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Abstract—In the vehicular mixed reality (MR) Metaverse, the
discrepancy between physical and virtual entities can be over-
come by fusing the physical and virtual environments with multi-
dimensional communications in autonomous driving systems. As-
sisted by digital twin (DT) technologies, connected autonomous
vehicles (AVs), roadside units (RSUs), and virtual simulators can
maintain the vehicular MR Metaverse via simulations for sharing
data and making driving decisions collaboratively. However, it is
challenging and costly to enable large-scale traffic and driving
simulation via realistic data collection and fusion from the physical
world for online prediction and offline training in autonomous
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driving systems. In this paper, we propose an autonomous driving
architecture, where generative AI is leveraged to synthesize unlim-
ited conditioned traffic and driving data via simulations for improv-
ing driving safety and traffic control efficiency. First, we propose
a multi-task DT offloading model for the reliable execution of
heterogeneous DT tasks with different requirements at RSUs. Then,
based on the preferences of AV’s DTs and real-world data, virtual
simulators can synthesize unlimited conditioned driving and traffic
datasets for improved robustness. Finally, we propose a multi-task
enhanced auction-based mechanism to provide fine-grained incen-
tives for RSUs on providing resources for autonomous driving.
The property analysis and experimental results demonstrate that
the proposed mechanism and architecture are strategy-proof and
effective.

Index Terms—Autonomous driving, Metaverse, generative
artificial intelligence, auction theory.

I. INTRODUCTION

T
HE vehicular MR Metaverse emerges as a promising solu-

tion for addressing the burgeoning demands of autonomous

driving by amalgamating the physical and virtual transporta-

tion systems [1], [2]. The multi-dimensional communications

among physical and virtual entities can combat the distance

of “data islands” on roads which hinder efficient information

exchange crucial for enhancing road safety, traffic control, and

sustainability [3]. Assisted by digital twin (DT) technologies,

autonomous vehicles (AVs) utilize advanced sensors, e.g., ul-

trasonic radars, cameras, and LiDAR, to collect data from their

surrounding environments for constructing representations in

the virtual space [4], [5]. Through artificial intelligence (AI)

methods, these virtual models then inform driving decisions,

enhancing AVs’ response to dynamic road conditions. Despite

these advancements, AVs still grapple with limited environment

perception, as even high-class LiDAR and panoramic cameras

can’t fully compensate for occlusions and other limitations [6].

Consequently, there is a growing need for a system where AVs,

roadside units (RSUs), and virtual simulators can collabora-

tively share and fuse sensing data, thereby achieving a holistic

environmental perception. However, achieving such large-scale

data collection and processing in the vehicular MR Metaverse

for real-time driving simulation and training of AVs is latency-

sensitive and resource-intensive.
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To address this issue, much effort from academia and industry

has been devoted to the development of virtual traffic and driv-

ing simulation platforms [7], [8]. These platforms utilize DT

and MR technologies to create virtual representations of AVs,

enabling the efficient collection of traffic and training data [4],

[9], [10]. In this way, simulation and testing on rare scenarios,

such as virtual traffic accidents and car collisions under realistic

conditions, are performed in the virtual space [11]. Although

traditional simulation platforms can generate a wealth of various

traffic and driving simulations, they rely heavily on manual

labor for data labeling, which impedes the fully autonomous

driving [7]. In response, with the multi-modal generative AI [12],

[13], [14], the labeled traffic and driving data can be synthesized

directly by virtual simulators of training and evaluation in au-

tonomous driving [15]. In this way, the process of using simu-

lation platforms for autonomous driving training and evaluation

is revolutionized by shifting from collecting and labeling data to

directly synthesizing labeled data [15], [16], [17]. Consequently,

simulation systems empowered by generative AI can generate

large and diverse labeled traffic and driving datasets based on

local road conditions and user preferences for online prediction

and offline training in autonomous driving systems.

In the vehicular MR Metaverse, a coordinated effort is needed

among connected AVs, RSUs, and virtual simulators to build

efficient traffic and driving simulation platforms in the virtual

space. To update the virtual representations in the virtual space,

AVs continuously generate and offload multiple computation-

intensive DT tasks to RSUs in online traffic simulation [4].

Specifically, these DT tasks range from simulation and decision-

making to monitoring, each of which requires different degrees

of computing and communication resources due to their resource

requirements and latency constraints. In driving simulations,

virtual simulators are capable of synthesizing controllable traffic

and driving data for satisfying specific simulation requirements,

e.g., passenger preferences and weather conditions, of the sim-

ulated driving tasks. In addition, the synthesized datasets also

serve as valuable training material for the virtual representations

of AVs, further enhancing their driving robustness. Nevertheless,

these synchronization activities, encompassing DT task execu-

tion, traffic and driving simulations, and AV training, impose

significant demands on the communication and computing re-

sources of RSUs [18], [19]. Therefore, it is imperative to develop

effective incentive mechanisms that motivate RSUs to optimize

their resource allocation, thus promoting more efficient support

for generative AI-empowered simulation platforms.

As illustrated in Fig. 1, in this article, we propose a novel

DT-assisted autonomous driving architecture for the vehicular

MR Metaverse, where generative AI is leveraged to synthesize

massive and conditioned traffic and driving data for online and

offline simulations. In particular, to improve reliability in DT

task execution, we propose a multi-task DT offloading model

where AVs can offload heterogeneous DT tasks with differing

resource and deadline requirements to RSUs for remote exe-

cution. To improve the robustness in driving decision-making,

virtual simulators empowered by generative AI can utilize the in-

formation in DTs, such as current location, historical trajectory,

and user preferences, for intelligent traffic simulations [21], [22].

Fig. 1. The vehicular mixed reality Metaverse architecture of DT-assisted
autonomous driving systems with traffic and driving simulations empowered
by generative AI.

Moreover, by combining sensory data from the physical world

with user preferences encapsulated in DTs, virtual simulators

can synthesize diverse datasets for AV training, As a represen-

tative use case, we propose a diffusion model-based traffic sign

generator, named TSDreamBooth, which is developed based

on DreamBooth [23] fine-tuned using the Belgium traffic sign

(BelgiumTS) dataset [24]. TSDreamBooth can generate virtual

traffic sign images under varied local road conditions and user

preferences. Finally, we propose a multi-task enhanced auction-

based mechanism to satisfy multi-dimensional requirements

(e.g., resource consumption and deadlines) of multiple DT tasks.

Through rigorous analysis, the proposed mechanism not only

ensures a strategy-proof operation but also mitigates the issue

of adverse selection. The experimental results demonstrate that

our proposed framework can enhance total social surplus by

up to 150%, thus validating its effectiveness and efficiency.

The main contributions of this work can be summarized as

follows:
� To improve the safety and reliability of autonomous driv-

ing, we propose a novel DT-assisted MR Metaverse archi-

tecture with AI-generated simulations. In this architecture,

connected AVs, RSUs, and virtual simulators build MR

traffic and driving simulation platforms in the virtual space.

The collaborative data collection, sharing, and utilization

across physical and virtual transportation systems promise

enhancements in driving safety, traffic control efficiency,

and sustainability.
� In this architecture, we propose a reliable DT task of-

floading framework where AVs can continuously offload

multiple DT tasks with distinct requirements from AVs

to RSUs, ensuring timely updates of Digital Twins in the

virtual environment.
� In traffic and driving simulations, we consider generative

AI-empowered virtual simulators to synthesize new traf-

fic and driving datasets for robustness improvement in

decision-making and training for AVs.
� To incentivize RSUs for providing resources in support-

ing autonomous driving systems, we propose a multi-task

enhanced auction-based mechanism to offer fine-grained
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resource allocation and pricing for executing heteroge-

neous DT tasks with different deadlines. Upon rigorous

property analysis, this mechanism is proven to be fully

strategy-proof and immune to adverse selection.

The rest of this article is organized as follows. In Section II,

we review the related works. In Section III, we discuss the

proposed system architecture and present its system model.

Then, in Section IV, we develop the auction-based mechanism.

We present the experimental results in Section V, and provide

conclusions in Section VI. The main notations used in this article

are listed in Table I.

II. RELATED WORKS

A. The Vehicular Mixed Reality Metaverse

In the vehicular MR Metaverse, DT technologies empowered

with driving data and AI algorithms serve as a pivotal component

for significantly enhancing the accuracy and reliability of AVs

in physical transportation systems [25], [26]. For instance, Niaz

et al. in [11] develop an autonomous driving test framework

via DT technologies. They emphasize the utilization of V2X

communications to connect virtual space and physical space

for driving safety and traffic control efficiency improvement.

In addition, DT technologies can also improve resource utiliza-

tion by efficiently managing resources in vehicular networks.

Specifically, Li et al. in [27] propose a DT-driven computation

offloading framework, where resource-intensive computation

tasks are offloaded from AVs to RSUs for remote execution,

for optimizing computation latency and service discontinuity.

Considering social influence in vehicular networks, Zhang et

al. in [28] propose a DT-empowered content caching framework

for improving caching scheduling in highly dynamic environ-

ments. In detail, they model vehicular networks as DTs and

propose a learning-based caching algorithm to improve the

system utility under dynamic content popularity, traffic density,

and vehicle speed collaboratively. However, existing works on

digital twin-based autonomous driving systems often restrict

their focus to the single and homomorphic digital twin tasks.

This limited perspective overlooks the inherent heterogeneity

in autonomous driving tasks, such as complexity and urgency,

necessary to adapt to the dynamic vehicle status and driving

environments. Finally, while these frameworks employ AI al-

gorithms to leverage the vehicle’s digital twin data for online

driving decision-making and offline training, the performance

of these algorithms remains dependent on the available datasets.

B. Generative AI-Empowered Autonomous Driving Simulation

Through autonomous driving simulations, traffic and driving

datasets can be synthesized for enhancing the inference and

generalization capabilities of AI models [29]. The synthesized

simulations and sensor data need to include not only diverse

events but reflect realistic observations akin to real-world sce-

narios. Therefore, generative AI, such as generative adversarial

networks (GANs) and diffusion models [30], emerges as the

promising solution for synthesizing virtual traffic and driving

TABLE I
THE MAIN NOTATIONS AND DEFINITION IN THE ARTICLE

datasets. For instance, Kim et al. propose the controllable sim-

ulation platform, named DriveGAN [15], which can generate

high-resolution and diverse simulations based on user-defined

conditions, e.g., weather conditions and locations of simulation

objects.
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Nevertheless, there is a gap between virtual and physi-

cal datasets data for AVs that are trained in simulation plat-

forms [31]. The gap between virtual and physical datasets

in autonomous driving refers to the discrepancies and unpre-

dictability in real-world conditions that are difficult to accu-

rately replicate in simulated environments, potentially lead-

ing to suboptimal or unsafe behaviors when AVs trained in

virtual scenarios are deployed on real roads. Therefore, Yang

et al. in [17] propose Surfelgan, which is a realistic sensor

data synthesizing framework. The proposed data-driven camera

generation scheme demonstrates that the generated data can

not only be visualized as high-quality output but also valuable

training datasets. Furthermore, Zhong et al. [21] propose a

generative diffusion model to create controllable and realistic

traffic simulations for autonomous driving systems. However,

these simulation platforms fall short in synthesizing controllable

and realistic simulations and sensory data. Therefore, they are

restricted to synthesizing and then labeling traffic and driving

simulations manually for utilization in autonomous driving,

rather than directly synthesizing labeled datasets in response

to the prompts.

C. Incentive Mechanisms in Connected Vehicular Networks

With the goal of improving resource utilization in connected

vehicular networks, a variety of incentive mechanisms are being

developed to motivate owners of vehicular infrastructure, i.e.,

RSUs, to offer resources to vehicles [32], [33]. For example,

Sun et al. in [34] propose a preference-based incentive mech-

anism based on the Stackelberg game for resource allocation

and scheduling in dynamic DT-assisted vehicular networks.

Recognizing the value of storage resources in vehicular networks

due to limited caching capacity and high deployment costs,

Xing et al. in [35] propose a coalition game-based mechanism

to motivate storage resource sharing in vehicular networks.

Furthermore, Hui et al. in [4] consider sharing of computing

and communication resources based on the auction game within

DT-enabled connected autonomous driving systems. However,

the previous works predominantly focus on optimizing resource

allocation in the physical world or building simulation platforms

in the virtual world, thereby overlooking the synergistic effects

between the two. In this work, we propose a novel DT-assisted

autonomous driving architecture empowered by generative AI

which can synthesize diverse and conditioned datasets for traf-

fic and driving simulations. Finally, we propose a multi-task

enhanced second-score auction-based mechanism to offer fine-

grained resource allocation for RSUs with incentives.

III. SYSTEM MODEL

In this section, we first provide an overall description of

the proposed architecture of the vehicular MR Metaverse in

Section III-A. Then, we introduce the system model, including

the network model in Section III-B, the DT task model in

Section III-C, and the generative AI-empowered traffic and

driving simulation model in Section III-D. Finally, we formulate

the problems in Section III-E.

Fig. 2. The screenshots of our implemented driving simulation testbed [20]
with synthetic traffic signs generated by the proposed generative diffusion model,
named TSDreamBooth.

A. The Architecture of DT-Assisted Autonomous Driving

To enable autonomous driving in the vehicular MR Meta-

verse, connected AVs, RSUs, and virtual simulators collaborate

to build digital simulation platforms that enable data sharing

and AI-driven decision-making. In this architecture, RSUs with

substantial communication and computing resources can pro-

vide online and offline simulation services for AVs and virtual

simulators. Connecting RSUs with 5 G wireless communication,

AVs can maintain their digital representations in the virtual

space. Specifically, AVs continuously generate updates to digital

representations during their trips, which are offloaded to RSUs

for remote executions within required deadlines [36], [37]. Dur-

ing the execution of DTs, online simulations can be conducted

to improve the performance of decision-making modules of

autonomous driving. As illustrated in Fig. 3, virtual simulators

can use the available resources and time from RSUs to fine-tune

AI modules of AVs via offline simulations. During the offline

simulations, virtual driving environments allow AVs to collect

training data. Empowered by generative AI models, diverse and

conditioned traffic and driving simulations can be synthesized

and compiled into datasets. Therefore, virtual simulators can

leverage a larger quantity of diverse, high-quality datasets to

train AVs. Finally, the simulation results are relayed back to AVs

for future use. In this architecture, online decision-making and

offline training via traffic and driving simulations can improve

driving safety, traffic control efficiency, and sustainability in

autonomous driving systems.

In the system model, we consider three main roles in the ve-

hicular MR Metaverse, i.e., AVs, RSUs, and virtual simulators.

The set of I AVs is represented by I = {1, . . . , i, . . . , I}, the set

ofJ RSUs is denoted asJ = {1, . . . , j, . . . , J}, and the set ofK
virtual simulators is represented by K = {0, 1, . . . , k, . . . ,K}.

Specifically, DTs of AVs provide real-time data about au-

tonomous vehicles and their environment, which is used by

virtual simulators to create testing scenarios for analyzing AV

algorithms and decision-making under a variety of conditions.

We consider the RSUs to own adequate communication and
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Fig. 3. The workflow of DT-assisted autonomous driving simulation platforms
empowered by generative AI.

computing resources for enabling autonomous driving systems,

i.e., the resources of RSUs are enough for executing all the

computation tasks of AVs within deadlines. To facilitate au-

tonomous driving systems, both uplink and downlink commu-

nication channels are allocated to upload DT tasks and stream

simulation results. Therefore, the communication resources at

RSU j consist of uplink bandwidthBu
j and downlink bandwidth

Bd
j . Moreover, to provide services such as executing DT tasks

and simulating virtual traffic and driving, each RSU j is equipped

with computing resources, including the CPU frequency fC
j

and the GPU frequency fG
j . The vehicular MR Metaverse is

constructed and maintained across a network of distributed

RSUs through a coordinated resource and information sharing

mechanism, where the DTs of AVs are continually updated with

real-world data and RSUs synthesize traffic and driving data

using generative AI models to create realistic virtual scenarios.

These scenarios are used for decision-making and training to

enhance AV performance and ensure a unified Metaverse repre-

sentation.

In autonomous driving, AVs maintain the DTs in the virtual

space and continuously update the DTs by executing DT tasks,

e.g., simulation, decision-making, and monitoring. These DT

tasks necessitate a heterogeneous range of resources and are

subject to varying deadlines. Therefore, in the system model,

Ni DT tasks are generated by AV i, which are represented as

DTi = (< sDT
i,1 , eDT

i,1 , di,1 >, . . . , < sDT
i,n , eDT

i,n , di,n >, . . . , <

sDT
i,N+i, e

DT
i,Ni

, di,Ni
>), where sDT

i,n is the size of DT data, eDT
i,n

represents the number of CPU cycles required per unit data, and

di,n denotes the deadline for completing the task. As part of

the DT data from AVs, there are preference caches that store

passenger preferences, interests, and behaviors. This informa-

tion is used to personalize users’ experience with the DT and

provide them with relevant and targeted content, services, and

advertisements [38]. The size of the preference caches of AV

i within the DTi is Ci. Each AV i ∈ I has its private value

vi for executing its DT task DTi, drawn from the probability

distributions. The values of DT tasks can be interpreted as the

characteristics of the AVs, such as the level of urgency to align

with DT models [4], which may vary for each AV during its

trips.

We consider two types of virtual simulators in the vehic-

ular MR Metaverse, i.e., driving virtual simulators and traf-

fic virtual simulators. Traffic virtual simulators, denoted by

1, . . . ,K, facilitate online traffic simulation purposed to assist

real-time decision-making process of AVs, including driving

mode selection, information fusion, and motion planning [6].

The online decision-making module via traffic simulation uses

data collected from AVs, RSUs, and virtual simulators to create

a simulated driving environment. This environment is designed

for testing and validating driving decisions, thereby enhancing

the safety and reliability of autonomous driving systems. As a

result, the feedback of these driving decisions is immediately

returned and perceived by the AVs. The driving virtual simu-

lator 0 delivers offline driving simulation to provide training

simulation platforms to AVs. In the offline training module, the

AI algorithms of AVs are trained by simulated driving practice.

However, the performance improvement of AVs in the future

still needs to be tested and validated, and thus the AVs cannot

perceive immediate returns. The value of simulations for each

simulation pair of AV i and virtual simulator k is Ui,k, which is

the product of the common value vi of AV i and the match quality

mi,k, i.e., Ui,k = vimi,k. The common values for every virtual

simulatork are gained from the provisioning of traffic simulation

for AV i, which can be represented by AV i’s private value

vi [39]. Additionally, the amount of personalized information

determines the match quality mi,k of virtual simulator k. This

way, the values of AVs and virtual simulators in autonomous

driving systems are positively correlated. Then, in the resource

allocation part, private values inform the prioritization of AVs,

while the values of simulations measure the performance of

virtual simulators with an AV’s preferences and requirements.

Finally, let Uι,(l) and mι,(l) represent the l highest value and

match quality for the AV ι, respectively.

B. Communication Model

In autonomous driving systems, vehicular-to-infrastructure

communications with orthogonal frequency-division multiple

access are utilized for updating DTs and streaming simulation

results [40], [41], respectively. The channel gain between AV i
and RSU j is represented by gi,j , and the downlink transmission

rate can be calculated as Rd
i,j = Bd

j log(1 +
gi,jPj

σ2

i

), where Pj

is the transmit power of RSU j and σ2 is the additive white

Gaussian noise. Additionally, the transmit power of AV i is rep-

resented by pi, and the uplink transmission rate can be calculated

as Ru
i,j = Bu

j log(1 + gi,jpi

σ2

j

), where Pi is the transmit power of

AV i.

C. Multi-Task Digital Twin Model

In the multi-task DT model, AVs update their DTs in virtual

space by executing multiple DT tasks for different functions with

heterogeneous levels of complexity and urgency.

1) DT Task Execution: To maintain the digital representation

with the vehicular MR Metaverse, physical entities, i.e., AVs,

generate and offload DT tasks to RSUs for remote execution.

Therefore, we consider the demands as tasks that are required to

be accomplished by RSUs. The transmission latency tDT
i,n,j for

AV i to upload its DT task < sDT
i,n , eDT

i,n , di,n > to RSU j can
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Fig. 4. The workflow of the proposed auction-based resource allocation for
execution of DT tasks and generative AI-empowered simulations.

be calculated as [4] tDT
i,n,j =

sDT
i,n

Ru
i,j

, where Ru
i,j is the downlink

transmission rate between AV i and RSU j. After completing

the upload of the DT task, RSU j uses its computing resources

fC
j to execute the received DT tasks. The computation latency in

processing the DT task DTi of AV i for RSU j can be calculated

as lDT
i,n,j =

sDT
i,n eDT

i,n

fC
j

. In the proposed system, without loss of gen-

erality, we consider that each RSU can allocate enough virtual

machines that the total execution latency for accomplishing DT

tasks is within its required deadline [4], i.e., tDT
i,n,j + lDT

i,n,j �

di,n, ∀i ∈ I, j ∈ J , n = 1, . . . , N . In addition, virtual simula-

tors can provide traffic and driving simulation services to AVs

with the remaining available communication and computing

resources of RSUs. After traffic and driving simulation, virtual

simulators send the simulation results to AVs for further use.

D. Traffic and Driving Simulation Model

In this subsection, we first describe how we train and fine-tune

the generative models to synthesize labeled data for traffic and

driving simulations in vehicular networks. Then, we propose

TSDreamBooth, a generative diffusion model that is fine-tuned

using traffic sign datasets to synthesize new driving and traffic

data based on user preferences. Finally, we present the simu-

lation model of virtual simulators in terms of computation and

communication latency of RSUs to generate datasets, train AVs,

and return simulation results to AVs.

1) Generative AI-Empowered Simulation: As depicted in

Fig. 4, the generative AI-based traffic and driving simulations

encompass stages of training, fine-tuning, and inference stages.

Initially, the low-resolution text-image model is fine-tuned using

input images paired with a text prompt containing a unique

identifier and the class name of the subject [23]. The model

incorporates a class-specific prior preservation loss, designed

to leverage the semantic prior that it has over the class and

facilitate the creation of diverse instances associated with the

subject’s class. Subsequently, the super-resolution components

of the model are fine-tuned using low and high-resolution image

pairs from the input images. This method allows the model to

retain high accuracy on the minute details of the subject while

generating diverse instances in various scenarios. Consequently,

this process of fine-tuning a text-image diffusion model using

data from a virtual simulator enables the creation of more

accurate and diverse driving simulations, thereby enhancing the

development and testing of AVs. The virtual simulators adopt

the Prior-Preservation Loss proposed in [23] to fine-tune the

pre-trained models for customization of the local traffic signs.

2) Tsdreambooth: During the fine-tuning process of genera-

tive AI, virtual simulators use their local datasets for fine-tuning

the generative models. Leveraging the specifics of the driving

simulation, such as the class of traffic signs, the fine-tuned gen-

erative AI model for vehicular networks can effectively extract

the features of these traffic signs. In this context, we propose the

TSDreamBooth, fine-tuned on the traffic sign datasets. In the

driving simulation, virtual simulators can use TSDreamBooth to

generate a large amount of synthetic driving data based on local

traffic signs using user preferences in AVs as input. In detail,

RSUs extract preferences from DTs of AVs, known as preference

caches. The preferences of AVs are collected by leveraging some

user analytical equipment [16], such as eye-tracking devices.

These preferences are then input into generative AI models

as text prompts to produce diverse and conditioned simulation

results. This enables virtual simulators to generate unlimited

AV training experiments based on AV requirements similar to

that are collected from realistic environments. As a result, the

amount of simulations for offline training is no longer limited to

the hit preference caches [20]. However, due to the limitations

of generative AI models, some synthesized simulations may not

satisfy the requirements. Such synthesized simulations can be

identified using trained validation models, allowing for continu-

ous improvement and refinement of the system, as the workflow

shown in Fig. 4.

The models generated are based on probability distributions,

and thus the results produced by TSDreamBooth are not deter-

ministic. The results of TSDreamBooth may not be the same

every time that the model is executed. Virtual simulators have

the ability to capture variability in results and provide a better

understanding of the uncertainties in the model’s predictions by

interrogating multiple results. Therefore, the validation models

indicate the quality of generative AI models with a generative

score Gi,j,k ∈ [0, 1], as illustrated in Fig. 4. For each simulation

result of virtual simulator k, the simulation task can be repre-

sented by SIMk =< sSIM
k , eSIM

k > [42], where sSIM
k is the

data size of each simulation and eSIM
k is the required GPU cycles

per unit data for offline simulation. Therefore, given the total

number of virtual simulators K + 1, the match quality mi,k and

hit preference caches hi,k are drawn independently from a set of

distributions mi,k = hi,k ∼ Fi,k. To explain further, given AV

ι, the traffic virtual simulators k = 1, . . . ,K can measure the

match qualities mι,k of their traffic simulation. However, the

driving virtual simulator 0 that provides driving simulation to AV

ι cannot immediately measure its match qualitymι,0. Therefore,

asymmetric information exists among virtual simulators that

might result in adverse selection [39].

With the empowerment of generative AI models, the match

quality mi,k is no longer constrained by hit preference caches

hi,k. As generative AI can generate countless and diverse sim-

ulation results based on user preferences and local information,

virtual simulators can utilize computing resources and down-

link transmission resources during the offline training process.
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This enhancement not only increases the richness and variety

of generated datasets but also enhances the overall training

efficiency and output quality. During the remaining time of

DT execution, the total amount of simulations Qi,n,j,k can be

calculated asQi,n,j,k = (di,n − tDT
i,n,j − lDT

i,n,j)R
SIM
i,j /sSIM

k for

task n in DTi of AV i and its RSU j. Then, the marginal

generative AI-empowered match quality of AV i in simulator

k via RSU j can be measured as

mi,n,j,k =
log2(1 +Gi,j,kQi,n,j,k)hi,k

θ(hi,k)
, (1)

where θ(hi,k) is the relative accuracy among the original model

wi and the fine-tuned model wi,k for strongly convex objec-

tives [43], [44]. Particularly, a value of θ(·) = 1 signifies that no

improvement has been made in the training within simulation

platforms. Conversely, θ(·) = 0 implies that the AI model has

been trained to its optimal performance. These distinct condi-

tions underscore the significant role of θ(·) in evaluating the

effectiveness of AI model training within simulation environ-

ments.

3) Simulation and Offline Training Model: The effective

transmission latency in simulation and transmitting the driving

simulation SIMk to AV i for task n from RSU j can be

calculated as

tSIM
i,j,k =

Qi,n,j,ks
SIM
k

Rd
i,j

, (2)

where Rd
i,j is the downlink transmission rate between AV i

and RSU j. Moreover, the effective computation latency in

completing the simulation SIMk can be calculated as

lSIM
i,j,k =

Qi,n,j,ks
SIM
k eSIM

k

fG
j

, (3)

which depends on the simulation latency in the GPUs of RSU j.

(2) and (3) imply that the offline simulations in generative AI-

empowered vehicular MR Metaverse can improve the resource

utilization, performance, and sustainability of autonomous driv-

ing systems.

In autonomous driving systems, RSUs use their available

computation and communication resources to provide real-time

synchronization services for AVs and virtual simulators. How-

ever, it is imperative that the total latency does not exceed the

requisite deadline specified by AV i. Let gDT
i,j be the allocation

variable that AV i is associated with RSU j and gSIM
i,j,k be the

allocation variable indicating that virtual simulator k is allocated

by RSU j to match AV i. Consequently, the total latency T total
i,j,k

required by RSU j to process both the DT task of AV i and

the simulations of virtual simulator k must not exceed the

predetermined deadline, which can be expressed as

T total
i,n,j,k = gDT

i,j · (tDT
i,n,j + lDT

i,n,j)

+ gSIM
i,j,k · (tSIM

i,n,j,k + lSIM
i,n,j,k) � di,n, (4)

∀i ∈ I, j ∈ J , k ∈ K, n = 1, . . . , N . The driving simulation of

virtual simulator k is running in the background of AV i during

the processing of DT tasks at RSU j, and thus the expected

duration of offline training can also be represented by T total
i,n,j,k.

E. Problem Formulation

In the proposed system, a market for allocating resources of

RSUs with incentives, consisting of online and offline submar-

kets, is instituted to incentivize RSUs to provide communication

and computing resources for traffic and driving simulation for

AVs and virtual simulators. The resource market in our ar-

chitecture is divided into an online submarket and an offline

submarket, both consisting of resources provided by Road Side

Units (RSUs). The online submarket handles real-time tasks

related to executing and updating DTs and assisting AVs with

real-time decision-making, while the offline submarket handles

tasks related to the offline simulation and training of AVs.

This division allows for efficient and specialized use of RSU

resources and caters to the different demands of autonomous

driving. Participants in this market are considered to be risk-

neutral, and their surpluses exhibit a positive correlation. Ac-

cordingly, the mechanism is expected to map the DT values

v = (v1, . . . , vI) and simulation values U = (U1,0, . . . , UI,K)
to the payments of AVs pDT = (pDT

1 , . . . , pDT
I ) and the

payments of virtual simulators pSIM = (pSIM
1 , . . . , pSIM

K )
with the allocation probabilities gDT = (gDT

1 , . . . , gDT
I ) and

gSIM = (gSIM
0 , . . . , gSIM

K ).
After accomplishing the execution of DT tasks, the total ex-

pected surplus for RSUs from AV i ∈ I in the online submarket

can be represented by SDT (gDT ) = E[
∑I

i=1 Ri,jvig
DT
i,j (v)].

Based on the optimal reaction to the dominant strategies of

the traffic virtual simulators, the driving virtual simulator

can incentivize RSUs with the expected surplus of SSIM
D =

E[Ui,0g
SIM
i,j,0 (Qi)]. In addition, the total expected surplus pro-

vided by traffic virtual simulators is defined by SSIM
T (gSIM ) =

E[
∑K

k=1 Ui,kg
SIM
i,j,k (Ui)]. In addition, we consider a cost-per-

time payment model for simulation platforms, where users are

billed per unit of time they utilize the simulation platform, e.g.,

per minute or per hour. Since AVs can only access the platforms

provided by virtual simulators for a limited time T while driv-

ing, the cost-per-time payment model is a viable and flexible

solution for renting virtual simulation platforms. In conclusion,

the social surplus that RSU j can gain from the offline sub-

market can be given as T · (γSSIM
D (gSIM ) + SSIM

T (gSIM )),
where γ denotes the relative bargaining power of driving virtual

simulator 0.

To maximize the social surplus in the market, the non-

cooperative game among AVs, virtual simulators, and RSUs in

the mechanism M = (gDT ,gSIM ,pDT ,pSIM ) can be formu-

lated as

max
M

SDT +

N
∑

n=1

T total
i,n,j,k ·

(

γSSIM
D + SSIM

T

)

(5a)

s.t. T total
i,n,j,k � di,n (5b)

hi,k � Ci (5c)

0 � bDT
i � vDT

i (5d)

0 � pSIM
k � USIM

ι,k (5e)
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I
∑

i=1

gDT
i,j � 1 (5f)

K
∑

k=0

gSIM
i,j,k � 1 (5g)

gDT
i,j , gSIM

i,j,k ∈ {0, 1} (5h)

∀i ∈ I, j ∈ J , k ∈ K, n = 1, . . . , N. (5i)

Constraint (5b) ensures the reliability of each DT task that can

be accomplished within the required deadline. Constraint (5c)

guarantees that the number of hit preference caches is less than

the size of preference caches. Pricing constraints (5d) and (5e)

are listed to guarantee the individual rationality (IR) of traders.

Allocation constraints (5f), (5g), (5h), and (5i) guarantee that

each physical or virtual entity can be assigned by one and only

one RSU.

In the auction-based resource allocation for online and of-

fline submarkets, there are two issues, i.e., externalities and

asymmetric information, causing adverse selection in the social

surplus maximization problem formulated in (5a). First, adverse

selection, as described in [18] refers to a market situation where

participants with asymmetric information are only willing to

pay the average market price. This often results in an inefficient

distribution and pairing outcome in the market. In the context

of traffic and driving simulations for autonomous driving, the

physical and virtual entities (AVs and virtual simulators) have

positively correlated surpluses for services. This means that the

surplus of AVs in the online submarket can exert an influence

on the surplus of virtual simulators in the offline submarket by

affecting the common valuation of driving simulations. This

correlation introduces externalities and asymmetric informa-

tion for allocating physical and virtual entities in the service

market.
� Externalities: The externalities are introduced to the on-

line submarket as a result of influences from the offline

submarket. The traffic and driving simulation results of

virtual simulators have different match qualities for differ-

ent physical AVs. However, during the allocation of AV in

the physical market, the virtual simulator is unknown to the

participants in the online submarket, which might affect the

total processing latency in the online submarket. Therefore,

AVs in the online submarket may prefer to prompt RSU to

establish a predetermined execution latency threshold prior

to the allocation of AVs.
� Asymmetric Information: There exists an asymmetry of

information among virtual simulators regarding their traf-

fic and driving simulations. The traffic simulation (e.g.,

movement predictions) can induce immediate responses

from users. In contrast, driving simulations (e.g., training

of traffic sign recognition models for AVs) may not be

instantaneously discernible virtual simulators.

To ensure efficient allocation and pricing results, it is im-

portant to scrutinize the impact of this correlation and to find

strategies to address asymmetric information and externalities.

IV. MULTI-TASK ENHANCED MECHANISM DESIGN

To tackle the multi-task DT offloading problem in au-

tonomous driving systems with traffic and driving simula-

tions empowered by generative AI, we propose the multi-

task enhanced second-score auction-based mechanism, named

MTEPViSA, based on the EPViSA mechanism proposed in [20].

Incorporating aspects of the multi-dimensional auction [45]

and the enhanced second-price auction [39], the MTEPViSA

mechanism consists of four components, including the bidding

process, the scoring rule, the allocation rules, and the pricing

rules.

The MTEPViSA allocates and prices the winning AV in the

online submarket by calculating the scoring rule. Therefore, we

first define the AIGC-empowered scoring rule similar to [46],

[47] as follows. Similar to the EPViSA mechanism, we apply

several advanced techniques in auction theory [39] to enhance

the auction-based mechanism by overcoming the externalities in

the online submarket and the asymmetric information in the of-

fline submarket described in Section IV-A. In the online DT tasks

execution, AVs in the online submarket are allowed to submit

their prices and required deadlines of DT tasks to the auctioneer.

In addition, for the offline driving simulation, the auctioneer,

e.g., the proxy of the RSUs, can determine the allocation rule

according to the received bids from AVs with the AIGC scoring

rule. Moreover, in the offline traffic and driving simulation, by

adopting the price scaling factor α � 1 in the offline submarket,

the auctioneer can capture a significant fraction of the social

surplus from both performance and brand virtual simulators.

Finally, we analyze the properties of the MTEPViSA mechanism

in Section IV-B.

A. Designing the MTEPViSA Mechanism

This subsection describes the workflow and property analysis

of the multi-task enhanced second-score auction-based mecha-

nism. To begin with, the definition of the multi-task DT scoring

rule that is similar to [45] is provided as follows.

Definition 1 (Multi-task DT Scoring Rule): Let bDT
1 be any

offered bidding price of AV i, the multi-task DT scoring rule

Φ(bDT
i ,di) under deadline requirement di for each task n =

1, . . . , Ni is defined as

Φ(bDT
i ,di) = bDT

i +

N1
∑

n=1

φ(di,n), (6)

where di = (di,1, . . . , di,Ni
) contains the submitted deadlines

of AV i’s DT tasks and φ(·) is a non-decreasing function that

φ(0) = 0.

The scoring rule defined in (6) involves the deadlines of

DT tasks and one element in the price vector. Therefore, for

each AV i, N scores are calculated. Based on these scores,

the marginal score sequence χi = {χi,1, χi,2, . . . , χi,Ni
} can

be calculated for each AV i. The marginal score indicates AV

i’s score increases when the total number of executed tasks

increases. In addition, thenmarginal score of AV i can be defined
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as

χi,n =

{

Φ(bDT
i ,di,1), n = 1,

Φ(bDT
i ,di,n)− Φ(bDT

i ,di,n−1), 2 � n � Ni,

(7)

wheredi,n = (di,1, . . . , di,n). Then, we have the assumption on

the property of marginal scores as follows [45].

Assumption 1 (Marginal Score): For any AV i ∈ I, the

marginal score sequence χi is non-negative and non-increasing

in n, i.e., χi,n � χi,n+1, n = 1, 2, . . . , Ni − 1.

The meaning of Assumption 1 is that performing additional

simulations provides a higher score and the score is non-

increasing with the performed simulations.

The auctioneer can calculate the scoring rule based on previ-

ous transaction results and current submitted bids and deadlines.

In the online submarket, AVs submit their multi-dimensional

bids bDT = ((bDT
1 , . . . , bDT

I ),d = (d1, . . . ,dI)) to the auc-

tioneer. The auctioneer computes the scores Φ = Φ(bDT ,d) =
(Φ1(b

DT
1 ,d1), . . . ,ΦI(b

DT
I ,dI)). Then, the auctioneer deter-

mines the winning AV in the online submarket for providing

online simulation services according to the calculated scores.

The auctioneer allocates the trader with the highest score as the

winning physical entity as

gDT
i (Φ) = 1{Φi>max{Φ−i}}, (8)

while the payment that the winning AV needs to pay is the

bidding price of the second-highest score, i.e.,

pDT
i (Φ) = gDT

i (Φ) · bDT
argmax{Φ−i}

. (9)

In the offline submarket, virtual simulators submit their

bids bSIM = (bSIM
0 , bSIM

1 , . . . , bSIM
K ) to the auctioneer. In the

MTEPViSA mechanism, the price scaling factor α � 1 is uti-

lized. First, the auctioneer determines the allocation probabilities

for traffic virtual simulators as gSIM
k (bSIM ) = 1bSIM

k
>αbSIM

−k
.

Then, the allocation probability of the virtual simulator is calcu-

lated as gSIM
0 (bSIM ) � 1−

∑K
k=1 g

SIM
k (bSIM ). Based on the

price scaling factor α, the winning virtual simulator is required

to pay

pSIM
k (bSIM ) = gSIM

k (bSIM ) · ρSIM
k , (10)

where

ρSIM
k =

{

T total
i,n,j,0b

SIM
0 , k = 0,

T total
i,n,j,kαmax{bSIM

−k }, k = 1, . . . ,K.
(11)

By introducing the price scaling factor in the pricing rule in the

offline submarket, the MTEPViSA mechanism can increase the

expected social surplus of RSUs by providing offline simulation

services compared with the traditional second-price auction. We

then analyze the strategy-proofness of the MTEPViSA mecha-

nism in Theorem 1.

These allocation and pricing rules are effective and efficient

when the efficient scoring rule exists [45] and the price scal-

ing factor is selected as αι = max (1, γ[Qι,0]/E[Qι,(2)]) [39],

where ι is the winning AV in the online submarket. Finally,

under the cost-per-time payment model of traffic and driving

simulations and the efficient multi-task DT scoring rule, the

MTEPViSA is fully strategy-proof and adverse-selection-free.

B. Property Analysis

To maximize its utility, each AV i can choose the deadline

that can maximize the sum of its valuation vi and externalities

φ(di,n) for the offline submarket. In Proposition 1, each AV can

strategically select the optimal deadline to maximize its expected

payoff.

Proposition 1 (Optimal Deadline): The optimal deadline bid-

ding strategy for task n of AV i is given by

d∗i,n = arg max
d∈(0,di,n]

(

vi +

Ni
∑

n=1

φ(d)

)

, (12)

where φ(·) is a non-decreasing function.

Proof: For any submitted multi-dimensional bid (b̄DT
i , d̄i) of

AV i, there invariably exists an alternative bid (b̂DT
i , d̂i) capable

of yielding an expected utility equal to or greater than that of AV

i. This implies that the expected utility for the physical bidder

i is at least as high as the utility obtained from the initial bid

(b̄DT
i , d̄i). First, the deadline d̂i can be obtained from (12).

Second, the deadline for the new bid b̂DT
i can be determined

by Φ(b̂DT
i , d̂i) = Φ(b̄DT

i , d̄i), indicating that both bids result in

the same score and allocation probability. In the event of a loss,

the losing bidders would have utilities of zero with their scores.

However, if bidder i is the winner, the new bid (b̂DT
i , d̂i) will

yield the utility higher than or equal to the utility obtained from

submitting other bids, i.e.,

vi − b̂DT
i −

(

max{ΦI/{i}}+
Ni
∑

n=1

φ(d̂i,n)

)

� vi − b̄DT
i −

(

max{ΦI/{i}}+
Ni
∑

n=1

φ(d̄i,n)

)

, (13)

where ΦI/{i} = (Φ(bDT
1 ,d1), . . . ,Φ(b

DT
i−1,di−1),

Φ(bDT
i+1,di+1), . . . ,Φ(b

DT
I ,dI)), which holds true because

the deadline is determined through the calculation of (12).

For the optimality of the selection of deadline, a similar

proof of Proposition 1 can be found in [45]. Based on the

bids submitted by AVs and the chosen optimal deadline, the

auctioneer can maintain the efficient scoring rule, which can

maximize social surplus to guide the allocation decisions in the

online submarket as follows. Then, the efficient multi-task DT

scoring rule can be defined as follows.

Definition 2 (Efficient Multi-task DT Scoring Rule): An effi-

cient multi-task DT scoring rule can be expressed as

Φ(bDT ,d∗) = bDT + T (d∗)[γSSIM
D (M) + SSIM

T (M)],
(14)

where T (d∗)[γSSIM
D (M) + SSIM

T (M)] is the social surplus

of virtual simulators by providing simulations and T (d∗) is the

realized duration of AV training.

For a mechanism, strategy-proofness indicates that partici-

pants cannot increase their utility by altering their truthful bids.

A mechanism is considered to be strategy-proof if and only
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if it can be characterized by a critical payment function ψ,

such that a bidder n is deemed the winner if and only if their

bid bn surpasses the threshold price ψ(b−n) when compared

to the other competing bids b−n. Once bidder n has won the

auction, the payment charged by the auctioneer is the critical

payment ψ. Adverse-selection free indicates that if the exis-

tence of market externalities and asymmetric information is

independent of bidders’ valuations, then under this mechanism,

the factors of market externalities and asymmetric information

are also independent of the allocation rules of the mechanisms.

As a consequence, it should be highlighted that the MTEPViSA

mechanism is fully strategy-proof and adverse-selection free, as

demonstrated in the following theorem.

Theorem 1: The MTEPViSA mechanism is fully strategy-

proof and adverse-selection-free in the market with the efficient

multi-task DT scoring rule and the cost-per-time model of sim-

ulations.

Proof: To demonstrate that the MTEPViSA mechanism is

fully strategy-proof, we must identify the critical payment func-

tions for traders in both the online and offline submarkets to

satisfy the conditions for a strategy-proof auction. To begin with,

we show that there is a critical payment function ψon(bDT
−i ) for

the MTEPViSA mechanism in the online submarket. If a bidder

i in the online submarket submits a truthful bid, the score can be

determined by the function Φ(bDT
i ,di), given any deadlines di.

It is necessary to demonstrate that bidder i cannot increase the

benefit by altering the bid. If the bidder were to submit a false

bid b′i �= bDT
i , and did not win the auction, the reward would

be zero, regardless of the specified deadline di or the score

calculation function Φ(bDT
i ,di). However, if bidder i were to

win the auction by submitting a false bid, the expected reward

can be represented as follows:

SDT
i = vi − b′i

= vi −

(

max{Φ−i}+
Ni
∑

n=1

φ(di,n)

)

= Φi −max{Φ−i}, (15)

wheremaxΦ−i represents the highest score excluding the bid of

bidder i. Hence, regardless of whether the bidder wins or loses

under either Φ′ or Φi, the utilities that bidder i receives will

always be lower than or equal to the utility that it would receive

if it submitted the truthful bid. The critical payment function

in the online submarket can be represented as ψon(b
DT
i ,di) =

max{Φ−i}+
∑Ni

n=1 φ(di,n). Additionally, the auctioneer must

compute the synchronization scores for bidders in the online

submarket. As a result, all bidders in the online submarket are

protected against false-name bidding.

The critical payment function for the MTEPViSA mecha-

nism in the offline submarket is ψoff(b
SIM
−k ) = αmax{bSIM−k },

where α � 1. With this critical payment function in place, the

top-performing bidder can win by ensuring that ψoff(b
SIM
−k ) �

max{bSIM−k }. Furthermore, the mechanism is proof against

false-name bidding in the offline submarket if ψoff(b
SIM
−k ) =

ψoff(max{bSIM−k }). Consider a set of bids bSIM
k that result in

ψoff(b
SIM
−k ) �= ψoff(max{bSIM−k }), and let there be two bidders

in the offline submarket. If one bidder has a higher valuation

than ψoff(b−k) and the other has a valuation of max{bSIM−k },

and ψoff(b
SIM
−k ) < ψoff(max{bSIM−k }), then the first bidder could

submit a lower price while keeping the other bids in the set b−k.

This means that the mechanism is not winner false-name proof.

Conversely, if ψoff(b
SIM
−k ) > ψoff(max{bSIM−k }), the losing bid-

der in the offline submarket could submit a higher bid compared

to the winner’s bid while maintaining the other bids in the set

bSIM−k . As a result, the mechanism in the offline submarket is loser

false-name proof.

To show that the mechanism is free from adverse selec-

tion, the critical payment function in the online submarket is

quasi-linear and the critical payment function in the offline

submarket is homogeneous of degree one [39]. In the online

submarket, we consider two types of external effects from the

offline submarket, d ∈ {0,∞}, with a probability of Pr(φ =
0) ∈ (0, 1) while keeping the other bidding prices v−i constant.

If φ = 0, there are no external effects from the offline submar-

ket, and we have gDT
i (v + φ(0)) = gDT

i (v) = 1{vi>maxv−i} =
1{vi>ψon(v−i,0)}. If φ = ∞, then gDT

i (v + φ(0)) = gDTi(v +
∞) = 1{vi>ψon(v−i,φ(∞))} = 0, meaning no bidder can win in

the online submarket. Thus, the proposed mechanism in the

online submarket is free from adverse selection. In the offline

submarket, suppose that v ∈ 1, c with a probability of Pr(C =
1) ∈ (0, 1) while keeping the vehicular MR Metaverse simula-

tion qualities constant. It can be shown that gSIM0 (vm) = 1{v=c}.

When v = 1, gSIM
k (vm) = gSIM

k (vm) = 1{mi>ψoff(m−i)} =
1, and therefore gSIM0 (cm) = 0. When v = c, gSIM

k (cm) =
1{cmi>φoff (cm−i)} = 0, meaning no top-performing bidder can

win the auction, and then gSIM
0 (cm) = 1. In conclusion, we

have shown that the MTEPViSA mechanism is both strategy-

proof for bidders in the online and offline submarkets and free

from adverse selection by utilizing the efficient multi-task DT

scoring rule and cost-per-time model.

From Theorem 1, it can be deduced that the proposed mecha-

nism for AVs and virtual simulators is fully strategy-proof. This

indicates that AVs and virtual simulators cannot manipulate their

bids to achieve higher utility. Although we introduce the scoring

rule and price scaling factors to eliminate the externalities and

asymmetric information, these additional components may not

provide additional information to AVs and virtual simulators

when they develop their own strategy. In the MTEPViSA mech-

anism, the optimal strategy for AVs in the online submarket

and virtual simulators in the offline submarket is to tell the truth.

Moreover, due to the interaction of two submarkets leading to ex-

ternalities and asymmetric information for traders, the proposed

mechanism is free from adverse selection as all participants have

sufficient motivation to join the market. Therefore, the social

surplus achieved by the MTEPViSA mechanism is still efficient

enough to avoid market failure.

Finally, we consider the implementation overhead of the pro-

posed auction-based mechanism, where a centralized auctioneer

collects bids, computes scoring rules, and determines allocation

and pricing results. To begin with, I AVs and K virtual simula-

tors submit their bids to the auctioneers. Let N be the number of

DT tasks of each AV, the computation complexity to compute the

scores isO(IK log(K)(N)). Then, the computation complexity
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to sort the scores of AVs in the online market is O(I log(I)).
Finally, the computation complexity of determining and pricing

the winning virtual simulator is O(K). Overall, the compu-

tation complexity of the proposed MTEPViSA mechanism is

O(IKN log(K) + I log(I) +K).

V. EXPERIMENTAL RESULTS

In this section, we implement the generative AI-empowered

autonomous driving simulation system. First, we validate the

DT-assisted movement prediction model in Section V-A1 and

test the generative AI-empowered traffic and driving simulation

model in Section V-B. Then, we evaluate the performance of the

proposed mechanism in Section V-C.

A. Experimental Setups

In the simulation of the vehicular MR Metaverse, we consider

an autonomous driving system with 30 AVs, 30 virtual simula-

tors, and 1 RSU by default. For the RSU, 20 MHz uplink and

20 MHz downlink channels are allocated for DT task uploading

and MR content streaming, respectively. In addition, the CPU

frequency of RSU is set to 3.6 GHz, and the GPU frequency is set

to 19 GHz. The channel gain between RSUs and AVs is randomly

sampled fromU [0, 1], whereU denotes the uniform distribution.

The transmit power of AVs is randomly sampled from U [0, 1]
mW and the transmit power of RSUs is randomly sampled from

U [0, 5]mW. The additive white Gaussian noise at AVs and RSUs

is randomly sampled fromN (0, 1), whereN denotes the normal

distribution. For each DT task generated by AV, the data size is

randomly sampled from U [0, 0.5] MB, the required CPU cycles

per unit data are randomly sampled from [0, 2] Gcycles/MB,

and the required deadline is randomly sampled from U [1, 1.5]
seconds. For each simulation, the data size is randomly sampled

from U [0, 2.5] MB and the required GPU cycles per unit data

are randomly sampled from U [0, 5] Gcycles/MB. The valuation

of AVs for accomplishing the DT tasks is randomly sampled

from U [0, 1] and the number of preferences of AVs is sampled

from Zipf(2), where Zipf denotes the Zipf distribution. The

relative bargaining power of the offline virtual simulator is set

to 1 while the default accuracy is 0.5. For digital twin-assisted

vehicular movement prediction, we set the past P steps to 60

and the future F steps to 5. In addition, we set epoch e to 500,

batch size to 40, and dropout to 0.05. The default local relative

accuracy is set to 0.53 [43] and the default generative score is

sampled from U [0.4, 0.6].
The simulation environment for the vehicular MR Metaverse

was created using a 3D model of a few city blocks in New

York City. This model was developed by Geopipe, Inc., which

employed AI to build a digital replica from photographs captured

throughout the city. The simulation depicts an autonomous car

navigating through a road, as shown in Fig. 2, with artificially

placed highway advertisements. Eye-tracking data was collected

from human participants who were immersed in the virtual

environment using the HMD Eyes addon from Pupil Labs. After

the simulation, the participants were asked to complete a survey

to assess their subjective opinion level of interest in each aspect

of the simulation.

1) Digital Twin-Assisted Vehicular Movement Prediction:

Through continuously updating DTs in the virtual space, AVs

can leverage the results of online traffic simulations for improv-

ing driving safety and traffic control efficiency. Specifically,

we use the historical trajectory data of AVs in DT to predict

their future movements aiming to concretize the concept of

DT-assisted autonomous driving. Let the location of AV i at

time slot t be pti = (xt
i, y

t
i), where xt

i and yti are longitude and

latitude of AV i, respectively. The historical trajectory of AV i
consists of the last P locations can be represented as τ past

i (t) =
(pt−P

i , . . . , pt−1
i , pti). When RSUs leverage AI models to predict

the future movement of AVs denoted as Aj for RSU j. Then, the

input of past trajectories into the AI model of RSU j predicts the

movement τ pre
i (t) = Aj(τ

past
i (t)) = (pt+1

i , pt+2
i , . . . , pt+F

i ) in

the future F steps of the vehicles and simulates the movements

in the virtual space. In the training module, the AI model is

evaluated by the mean squared error (MSE), i.e., the training loss

is calculated as Eτ past

i
(t),τ true

i
∼DT i

(τ pre
i (t)− τ true

i (t))2. Finally,

the model’s efficacy is evaluated by the R2 score Ri,j , which

is 1 when the predicted movements are perfectly correlated

with the true movements. The details of DT-assisted movement

prediction are shown in Algorithm 1. In this way, instead of

collecting the physical location of AVs, the virtual space can

simulate real-time vehicular movement prediction. This virtual

positioning method can be regarded as a supplement to physical

positioning methods, e.g., positioning via a global navigation

satellite system.

As shown in Fig. 5, we use four trajectory collections sampled

from the dataset in [48] to demonstrate the effectiveness of

movement prediction of AVs based on the current location and

historical routes. For this task, we select the LSTM model for

movement prediction. We use the R2 score to evaluate the perfor-

mance of the movement prediction AI model. R2 is commonly

understood as using the mean as the error benchmark to see if the

prediction error is greater or less than the mean benchmark error.

When R2 score = 1, the predicted and true values of the sample

are exactly identical without any error. This indicates that the

independent variable is an effective predictor of the dependent

variable in the regression analysis. Based on this experiment, we

compile the prediction results of the prediction in the system to

calculate the simulation accuracy in the virtual space.

B. Virtual Traffic Sign Synthesizing in Generative

AI-Empowered Simulation

Generative AI based on large text-to-image models, such as

stable diffusion [49] and Dreambooth [23], is poised to revolu-

tionize content creation in the MR Metaverse. Dreambooth is a

personalized diffusion model that learns to preserve the features

of the specific subject and subsequently generating new images

based on this subject. To demonstrate the ability to generate

diverse and high-quality images for the vehicular MR Meta-

verse, as illustrated in Fig. 6, this demonstration involves the

manipulation of background color and the re-contextualization

of traffic signs.

We first use the training set in the BelgiumTS dataset [24]

to fine-tune Dreambooth to TSDreambooth. Then, we train a
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Fig. 5. Difference between the real-world trajectories and DT-assisted predicted trajectories.

Fig. 6. Synthesized traffic signs generated by TSDreambooth for background
color modification and re-contextualization.

Algorithm 1: DT-Assisted Movement Prediction.

validation model based on the pre-trained GoogLeNet to fit the

BelgiumTS dataset. The learning rate of the validation model is

set to 0.1 and the number of epochs is set to 10. After optimizing

via cross-entropy loss, the final recognition accuracy is 96%

on the testing sets. Finally, we generate new images based

on the testing set in BelgiumTS and evaluate the generative

score using the validation model. We summarize the obtained

generative score in Fig. 7 from the above experiments. As we

can observe, the validation model performs almost perfectly in

the real test dataset. However, for the generated dataset, the

validation model can only recognize around 80% of the images

generated by TSDreambooth. Then, the synthesized datasets

are leveraged for fine-tuning the validation model. During the

fine-tuning, the batch size is set to 30 for one iteration. Finally, we

obtain the local relative accuracy for the entire generated dataset

(θ = 0.82), the background modification dataset (θ = 0.42), and

the recontextualization dataset (θ = 0.85).

C. Performance Evaluation of Auction-Based Mechanisms

Then, we evaluate the performance of the proposed mecha-

nism under different system settings compared with PViSA and

EPViSA proposed in [20]. The PViSA mechanism consistently

selects the AV with the highest valuation in the online submarket

to synchronize thereby ignoring the potential surplus in the

offline submarket.

1) Performance Evaluation Under Different System Param-

eters: Setting the number of tasks to 1, the achieved surplus

in the system under different market parameters is illustrated

in Fig. 8. With the enlargement of the market size, both the

number of buyers in Fig. 8(a) and the number of sellers in

Fig. 8(b), the surplus achieved by the proposed framework

becomes increasingly higher. A larger market size will lead

to more competition among traders in the market, resulting in

a higher surplus for RSUs in providing services. Our findings

indicate that generative AI-empowered simulations can increase

surplus by at least 150% compared with the simulations without

generative AI. In addition, the proposed MTEPViSA mechanism

can improve more than half of the surplus compared with the

PViSA mechanism. Furthermore, the generative score also has a

substantial impact on the surplus in the simulation of the system,

as shown in Fig. 8(c). Therefore, the mechanism can not only

select AVs and virtual simulators with a high valuation but also

fine-tune the AI models of AVs for higher accuracy.

2) Performance Evaluation Under Different System Settings:

In Fig. 9, we evaluate the performance of the proposed mecha-

nism under different system settings. As illustrated in Fig. 9(a),

the total revenue of the virtual simulator exhibits an increase as

the number of tasks increases. The proposed MTEPViSA mecha-

nism can amplify the surplus twofold compared to PViSA. As the

number of tasks becomes higher, the performance gap between

METPViSA and EPViSA becomes larger. From Fig. 9(c), we

can observe that the growth points of the surplus mainly rely on

the surplus obtained from provisioning traffic simulation results.

From Fig. 9(b), we find the reason for the inefficiency of PViSA.

The PViSA mechanism always selects the AV with the highest

valuation in the online submarket to synchronize while ignor-

ing the potential surplus in the offline submarket. Finally, the

MTEPViSA and PViSA mechanisms can obtain a higher surplus

Authorized licensed use limited to: Auburn University. Downloaded on April 30,2024 at 05:48:55 UTC from IEEE Xplore.  Restrictions apply. 



1076 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 17, NO. 5, SEPTEMBER 2023

Fig. 7. The generative score of the TSBreamBooth fine-tuned on the BelgiumTS dataset.

Fig. 8. Performance evaluation under different sizes of the market and generative scores.

Fig. 9. Performance evaluation of simulated experiments on different generative scores and the numbers of tasks.

Fig. 10. Performance evaluation of experiments under different datasets generated by TSDreamBooth and numbers of tasks.
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in provisioning driving simulations by tackling the asymmetric

information in the offline submarket. As illustrated in Fig. 10,

using the synthesized datasets of TSDreambooth, we obtain the

total, DT, traffic simulation, driving simulations surpluses for the

generated, background modification, and re-contextualization

datasets. We can see that the growth trend of the surplus for

each mechanism in the figure is similar to that in the simulation.

However, since the quality of the dataset in the real experiment

is not as good as that in the simulation, the distribution of

the results in the experiment is relatively uneven. This can be

seen most clearly in Fig. 10(a) and (c). These results show that

although the generated datasets improve the performance of AI

models compared to the original datasets, the improvement is not

homogeneous depending on the datasets generated by different

preferences.

VI. CONCLUSION

In this article, we have proposed a generative AI-empowered

autonomous driving architecture for the vehicular MR Meta-

verse. In this architecture, we have proposed the multi-task DT

offloading model for reliably executing AVs’ DT tasks with

different requirements at RSUs. In addition, we have leveraged

the generative AI models to synthesize diverse and labeled

traffic and driving datasets for AVs’ offline training. Finally, we

have devised the multi-task enhanced auction-based mechanism

to allocate resources of RSUs with incentives to support the

autonomous driving systems. Through the property analysis,

the proposed mechanism is validated as strategy-proof and

adverse-selection free. The experimental results have shown

that the proposed framework can bolster the social surplus

by around 150%. In the future work, we will investigate how

generative AI can integrate these human factors, such as fatigue

and distraction, into the synthesis of traffic and driving datasets.
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