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Abstract—Scale-invariant feature transform (SIFT) is a clas-
sical computer vision technique for scale-invariant keypoint
detection and feature extraction. SIFT exhibits invariance to
various transformations such as scale, rotation, noise, and illumi-
nation, making it applicable in a wide range of applications like
object recognition, image matching and stitching, environment
mapping, navigation, robotics, camera calibration, and more. A
key contribution of SIFT is its utilization of the Difference-
of-Gaussian (DoG) feature pyramid, which approximates the
scale-space response of the Laplacian-of-Gaussian (LoG) filter.
The DoG feature pyramid is computed by taking the separable
Gaussian filtering and stacking the difference of Gaussian blurred
images. In this paper, we propose a novel approach called “Fast
LoG” filtering, which offers direct computation of the LoG filter
to model the scale-space response solution. The “Fast LoG” filter
is achieved by decomposing the LoG filter into two separable
filters via SVD, and the scale-space response is computed by a
direct polynomial fitting and differentiation, which is analytically
more accurate. The polynomial fitting and differentiation only
happen after the LoG peak strength thresholding, therefore the
overall complexity is low compared with the DoG-based SIFT.
The experimental results show that the keypoint generated by
the Fast LoG method matches the SIFT keypoints, and per-pixel
filtering complexity is lower.

Index Terms—Keypoint detector, SIFT, Difference-of-Gaussian
(DoG), Laplacian-of-Gaussian (LoG), Singular Value Decompo-
sition (SVD)

I. INTRODUCTION

Keypoint detectors play a crucial role in various computer
vision applications, including image matching and stitching,
object and scene recognition, Simultaneous Localization and
Mapping (SLAM) for 3D reconstruction, camera calibration,
etc. Over the years, techniques such as the Harris corners
detector [1] and Scale-invariant Feature Transform (SIFT) [2],
SUREF [3], FAST [4], BRIEF [5], and many others [6, 7, 8, 9]
have been widely employed in these fields. An effective
keypoint representation should possess the ability to detect
a concise and informative set of points that are relevant to the
specific task at hand. It should also exhibit robustness against
diverse transformations, such as scale changes, translations,
noise, and variations in lighting conditions.

SIFT [2] is the most used keypoint detector and feature
extractor due to its robustness in handling diverse image
transformations. SIFT uses a Difference-of-Gaussian (DoG)
approximation of the Laplacian-of-Gaussian (LoG) filter to
generate the scale-space pyramid. Keypoints are then identified
at locations where the DoG has extrema values, ie. maxima
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or minima, considering both the spatial coordinates in the
image domain and the scale level within the pyramid structure.
However, since DoG cannot capture the exact detail of the
LoG filter, it may lead to potential loss of accuracy in keypoint
detection. Hence in our work, we address this issue by utilizing
a more precise LoG filter approximation using Singular Value
Decomposition (SVD).

The extrema detected from the LoG filter response are
used as a means of edge and blob detection, first by con-
volving an image with Gaussian filters and then applying
the Laplacian function to the result. When done over several
strengths of Gaussian scaling and then stacked into a pyra-
mid structure, keypoint features can be derived through the
mapping of maxima and minima of intensity ranges across
an image. The resulting features are then usable in complex
real-world scenarios where inconsistent object orientation,
variable scaling, and low illumination are expected. However,
the drawback of high computational cost, mainly due to the
inseparable nature of the LoG filter, has limited its usability
in practical applications, a more cost-effective DoG filter is
used to approximate LoG through comparison of Gaussian
blur at different scales, modifying computationally intensive
Laplacian functions to simple subtraction of matrices. The
improvements of DoG have led to its use in the Scale Invariant
Feature Transform (SIFT) algorithm [2] as a means of scale-
space extrema detection. Nevertheless, by employing singular
value decomposition (SVD) on the LoG output, we found that
there exist two non-zero singular values. This indicates that the
LoG filter can be approximated using SVD separable filters,
resulting in the generation of more precise keypoints.

In our research, we have introduced a novel approach for
fast keypoint detection called the “Fast LoG” SIFT detector
that utilizes an SVD separable LoG filter to construct a
scale-space response pyramid. By fitting a polynomial, we
directly detect extrema in the scale-space pyramid. Notably,
the polynomial fitting and differentiation processes occur after
the elimination of non-maximum responses in the LoG peak
strength thresholding, resulting in an overall lower complexity
when compared to the SIFT approach based on DoG. The gen-
erated keypoints exhibit a strong correlation with SIFT while
demonstrating enhanced robustness and lower computational
complexity compared to the DoG pyramid method from an
off-the-shelf SIFT library called “VLFeat” [10].

Earlier keypoint detection methods like Harris-corner de-
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Algorithm 1 Fast LoG SIFT

1. Load image I.
2. Compute 2-SVD approximation LoG scale-space
response of [.
i. Compute the scales o; = aVvbi~!
ii. Compute scale invariant LoG response.
ILoG’ = U?LOG(I, O’i)
Generate LoG scale-space pyramid.
3. Evaluate peak strength thresholding.
i. Keypoint candidate < LoG(z,y,0;) > P
4. Selecting the keypoint.
i. Apply curve fitting f to the peak response for each
keypoint candidate.
ii. Keypoint (K) < abs(f, )< Gy

tector [1] have long been used for detecting keypoints and
image-matching tasks. Although the Harris-corner detector is
invariant to certain transformations of an image, specifically,
translations and rotations, it is not invariant to the scale.
With the introduction of scale-space theory [11, 12] and
stable keypoint detection using scale-space extrema in the
Difference-of-Gaussian image [13], Lowe [2] proposed Scale-
Invariant Feature Transform (SIFT) that is not only invariant
to translation and rotation but also invariant to scale, noise,
and illumination. Many other handcrafted keypoint detection
methods like SURF[3], FAST[4], ORB [6] and BRIEF[5] have
been proposed that also use a variation of separable bandpass
filters for extrema detection and/or uses a different variation of
a scale-space pyramid to detect the keypoints that are invariant
to scale, point of view and change in lighting condition.

Our main contributions can be summarized as follows:

o We introduced the “Fast LoG” filter, a novel approach
that approximates the LoG filter using two separable SVD
filters for constructing the scale-space pyramid.

o We devised a method for detecting scale-space extrema
by employing the polynomial fitting in the LoG response.

e Our method reduces the computational complexity by
specifically computing extrema in selected pixel loca-
tions, which are determined through peak strength thresh-
olding of LoG response.

II. PROPOSED METHOD

Our proposed method is outlined in Algorithm 1. Initially,
we compute the Singular Value Decomposition (SVD) approx-
imation of the LoG filter for a range of N different strength
of ¢. Values of o; are computed as follows:

o, =ayb —1 (D

where a and b are scaling factors and constant respectively
that describes the strength of o in the filter and ¢ = 1,2,...N.
Subsequently, we calculate the approximated LoG response
for the input image to generate an LoG scale-space pyra-
mid. Following the approach described in previous works by
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Fig. 1. [a] Visualization of the LoG filter in a 3D space. [b] Plot showing
singular values decomposition of the LoG filter. It shows that the LoG can
be approximated using the 2-SVD as the rest of the singular values are zeros.
[c] Image showing the response of the LoG filter. [d] Image showing the
response obtained from approximating the LoG filter using two separable
filters of SVD.

Lindeberg [11, 12], we scale the LoG response by o2. The
LoG response decreases as the scale increases because the
LoG operator is a high-pass filter and larger scales correspond
to lower frequencies. To counteract this decrease, the LoG
response is normalized by multiplying it by 2.

Next, we performed peak strength thresholding (P;) of
LoG response at different scales to eliminate the computation
for the keypoints selection. We fit a third-degree polynomial
to the peak responses obtained at different scales o; for each
keypoint candidate and then calculate the first-order derivative
of the curve. Subsequently, we choose the keypoint from the
available candidates by ensuring that the absolute value of the
first-order derivative at o0,,,, remains below the predefined
gradient threshold (Gyp).

A. LoG Scale-space Pyramid

The LoG scale-space pyramid is a multi-scale representation
of an image that captures information about its structures
at different scales and levels of smoothness. It is obtained
by convolving the image with the LoG filter, which is the
second derivative of the Gaussian function, at multiple scales.
It provides a multi-scale representation of the image that can
be used for keypoint detection. Keypoints are detected as
the pixel location where the LoG response exceeds a certain
threshold in the scale-space pyramid.

B. SVD Approximation of LoG Filter

Since the LoG filter is non-separable, directly applying the
filter with a mask size of m results in a per-pixel multiplication
complexity of m?. Nevertheless, the LoG filter at scale o can
be expressed as follows:

1 22 + 42 22 + o2
LoG(z,y,0) = ——— (1 — 2023/ ) exp <— 202@/ ?2)

ot
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Fig. 2. [a] Curve showing the extrema detection from LoG response using polynomial fitting [b] Derivative of the curve shown in [a].

is 2-SVD separable, i.e. we can express this filter as a linear
combination of two separable filters as,

2

ho =Y oi Uy x V" 3)
=1

As a result, the complexity per pixel is reduced to 4m. To
visually illustrate this concept, we provide an example in
Fig. 1. Fig. 1a shows the m x m LoG filter for which we
compute the SVD. In Fig. 1b, the singular values are plotted,
demonstrating the effectiveness of the approach. Furthermore,
in Fig. 1c and 1d, we can observe that the filter output
obtained from both the original non-separable filter and the
two separable filters is identical.

C. Peak Strength Thresholding

To identify keypoints, initially, we locate the extrema
(minima or maxima) of the LoG response across the scale-
space pyramid, leveraging the fact that keypoints typically
exhibit distinct maximum or minimum LoG responses. By
applying a peak strength thresholding, denoted as P;,, we
efficiently discard pixels that are not potential candidates for
keypoints. This step eliminates the need for curve fitting and
significantly reduces the computational burden, particularly
for large images. For pixels exceeding the P, threshold, we
perform a third-degree polynomial curve fitting. Next, we
calculate the first-order derivative of the polynomial curve
and identify sigma where the derivative tends to zero (0y,qz),
and calculate its absolute value. If the absolute value of the
derivative at corresponding o,,q, falls below the threshold
G'tn, we consider the corresponding pixel location as a valid
keypoint.

Fig. 2 illustrates the curve-fitting process employed for
extrema detection. In Fig. 2a, the LoG response for five
different sigma values is plotted, and a third-degree polynomial
curve is fitted, represented by the dotted curve. The red line
corresponds to the peak response of the curve, where the
gradient becomes 0 as shown in Fig. 2b, indicating a potential
keypoint. To classify a response as a keypoint, we establish a
threshold G4, = 0.2 and check if the derivative at o,,,,, falls
within the -Gy, range. If it does, the response is considered
a keypoint.

III. EXPERIMENTAL RESULTS

A. Qualitative and Quantitative Evaluation

In order to assess the performance of our Fast LoG SIFT
detector, we conducted an empirical evaluation using the
pre-existing SIFT library called “VLFeat” [10] for various
transformations. Fig. 3 presents a comparison between the
keypoints obtained from our Fast LoG SIFT method and
those generated by VLFeat SIFT. The results reveal a high
correlation between the keypoints derived from Fast LoG SIFT
and the keypoints evaluated in VLFeat SIFT. Fig 3a in the
above comparison shows the keypoints detected using the oft-
the-shelf VLFeat SIFT library [10], while Fig 3b displays the
keypoints detected by our proposed method.

To evaluate the robustness of our proposed method, we
conducted experiments on our test image shown in Fig. 3 with
different types of transformation, including images with var-
ied resolutions, Additive White Gaussian Noise(AWGN), and
gamma-correction. The objective was to evaluate the accuracy
of keypoint detection in these transformed images compared to
the original ones. Our findings revealed that in the case of im-
ages with AWGN of zero mean and standard deviation of 0.01,
our proposed method achieved a higher accuracy of 42.42% in
keypoint detection, surpassing the accuracy of the DoG-based
SIFT, which was only 41.30%. Similarly, for gamma-corrected
images with a Gamma value of 1.2, our method demonstrated
a higher accuracy of 70.10%, outperforming the DoG-based
SIFT with an accuracy of 63.33%. Additionally, when pre-
sented with images downscaled by a factor of two, our method
achieved an accuracy of 46.15%, whereas the DoG-based SIFT
achieved an accuracy of 38.46%. These results highlight the
superior performance of our proposed method in accurately
detecting keypoints in transformed images compared to the
traditional DoG-based SIFT approach.

To further validate the effectiveness of our LoG SIFT
detector, we utilized a synthesized image containing blobs and
edges, as illustrated in Fig. 4. Upon analysis, it can be observed
that the keypoints detected by our LoG SIFT method align well
with the keypoints identified by the VLFeat library [10]. This
provides additional confirmation of the accuracy and reliability
of our proposed approach.
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[a] VLFeat SIFT using DoG filter

[b] Our proposed SIFT using LoG filter

Fig. 3. Comparison of keypoint detection using SIFT using DoG filter and LoG filter. [a] SIFT keypoints detected using of-the-self library VLFeat. A total
of 83 SIFT keypoints were detected.[b] SIFT keypoints detected using our proposed LoG SIFT. A total of 127 keypoints were detected for which most of
the keypoints align with the VLFeat’s SIFT keypoints.
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[c] DoG SIFT edge Detection

.-h. e
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[d] Fast LoG SIFT edge Detection

Fig. 4. Image showing detected keypoints from off-the-shelf SIFT library “VLFeat” on the synthesized image. [a] Keypoint detection in blob using DoG
SIFT [b] Keypoint detection in blob using our proposed method. [c] Keypoint detection at the edge using DoG SIFT. [d] Keypoint detection at the edge using

our proposed method.

B. Complexity Evaluation

Although our current implementation of the LoG SIFT
detector is not fully optimized, our analysis reveals promising
findings. Specifically, during the construction of the LoG
feature pyramid, we have determined that it is only necessary
to sample the scale-space response at four points in order
to accurately fit the analytical polynomial response function.
This streamlined approach translates into a multiplication
complexity of 4 x 4m per pixel. In comparison, the DoG SIFT
method requires three octaves and five scales, each involving
Gaussian filtering, resulting in a multiplication complexity of
15 x 2m.

Furthermore, our method incorporates LoG peak strength
thresholding elimination before scale-space extrema detection,
which significantly reduces the overall computation. These
optimizations collectively indicate that our LoG SIFT de-
tector will offer enhanced efficiency compared to the DoG
pyramid-based solution. Through analytical assessments, we
have gained confidence in the superiority of our approach in

terms of speed and computational efficiency.

IV. CONCLUSION

In this paper, we introduce a novel approach to detect
scale-invariant keypoints by employing two separable SVD
filters as an approximation of the LoG filter. This separa-
ble filter significantly reduces the computational complex-
ity, providing an order of magnitude faster implementation
compared to the direct LoG computation method. Moreover,
our approach retains the lower implementation overhead of
the LoG pyramid-based approach compared to SIFT. The
experimental results demonstrate that our method achieves
a high correlation with keypoints obtained from the widely
used SIFT library “VLFeat” in terms of keypoint detection.
Additionally, our method offers advantages in terms of imple-
mentation complexity by avoiding unnecessary computations
involved in utilizing DoG to approximate LoG and reducing
the computational load during keypoint extrema detection.
Moving forward, our future research will focus on improving
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the accuracy of keypoints by incorporating edge keypoints
removal techniques. Furthermore, we will explore the assign-
ment of descriptors to these keypoints, enhancing the overall
capabilities of our proposed method.
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