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ABSTRACT

The widespread adoption of facial recognition technology

is a global phenomenon. Facial recognition systems lever-

age upon image data containing faces. This poses serious

threats to user privacy as the data is exposed to potential

data breaches. In this paper, we propose a face recognition

system that works without compromising user privacy. It uti-

lizes data captured by FlatCam - a lensless camera. FlatCam

captures the scene as a sensor measurement that is visually

unintelligible. The proposed system preserves user privacy

since it works directly on FlatCam’s sensor measurements

without the need of FlatCam camera parameters which are

required for pixel reconstruction. We propose a frequency

domain deep learning solution that computes the DCT of the

sensor field at multiple resolutions and organizes it into sub-

bands before training a classification network with attention.

The multi-resolution DCT subband representation leads to

huge performance gains when compared to using the sensor

measurement directly for training. Our proposed system was

trained and tested on a real lensless camera dataset - the Flat-

Cam Face dataset. Privacy of user is preserved during both

training and testing. Experimental results demonstrate the

effectiveness of our method.

Index Terms— Lensless camera, FlatCam, face recogni-

tion, visual privacy, DCT

1. INTRODUCTION

Face recognition is a well-researched topic in the computer vi-

sion community. It deals with the identification of faces in im-

ages or videos and has attracted significant attention [1, 2, 3]

due to its immense practical applicability in areas like bio-

metrics, surveillance, etc. Facial recognition systems leverage

upon huge amounts of image data containing faces. This face

data is vulnerable to digital attacks that poses serious threats

to user privacy.

Recently, lensless cameras have gained much attention

owing to its thin form-factor, lightweight, and inexpensive-

ness when compared to lens-based cameras. A recent exam-

ple of lensless camera is FlatCam [4]. It replaces lenses with

computations and captures a scene as sensor measurements.
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Fig. 1: Proposed privacy preserving face recognition system

(bottom) vs. lensless camera reconstruction-based face recog-

nition system (middle) vs. traditional lens-based face recog-

nition system (top). Face image taken from FlatCam Face

dataset [5].

Computational algorithms are used to reconstruct the scene

via these sensor measurements. It is worth noting that the

recorded sensor measurements are incomprehensible to hu-

mans. A sensor measurement for a face will therefore main-

tain the user privacy since the measurements lack spatial cor-

relation.

In the past, a few research works [6, 7, 8] explored the use

of sensor measurements from lensless cameras for perform-

ing computer vision tasks like image classification and action

recognition. These approaches are reconstruction-free since

they do not require reconstructing image from the sensor mea-

surement. The study in [6] generated a local binary pattern

map for optically encoded pattern and used it for image clas-

sification. The encoded pattern was obtained from a lensless

camera. A transformer-based architecture was trained using

optically encoded pattern from a mask-based lensless cam-

era for image classification [7]. The work in [8] proposed a

privacy preserving action recognition system that used coded

aperture videos. Recently, lensless camera based privacy pre-

serving face recognition systems [9, 10] have also been pro-

posed. The study in [9] achieves privacy protection by ini-

tially training a network using unblurred images followed by

fine-tuning it with blurred images obtained via lensless multi-
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pinhole camera. On the other hand, the study in [10] recon-

structs face image from FlatCam measurement, predicts the

sensitive face region via facial segmentation, and separates

them from the captured measurements.

Our work is most similar to [6, 7], since image recon-

struction is not needed, however, these works were tested on

dummy datasets like MNIST, Fashion MNIST, and/or cat-

vs-dogs dataset. On the contrary, our work deals with face

recognition which has real-life applicability. In case of [9],

it still requires pre-training with unblurred images while [10]

requires image reconstruction and facial segmentation which

adds to the computational resources and time required. A pic-

torial comparison for the proposed approach and traditional

approaches is shown in Figure 1.

In this paper, we propose a facial recognition system

that maintains user privacy while being able to perform face

recognition. The proposed system uses sensor measurements

recorded by FlatCam for face recognition. These sensor

measurements are incomprehensible to humans and cannot

be used to recover the face images without the knowledge

of camera parameters. Sensor measurements are transformed

into frequency domain via Discrete Cosine Transform (DCT).

The DCT is computed at multiple resolutions and organized

into subbands to form a multi-resolution DCT subband rep-

resentation before inputting it to a CNN. Particularly, we use

VGG network with attention [11] (referred to as VGG-ATT in

the following text) as the network for training and inference.

The proposed system is camera parameter blind and hence,

preserves privacy during both training and inference. Our

contributions are mentioned below:

1. We propose a privacy preserving face recognition sys-

tem that only requires sensor measurements from lens-

less camera during both training and inference time.

These sensor measurements are unintelligible to hu-

mans which enables the protection of user’s privacy.

2. Lensless image sensor field is heavily blurred with a

point spread function (PSF) that will need extremely

large receptive field to untangle the convolution. To

remedy this, we developed a frequency domain learn-

ing solution that converts the sensor measurements

from lensless camera into the frequency domain via

computing DCT at multiple resolutions forming a

multi-resolution DCT subband representation. This

representation is used to train VGG with attention

which results in huge accuracy gains when compared

to using sensor measurements directly for training.

3. Experiments are conducted on real lensless camera

dataset. The data contains sensor measurements cap-

tured by FlatCam. No simulated data was used during

training or testing the face recognition system which

validates the effectiveness of our proposed approach

under real-world scenarios.

The remainder of the paper is organized as follows. Sec-

tion 2 describes the working of our proposed method while

the experimental setup and results are presented in Section 3.

Conclusion and future work are covered in the last section.

2. PROPOSED METHOD

This section describes the proposed approach for privacy pre-

serving face recognition. The overall approach is illustrated

in Figure 2.

2.1. FlatCam Imaging

This subsection provides the background knowledge for un-

derstanding the working of FlatCam [4]. It mainly consists

of a large bare-sensor along with a coded binary mask. The

entire camera system is devoid of optical lenses which makes

it a lightweight and thin device.

Imagine a light point source enters the image sensor

through the aperture in the mask; the point spread function of

the system would be a shadow of the mask. For a complex

scene, each sensor pixel represents multiplexed light from

multiple scene elements. For a separable mask, the sensor

measurement Y can be written as:

Y = ΦLXΦT

R + E (1)

where X is the scene radiance, ΦL and ΦR are the system ma-

trices computed once by calibrating the camera model, and E
is the sensor noise. Given Y , the original scene can be re-

constructed by solving a ℓ2 regularized least-squares problem

that can be represented as:

X̂ = argmin
X

∥

∥ΦLXΦT

R − Y
∥

∥

2

2
+ τ∥X∥2

2
(2)

where τ > 0 is a regularization parameter.

2.2. Multi-Resolution DCT Subband Representation

The first step towards building our privacy preserving face

recognition system is using the sensor measurements from

FlatCam for training the network. However, directly train-

ing the sensor measurements leads to mediocre performance

as evident in Section 3.3. To tackle this issue, we propose

to convert the sensor measurements into a multi-resolution

DCT subband representation before using it for training. This

step is an extension of the frequency domain learning via

DCT subbands [12] proposed for aerial image classification

via lensless camera.

Each raw sensor measurement Yraw from the FlatCam

Face dataset [5] has a size of 1280× 1024 pixels where each

2 × 2 window represents the Bayer pattern. The raw sensor

measurement is split into a red channel, a blue channel, and

2 green channels, each of size 620 × 500. The 2 green chan-

nels are averaged to generate a sensor measurement Y of size
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Fig. 2: Overall workflow of the proposed method. Face image taken from FlatCam Face dataset [5].

620× 500× 3. Y is resized to 64× 64× 3 and 32× 32× 3
to generate Y64 and Y32, respectively.

Y64 and Y32 are transformed into frequency domain via

computing DCT. Let YDCT = DCT (Y ) where YDCT rep-

resent the result obtained after transforming the sensor mea-

surement Y into frequency domain using DCT. YDCT64

and YDCT32 refer to the DCT of Y64 and Y32, respectively.

YDCT64 is further decomposed into X0, X1, X2, and X3

subbands, each of size (h/2, w/2, 3) where h and w refer to

the height and width of YDCT64. To generate the final multi-

resolution DCT subband representation, we concatenate X0,

X1, X2, X3, and YDCT32 into a multi-resolution 32×32×15
input YmDCT . A pictorial explanation of this procedure can

be visualized in Figure 3.

This multi-resolution DCT subband representation of the

sensor measurement leads to significant gains in the overall

accuracy of the face recognition system. This is evident from

the results in Table 1. The subband organization prevents low

frequency DC and AC components from dominating the filter

weights and enables a large receptive field for the network.

It would be possible to recover the sensor measurement

from the DCT representation. However, recovering the pixel

reconstruction of the face from the sensor measurement

would require the knowledge of camera parameters. It would

be almost impossible to recover the face image without the

knowledge of the camera parameters. This makes our system

highly secure in terms of privacy during both training and

inference time.

2.3. Frequency Domain Learning with Attention

The success of attention mechanism in language models led

to its adoption in vision models [11]. Vision models with at-

tention mechanism have shown superior performance in deep

learning tasks. The attention mechanism mimics the human

visual system which tends to focus on an area of interest

rather than whole visual space.

Inspired by the success of attention mechanism, we use

the architecture from [11] for our face recognition system.

The architecture in [11] is a modified version of VGG [13]

containing 15 convolutional and 2 fully connected (fc) lay-

ers. Particularly, [11] inserts attention estimators after the

7th, 10th, 13th layers and replaced the last fc layer with a

new fc layer that takes input from these attention estimators.

We use the network referred to as ‘VGG-att3-concat-pc’ in

the original paper [11]. ‘-att3’ means that the last three levels

contain the attention layers, ‘concat’ means that the attention

outputs are concatenated before inputting to the fc layer, and

‘pc’ means that parametrised compatibility was used to cal-

culate the compatibility scores. For simplicity, ‘VGG-att3-

concat-pc’ is referred as ‘VGG-ATT’ in this paper. More de-

tails about the architecture can be obtained from [11]. We

also trained on VGG16 network [13].

Contrary to the original work [11], we train the network

in the frequency domain with the multi-resolution DCT sub-

band representation YmDCT obtained from the procedure in

Section 2.2. The benefit of training in the frequency domain

with YmDCT is evident from Section 3.3.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Dataset Details

The proposed method was trained and tested on FlatCam Face

data [5] which was collected by Rice University. The dataset

contains 23, 838 samples for 87 subjects with 274 samples per

subject under different operating conditions. It is a real lens-

less camera dataset that was captured using FlatCam under

different lighting conditions with expression and angle varia-

tions. In addition to the sensor measurements, the dataset also

provides reconstructed and webcam-captured images. In our

experiments, we take every 10th (1st, 11th, 21th, and so on)

sample from each subject for testing and all the remaining

samples for training. The test samples include 28 different

variations. No simulated data was used during our experi-

ments to ensure real-life applicability of our system.

3.2. Experimental Setup

The system was implemented on a desktop computer with In-

tel Core i5-8400 CPU and 40 gigabytes of RAM. A single

NVIDIA GTX 1080Ti GPU was used for training and testing

the network. PyTorch framework was used for implement-

ing the networks used in this paper. The implementation for

VGG-ATT was taken from [14]. VGG16 was trained for 200
epochs while VGG-ATT was trained for 100 epochs. Both

networks were trained using using stochastic gradient descent

with a batch size of 256, momentum of 0.9, and weight decay

of 0.0005. The learning rate for both the networks was ini-

tially set to 0.001. The learning rate was divided by 5 every
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Fig. 3: Overall workflow for obtaining multi-resolution DCT subband representation.

60th epoch for VGG16. In case of VGG-ATT, the learning

rate was decreased by a multiplicative factor of 0.1 for every

50th epoch.

3.3. Experimental Results

In this subsection, we discuss the experimental results for

our proposed privacy preserving face recognition system on

the FlatCam Face dataset [5]. Table 1 presents results on

two different types of inputs on VGG16 and VGG-ATT net-

works. The networks were trained on sensor measurement

Y64 (64 × 64 × 3) and the proposed multi-resolution DCT

subband representation YmDCT (32×32×15) (obtained with

procedure mentioned in Section 2.2)

Learning directly using Y64 results in a mediocre accu-

racy of 46.59% and 42.81% for VGG and VGG-ATT, respec-

tively. When learned with the proposed multi-resolution DCT

subband representation YmDCT , the performance boosts by

about 27% from 46.59% to 73.60% for VGG. This perfor-

mance gain is even higher (about 45%) in case of VGG-ATT

with a jump from 42.81% to 87.71%. This validates the effec-

tiveness of our multi-resolution DCT subband representation.

It is worth mentioning that no synthetic data was used during

training and testing of our system. In addition, in all our ex-

periments, we train the networks from scratch and did not use

any pre-trained weights. The performance might be further

increased by using a pre-trained network.

We also conducted experiments with reconstructed image

from sensor measurement Y (512×620×3), and images cap-

tured by standard webcam. Both, reconstructed and webcam-

captured images were resized to 64 × 64 × 3 before train-

ing/testing. VGG-ATT performed well with an accuracy of

98.07% and 99.71% for reconstructed images and webcam-

captured images, respectively. On the other hand, VGG16

achieved an accuracy of 93.27% for reconstructed images and

98.52% for webcam-captured images. This high accuracy, at

the loss of user privacy, is not surprising given that the camera

parameters were known to obtain a good reconstruction.

A comparison with the original FlatCam Face dataset pa-

per [5] would be unfair since [5] used a much larger dataset

(VGG Face dataset [15]) to train the network and tested it on

FlatCam Face dataset. [5] prepared a display-captured lens-

Table 1: Face recognition results on FlatCam Face dataset

[5] for VGG16 [13] and VGG-ATT [11] with sensor measure-

ment Y64 and proposed multi-resolution DCT subband repre-

sentation YmDCT .

Model Input Data Accuracy

VGG16
Sensor Measurement (Y64) 46.59

DCT Representation (YmDCT ) 73.60

VGG-ATT
Sensor Measurement (Y64) 42.81

DCT Representation (YmDCT ) 87.71

less version of the VGG Face dataset [15] which, to the best

of our knowledge, is unavailable publicly. Hence, we were

unable to train our network with this larger display-captured

VGG Face dataset. Although, our results with YmDCT do not

match the performance of reconstructed or webcam-captured

images, however, it must be noted that our approach main-

tains user privacy with a reasonable amount of accuracy. We

strongly believe that our research is a step forward towards

inference with lensless camera’s sensor measurements while

maintaining user privacy.

4. CONCLUSION

In this work, we proposed a strong privacy preserving face

recognition system that uses sensor measurements from Flat-

Cam without the need to reconstruct face image in the pixel

domain. We proposed to convert the sensor measurement into

a multi-resolution DCT subband representation before using

it for training VGG16 or VGG-ATT (VGG with attention).

Training with this DCT representation boosts the performance

(when compared to using sensor measurement directly for

training) while preserving user privacy. The system is highly

secure during both training and testing time since reconstruct-

ing the face image from the sensor measurement would re-

quire the knowledge of camera parameters. The face recog-

nition system was trained and tested on a real lensless dataset

- the FlatCam Face dataset. Experimental results show that

our privacy preserving system performs almost similar to the

traditional face recognition systems.
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