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Abstract—There has been an increasing consensus that the
emerging metaverse world relies on high efficiency visual data
compression techniques for effective data storage, ultra-low
delay interaction and ubiquitous communication. This paper
provides a comprehensive survey on the recent advances of the
visual data compression technology and standard, which could
play essential roles in building the metaverse. In particular,
we will review the visual data compression methodologies and
standards, and present our vision on how the interactive coding
could more efficiently support the metaverse. Finally, we discuss
the distinguished requirements and fundamental challenges on
the data compression for metaverse, and envision the future
technology trend.

Index Terms—Metaverse, visual data compression, interactive
communication

[. INTRODUCTION

The term “Metaverse” was first coined in Neal Stephenson’s
science fiction snow crash [ 1], which utilizes the prefix “meta”
(meaning more comprehensive) to depict the word “universe”.
It illustrates a virtual realm that is achieved with the duality
of the physical world by providing immersive inter-operations
among users through individual avatars and specifically de-
signed hardwares. In recent years, the digitalization in omni-
directional aspects of the real world has been regarded as the
future of the Internet, aiming to provide seamless access and
realistic communication beyond physical limitations in various
fields, such as medicine [2], education [3], industry [4], and
entertainment [5]. To achieve such an omnidirectional digital-
ization with promising user experience, the metaverse relies
heavily on fundamental visual data compression techniques to
support versatile communication and effective storage. More
specifically, typical scenarios in communications include the
interactions between humans and the virtual world, or between
different virtual objects from one or multiple virtual worlds.
Human beings can even exchange and interact through the
virtual world, augmenting more immersive experience with
reality. Moreover, the data compression technologies can also
enable the recording of the virtual world history, such that any
moment in the metaverse can be recovered in the future.

To empower the visual-centered applications in the meta-
verse and cultivate its ecosystem, three-dimensional (3-D)
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visual representations, such as point cloud [6], mesh [7], 360
degree virtual reality (VR) video [8], and Neural Radiance
Fields [9], have been recognized to be more promising beyond
the traditional 2D image in vividly rendering the virtual
world. Considering the application scope of metaverse is far
beyond conventional visual communication, there is no doubt
that the application-specific visual data compression methods
are highly desired. More specifically, there is an increasing
consensus that the real-time interaction among human avatars
imposes stringent challenges on the ultra-low delay compres-
sion, and the storage requirement typically demands ultra high
efficiency compression technologies. As such, new challenges
arising from the interaction and synchronization between the
metaverse and the physical world, or within the metaverse,
will certainly impact the new development of visual data
compression methods.

This paper provides the review on visual data compression
for metaverse, with the goals of surveying a wide spectrum of
existing technologies and standards. It has been exciting to ob-
serve that the theoretical development and novel techniques on
visual data coding, could support a wide variety of applications
in metaverse. With the quick evolution of the compression
methodologies in the era of Artificial Intelligence (Al), we also
discuss how the Al powered compression technologies can be
made best use of in these applications. Finally, we envision
both the promise and challenges, when adopting these state-
of-the-art compression schemes in the coming metaverse.

II. VISUAL DATA COMPRESSION TECHNOLOGY

Developing algorithms that can effectively compress the
visual signals is now an intense focus of research. Considering
the application scenarios of the metaverse, we introduce a wide
variety of inventive compression schemes that operate under
different application domains, to clarify how visual data can
be effectively represented to pragmatically build the metaverse
communication and storage systems.

A. Hybrid Video Coding

Video compression is typically characterized by the
throughput of the channel and the distortion of reconstructed
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videos. The hybrid coding framework, which has been widely
adopted in dominated video coding standards, play the key
role in improving the video coding performance. The state-
of-the-art video coding standards including VVC [10] and
AVS3 [11] which are dedicated to 4K/8K video compres-
sion, could deliver the ever best coding performance at the
expense of high computational complexity. On top of VVC,
the Enhanced Compression Model (ECM) was also developed
towards the next generation video coding standard. These
sophisticated designed video compression algorithms aim to
remove redundancies, including spatial, temporal, statistical,
and perceptual redundancies in video sequences. In particular,
the predictive video coding framework adopts advanced intra
and inter prediction techniques [12], such that spatial and
temporal redundancies are removed, and only residuals are
coded. Subsequently, the residuals are transformed, quantized,
and entropy-coded [13], and encoded residuals with the side
information are finally conveyed in the compact bitstream.
Various rate-distortion optimization technologies [14] have
been designed to ensure optimal coding performance, and
deep learning techniques have also been incorporated into the
encoder/decoder, to improve the performance of the hybrid
coding framework [15], [16]. One dominate type of visual data
in Metaverse could be the synthetic data rendered by comput-
ers. Recently, screen content coding has attracted numerous
attentions and the associated coding technologies such as
intra block copy prediction, palette prediction, and transform
skip have been investigated and adopted in the extension of
HEVC [17] and VVC standards [18]. The optimization of
screen content encoder has also received attentions, by replac-
ing the distortion measure or optimizing the bit allocation [19],
[20]. Although the elaborately designed hybrid coding frame-
work has achieved remarkable progress in traditional 2D video
compression, how to properly incorporate them into metaverse
communication to support a vast assortment of applications is
still non-trivial.

B. High Dimensional Data Compression

High-dimensional visual data representations that depict the
world from multiple views are critical in providing pleas-
ant immersive experiences. In recent years, diverse high-
dimensional visual data types, such as multiview video [21],
point cloud [22], light field [23], and 360-degree virtual reality
(VR) video [8], have been developed beyond the traditional 2D
frames to vividly render the virtual environment. However, the
bottleneck of utilizing such high-dimensional visual data lies
in how to compactly represent them in an effective way.

One straightforward way for compressing these data is to
reshape them into 2D-frame-like video sequences, such that we
could resort to the mature video coding schemes. Given the
decoded video sequence, the inverse operation for projecting
back to high-dimension data is subsequently performed at the
decoder. For example, the light field data could be decomposed
according to view directions and subsequently re-arranged
into an inter-correlated video sequence which can be further
encoded by VVC. The Video-based Point Cloud Compression
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(V-PCC) scheme [24], [25] suggests projecting the 3-D point
cloud into different 2-D maps, and 2-D video codecs can
be utilized to faithfully compress them. The 2-D to 3-D
remapping is conducted at the V-PCC decoder [26]. Such a
geometry conversion is also an essential part during the com-
pression of 360-degree video in the VVC standard. Another
line in compressing the high-dimensional data is exploiting the
geometry characteristics. Typically, the Geometry-based Point
Cloud Compression (G-PCC) scheme [27] uses the pruned
octree form to efficiently approximate the original data [28].
Recently, inspired by the fantastic progress of deep learning,
the end-to-end high-dimensional visual data coding framework
has also been widely studied with favorable performance
achieved [29]-[31].

C. Model-based Coding

Model-based coding (MBC) leverages the analysis-synthesis
techniques which exploit the intrinsic statistics and structural
information, showing the very promising possibility for low
bitrate visual communication. More specifically, hand-crafted
models have been employed to economically describe struc-
tural representations at the encoder side, whilst the compact
feature representation can further facilitate the reconstruction
of target videos via the synthesis models at the decoder
side. The earliest work of MBC could be dated back to
1950’s when Schreiber et al. [32] designed a complete TV
bandwidth reduction system, which can compactly project the
video content into the edge information. The decoded edge
can be further used to synthesize the original video signal.
From then on, the MBC technique has been developed from
the perspective of different granularity levels, including pixel-
based coding, block-based coding, mesh-based coding, region-
based coding, object-based coding, knowledge-based coding
and perceptual coding. Early MBC techniques mainly adopted
traditional pulse code modulation model [33], block based
translation model [34], [35] and triangle mesh model [36], [37]
to actualize pixel/block/mesh based video coding. Besides,
region-based coding [38], [39] also played an important role
in the following evolution of MBC. Moreover, object-based
coding [40]-[42] belonging to a further prolongation of region-
based coding could describe an identified object in a more
precise way, achieving better rate-distortion performance. Re-
garding knowledge-based coding [43]-[45], the specific object,
especially for talking face or moving body, enjoyed the strong
priors via parameterized models. Perceptual coding [46]-[48],
which is proposed based on the characteristics of human visual
system, attempted to achieve significant compression gains by
incorporating perception models into the codecs. However, the
video reconstruction quality of MBC techniques are govern
by these conventional analysis and synthesis models, thus
hindering their practical applications.

D. Learning-based Visual Coding

The deep neural networks, including convolutional neural
network (CNN) [49], variational autoencoder (VAE) [50]
and generative adversarial network (GAN) [51], have greatly
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Fig. 1. The roadmap of visual data compression technologies over the past decade.

advanced the paradigm of visual compression, such that the
visual data in metaverse can be promisingly characterized into
a latent code, the abstract visual concepts (e.g., structure) or
semantic representations (e.g., landmark or keypoint). Along
this vein, the high-quality visual communication under ultra-
low bandwidth can be actualized in the metaverse. Accord-
ingly, the learning-based visual coding techniques can be
categorized into end-to-end compression, conceptual coding
and generative compression. End-to-end compression [52]—
[54] aims to utilize the deep learning models to jointly opti-
mize entire encoder/decoder by considering the rate-distortion
trade-off, delivering the promising perceptual rate-distortion
performance. Regarding conceptual coding [55], [56], a novel
analysis-friendly compression paradigm is able to encode
images into highly-abstract and fully-interpretable concepts,
and high-quality images are reconstructed in a deep synthesis
manner to support various vision tasks. Recently, the latest
generative compression schemes [57], [58] have also achieved
the competitive rate-distortion performance. Unlike conceptual
coding algorithms, generative compression schemes directly
transform the images into very compact representations that
can be used to reconstruct images with generative models.
However, these learning-based visual coding techniques are
still faced with the unprecedented challenges, including how to
quantify the visual quality of the compressed visual data from

a technically sound way in the specific application scenarios,
and how these quality measures can be used to optimize the
entire coding framework.

E. Feature Coding

The end-edge-cloud computing paradigm of the metaverse
pushes the intelligent computing capabilities from the cloud
to the network edges and end users, such that the decentral-
ized, collaborative and intelligent communication paradigm
inspires new visual coding schemes. The virtual entities of
the metaverse leverage the machine intelligence to under-
stand the visual information. Therefore, feature compression,
which naturally accommodates the end-edge-cloud computing,
has received great attentions. The remarkable approaches,
referred to as Analyze-then-Compress (ATC) [59] and digital
retina [60], lay the foundation for compact feature repre-
sentation. The standards of Compact Descriptors for Visual
Search (CDVS) [61] and Compact Descriptors for Video
Analysis (CDVA) [62] have also been finalized to facilitate
visual retrieval and analytics. With the unprecedented suc-
cess of deep learning-based feature extractors, the compact
representation of deep learning features has also been widely
studied. The local and global features can both be compressed
based on the philosophy of hybrid video coding [63]. The
lossy compression of intermediate features was proposed for
intelligent sensing [64] and collaborative intelligence [65].
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In particular, the bit allocation based on Pareto optimization
has been proposed for multi-stream feature communication
systems [06]. Moreover, a lightweight compression algorithm
for the intermediate feature is designed for splitting neural
networks [07]. Targeting at video compression toward ma-
chine vision, the exploration of video coding for machines
(VCM) [68] was also with a series of works focusing on
feature coding [69], [70].

III. CHALLENGES & RESEARCH DIRECTIONS

Remarkable progress has been made in the field of visual
data compression in the past decades, evidenced by these
advanced compression algorithms which achieve very promis-
ing compression performance on natural images/videos/high
dimensional data. Nevertheless, this does not necessarily mean
that the visual data compression research for metaverse has
reached a sufficient level of maturity, especially when con-
sidering the arising new application scenarios and challenges
from metaverse.

First, metaverse could be greatly benefited from the tra-
ditional cloud gaming infrastructure, where the visual data
could be rendered from the cloud and transmitted to the client
side for decoding [71]. Herein, the compression performance
becomes the bottleneck, as it is always desirable to convey
the visual data with high quality and low bitrate consumption,
to accommodate the dynamically varying bandwidth. The
research on joint rendering and compression in the cloud-edge-
end infrastructure enables the collaboraitve rendering at cloud,
edge and thin client sides. In particular, the rendering tasks can
be coherently scheduled, to jointly optimize the rate-distortion-
delay-complexity. This direction is still in preliminary stages,
and there is a large space to explore in the future.

Second, the interactive coding that is featured with ultra
low delay and high compression performance is vital for
metaverse. To this end, it is highly expected that the visual
data could be analyzed in a scientifically sound way, and repre-
sented in a style that is friendly for interactive coding [72]. The
alternative but promising solutions are conceptual coding and
semantic coding, which could be naturally supportive for the
interactivity with promising performance due to the representa-
tion capability with the deep neural networks. Though existing
research results have shown the promise, these methods often
suffer from generalization problem.

Third, in most of the compression algorithms and stan-
dards discussed, the inputs are natural visual data. Besides
these, the compression algorithms can be extended to an
even broader range of applications. The compression of Al
generated content (AIGC), which are becoming increasingly
important, has not received sufficient attentions. Other types
of signals, such as spiking signals, could play prominent
roles in facilitating the brain-computer interface. However, the
spike signal compression is still in the infancy age. The new
challenges arising from the metaverse could also impact the
new development of the compression algorithms.
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IV. CONCLUSIONS AND FUTURE REMARKS

In this paper, we have conducted a thorough review of visual
data compression techniques for use in the metaverse. Rather
than covering all existing algorithms and standards, we have
focused on those that have the most potential to be applied in
the metaverse and highlighted the main challenges that should
be addressed in the future. It is clear that the development of
new applications and requirements in the metaverse will drive
advances in compression technology, which will also shape
the future of the metaverse.
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