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ABSTRACT

Video deduplication in cloud and on devices is a key chal-
lenge for storage and communication efficiency. The lifetime
of video content creation, communication/sharing, and con-
sumption can generate multiple versions of the same content
with variations in coding and editing effects. In this work, we
develop a lightweight and robust deduplication feature based
on the fisher vector aggregation of Scale-Invariant Feature
Transform (SIFT) keypoints. The fisher vector representa-
tion is used for a deduplication transfer learning process that
utilizes a lightweight Multilayer Perceptron (MLP) network
with center loss to learn a compact and distinctive feature.
Simulation on the CC_WEB_VIDEO dataset demonstrated
that the proposed feature is extremely robust in deduplication
with respect to typical editing effects and coding/transcoding
degenerations while being computationally very lightweight
compared to other solutions.

Index Terms— Video deduplication, near-duplicate
video detection, near-duplicate video copy detection, fisher
vector aggregation.

1. INTRODUCTION

In recent years, the amount of videos recorded and shared
online has skyrocketed. This is primarily due to the increas-
ing popularity of social networks and mobile devices. Con-
sequently, the number of illegal pirate videos have also in-
creased. Such illegal pirate videos contain the same content
as the original videos along with a few subtle differences to
dodge copy detection systems. These differences are gener-
ally created by adding variations like flipping, changing as-
pect ratio, color, frame rate, padding, overlaying text, etc.
The task of detecting these near-duplicates is referred to as
near-duplicate video retrieval (NDVR). Moreover, storing this
enormous amount of data is a challenging issue. The knowl-
edge about duplicate or near-duplicate videos is crucial to
minimizing the amount of storage and processing needed.
Most NVDR techniques consist of feature extraction fol-
lowed by computing a similarity score. The ideal goal is
to generate a feature vector that is highly distinctive and
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lightweight. The study in [1] presented a video copy detec-
tion system that matched individual frames and verified their
spatio-temporal consistency. Local patches from frames were
extracted via the Hessian-Affine region detector [2] and de-
scribed via Scale-Invariant Feature Transform (SIFT) [3] or
CS-LBP [4] descriptors. The study in [5] represented frames
using a SIFT and bag-of-words representation and used
weak geometric consistency to exclude incorrect matches.
Temporal-concentration SIFT (TCSIFT) was proposed in [6]
that encoded temporal information by tracking the SIFT. This
effectively compressed the size of the SIFT features. The
work by [7] used the fast CenSurE keypoint detector and
BRIEF descriptor instead of SIFT. Binary Temporal Align-
ment was used to efficiently find a match. The MPEG-CDVS
Standard [8] adopted the scalable compressed Fisher Vector
(SCFV) representation for visual search. The SCFV achieved
high matching accuracy with minimum memory require-
ments. Inspired by [8], we adopt fisher vector aggregation in
our work for generating our deduplication feature.

In this work, we propose a robust and distinctive dedu-
plication feature for finding near-duplicates among a large
video repository. The feature is computed in three steps. First,
SIFT keypoints are extracted from uniformly-sampled video
frames which are used for training Gaussian Mixture Mod-
els (GMM). Next, GMM is used for fisher vector aggrega-
tion. Lastly, the fisher vector computed is used to generate a
deduplication feature by passing through a lightweight Mul-
tilayer Perceptron (MLP) network. The proposed feature is
lightweight in terms of time consumption. The feature pro-
posed was evaluated on the CC_.WEB_VIDEO [9] dataset.
The main contributions of this paper are:

* We propose a robust and discriminative deduplication
feature for searching duplicates/near-duplicates for the
task of video deduplication.

* The proposed deduplication feature is lightweight as
compared to deep neural networks like CNN.

The remainder of the paper is organized as follows. The
proposed method is described in Section 2. Experimental re-
sults are presented in Section 3. Conclusion is presented in
the last section of this paper.
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2. PROPOSED METHOD

In this section, we describe the proposed approach for near-
duplicate image retrieval. The overall workflow of the pro-
posed system is illustrated in Fig. 1. The proposed method
consists of the following steps:
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Fig. 1: Overall workflow of the proposed system.

2.1. Fisher Vector Aggregation

Fisher vectors assign local descriptor features (SIFT key-
points in our case) to elements in a probability visual vo-
cabulary. The probability visual vocabulary is obtained via
a generative model. We use the Gaussian Mixture Models
(GMM) as the generative model for fisher vector aggregation.
SIFT keypoints were used as features due to its scale and
rotation invariance.

We fit the GMM using SIFT keypoint descriptors [3]
which were extracted from frames in the CDVS dataset [8].
The dimension of each SIFT keypoint descriptor is 128-d. We
reduce the 128-d SIFT keypoint descriptor into a 16-d and
24-d descriptor before using it for training a GMM. Principal
Component Analysis (PCA) was used to project the 128-d
descriptor to a 16-d and a 24-d descriptor. To train the GMM,
we use the projected SIFT keypoints randomly sampled from
the entire dataset. We train two GMM - one using 16-d de-
scriptor and one using 24-d descriptor. The outcome of fitting
the GMM is a visual vocabulary of dominant image features
and their distributions.

Using the SIFT keypoint descriptors and the two fitted
GMM, two fisher vectors are generated. The dimensions of
the generated fisher vectors are 2048-d and 3072-d for 16-d
and 24-d trained GMM, respectively.

2.2. Deduplication Transfer Learning with MLP Feature

The two fisher vectors generated via the procedure explained
in the previous subsection are used as inputs to train a
lightweight Multilayer Perceptron (MLP) network. The MLP
produces the final robust and discriminative feature that will
be used for finding duplicates/near-duplicates.

We propose to use a simple 7-layer MLP network that is
lightweight as compared to a Convolutional Neural Network
(CNN). The architecture of the MLP can be visualized in Fig.

2. The first two linear layers are followed by Parametric Rec-
tified Linear Unit (PReLU). Sigmoid activation function is
used before the last linear layer (FC-layer) of the MLP. Af-
ter training the MLP, we remove the FC-layer and extract an
embedding of dimension 2048-d. This is the feature which
we use for video deduplication. Similar to [10, 1], we use
a combination of center loss and softmax loss (see equations
1-3) for training the MLP.
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Fig. 2: Network architecture for the proposed MLP.

2.3. Duplicate Verification

In this step, we propose a simple yet effective algorithm
to search for duplicates/near-duplicates using the proposed
deduplication feature. A pictorial explanation of the algo-
rithm can be seen in Fig. 3. Given 2 video sequences (Seqq
and Seq;), of equal or unequal length, we compute the sim-
ilarity score (Sfina1) between the sequences as a function of
average of off-setted matching distance. Sequences are repre-
sented as frames sampled at uniform intervals. It is assumed
that the sequences are uniformly sampled at fixed intervals.
We will have two cases - one in which the two sequences
are of equal length and another in which the lengths are un-
equal. Cosine similarity measure is used for computing the
similarity score. It is defined as:

A-B
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where A; and B; are components of vectors A and B, respec-
tively.

For the former case, we compute frame-to-frame cosine
similarity and average the similarity scores to obtain a single
similarity value S¢;q;. For example, if Seq, and Segq, con-
tain n frames each, we compare the n-th frame in Seg, with
the n-th frame in Segs, n + 1-th frame from Seg, to n + 1-th

Sc(A,B) =
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Fig. 3: Algorithm for the duplicate verification step. Offset is equal to the step size while uniformly sampling the frames from

videos.

in Seqs and so on. Sjinq is obtained by averaging all the
similarity scores.

In case of unequal lengths, we need to calculate the offset
and choose the minimum of the average of similarity scores as
S tinal. Let the length of Seg, be I; = 5 and that of Seg, be
ls = 8. We take the smaller sequence (Seq,) and compare its
n-th frame to the n-th frame in Seq, upto [,. This process is
repeated by starting the comparison again starting from n+-1-
th frame in Seq,. Each iteration creates an offset value which
increases based on the granularity of the frame sampling. The
offset with the minimum average of similarity scores will be
chosen as the Stipq1.

3. EXPERIMENTS

3.1. Dataset Details

The Vimeo90k [12] and CC_.WEB_VIDEO [9] datasets were
used for training and testing of our video deduplication sys-
tem, respectively.

¢ Vimeo90k dataset: It contains 89,800 videos down-
loaded from vimeo.com. We use the ‘Triplet dataset’
available with the Vimeo90k dataset for the task tem-
poral frame interpolation. The triplet dataset contains
73,171 3-frame sequences. Sequences are extracted
from 15k selected videos from the Vimeo90k dataset
and each sequence has a resolution of 448 x 256.
Vimeo90k dataset was used for training the MLP.

e CC_.WEBL_VIDEO dataset: This dataset consists of
24 queries from YouTube, Google Video, and Yahoo
Video. It contains 3401 near-duplicate videos which
are almost identical to the exact duplicate of each other.
The variations occur in file formats, encoding param-
eters, photometric variations, editing operations, etc.

Negative Frame

Similar Frame (S Label)

Query Frame Exactly Same (E Label)

Fig. 4: Samples from the CC_.WEB_VIDEO [9] dataset.

These 3,401 videos only contain videos with labels ‘E’
and ‘S’ which represent ‘exactly duplicate’ and ‘similar
video’, respectively. This dataset was used for testing
our deduplication feature.

3.2. Implementation Details

The system was implemented using MATLAB and python
programming languages. The extraction of SIFT keypoints
features, GMM training, and computation of fisher vector
were implemented using MATLAB. The MLP and testing of
the deduplication feature were implemented using Python.
PyTorch framework was used for implementing and train-
ing/testing the MLP.

3.3. Experimental Results

This subsection validates the robustness and effectiveness of
our proposed deduplication feature for video deduplication.
We present results for three experiments which are explained
in the following text. Due to the limited number of pages, for
the first 2 experiments, we only show the results for the first
4 classes in the CC_WEB_VIDEO dataset.

Intraclass feature verification: In this experiment, we
test the proposed feature by computing the Sy;yq; score for
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(a) Histogram plot for intraclass experiment.
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(b) Histogram plot for interclass experiment.

Fig. 5: Histograms for intra and inter class feature verification.

features of exactly duplicate (E label) (see Fig. 4) and similar
videos (S label) (see Fig. 4) in the CC_ZWEB_VIDEO dataset
for the same class. Ideally, the S;y,4 score between a query
video and its exact duplicate videos should be 1 whereas
the distance between the query video and its similar videos
should be < 1. Each video class has a seed video and we use
this seed video from each class to compare it with all other
videos in the same class. The histogram of Sy, similarity
scores for this experiment can be seen in Fig. 5a. As evident
in Fig. 5a, the seed-to-exact duplicate score is 1 and the
seed-to-similar score is near < 1.

Interclass feature verification: The second experiment
was conducted to test the similarity score (Syinq1) between
seed video from each class to all other videos in the other
classes. Ideally, this score should be much lower than the
seed-to-similar score (from preceding section). Particularly,
we generate 46 pairs of frames randomly from each query
class. Each pair includes frame from the query class and an-
other frame from other classes (negative frame see Fig. 4).
None of the pairs contain frames from the same class. The
results for this experiments can be seen in Fig. 5b. It can be
seen that the score is indeed lower than that of the seed-to-
similar score.

Intra/Inter-class feature verification: In this experiment,
we test the effectiveness of the proposed feature for both intra
and inter class videos. Fig. 6 shows the Receiver Operating
Characteristic (ROC) curve. For the blue curve in Fig. 6, we
take seed video from each class and compare it to all E and S
labeled frames within the same class. Also, the seed video is
compared to negative videos. In case of the orange curve in
Fig. 6, seed video from each class is compared to S labeled
videos from the same class and to negative videos. These

results validate the robustness of our proposed deduplication
feature.
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Fig. 6: ROC Curve for intra/inter-class feature verification.

4. CONCLUSION

In this paper, we present a lightweight and robust deduplica-
tion feature for finding duplicate/near-duplicate videos. The
solution proposed is based on fisher vector aggregation and
a lightweight multilayer perceptron (MLP). The fisher vec-
tor aggregation uses Gaussian Mixture Models (GMM) as the
generative model. The GMM was trained via SIFT keypoints
as input. The robustness of the feature was tested on the
CC_WEB_VIDEO dataset. The results confirm that the pro-
posed feature is invariant to typical editing effects.
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