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ABSTRACT

The widespread adoption of facial recognition technology
is a global phenomenon. Facial recognition systems lever-
age upon image data containing faces. This poses serious
threats to user privacy as the data is exposed to potential
data breaches. In this paper, we propose a face recognition
system that works without compromising user privacy. It uti-
lizes data captured by FlatCam - a lensless camera. FlatCam
captures the scene as a sensor measurement that is visually
unintelligible. The proposed system preserves user privacy
since it works directly on FlatCam’s sensor measurements
without the need of FlatCam camera parameters which are
required for pixel reconstruction. We propose a frequency
domain deep learning solution that computes the DCT of the
sensor field at multiple resolutions and organizes it into sub-
bands before training a classification network with attention.
The multi-resolution DCT subband representation leads to
huge performance gains when compared to using the sensor
measurement directly for training. Our proposed system was
trained and tested on a real lensless camera dataset - the Flat-
Cam Face dataset. Privacy of user is preserved during both
training and testing. Experimental results demonstrate the
effectiveness of our method.

Index Terms— Lensless camera, FlatCam, face recogni-
tion, visual privacy, DCT

1. INTRODUCTION

Face recognition is a well-researched topic in the computer vi-
sion community. It deals with the identification of faces in im-
ages or videos and has attracted significant attention [1, 2, 3]
due to its immense practical applicability in areas like bio-
metrics, surveillance, etc. Facial recognition systems leverage
upon huge amounts of image data containing faces. This face
data is vulnerable to digital attacks that poses serious threats
to user privacy.

Recently, lensless cameras have gained much attention
owing to its thin form-factor, lightweight, and inexpensive-
ness when compared to lens-based cameras. A recent exam-
ple of lensless camera is FlatCam [4]. It replaces lenses with
computations and captures a scene as sensor measurements.
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Fig. 1: Proposed privacy preserving face recognition system
(bottom) vs. lensless camera reconstruction-based face recog-
nition system (middle) vs. traditional lens-based face recog-
nition system (top). Face image taken from FlatCam Face
dataset [5].

Computational algorithms are used to reconstruct the scene
via these sensor measurements. It is worth noting that the
recorded sensor measurements are incomprehensible to hu-
mans. A sensor measurement for a face will therefore main-
tain the user privacy since the measurements lack spatial cor-
relation.

In the past, a few research works [0, 7, 8] explored the use
of sensor measurements from lensless cameras for perform-
ing computer vision tasks like image classification and action
recognition. These approaches are reconstruction-free since
they do not require reconstructing image from the sensor mea-
surement. The study in [6] generated a local binary pattern
map for optically encoded pattern and used it for image clas-
sification. The encoded pattern was obtained from a lensless
camera. A transformer-based architecture was trained using
optically encoded pattern from a mask-based lensless cam-
era for image classification [7]. The work in [8] proposed a
privacy preserving action recognition system that used coded
aperture videos. Recently, lensless camera based privacy pre-
serving face recognition systems [9, 10] have also been pro-
posed. The study in [9] achieves privacy protection by ini-
tially training a network using unblurred images followed by
fine-tuning it with blurred images obtained via lensless multi-
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pinhole camera. On the other hand, the study in [10] recon-
structs face image from FlatCam measurement, predicts the
sensitive face region via facial segmentation, and separates
them from the captured measurements.

Our work is most similar to [0, 7], since image recon-
struction is not needed, however, these works were tested on
dummy datasets like MNIST, Fashion MNIST, and/or cat-
vs-dogs dataset. On the contrary, our work deals with face
recognition which has real-life applicability. In case of [9],
it still requires pre-training with unblurred images while [10]
requires image reconstruction and facial segmentation which
adds to the computational resources and time required. A pic-
torial comparison for the proposed approach and traditional
approaches is shown in Figure 1.

In this paper, we propose a facial recognition system
that maintains user privacy while being able to perform face
recognition. The proposed system uses sensor measurements
recorded by FlatCam for face recognition. These sensor
measurements are incomprehensible to humans and cannot
be used to recover the face images without the knowledge
of camera parameters. Sensor measurements are transformed
into frequency domain via Discrete Cosine Transform (DCT).
The DCT is computed at multiple resolutions and organized
into subbands to form a multi-resolution DCT subband rep-
resentation before inputting it to a CNN. Particularly, we use
VGG network with attention [ 1 1] (referred to as VGG-ATT in
the following text) as the network for training and inference.
The proposed system is camera parameter blind and hence,
preserves privacy during both training and inference. Our
contributions are mentioned below:

1. We propose a privacy preserving face recognition sys-
tem that only requires sensor measurements from lens-
less camera during both training and inference time.
These sensor measurements are unintelligible to hu-
mans which enables the protection of user’s privacy.

2. Lensless image sensor field is heavily blurred with a
point spread function (PSF) that will need extremely
large receptive field to untangle the convolution. To
remedy this, we developed a frequency domain learn-
ing solution that converts the sensor measurements
from lensless camera into the frequency domain via
computing DCT at multiple resolutions forming a
multi-resolution DCT subband representation. This
representation is used to train VGG with attention
which results in huge accuracy gains when compared
to using sensor measurements directly for training.

3. Experiments are conducted on real lensless camera
dataset. The data contains sensor measurements cap-
tured by FlatCam. No simulated data was used during
training or testing the face recognition system which
validates the effectiveness of our proposed approach
under real-world scenarios.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the working of our proposed method while
the experimental setup and results are presented in Section 3.
Conclusion and future work are covered in the last section.

2. PROPOSED METHOD

This section describes the proposed approach for privacy pre-
serving face recognition. The overall approach is illustrated
in Figure 2.

2.1. FlatCam Imaging

This subsection provides the background knowledge for un-
derstanding the working of FlatCam [4]. It mainly consists
of a large bare-sensor along with a coded binary mask. The
entire camera system is devoid of optical lenses which makes
it a lightweight and thin device.

Imagine a light point source enters the image sensor
through the aperture in the mask; the point spread function of
the system would be a shadow of the mask. For a complex
scene, each sensor pixel represents multiplexed light from
multiple scene elements. For a separable mask, the sensor
measurement Y can be written as:

Y =0, XL + E (1)

where X is the scene radiance, ®;, and @y are the system ma-
trices computed once by calibrating the camera model, and E
is the sensor noise. Given Y, the original scene can be re-
constructed by solving a /5 regularized least-squares problem
that can be represented as:

X = argmin [0 X%~ Y[, + 7X@

where 7 > 0 is a regularization parameter.

2.2. Multi-Resolution DCT Subband Representation

The first step towards building our privacy preserving face
recognition system is using the sensor measurements from
FlatCam for training the network. However, directly train-
ing the sensor measurements leads to mediocre performance
as evident in Section 3.3. To tackle this issue, we propose
to convert the sensor measurements into a multi-resolution
DCT subband representation before using it for training. This
step is an extension of the frequency domain learning via
DCT subbands [12] proposed for aerial image classification
via lensless camera.

Each raw sensor measurement Y,.,,, from the FlatCam
Face dataset [5] has a size of 1280 x 1024 pixels where each
2 x 2 window represents the Bayer pattern. The raw sensor
measurement is split into a red channel, a blue channel, and
2 green channels, each of size 620 x 500. The 2 green chan-
nels are averaged to generate a sensor measurement Y of size
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Fig. 2: Overall workflow of the proposed method. Face image taken from FlatCam Face dataset [5].

620 x 500 x 3. Y is resized to 64 x 64 x 3 and 32 x 32 x 3
to generate Yg4 and Yo, respectively.

Y54 and Y39 are transformed into frequency domain via
computing DCT. Let Ypor = DCT(Y) where Ypor rep-
resent the result obtained after transforming the sensor mea-
surement Y into frequency domain using DCT. Ypcores
and Ypcorse refer to the DCT of Yg4 and Yso, respectively.
Ybcres is further decomposed into Xy, X7, X9, and X3
subbands, each of size (h/2,w/2,3) where h and w refer to
the height and width of Ypcorgs. To generate the final multi-
resolution DCT subband representation, we concatenate X,
X1, Xo, X3, and Ypor32 into a multi-resolution 32 x 32 x 15
input Y,,por. A pictorial explanation of this procedure can
be visualized in Figure 3.

This multi-resolution DCT subband representation of the
sensor measurement leads to significant gains in the overall
accuracy of the face recognition system. This is evident from
the results in Table 1. The subband organization prevents low
frequency DC and AC components from dominating the filter
weights and enables a large receptive field for the network.

It would be possible to recover the sensor measurement
from the DCT representation. However, recovering the pixel
reconstruction of the face from the sensor measurement
would require the knowledge of camera parameters. It would
be almost impossible to recover the face image without the
knowledge of the camera parameters. This makes our system
highly secure in terms of privacy during both training and
inference time.

2.3. Frequency Domain Learning with Attention

The success of attention mechanism in language models led
to its adoption in vision models [ 1]. Vision models with at-
tention mechanism have shown superior performance in deep
learning tasks. The attention mechanism mimics the human
visual system which tends to focus on an area of interest
rather than whole visual space.

Inspired by the success of attention mechanism, we use
the architecture from [11] for our face recognition system.
The architecture in [11] is a modified version of VGG [13]
containing 15 convolutional and 2 fully connected (fc) lay-
ers. Particularly, [ 1] inserts attention estimators after the
7th, 10th, 13th layers and replaced the last fc layer with a
new fc layer that takes input from these attention estimators.
We use the network referred to as ‘“VGG-att3-concat-pc’ in

the original paper [ 1]. “-att3’ means that the last three levels
contain the attention layers, ‘concat’ means that the attention
outputs are concatenated before inputting to the fc layer, and
‘pc’ means that parametrised compatibility was used to cal-
culate the compatibility scores. For simplicity, ‘VGG-att3-
concat-pc’ is referred as “VGG-ATT’ in this paper. More de-
tails about the architecture can be obtained from [11]. We
also trained on VGG16 network [13].

Contrary to the original work [ 1], we train the network
in the frequency domain with the multi-resolution DCT sub-
band representation Y,,,pcr obtained from the procedure in
Section 2.2. The benefit of training in the frequency domain
with Y,,, pcr is evident from Section 3.3.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Dataset Details

The proposed method was trained and tested on FlatCam Face
data [5] which was collected by Rice University. The dataset
contains 23, 838 samples for 87 subjects with 274 samples per
subject under different operating conditions. It is a real lens-
less camera dataset that was captured using FlatCam under
different lighting conditions with expression and angle varia-
tions. In addition to the sensor measurements, the dataset also
provides reconstructed and webcam-captured images. In our
experiments, we take every 10th (1st, 11th, 21th, and so on)
sample from each subject for testing and all the remaining
samples for training. The test samples include 28 different
variations. No simulated data was used during our experi-
ments to ensure real-life applicability of our system.

3.2. Experimental Setup

The system was implemented on a desktop computer with In-
tel Core 15-8400 CPU and 40 gigabytes of RAM. A single
NVIDIA GTX 1080Ti GPU was used for training and testing
the network. PyTorch framework was used for implement-
ing the networks used in this paper. The implementation for
VGG-ATT was taken from [14]. VGG16 was trained for 200
epochs while VGG-ATT was trained for 100 epochs. Both
networks were trained using using stochastic gradient descent
with a batch size of 256, momentum of 0.9, and weight decay
of 0.0005. The learning rate for both the networks was ini-
tially set to 0.001. The learning rate was divided by 5 every
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Fig. 3: Overall workflow for obtaining multi-resolution DCT subband representation.

60th epoch for VGG16. In case of VGG-ATT, the learning
rate was decreased by a multiplicative factor of 0.1 for every
50th epoch.

3.3. Experimental Results

In this subsection, we discuss the experimental results for
our proposed privacy preserving face recognition system on
the FlatCam Face dataset [5]. Table | presents results on
two different types of inputs on VGG16 and VGG-ATT net-
works. The networks were trained on sensor measurement
Y64 (64 x 64 x 3) and the proposed multi-resolution DCT
subband representation Y,,, pcr (32 % 32 x 15) (obtained with
procedure mentioned in Section 2.2)

Learning directly using Yg4 results in a mediocre accu-
racy of 46.59% and 42.81% for VGG and VGG-ATT, respec-
tively. When learned with the proposed multi-resolution DCT
subband representation Y,,,pcr, the performance boosts by
about 27% from 46.59% to 73.60% for VGG. This perfor-
mance gain is even higher (about 45%) in case of VGG-ATT
with a jump from 42.81% to 87.71%. This validates the effec-
tiveness of our multi-resolution DCT subband representation.
It is worth mentioning that no synthetic data was used during
training and testing of our system. In addition, in all our ex-
periments, we train the networks from scratch and did not use
any pre-trained weights. The performance might be further
increased by using a pre-trained network.

We also conducted experiments with reconstructed image
from sensor measurement Y (512 x 620 x 3), and images cap-
tured by standard webcam. Both, reconstructed and webcam-
captured images were resized to 64 x 64 x 3 before train-
ing/testing. VGG-ATT performed well with an accuracy of
98.07% and 99.71% for reconstructed images and webcam-
captured images, respectively. On the other hand, VGG16
achieved an accuracy of 93.27% for reconstructed images and
98.52% for webcam-captured images. This high accuracy, at
the loss of user privacy, is not surprising given that the camera
parameters were known to obtain a good reconstruction.

A comparison with the original FlatCam Face dataset pa-
per [5] would be unfair since [5] used a much larger dataset
(VGG Face dataset [15]) to train the network and tested it on
FlatCam Face dataset. [5] prepared a display-captured lens-

Table 1: Face recognition results on FlatCam Face dataset
[5] for VGG16 [13] and VGG-ATT [ 1 1] with sensor measure-
ment Y4 and proposed multi-resolution DCT subband repre-
sentation Y,,,por.

Model Input Data Accuracy
VGG16 Sensor Measure?ment (Ye4) 46.59
DCT Representation (Y,,pcr) 73.60
Sensor Measurement (Yg4) 42.81
VGG-ATT | oy Representation (Y;,pcr) | 87.71

less version of the VGG Face dataset [15] which, to the best
of our knowledge, is unavailable publicly. Hence, we were
unable to train our network with this larger display-captured
VGG Face dataset. Although, our results with Y,, pcr do not
match the performance of reconstructed or webcam-captured
images, however, it must be noted that our approach main-
tains user privacy with a reasonable amount of accuracy. We
strongly believe that our research is a step forward towards
inference with lensless camera’s sensor measurements while
maintaining user privacy.

4. CONCLUSION

In this work, we proposed a strong privacy preserving face
recognition system that uses sensor measurements from Flat-
Cam without the need to reconstruct face image in the pixel
domain. We proposed to convert the sensor measurement into
a multi-resolution DCT subband representation before using
it for training VGG16 or VGG-ATT (VGG with attention).
Training with this DCT representation boosts the performance
(when compared to using sensor measurement directly for
training) while preserving user privacy. The system is highly
secure during both training and testing time since reconstruct-
ing the face image from the sensor measurement would re-
quire the knowledge of camera parameters. The face recog-
nition system was trained and tested on a real lensless dataset
- the FlatCam Face dataset. Experimental results show that
our privacy preserving system performs almost similar to the
traditional face recognition systems.
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