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Abstract—Metaverse seamlessly blends the physical world and
virtual spaces through ubiquitous communication and comput-
ing equipment and infrastructure. In intelligent transportation
systems, the vehicular Metaverse can provide a fully immersive
and hyperreal travel experience (e.g., via augmented reality head-
up displays, AR-HUDs) to drivers and passengers in autonomous
vehicles (AVs) through roadside units (RSUs). However, providing
real-time and immersive services requires effective physical-
virtual synchronization between AVs and virtual simulators. This
paper proposes a generative Al-empowered physical-virtual syn-
chronization framework for the vehicular Metaverse. In physical-
to-virtual synchronization, digital twin (DT) tasks generated by
AVs are offloaded for execution in RSUs with future route gener-
ation. In virtual-to-physical synchronization, virtual simulators
customize diverse and personalized AR content via generative
Al models based on user preferences. Furthermore, we propose
a multi-task enhanced auction-based mechanism to match and
price AVs and virtual simulators for RSUs to provide real-time
and effective services. Finally, property analysis and experimental
results demonstrate that the proposed mechanism is strategy-
proof and adverse-selection free while increasing social surplus.

Index Terms—Vehicular Metaverse, generative artificial intel-
ligence, digital twin, augmented reality, auction theory.

I. INTRODUCTION

As a long-term vision, the Metaverse is an evolution of
the mobile Internet towards the advanced three-dimensional
visualization stage of digital transformation [1]. By blending
physical transportation systems with 3D virtual spaces via
multi-dimensional and multi-sensory communications, the ve-
hicular Metaverse can extend the physical space of vehicles
via real-time physical-virtual synchronization [2]. For instance,
autonomous vehicles (AVs) with large windshields and side
windows provide the most convenient and promising interface
for users to synchronize and interact with avatars and other
objects in virtual space. In physical-to-virtual (P2V) synchro-
nization, vehicles can connect with the digital twin (DT)
in virtual space by continuously executing DT tasks [3]. In
virtual-to-physical (V2P) synchronization, vehicles can install

the windshield and side windows with augmented reality (AR)
head-up displays (HUDs), which can blend and display 3D vir-
tual content on AR-HUDs with realistic street views. However,
achieving high synchronization accuracy while providing real-
time and immersive services with effective physical-virtual
synchronization in the vehicular Metaverse is challenging.

On the one hand, to effectively synchronize digital twins
and avatars in virtual space, AVs continuously generate
computation-intensive DT tasks to synchronize with the vir-
tual space, i.e., the P2V synchronization. However, the local
computation resources of AVs might be insufficient to execute
these tasks and update the results to RSUs [4]. Therefore,
AVs prefer to offload these tasks to RSUs with large-scale
computing and communication infrastructure for real-time
execution. In addition, RSUs can utilize the information in
AVs’ DTs to assist with service provisioning. For example, Al
models that analyze past routes and current locations in AVs’
DTs can predict the future routes of vehicles. This way, the
accuracy of location-based services can be improved during
the physical-virtual synchronization in the Metaverse.

On the other hand, based on the preferences of drivers
and passengers in AVs, Metaverse virtual simulators provide
personalized services with AR content on HUDs, for effective
V2P synchronization. However, high-quality AR content is
scarce due to the intensive computing and time cost of the
content creation process, which leads to low match qualities
between AVs and virtual simulators [3]. Fortunately, generative
Al, with effective and efficient inference and information
creation capabilities, allows for diverse AR content customiza-
tion. Specifically, based on user preferences in AVs’ DTs,
RSUs can provide Al-generated content (AIGC) related to
the original subjects of virtual simulators with generative
Al models [5]-[7]. This way, virtual simulators can provide
diverse and scalable AR content to AVs through generative
rendering and streaming at RSUs.

As shown in Fig. 1, in this paper, we propose a novel gen-
erative Al-empowered physical-virtual synchronization frame-
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Fig. 1: The generative Al-empowered vehicular Metaverse.

work where generative Al is leveraged to create personalized
AR content. In this framework, we design the P2V synchro-
nization that AVs maintain and continuously update the DTs
by offloading DT tasks to RSUs for execution. To improve
synchronization accuracy, RSUs can predict the future route
of AVs for effective location-based synchronization services
based on the current location and historical routes of AVs.
Moreover, based on the future route and user preferences,
RSUs can customize the AR content of virtual simulators
by creating diverse content via the generative Al model
named TSDreamBooth, which is fine-tuned using the Belgium
traffic sign (BelgiumTS) dataset [8]. Finally, we propose
a multi-task enhanced auction-based mechanism to satisfy
multi-dimensional requirements (e.g., deadlines and quality)
of multiple DT tasks simultaneously.
Our main contributions are summarized as follows:

o In the vehicular Metaverse, we propose a novel Al-
native physical-virtual synchronization framework, which
consists of DT-assisted route generation and preference-
aware AR content generation.

« We propose the TSDreamBooth to empower Metaverse
virtual simulators to customize diverse simulated AR
content based on the future routes and user preferences
of AVs.

« To incentivize RSUs for provisioning communication and
computing resources, an enhanced auction-based mech-
anism is proposed to maximize social surplus during
synchronization while guaranteeing fully strategy-proof
and adverse-selection free of participants.

II. GENERATIVE AI-EMPOWERED SYSTEM MODEL

In the system model, we consider three main roles in the
vehicular Metaverse, i.e., AVs, RSUs, and virtual simulators.
The set of AVs is represented by the set Z = 1,...,14,...,1,
the set of RSUs is represented as J = {1,...,74,...,J},
and the set of virtual simulators is represented as /C
{0,1,...,k,..., K}. We consider the RSUs to possess the
communication and computing resources in the system. To fa-
cilitate physical-virtual synchronization, uplink and downlink
channels are allocated to uploading DT tasks and streaming
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AR content. Therefore, communication resources at RSUs
consist of uplink bandwidth B and downlink bandwidth B;-i.
Moreover, to provide services such as executing DT tasks and
rendering augmented reality layers, each RSU j is equipped
with computing resources, including the CPU frequency f; ¢
and the GPU frequency f;". &

During the synchronization, N DT tasks
generated by each vehicle can be represented as
DT; = (<sPi,efl dix>, ..., <s)ly, el din>), where

sPT is the size of DT data, e}] r repre%ents the number of CPU
cycles required per unit data, and d; , denotes the deadline
for completing the task. The size of preference caches of AV
i within the DT is C;. Each vehicle 7 € Z has its private value
v; for executing its DT task DT}, drawn from the probability
distributions. The values of DT tasks can be interpreted as
the characteristics of the autonomous vehicles, such as the
level of urgency to align with DT models [9], which may
vary for each vehicle during its travel.

Similar to the Internet display advertising [10], we consider
two types of virtual simulators in the system, i.e., virtual
driving simulators and virtual traffic simulators. Virtual traffic
simulators 1, ..., K provide AR content designed to elicit real-
time feedback from drivers and passengers, such as providing
information about sales or promotions at nearby shops. The
virtual driving simulator 0 delivers driving simulations for
improving the performance of autonomous driving. The value
of personalized AR content for each synchronizing pair of AV
i and virtual traffic simulator k is U; , which is the product of
the common value v; of AV 7 and the match quality m; g, i.e.,
Ui,k = vim; ;. The common values for virtual traffic simulator
k are gained from the provisioning of real-time traffic simu-
lations for the synchronizing AV ¢, which can be represented
by the AV 4’s private value v;. Additionally, the amount of
personalized information determines the match quality m; j
of virtual traffic simulator k. The values of AVs and virtual
simulators in synchronizing pairs are positively correlated.
Finally, let U, ;) and m, (;) represent the [ highest value and
match quality for the synchronizing AV , respectively.

A. Multi-task Digital Twin Model

To synchronize with the vehicular Metaverse, physical
entities, i.e., AVs, generate and offload DT synchronizing
demands, i.e., DT model updates, to RSUs for real-time
execution. Therefore, we consider the demands as tasks that
are required to be accomplished by RSUs. The transmission
delay for AV i to upload its DT task DT; to RSU j can

be calculated as [9] tPT . = R“ " where R}; is the uplink

%,n,J
transmission rate. The computatlon delay in processing the
DT task DT of AV 4 for RSU j can be calculated as

DT _ %m n
i,mn,J

generality, we consider that each RSU can accomplish both
computing and transmission requirements of DT tasks, i.e.,
t?{w lff” < dip,Vi el je J,n=1,...,N. With
available communication and computing resources, RSUs can
provide AR rendering services for virtual simulators. This

. In the proposed system, without loss of
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way, virtual simulators can send their AR content to AVs, i.e.,
synchronizing from virtual spaces to the physical world.

B. AR Simulation Model

1) Generative Al-based AR Simulation Customization: The
process for customizing AR simulation using generative Al is
divided into two stages: fine-tuning and inference. To fine-
tune a text-to-image diffusion model using AR simulations
for a specific subject from virtual simulators, we follow a two-
step process. In the first step, the low-resolution text-to-image
model is first fine-tuned with input images paired with a text
prompt that includes a unique identifier. At the same time, a
class-specific prior preservation loss is incorporated to ensure
that diverse instances belonging to the subject’s class are
generated while preserving the model’s prior knowledge about
the class. In the second step, the super-resolution components
are then fine-tuned using pairs of low-resolution and high-
resolution images taken from the set of input images, allowing
high accuracy in small details of the subject to be maintained.
During the fine-tuning of generative Al, virtual simulators
input their original AR simulations as training data to train
models. Based on the knowledge of AR simulations, e.g., a
class of traffic signs, the fine-tuned generative Al model can
extract features of these traffic signs for customization.

Therefore, the provisioning of AR simulations is no longer
limited to the hit preference caches h; j [3]. However, due to
the limitation of generative Al models, some customized AR
content might not be satisfactory, which can be identified by
the trained validation models.

The validation models indicate the quality of generative
Al models with generative score G, € [0,1]. For each
AR layer of virtual traffic simulator k, the rendering task
can be represented by AR;, = <sif, efR> [11], where s{f
is the data size of each AR layer and ¢{R is the required
GPU cycles per unit data for rendering. Therefore, given the
total number of virtual simulators K + 1, the match quality
m; i, and hit preference caches h; j are drawn independently
from a set of distributions m; = h; ~ Fj . To explain
further, given the synchronizing AV ., virtual traffic simulators
k 1,...,K can measure the match qualities m,; of
their traffic simulations. However, the virtual driving simulator
0 that provides AR simulations to the synchronizing AV .
cannot immediately measure its match quality m, o. Therefore,
asymmetric information exists among virtual simulators that
might result in adverse selection [10].

Empowered by generative Al models, the match quality
m; 1 1S no longer limited by the hit preference caches h; .
As generative Al can generate countless and diverse AR
content based on user preferences and location datasets, virtual
simulators can utilize more computing resources and downlink
transmission resources during offline training. During the re-
maining time of DT execution, the total amount of simulations
Qi.n.j.k can be calculated as Q; p jx = (din—TPL )Rﬁ?/ng

i,m,j

for task n in DT; of AV ¢ and its RSU j. Then, the marginal
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generative Al-empowered match quality of AV ¢ in simulator
k via RSU j can be measured as

logy (1 + Gy j kQinjk)hik
0(hix) ’
where 0(h; ) is the relative accuracy among the original
model w; and the fine-tuned model w; j for strongly convex
objectives [12]. In particular, 6(-) = 1 indicates no improve-
ment for training in simulation platforms, and 6(-) 0
indicates the Al model is trained optimally.
2) AR Simulation Rendering: The effective transmission
latency of transmitting the AR content ARy, to AV i for task
n from RSU j can be calculated as

(1

Min,jk =

AR
R QingkSk
i,k T d ’
Ry,

(©))

where jo is the downlink transmission rate between AV i
and RSU j. Moreover, the effective computation latency in
completing the simulation ARy, can be calculated as

AR Qi jkSh it
1,5,k T fG ’
j

which depends on the simulation latency in the GPUs of RSU
7. Egs. (2) and (3) imply that the V2P synchronization in
generative Al-empowered vehicular Metaverse can fully utilize
communication and computing resources.

In the synchronization system, RSUs can use their available
computation and communication resources to provide real-
time physical-virtual synchronization services for AVs and
virtual simulators. However, the total synchronization delay
cannot exceed the required deadline of AV 4. Let gPT be the
allocation variable that AV i is allocated to RSU j and g% |
be the allocation variable that virtual traffic simulator £ is
allocated by RSU j to match AV <. The total synchronization
delay T[f’jf’,i required by RSU j to process both the DT task of
AV i and the AR rendering the task of virtual traffic simulator
k should be less than the required deadline, which can be
expressed as

total _ DT DT
Toie=9ij (ti,n,j +1

+ ik (Eim ke + 1 k) < diny

VieZ,jeJ, ke K,n=1,...,N. The AR content of virtual
traffic simulator £ is displayed on AR-HUD of AV ¢ during
the processing of DT tasks at RSU j, and thus the expected

utilizing duration of AR content can be represented by TL’"J’“,é

3

)

“

III. SURPLUS MAXIMIZATION

In the proposed system, a synchronization market, consist-
ing of the physical and the virtual submarkets, is established
to incentivize RSUs to provide communication and comput-
ing resources for synchronization between AVs and virtual
simulators. Here, we consider physical and virtual entities in
the market to be risk neutral, and their surpluses are cor-
related positively. Therefore, the synchronization mechanism
is expected to map the DT values v = (v1,...,v7) and
AR values U (I1,0,--.,Ur k) to the payments of AVs
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p?!f = (pDT, ...,pPT) and the payments of virtual simulators
p*f = (pif N p’}<) with the allocatlon probabilities gP”
(gt 97" and gt = 95, By accomphshmg

DT tasks, the total expected surplus for RSUs from AV ieZ
in the physical submarket can be represented by SPT(gPT) =
E [Zle vig?]T(v)} Based on the optimal reaction to the
dominant strategies of the virtual traffic simulators, the virtual
driving simulator can motivate RSU with the expected surplus
of Spf = E[U;09:% ,(Qs)]. In addition, the total expected
surplus provided by virtual traffic simulators is defined by
SAR(gAR) — E[Y N U, kg1 1 (Ui)]. In conclusion, the total
surplus that RSU j can gained from the virtual submarket
can be defined as SAR(z4R) = SR (zAR) + SAR(z4R), where
~ denotes the relative bargaining power of virtual driving
simulator 0.

Then, the objective is to maximize the total surplus in the
synchronization market, which can be represented as

SPT Z

n=1

total .
i,mn,7,k

(VSR + SPR). 5)

IV. MULTI-TASK ENHANCED MECHANISM DESIGN

To tackle the multi-task synchronization system, we propose
the multi-task enhanced second-score auction-based mecha-
nism, named MTEPViSA, based on the EPViSA proposed
in [3]. Similarly, the MTEPViSA allocates and prices the
synchronizing AV in the physical submarket by calculating the
scoring rule. Therefore, we first define the AIGC-empowered
synchronization scoring rule as follows.

Definition 1 (AIGC-empowered Synchronization Scoring
Rule). Let o be any offered bidding price, the AIGC-
empowered synchronization scoring rule ®"(o,d) is defined
as

2" (0,d) = ¢ — ¢(d), ©)

where d contains the submitted deadlines of DT tasks and ¢(-)
is a non-decreasing function and ¢(0) = 0.

The auctioneer can calculate the scoring rule based on
previous transaction results and current submitted bids and
deadlines. In the physical submarket, AVs submit their multi-
dimensional bids bPT = ((b97,...,6°T).d = (dy,...,ds))
to the auctioneer. The auctioneer computes the scores &% =
(Dsyn(bDT’ 77) = ( iyn(b?Tv 771)7 B Syn(bl 77”)) to the auc-
tioneer. Then, the auctioneer determines the winning AV in
the physical submarket for synchronization according to the
calculated scores. The auctioneer allocates the trader with the
highest score as the winning physical entity, as gPT(®9") =
L{a9">max{a"}}- In addition, the payment that the winning
AV needs to pay is the bidding price of the second highest
score, i.e., pPT (@) = gPT(®o™) . bfrTgmax{w}.

In the virtual submarket, virtual simulators submit their bids
VR = (bR VAR ... b48) to the auctioneer. In the MTEPViSA
mechanism, the price scaling factor « > 1 is utilized.
First, the auctioneer determines the allocation probabilities
for virtual traffic simulators as g*(b"%) = L. g . Then,
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the allocation probability of the virtual driving simulator is
calculated as giR(b*F) < 1 — S5, g#R(b*F). Based on the
price scaling factor, the winning MAR is required to pay

peR(BAR) = giR(BAR) - piR | where
pAR taaﬂtaébAR k= 07 (7)
b TP amax{bh}, k=1,..., K.

Then, the efficient AIGC-empowered Scoring Rule can be
defined as follows.

Definition 2 (Efficient AIGC-empowered Scoring Rule). An
efficient synchronization scoring rule is in the form of

P (oPT, d*) = oPT + d*[ySER(M) + SIE(M)],  (8)

where d*[vS4R (M) + SR (M)] is the total surplus of virtual
simulators by providing Metaverse billboards.

The allocation and pricing rules are effective and efficient
when the efficient scoring rule exists [13] and the price scaling
factor is selected as «, = max (1,7[Q.0]/E[Q, (2)]) [10],
where ¢ is the synchronizing AV in the physical submarket.
Finally, under the cost-per-time model of rendering AR content
and the efficient scoring rule, the MTEPViSA is fully strategy-
proof and adverse-selection-free.

V. EXPERIMENTAL RESULTS

In the simulation of the vehicular Metaverse, we consider
a physical-virtual synchronization with 30 AVs, 30 virtual
simulators, and 1 RSU by default. For each RSU, 20 MHz
uplink and 20 MHz downlink channels are allocated for DT
task uploading and AR content streaming, respectively. In
addition, the CPU frequency of RSU is set to 3.6 GHz,
and the GPU frequency is set to 19 GHz. The channel
gain between RSUs and AVs is ranged from [0, 1], where
U denotes the uniform distribution. The transmission power
of AVs is sampled from U[0,1] mW and the transmission
power of RSUs is sampled from U[0,5] mW. The additive
white Gaussian noise at AVs and RSUs is sampled from
N(0,1), where N denotes the normal distribution. For each
DT task generated by AV, the data size is sampled from
U0, 1] MB, the required CPU cycles per unit data are sampled
from [0, 1] Geycles/MB, and the required deadline is sampled
from U[0.9,1.1] seconds. For each AR simulation, the data
size is sampled from U[0,0.25] MB and the required GPU
cycles per unit data are sampled from U[0,1] Geycles/MB.
The valuation of AVs for accomplishing the DT tasks is
sampled from U[0.1,1], and the number of preferences of
AVs is sampled from Zipf(2), where Zipf denotes the
Zipf distribution. The relative bargaining power of the virtual
driving simulator is set to 1 while the default synchronization
accuracy is 0.5. Generative Al based on large text-to-image
models, such as stable diffusion [5] and Dreambooth [6],
will have a game-changing impact on content creation in the
Metaverse. To demonstrate the ability to generate diverse and
high-quality images for vehicular Metaverse. As illustrated
in Fig. 2, we experiment with modifying background color
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Fig. 2: Synthesized images of traffic signs by TSDreambooth
for background modification and re-contextualization tasks.

and re-contextualization for traffic signs, which is the iconic
task for transportation systems. We first use the training set
in BelgiumTS dataset [8] to fine-tune the Dreambooth to
the TSDreambooth. Then, we train a validation model based
on the pre-trained GoogLeNet to fit the BelgiumTS dataset.
Finally, we generate new images based on the testing set
in BelgiumTS and evaluate the generative score using the
validation model. In Fig. 3, we evaluate the performance of the
proposed mechanism under different system settings compared
with the PViSA and the EPViSA proposed in [3]. From
Fig. 3(b), we can understand the reason for the inefficiency of
the PViSA. The PViSA mechanism always selects the AV with
the highest valuation in the physical submarket to synchronize
while ignoring the potential surplus in the virtual submarket.

VI. CONCLUSIONS

In this paper, we have proposed a generative Al-empowered
physical-virtual synchronization framework for the vehicular
Metaverse. In this framework, we have designed the DT-
assisted future route prediction for AVs in the P2V synchro-
nization. In addition, we have considered virtual simulators
with generative Al models to customize diverse and scalable
simulations in the V2P synchronization. Finally, we have
devised the multi-task enhanced auction-based synchronization
mechanism to incentivize RSUs to support effective synchro-
nization. The property analysis has illustrated that the proposed
mechanism is strategy-proof and adverse-selection free. The
experimental results have illustrated that the proposed mech-
anism can increase the surplus by around 50%.
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