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Abstract—Scale-invariant feature transform (SIFT) is a clas-
sical computer vision technique for scale-invariant keypoint
detection and feature extraction. SIFT exhibits invariance to
various transformations such as scale, rotation, noise, and illumi-
nation, making it applicable in a wide range of applications like
object recognition, image matching and stitching, environment
mapping, navigation, robotics, camera calibration, and more. A
key contribution of SIFT is its utilization of the Difference-
of-Gaussian (DoG) feature pyramid, which approximates the
scale-space response of the Laplacian-of-Gaussian (LoG) filter.
The DoG feature pyramid is computed by taking the separable
Gaussian filtering and stacking the difference of Gaussian blurred
images. In this paper, we propose a novel approach called “Fast
LoG” filtering, which offers direct computation of the LoG filter
to model the scale-space response solution. The “Fast LoG” filter
is achieved by decomposing the LoG filter into two separable
filters via SVD, and the scale-space response is computed by a
direct polynomial fitting and differentiation, which is analytically
more accurate. The polynomial fitting and differentiation only
happen after the LoG peak strength thresholding, therefore the
overall complexity is low compared with the DoG-based SIFT.
The experimental results show that the keypoint generated by
the Fast LoG method matches the SIFT keypoints, and per-pixel
filtering complexity is lower.

Index Terms—Keypoint detector, SIFT, Difference-of-Gaussian
(DoG), Laplacian-of-Gaussian (LoG), Singular Value Decompo-
sition (SVD)

I. INTRODUCTION

Keypoint detectors play a crucial role in various computer

vision applications, including image matching and stitching,

object and scene recognition, Simultaneous Localization and

Mapping (SLAM) for 3D reconstruction, camera calibration,

etc. Over the years, techniques such as the Harris corners

detector [1] and Scale-invariant Feature Transform (SIFT) [2],

SURF [3], FAST [4], BRIEF [5], and many others [6, 7, 8, 9]

have been widely employed in these fields. An effective

keypoint representation should possess the ability to detect

a concise and informative set of points that are relevant to the

specific task at hand. It should also exhibit robustness against

diverse transformations, such as scale changes, translations,

noise, and variations in lighting conditions.

SIFT [2] is the most used keypoint detector and feature

extractor due to its robustness in handling diverse image

transformations. SIFT uses a Difference-of-Gaussian (DoG)

approximation of the Laplacian-of-Gaussian (LoG) filter to

generate the scale-space pyramid. Keypoints are then identified

at locations where the DoG has extrema values, ie. maxima

or minima, considering both the spatial coordinates in the

image domain and the scale level within the pyramid structure.

However, since DoG cannot capture the exact detail of the

LoG filter, it may lead to potential loss of accuracy in keypoint

detection. Hence in our work, we address this issue by utilizing

a more precise LoG filter approximation using Singular Value

Decomposition (SVD).

The extrema detected from the LoG filter response are

used as a means of edge and blob detection, first by con-

volving an image with Gaussian filters and then applying

the Laplacian function to the result. When done over several

strengths of Gaussian scaling and then stacked into a pyra-

mid structure, keypoint features can be derived through the

mapping of maxima and minima of intensity ranges across

an image. The resulting features are then usable in complex

real-world scenarios where inconsistent object orientation,

variable scaling, and low illumination are expected. However,

the drawback of high computational cost, mainly due to the

inseparable nature of the LoG filter, has limited its usability

in practical applications, a more cost-effective DoG filter is

used to approximate LoG through comparison of Gaussian

blur at different scales, modifying computationally intensive

Laplacian functions to simple subtraction of matrices. The

improvements of DoG have led to its use in the Scale Invariant

Feature Transform (SIFT) algorithm [2] as a means of scale-

space extrema detection. Nevertheless, by employing singular

value decomposition (SVD) on the LoG output, we found that

there exist two non-zero singular values. This indicates that the

LoG filter can be approximated using SVD separable filters,

resulting in the generation of more precise keypoints.

In our research, we have introduced a novel approach for

fast keypoint detection called the “Fast LoG” SIFT detector

that utilizes an SVD separable LoG filter to construct a

scale-space response pyramid. By fitting a polynomial, we

directly detect extrema in the scale-space pyramid. Notably,

the polynomial fitting and differentiation processes occur after

the elimination of non-maximum responses in the LoG peak

strength thresholding, resulting in an overall lower complexity

when compared to the SIFT approach based on DoG. The gen-

erated keypoints exhibit a strong correlation with SIFT while

demonstrating enhanced robustness and lower computational

complexity compared to the DoG pyramid method from an

off-the-shelf SIFT library called “VLFeat” [10].

Earlier keypoint detection methods like Harris-corner de-
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Algorithm 1 Fast LoG SIFT

1. Load image I .

2. Compute 2-SVD approximation LoG scale-space

response of I .

i. Compute the scales σi = a
√
bi−1

ii. Compute scale invariant LoG response.

ILoG = σ2

i
LoG(I, σi)

Generate LoG scale-space pyramid.

3. Evaluate peak strength thresholding.

i. Keypoint candidate ← LoG(x, y, σi) ≥ Pth

4. Selecting the keypoint.

i. Apply curve fitting f to the peak response for each

keypoint candidate.

ii. Keypoint (K)← abs(f ′

σmax

) ≤ Gth

tector [1] have long been used for detecting keypoints and

image-matching tasks. Although the Harris-corner detector is

invariant to certain transformations of an image, specifically,

translations and rotations, it is not invariant to the scale.

With the introduction of scale-space theory [11, 12] and

stable keypoint detection using scale-space extrema in the

Difference-of-Gaussian image [13], Lowe [2] proposed Scale-

Invariant Feature Transform (SIFT) that is not only invariant

to translation and rotation but also invariant to scale, noise,

and illumination. Many other handcrafted keypoint detection

methods like SURF[3], FAST[4], ORB [6] and BRIEF[5] have

been proposed that also use a variation of separable bandpass

filters for extrema detection and/or uses a different variation of

a scale-space pyramid to detect the keypoints that are invariant

to scale, point of view and change in lighting condition.

Our main contributions can be summarized as follows:

• We introduced the “Fast LoG” filter, a novel approach

that approximates the LoG filter using two separable SVD

filters for constructing the scale-space pyramid.

• We devised a method for detecting scale-space extrema

by employing the polynomial fitting in the LoG response.

• Our method reduces the computational complexity by

specifically computing extrema in selected pixel loca-

tions, which are determined through peak strength thresh-

olding of LoG response.

II. PROPOSED METHOD

Our proposed method is outlined in Algorithm 1. Initially,

we compute the Singular Value Decomposition (SVD) approx-

imation of the LoG filter for a range of N different strength

of σ. Values of σi are computed as follows:

σi = a
√

bi − 1 (1)

where a and b are scaling factors and constant respectively

that describes the strength of σ in the filter and i = 1, 2, ...N .

Subsequently, we calculate the approximated LoG response

for the input image to generate an LoG scale-space pyra-

mid. Following the approach described in previous works by

Fig. 1. [a] Visualization of the LoG filter in a 3D space. [b] Plot showing
singular values decomposition of the LoG filter. It shows that the LoG can
be approximated using the 2-SVD as the rest of the singular values are zeros.
[c] Image showing the response of the LoG filter. [d] Image showing the
response obtained from approximating the LoG filter using two separable
filters of SVD.

Lindeberg [11, 12], we scale the LoG response by σ2. The

LoG response decreases as the scale increases because the

LoG operator is a high-pass filter and larger scales correspond

to lower frequencies. To counteract this decrease, the LoG

response is normalized by multiplying it by σ2.

Next, we performed peak strength thresholding (Pth) of

LoG response at different scales to eliminate the computation

for the keypoints selection. We fit a third-degree polynomial

to the peak responses obtained at different scales σi for each

keypoint candidate and then calculate the first-order derivative

of the curve. Subsequently, we choose the keypoint from the

available candidates by ensuring that the absolute value of the

first-order derivative at σmax remains below the predefined

gradient threshold (Gth).

A. LoG Scale-space Pyramid

The LoG scale-space pyramid is a multi-scale representation

of an image that captures information about its structures

at different scales and levels of smoothness. It is obtained

by convolving the image with the LoG filter, which is the

second derivative of the Gaussian function, at multiple scales.

It provides a multi-scale representation of the image that can

be used for keypoint detection. Keypoints are detected as

the pixel location where the LoG response exceeds a certain

threshold in the scale-space pyramid.

B. SVD Approximation of LoG Filter

Since the LoG filter is non-separable, directly applying the

filter with a mask size of m results in a per-pixel multiplication

complexity of m2. Nevertheless, the LoG filter at scale σ can

be expressed as follows:

LoG(x, y, σ) = −

1

πσ4

(

1−
x2 + y2

2σ2

)

exp

(

−

x2 + y2

2σ2

)

(2)
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Fig. 2. [a] Curve showing the extrema detection from LoG response using polynomial fitting [b] Derivative of the curve shown in [a].

is 2-SVD separable, i.e. we can express this filter as a linear

combination of two separable filters as,

h0 =

2
∑

i=1

σi ∗ U1 ∗ V T

i (3)

As a result, the complexity per pixel is reduced to 4m. To

visually illustrate this concept, we provide an example in

Fig. 1. Fig. 1a shows the m × m LoG filter for which we

compute the SVD. In Fig. 1b, the singular values are plotted,

demonstrating the effectiveness of the approach. Furthermore,

in Fig. 1c and 1d, we can observe that the filter output

obtained from both the original non-separable filter and the

two separable filters is identical.

C. Peak Strength Thresholding

To identify keypoints, initially, we locate the extrema

(minima or maxima) of the LoG response across the scale-

space pyramid, leveraging the fact that keypoints typically

exhibit distinct maximum or minimum LoG responses. By

applying a peak strength thresholding, denoted as Pth, we

efficiently discard pixels that are not potential candidates for

keypoints. This step eliminates the need for curve fitting and

significantly reduces the computational burden, particularly

for large images. For pixels exceeding the Pth threshold, we

perform a third-degree polynomial curve fitting. Next, we

calculate the first-order derivative of the polynomial curve

and identify sigma where the derivative tends to zero (σmax),

and calculate its absolute value. If the absolute value of the

derivative at corresponding σmax falls below the threshold

Gth, we consider the corresponding pixel location as a valid

keypoint.

Fig. 2 illustrates the curve-fitting process employed for

extrema detection. In Fig. 2a, the LoG response for five

different sigma values is plotted, and a third-degree polynomial

curve is fitted, represented by the dotted curve. The red line

corresponds to the peak response of the curve, where the

gradient becomes 0 as shown in Fig. 2b, indicating a potential

keypoint. To classify a response as a keypoint, we establish a

threshold Gth = 0.2 and check if the derivative at σmax falls

within the ±Gth range. If it does, the response is considered

a keypoint.

III. EXPERIMENTAL RESULTS

A. Qualitative and Quantitative Evaluation

In order to assess the performance of our Fast LoG SIFT

detector, we conducted an empirical evaluation using the

pre-existing SIFT library called “VLFeat” [10] for various

transformations. Fig. 3 presents a comparison between the

keypoints obtained from our Fast LoG SIFT method and

those generated by VLFeat SIFT. The results reveal a high

correlation between the keypoints derived from Fast LoG SIFT

and the keypoints evaluated in VLFeat SIFT. Fig 3a in the

above comparison shows the keypoints detected using the off-

the-shelf VLFeat SIFT library [10], while Fig 3b displays the

keypoints detected by our proposed method.

To evaluate the robustness of our proposed method, we

conducted experiments on our test image shown in Fig. 3 with

different types of transformation, including images with var-

ied resolutions, Additive White Gaussian Noise(AWGN), and

gamma-correction. The objective was to evaluate the accuracy

of keypoint detection in these transformed images compared to

the original ones. Our findings revealed that in the case of im-

ages with AWGN of zero mean and standard deviation of 0.01,

our proposed method achieved a higher accuracy of 42.42% in

keypoint detection, surpassing the accuracy of the DoG-based

SIFT, which was only 41.30%. Similarly, for gamma-corrected

images with a Gamma value of 1.2, our method demonstrated

a higher accuracy of 70.10%, outperforming the DoG-based

SIFT with an accuracy of 63.33%. Additionally, when pre-

sented with images downscaled by a factor of two, our method

achieved an accuracy of 46.15%, whereas the DoG-based SIFT

achieved an accuracy of 38.46%. These results highlight the

superior performance of our proposed method in accurately

detecting keypoints in transformed images compared to the

traditional DoG-based SIFT approach.

To further validate the effectiveness of our LoG SIFT

detector, we utilized a synthesized image containing blobs and

edges, as illustrated in Fig. 4. Upon analysis, it can be observed

that the keypoints detected by our LoG SIFT method align well

with the keypoints identified by the VLFeat library [10]. This

provides additional confirmation of the accuracy and reliability

of our proposed approach.
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Fig. 3. Comparison of keypoint detection using SIFT using DoG filter and LoG filter. [a] SIFT keypoints detected using of-the-self library VLFeat. A total
of 83 SIFT keypoints were detected.[b] SIFT keypoints detected using our proposed LoG SIFT. A total of 127 keypoints were detected for which most of
the keypoints align with the VLFeat’s SIFT keypoints.

Fig. 4. Image showing detected keypoints from off-the-shelf SIFT library “VLFeat” on the synthesized image. [a] Keypoint detection in blob using DoG
SIFT [b] Keypoint detection in blob using our proposed method. [c] Keypoint detection at the edge using DoG SIFT. [d] Keypoint detection at the edge using
our proposed method.

B. Complexity Evaluation

Although our current implementation of the LoG SIFT

detector is not fully optimized, our analysis reveals promising

findings. Specifically, during the construction of the LoG

feature pyramid, we have determined that it is only necessary

to sample the scale-space response at four points in order

to accurately fit the analytical polynomial response function.

This streamlined approach translates into a multiplication

complexity of 4×4m per pixel. In comparison, the DoG SIFT

method requires three octaves and five scales, each involving

Gaussian filtering, resulting in a multiplication complexity of

15× 2m.

Furthermore, our method incorporates LoG peak strength

thresholding elimination before scale-space extrema detection,

which significantly reduces the overall computation. These

optimizations collectively indicate that our LoG SIFT de-

tector will offer enhanced efficiency compared to the DoG

pyramid-based solution. Through analytical assessments, we

have gained confidence in the superiority of our approach in

terms of speed and computational efficiency.

IV. CONCLUSION

In this paper, we introduce a novel approach to detect

scale-invariant keypoints by employing two separable SVD

filters as an approximation of the LoG filter. This separa-

ble filter significantly reduces the computational complex-

ity, providing an order of magnitude faster implementation

compared to the direct LoG computation method. Moreover,

our approach retains the lower implementation overhead of

the LoG pyramid-based approach compared to SIFT. The

experimental results demonstrate that our method achieves

a high correlation with keypoints obtained from the widely

used SIFT library “VLFeat” in terms of keypoint detection.

Additionally, our method offers advantages in terms of imple-

mentation complexity by avoiding unnecessary computations

involved in utilizing DoG to approximate LoG and reducing

the computational load during keypoint extrema detection.

Moving forward, our future research will focus on improving
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the accuracy of keypoints by incorporating edge keypoints

removal techniques. Furthermore, we will explore the assign-

ment of descriptors to these keypoints, enhancing the overall

capabilities of our proposed method.
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