorized licensed use limited to: Auburn University. Downloaded on April 30,2024 at 05:19:33 UTC from IEEE Xplore.  Restrictions apply. 



[18] T. Nguyen et al, “Overview of the screen content support in VVC:
Applications, coding tools, and performance,” IEEE Trans. Circuits Syst.

Video Technol., vol. 31, no. 10, pp. 3801–3817, 2021.

[19] S. Wang et al, “Utility-driven adaptive preprocessing for screen content
video compression,” IEEE Trans. Multimed., vol. 19, no. 3, pp. 660–667,
2016.

[20] S. Wang, K. Gu, K. Zeng, Z. Wang, and W. Lin, “Objective quality
assessment and perceptual compression of screen content images,” IEEE

computer graphics and applications, vol. 38, no. 1, pp. 47–58, 2016.

[21] T. Hussain et al, “A comprehensive survey of multi-view video summa-
rization,” Pattern Recognition, vol. 109, p. 107567, 2021.

[22] M. Berger et al, “A survey of surface reconstruction from point clouds,”
in Computer Graphics Forum, vol. 36, no. 1, 2017, pp. 301–329.

[23] L. Li and Z. Li, “Light field and plenoptic point cloud compression,”
in Handbook of Dynamic Data Driven Applications Systems. Springer,
2022, pp. 557–583.

[24] L. Li et al, “Efficient projected frame padding for video-based point
cloud compression,” IEEE Trans. Multimed., vol. 23, pp. 2806–2819,
2020.

[25] L. Li, Z. Li, V. Zakharchenko, J. Chen, and H. Li, “Advanced 3d motion
prediction for video-based dynamic point cloud compression,” IEEE

Trans. Image Process., vol. 29, pp. 289–302, 2019.

[26] A. Akhtar et al, “Video-based point cloud compression artifact removal,”
IEEE Trans. Multimed., 2021.

[27] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, “An overview of ongoing point cloud compression stan-
dardization activities: Video-based (V-PCC) and geometry-based (G-
PCC),” APSIPA Transactions on Signal and Information Processing,
vol. 9, 2020.

[28] K. Ainala et al, “An improved enhancement layer for octree based point
cloud compression with plane projection approximation,” in Appl. digit.

image process. XXXIX, vol. 9971. SPIE, 2016, pp. 223–231.

[29] X. He, Q. Liu, and Y. Yang, “Mv-gnn: Multi-view graph neural net-
work for compression artifacts reduction,” IEEE Trans. Image Process.,
vol. 29, pp. 6829–6840, 2020.

[30] J. Wang, D. Ding, Z. Li, and Z. Ma, “Multiscale point cloud geometry
compression,” in 2021 IEEE DCC, pp. 73–82.

[31] A. Akhtar, Z. Li, and G. Van der Auwera, “Inter-frame com-
pression for dynamic point cloud geometry coding,” arXiv preprint

arXiv:2207.12554, 2022.

[32] W. F. Schreiber, C. F. Knapp, and N. D. Kay, “Synthetic highs — an
experimental tv bandwidth reduction system,” Journal of the SMPTE,
vol. 68, no. 8, pp. 525–537, 1959.

[33] R. L. Carbrey, “Video transmission over telephone cable pairs by pulse
code modulation,” Proceedings of the IRE, vol. 48, no. 9, pp. 1546–1561,
1960.

[34] I. Dinstein, K. Rose, and A. Heiman, “Variable block-size transform
image coder,” IEEE Transactions on Communications, vol. 38, no. 11,
pp. 2073–2078, 1990.

[35] V. E. Seferidis and M. Ghanbari, “General approach to block-matching
motion estimation,” Opt. Eng., vol. 32, no. 7, pp. 1464 – 1474, 1993.

[36] D. Kubasov and C. Guillemot, “Mesh-based motion-compensated inter-
polation for side information extraction in distributed video coding,” in
2006 ICIP, pp. 261–264.

[37] G. J. Sullivan and R. Baker, “Motion compensation for video com-
pression using control grid interpolation,” in 1991 IEEE ICASSP, pp.
2713–2716.

[38] D. Graham, “Image transmission by two-dimensional contour coding,”
Proceedings of the IEEE, vol. 55, no. 3, pp. 336–346, 1967.

[39] M. Biggar, O. Morris, and A. Constantinides, “Segmented-image coding:
performance comparison with the discrete cosine transform,” Radar and

Signal Processing, IEE Proceedings F, vol. 135, pp. 121 – 132, 05 1988.

[40] M. Hans Georg et al, “Object-oriented analysis-synthesis coding of
moving images,” Signal Process.: Image Commun., vol. 1, no. 2, pp.
117–138, 1989.

[41] P. Salembier et al, “Segmentation-based video coding system allowing
the manipulation of objects,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 7, no. 1, pp. 60–74, 1997.

[42] A. Vetro, T. Haga, K. Sumi, and H. Sun, “Object-based coding for long-
term archive of surveillance video,” in 2003 ICME, vol. 2, pp. II–417.

[43] R. Lopez and T. Huang, “Head pose computation for very low bit-rate
video coding,” in CAIP, 1995, pp. 440–447.

[44] Parke, “Parameterized models for facial animation,” IEEE Computer

Graphics and Applications, vol. 2, no. 9, pp. 61–68, 1982.

[45] K. Aizawa, H. Harashima, and T. Saito, “Model-based analysis synthesis
image coding (mbasic) system for a person’s face,” Signal Processing:

Image Communication, vol. 1, no. 2, pp. 139–152, 1989.
[46] N. Jayant, J. Johnston, and R. Safranek, “Signal compression based on

models of human perception,” Proceedings of the IEEE, vol. 81, no. 10,
pp. 1385–1422, 1993.

[47] R. Safranek and J. Johnston, “A perceptually tuned sub-band image
coder with image dependent quantization and post-quantization data
compression,” in ICASSP, 1989, pp. 1945–1948 vol.3.

[48] S. Wang, A. Rehman, Z. Wang, S. Ma, and W. Gao, “Perceptual video
coding based on ssim-inspired divisive normalization,” IEEE Trans.

Image Process., vol. 22, no. 4, pp. 1418–1429, 2012.
[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in 2016 IEEE CVPR, 2016, pp. 770–778.
[50] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in

Proceedings of the 2nd ICLR, 2014, p. 14.
[51] I. Goodfellow et al, “Generative adversarial nets,” vol. 27, 2014.
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