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We consider the classical multiwinner election problem where the goal is to choose a subset of 𝑘 unit-sized

candidates (called committee) given utility functions of the voters. We allow arbitrary additional constraints

on the chosen committee, and the utilities of voters to belong to a very general class of set functions called

𝛽-self bounding. When 𝛽 = 1, this class includes XOS (and hence, submodular and additive) utilities as special

cases. We define a novel generalization of core stability called restrained core to handle constraints on the

committee, and consider multiplicative approximations on the utility under this notion.

Our main result is the following: If a smooth version of Nash Welfare is globally optimized over committees

that respect the constraints, then the resulting optimal committee lies in the 𝑒𝛽 -approximate restrained core

for 𝛽-self bounding utilities and arbitrary constraints. As a result we obtain the first constant approximation

for stability with arbitrary additional constraints even for additive utilities (factor of 𝑒), as well as the first

analysis of the stability of Nash Welfare with XOS functions even in the absence of constraints.

We complement this positive result by showing that the 𝑐-approximate restrained core can be empty for

𝑐 < 16/15 even for additive utilities and one additional constraint. Furthermore, the exponential dependence

on 𝛽 in the approximation is unavoidable for 𝛽-self bounding functions even in the absence of any constraints.

We next present improved and tight approximation results for multiwinner elections with simpler classes

of utility functions and simpler types of constraints. We also present an extension of restrained core to

extended justified representation with constraints, and show an existence result for the special case of matroid

constraints. We finally generalize our results to the setting when candidates have arbitrary sizes (Participatory

Budgeting) and there are no additional constraints. Our proof techniques are different from previous analyses

of Nash Welfare and are of independent interest.
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1 INTRODUCTION
The multiwinner election problem [Aziz et al. 2019; Brams et al. 2007; Brandt et al. 2016; Chamberlin

and Courant 1983; Endriss 2017; Monroe 1995; Thiele 1895] is central to social choice, and has

attracted attention for over a century. In this problem, there is a set 𝑉 of 𝑛 voters and a set 𝐶 of𝑚

candidates, out of which a committee of 𝑘 candidates needs to be chosen. Voters express preferences

over subsets of candidates. In this paper, we will assume these are specified via cardinal utility
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functions {𝑢𝑖 , 𝑖 ∈ 𝑉 }. A generalization of this problem is called Participatory Budgeting [Aziz and

Shah 2021; Cabannes 2004; Fain et al. 2016; Goel et al. 2019; SPBP 2022], where the candidates are

public projects, whose size is their monetary cost, and a feasible committee is constrained by a

total size (or budget) of 𝑘 . This generalization is motivated by real-world budgeting elections.

1.1 Background and Motivation
1.1.1 Utility Functions. Each voter 𝑖 is associated with a non-negative function 𝑢𝑖 (·), where 𝑢𝑖 (𝑇 )
captures their utility for committee 𝑇 ⊆ 𝐶 . We assume these functions satisfy two properties:

• Monotonicity. 𝑢𝑖 (𝑇 ) ≤ 𝑢𝑖 (𝑇 ∪ { 𝑗}) for all 𝑇 ⊆ 𝐶 and 𝑗 ∈ 𝐴, with 𝑢𝑖 (∅) = 0.

• 1-Lipschitz. 𝑢𝑖 (𝑇 ) − 𝑢𝑖 (𝑇 \ { 𝑗}) ≤ 1 for all 𝑇 ⊆ 𝐶 and 𝑗 ∈ 𝐴.

If there are no other constraints on the utilities, we call them general. In this paper, we will

consider several natural utility functions in increasing order of generality:

• Approval. Each voter 𝑖 has an approval set 𝐴𝑖 ⊆ 𝐶 . Their utility for 𝑇 is 𝑢𝑖 (𝑇 ) = |𝑇 ∩𝐴𝑖 |.
• Additive. Each voter 𝑖 has utility 𝑢𝑖 𝑗 for 𝑗 ∈ 𝐶 . For committee 𝑇 , 𝑢𝑖 (𝑇 ) =

∑
𝑗∈𝑇 𝑢𝑖 𝑗 .

• Submodular. For any 𝑇1 ⊆ 𝑇2 and 𝑗 ∈ 𝑇1:

𝑢𝑖 (𝑇1) − 𝑢𝑖 (𝑇1 \ { 𝑗}) ≥ 𝑢𝑖 (𝑇2) − 𝑢𝑖 (𝑇2 \ { 𝑗}).

• XOS [Feige 2006; Lehmann et al. 2001]: For additive functions {𝑢𝑖 𝑗𝑞, 𝑗 ∈ 𝐶,𝑞 ∈ [ℓ]},

𝑢𝑖 (𝑇 ) =
ℓ

max

𝑞=1

∑︁
𝑗∈𝑇

𝑢𝑖 𝑗𝑞 .

• 𝛽-self bounding [Boucheron et al. 2000]. Given constant 𝛽 ≥ 1, for each 𝑇 ⊆ 𝐶:∑︁
𝑗∈𝑇

(𝑢𝑖 (𝑇 ) − 𝑢𝑖 (𝑇 \ { 𝑗})) ≤ 𝛽 · 𝑢𝑖 (𝑇 ).

Wenote that approval utilities are a special case of additive, which are a special case of submodular,

which are a special case of XOS, which are a special case of 1-self bounding [Boucheron et al. 2000].

Note that though XOS functions are sub-additive, in general, 𝛽-self bounding functions need not be
sub-additive, where sub-additivity means that 𝑢𝑖 (𝐴 ∪ 𝐵) ≤ 𝑢𝑖 (𝐴) + 𝑢𝑖 (𝐵) for all 𝐴, 𝐵 ⊆ 𝐶 .

To motivate these classes, approval utilities capture the classical setting of “approval ballots” in

elections, and have a rich history in social choice. See the recent book [Lackner and Skowron 2023]

for a comprehensive survey of this topic. Submodular functions capture diminishing returns from

choosing additional candidates, and have been widely studied as a discrete analog of concavity.

XOS functions can be motivated in settings where individuals vote on behalf of a family. Consider
Participatory Budgeting, where the projects either pertain to children or adults, and are additive

within each group. An individual voting on behalf of themselves and their children may feel their

taxes have been well spent if the maximum utility received by anyone in their family is large.

Similarly, in graph theory, the maximum size of a subgraph for any hereditary property is

XOS (see Dubhashi and Panconesi [2009]). Such functions can capture diversity or harmony in the

committee. Consider approval utilities with a twist: There is a graph𝐺 on candidates, where an

edge captures “too similar”, say in terms of opinion. Given committee𝑊 and voter 𝑖’s approval set

𝐴𝑖 , their utility is the maximum independent set of the sub-graph induced on𝑊 ∩𝐴𝑖 . This captures

opinion diversity in the subset of approved candidates that are on the committee, and is XOS since

independent set is hereditary. On the other hand, if the graph edges model a social network and are

interpreted as “gets along with”, the voter’s utility may be the maximum size of a clique in𝑊 ∩𝐴𝑖 ,

which corresponds to the maximum sub-committee among approved candidates that all get along.

This captures “harmony” in the committee from the voter’s perspective, and is XOS as well.
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If instead of defining the utility from diversity (resp. harmony) as the size of the maximum

independent set (resp. max clique), this is defined as 𝑢𝑖 (𝑊 ) = log𝑁 (𝐴𝑖 ∩𝑊 ), where 𝑁 (𝐴𝑖 ∩𝑊 ) is
the number of independent sets (resp. cliques) in the subgraph on𝑊 ∩𝐴𝑖 , such utilities are called

“combinatorial entropies” and remain 1-self bounding [Boucheron et al. 2000].

1.1.2 Fairness via Core Stability. An important consideration in multiwinner elections is fairness

via proportional representation. In the context of multi-winner elections, one widely studied notion

of proportionality is core stability [Droop 1881; Fain et al. 2018; Lindahl 1958; Scarf 1967; Thiele

1895]. Given a committee𝑊 of size 𝑘 , a subset 𝑆 ⊆ 𝑉 of voters forms a blocking coalition if there

is another committee 𝑇 of size ⌊𝑘 |𝑆 |
𝑛
⌋, such that for all voters 𝑖 ∈ 𝑆 , we have 𝑢𝑖 (𝑇 ) > 𝑢𝑖 (𝑊 ). A

committee𝑊 is said to be core-stable if it does not admit to blocking coalitions.

The quantity ⌊𝑘 |𝑆 |
𝑛
⌋ represents the “endowment” of coalition 𝑆 . To interpret it, imagine each

candidate costs a unit amount, and this cost is paid for evenly as tax by the population. Therefore,

each voter’s endowment in terms of tax contribution is 𝑘/𝑛, so that if coalition 𝑆 uses its total

endowment, it can “purchase” a blocking committee of size ⌊𝑘 |𝑆 |
𝑛
⌋. The core therefore implies no

subset of voters have a justified complaint in terms of how their tax money was spent.

Note that the core is scale-invariant, so that the definition is robust to scaling utility functions

differently for different voters. Therefore, the 1-Lipschitz condition on the utilities is w.l.o.g.

The core is the most general notion of proportionality, and subsumes Pareto-optimality and

proportionality. It is known that when candidates can be fractionally chosen, then the core exists via

a market clearing solution called the Lindahl equilibrium that admits to a fixed point solution [Foley

1970; Lindahl 1958]. However, it is easy to construct examples even with additive utility functions

where a core stable solution need not exist. Motivated by this impossibility, various restrictions and

approximations have been defined. For instance, various notions of justified representation [Aziz

et al. 2017, 2018; Fernández et al. 2017] restrict the coalitions of voters that can be blocking. In this

paper, we consider the following well-studied notion of multiplicative approximate core[Fain et al.

2018; Munagala et al. 2022; Peters et al. 2021; Peters and Skowron 2020]:

Definition 1.1 (𝛾-approximate Core). A committee𝑊 of size 𝑘 is in the 𝛾-approximate core for
𝛾 ≥ 1 if there is no 𝑆 ⊆ 𝑉 and 𝑇 ⊆ 𝐶 with |𝑇 | ≤ |𝑆 |

𝑛
· 𝑘 , such that 𝑢𝑖 (𝑇 ) ≥ 𝛾 · (𝑢𝑖 (𝑊 ) + 1) ∀ 𝑖 ∈ 𝑆 .

Here, the multiplicative guarantee is against 𝑢𝑖 (𝑊 ) + 1, since no multiplicative approximation is

possible against 𝑢𝑖 (𝑊 ) even with additive utilities [Cheng et al. 2020; Fain et al. 2018]. We use an

additive term of 1 because the utilities are 1-Lipschitz.

1.1.3 Proportional Approval Voting (PAV). This is a classical committee selection rule for multiwin-

ner elections with approval utilities, dating back a century to Thiele [Thiele 1895]. For integer

𝑥 ≥ 1, let 𝐻 (𝑥) = ∑𝑥
𝑦=1

1

𝑦
denote the harmonic sum till 𝑥 . We define 𝐻 (0) = 0. The PAV score of a

committee𝑊 is defined as:

pav(𝑊 ) =
𝑛∑︁
𝑖=1

𝐻 (𝑢𝑖 (𝑊 )). (1)

Consider the following algorithm that we will term Local:

Local. Given the current committee𝑊 of size 𝑘 , if there is a 𝑗1 ∈𝑊 and 𝑗2 ∉𝑊 such

that pav(𝑊 ∪ { 𝑗2} \ { 𝑗1}) > pav(𝑊 ), then replace𝑊 by𝑊 ∪ { 𝑗2} \ { 𝑗1}.
When this process terminates, we have a local optimum for the pav score. The work of Aziz

et al. [2017]; Fernández et al. [2017] shows that any such local optimum satisfies a special case

of the core termed extended justified representation (EJR), where the blocking coalitions satisfy

certain cohesiveness conditions. More recently and more relevant to us, it was shown by Peters and

Skowron [2020] that any such local optimum also lies in the 2-approximate core. Further, they show
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this result is tight – any rule that maximizes the sum of symmetric concave functions over voters’

utilities cannot do better than a 2-approximation. (As an aside, it is an open question whether a

1-approximate core exists for this setting via a rule not based on scoring functions.)

Generalizations of PAV. In this paper, we will consider modifications of the PAV rule to allow

for real-valued utility functions. We first define Smooth Nash Welfare, which has been previously

studied in Fain et al. [2018]; Fluschnik et al. [2019]. The score of committee𝑊 is defined as:

snw(𝑊 ) =
𝑛∑︁
𝑖=1

ln(1 + 𝑢𝑖 (𝑊 )). (2)

The second generalization is new, and we term it Generalized PAV. For 𝑥 ≥ 0, we define

Φ(𝑥) = 𝐻 (⌊𝑥⌋) + 𝑥 − ⌊𝑥⌋
⌈𝑥⌉ .

Then the score of committee𝑊 is defined as:

gpav(𝑊 ) =
𝑛∑︁
𝑖=1

Φ(𝑢𝑖 (𝑊 )). (3)

These rules are very similar to each other. The gpav rule reduces to PAV for approval utilities, and

satisfies properties like EJR there. On the other hand, the snw rule is analytically simpler and leads

to somewhat better approximation bounds in our analysis.

In Theorem B.1, we show that the argument in Peters and Skowron [2020] can be extended

to show that a local optimum for snw lies in the 2-approximate core with submodular utilities.

However, submodular utilities represents the limit to which Local lies in the approximate core.

Once we consider very simple XOS utilities, the following example that local optima to snw or

gpav need not lie in any 𝛾-approximate core for constant 𝛾 .

Example 1.2. There are𝑚 = 2𝑘 candidates and 𝑛 = 𝑘 voters, where 𝑘 is the committee size. There

are two sets of 𝑘 candidates each: 𝐴 = {𝑎1, . . . , 𝑎𝑘 }, and 𝐵 = {𝑏1, . . . , 𝑏𝑘 }. The utility function of

voter 𝑖 is as follows: For set 𝑇 , 𝑢𝑖 (𝑇 ) = max( |𝑇 ∩ 𝐵 |, |𝑇 ∩ {𝑎𝑖 }|). Since this is the maximum of two

additive functions, it is XOS. Consider the committee𝑊 = 𝐴. If any 𝑎𝑖 is replaced by any 𝑏 𝑗 , the

utilities of all voters are unchanged at value 1. Therefore,𝑊 = 𝐴 is a local optimum to snw (resp.

gpav). However, all voters can together choose blocking committee 𝐵, which gives each of them a

factor 𝑘 larger utility. Therefore, the local optimum 𝐴 does not lie in the 𝛾-core for any constant 𝛾 .

Indeed, no fairness analysis of Nash Welfare type objectives is known for multiwinner elections

under XOS utilities and beyond. Since these utilities are convex, this begs the question: Is concavity
or submodularity the limit to which the Nash Welfare allocation is fair?

1.2 Multiwinner Elections with Allocation Constraints: Restrained Core
In addition to going beyond submodular utilities, our focus in this paper is the practically relevant

aspect of having exogenous constraints on a feasible committee. We assume there is a set P of

feasible committees (each of size at most 𝑘), and the chosen committee𝑊 must belong to this set.

Several types of constraints could arise in practice, and we now give some examples.

• Matroid Constraint.Multiwinner elections with a single matroid constraint were previously

considered in Fain et al. [2018]. Here, P consists of all independent sets of size at most 𝑘 in

the matroidM. The simplest example of matroids is a partition matroid constraint. The set𝐶

of candidates are partitioned into disjoint groups 𝐺1,𝐺2, . . . ,𝐺ℓ , and any feasible committee

of size 𝑘 can choose at most 𝑘𝑖 candidates from group 𝐺𝑖 , where the 𝑘𝑖 are exogenously
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specified. As an example, the groups could represent geographic regions the candidates hail

from, or the type of project in Participatory Budgeting.

• Packing Constraints. Here, there are multiple downward-closed constraints, meaning that

any sub-committee of a feasible committee is also feasible. For instance, imagine candidates

belong to multiple overlapping groups (different races, genders, income levels), and there is a

constraint on the number of candidates that can be chosen from any group.

• Independent Set. This is a special case of packing constraints. We have a graph over the candi-

dates, with the constraint that a feasible committee is an independent set in this graph. This

captures pairs of candidates who have conflicts or pairs of projects that cannot simultaneously

be funded. These projects cannot be simultaneously put on the committee.

• Rooney Rule. Going beyond packing constraints, we can have minimum (or covering) re-

quirements. For instance, if we seek diversity in the selected candidates, we could impose

minimum numbers on candidates chosen from certain groups. As an example, a committee

needs to include at least 𝑥 female candidates, or a Participatory Budgeting outcome needs to

include at least one public safety project and at least two child-friendly projects.

In this paper, we consider the most general model where the set P of feasible committees of

size at most 𝑘 can be an arbitrary subset of 2𝐶 . Though it is tempting to use Definition 1.1 while

restricting the blocking committee𝑇 to also lie within P, the 𝛾-core may be empty for any constant

𝛾 even for a single packing (or partition matroid) constraint.

Example 1.3. Consider approval utilities. There are 𝑞 =
√
𝑘 groups 𝑉1,𝑉2, . . . ,𝑉𝑞 of voters each

of size 𝑛/𝑞. The committee size is 𝑘 . Corresponding to each group 𝑉𝑗 , there is a disjoint set 𝑇𝑗 of

𝑞 candidates, each of which are approved by all voters in 𝑉𝑗 . There are infinitely many dummy

candidates not approved by any voters. The partition matroid constraint insists that at most 𝑞

candidates from ∪𝑞

𝑗=1
𝑇𝑗 and any number of dummy candidates can be chosen in any feasible

committee. We therefore choose at most one candidate from some group 𝑇𝑗 . But this group can

deviate and choose all of𝑇𝑗 as the blocking committee, increasing their utility by a factor of Ω(
√
𝑘).

1.2.1 Restrained Core. In the above example, the deviating coalition of voters has too much power

in the sense that their choice entirely ignores the presence of other voters. We instead use the

perspective of social planner protecting the rights of the voters who do not deviate by providing

them first their “fair share” of the budget. This leads to our first contribution, defining the restrained
core. To understand this definition, given allocation𝑊 ∈ P, suppose subset 𝑆 of voters deviates

with its endowment 𝑘 ′ = ⌊ |𝑆 |
𝑛
𝑘⌋. Then, 𝑆 ′ = 𝑉 \ 𝑆 is also entitled to 𝑘 − 𝑘 ′ candidates. The social

planner picks at most 𝑘 − 𝑘 ′ candidates from the current allocation𝑊 for 𝑆 ′. This leaves space for
𝑆 to pick 𝑘 ′ candidates from 𝐶 subject to the feasibility constraint. Formally,

Definition 1.4 (𝛾-approximate restrained core). Given a set P of committees of size at most 𝑘 , a

committee 𝑊̂ is said to be 𝑞-completable if there exists𝑊 ′′
with |𝑊 ′′ | ≤ 𝑞 such that𝑊 ′′ ∪ 𝑊̂ ∈ P.

A committee𝑊 ∈ P lies in the 𝛾-approximate restrained core if there is no constraint-feasible

𝛾-blocking coalition 𝑆 ⊆ 𝑉 of voters. Such a blocking coalition with endowment 𝑘 ′ = ⌊ |𝑆 |
𝑛
𝑘⌋ satisfies

the following: For all 𝑘 ′-completable committees 𝑊̂ ⊆𝑊 with |𝑊̂ | ≤ 𝑘 − 𝑘 ′, there exists𝑊 ′
with

|𝑊 ′ | ≤ 𝑘 ′ such that (1) 𝑇 =𝑊 ′ ∪ 𝑊̂ ∈ P, and (2) for all 𝑖 ∈ 𝑆 , it holds that 𝑢𝑖 (𝑇 ) ≥ 𝛾 · (𝑢𝑖 (𝑊 ) + 1).

We insist 𝑊̂ is 𝑘 ′-completable in order to ensure there is always some choice of𝑊 ′
for Condition

(1), which is important to make sure the condition is not vacuously false when |𝑊̂ | < 𝑘 −𝑘 ′. Further,
note that when P is the set of all committees of size at most 𝑘 , that is, when there are no allocation

constraints, then Definition 1.4 reduces to Definition 1.1. To see this, simply note that the choice of
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𝑊 ′
in Definition 1.4 is now not affected by the choice of𝑊̂ , so that𝑊̂ = ∅ without loss of generality.

Therefore, Definition 1.4 generalizes Definition 1.1 to constraints.

Example 1.5. Continuing Example 1.3, suppose𝑊 includes 𝑞 candidates from ∪ℓ𝑇ℓ . Then, if group

𝑉𝑗 attempts to deviate, the complement can simply choose any committee of size 𝑘 −𝑞 that includes

all of𝑊 ∩ (∪ℓ𝑇ℓ ). Since this committee already includes 𝑞 candidates from ∪ℓ𝑇ℓ , this means 𝑉𝑗

can only choose dummy candidates and hence cannot increase its utility. Our definition therefore

circumvents the impossibility in Example 1.3 on this instance.

1.3 Our Contributions
1.3.1 Restrained Core. Our first main contribution is the definition of the restrained core (Defini-

tion 1.4). Building on this definition, our main technical contribution is the following theorem.

Theorem 1.6 (Proved in Section 2.1). For multiwinner elections with arbitrary allocation con-
straints P and 𝛽-self bounding utility functions for 𝛽 ≥ 1, an 𝑒𝛽 -approximate restrained core is always
non-empty. As a consequence, the 𝑒𝛽 -approximate core is non-empty without allocation constraints.

As we mention in Section 1.4, though there has been prior work on core with constraints, these

either require scaling down the constraints on deviation often rendering them meaningless, or

work in very limited settings. Our Definition 1.4 and the associated Theorem 1.6 are the first results

that achieve a constant approximate core for arbitrary constraints even for approval utilities.

Since XOS utilities are 1-self bounding [Vondrák 2010], Theorem 1.6 implies an 𝑒-approximate

restrained core for XOS utilities (and hence, for approval, additive, and submodular utilities) with

any allocation constraints, or an 𝑒-approximate core without allocation constraints (Definition 1.1).

One choice of𝑊̂ in Definition 1.4 that yields Theorem 1.6 is to maximize the snw score for voters

not in the deviating coalition. Therefore, the social planner takes care of the complement in the

best possible fashion for any deviation, which itself can be viewed as a form of fairness.

Finally, the exponential dependence of the approximation on 𝛽 is unavoidable; see Theorem 1.10.

1.3.2 Algorithm. The algorithm that yields the above result is surprisingly simple:

Global: Find𝑊 ∈ P such that snw(𝑊 ) is maximized.

Note that we are not finding a local optimum, but instead computing the global optimum of

snw; indeed, when P is arbitrary, the Local algorithm may get stuck simply for lack of swaps that

preserve membership in P. Further, Example 1.2 shows Local is insufficient for XOS functions

even without any additional constraints. Our use of the global optimum necessitates an entirely

new analysis compared to prior work, and this analysis forms a key contribution.

We have therefore presented the first fairness analysis of Nash Welfare for multiwinner elections

with XOS utilities even without additional constraints. We note that compared to prior work on

welfare maximization with XOS utilities [Feige 2006; Lehmann et al. 2001] that were based on

linear programming, our proof for snw is entirely combinatorial. This is because we only use the

self-bounding property of these functions, while welfare maximization uses the stronger property of

fractional subadditivity of XOS functions. To highlight the difference, our results hold for arbitrary

self-bounding functions, while welfare maximization results extend to sub-additive functions. These

classes are incomparable, and we do not know how to extend our results to sub-additive functions.

Finally, we note that for one voter, core stability reduces to utility maximization, which cannot

be approximated in polynomial time within sub-polynomial factors for either XOS functions (value

oracle model; [Mirrokni et al. 2008]) or independent set constraints (NP-Hardness; [Feige et al.

1996]). Our results therefore show fairness properties for Nash Welfare even in settings where

there are no computationally efficient and fair algorithms possible via any method.
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1.3.3 Lower Bound for Restrained Core. One may wonder if Definition 1.4 makes the problem “too

easy” so that there is always a 1-approximate (exact) restrained core. We show this is not the case

even in the presence of very simple constraints and approval utilities, via the following theorem:

Theorem 1.7 (Proved in Section 2.2). For 𝑐 = 16/15 − 𝑜 (1), a 𝑐-approximate restrained core can
be empty even for approval utilities and a single packing or partition matroid constraint.

This lower bound complements the upper bound of 𝑒 for additive utilities (𝛽 = 1) in Theorem 1.6.

Note that in the absence of constraints, it is a long-standing open question whether a 1-approximate

(exact) core exists for approval utilities. The above theorem shows that surprisingly, even with a

single constraint, the exact (restrained) core for this setting is empty. Indeed, the theorem holds

even for a weaker version of Definition 1.4, where 𝑊̂ could be any committee of size 𝑘 − 𝑘 ′ (and
not necessarily a subset of𝑊 ) such that there exists𝑊 ′

making 𝑊̂ ∪𝑊 ′ ∈ P.

1.3.4 Restrained Core and EJR under Matroid Constraint via Local. In Section 3 and Appendix B,

we consider the special case where P is the set of independent sets of a matroid.

We first consider the notion of extended justified representation (EJR) [Aziz et al. 2017], which
is a weakening of the core for approval utilities. This is exactly satisfied by Local applied to pav
rule in the absence of constraints. In Section 3, we define a generalization to constraints, called

restrained EJR (Definition 3.1), and show that pav satisfies exact restrained EJR for approval utilities

when the constraints form the independent sets of a matroid (Theorem 3.2). In contrast, the exact

restrained core for this setting can be empty from Theorem 1.7. In this setting, the Local rule

swaps a candidate 𝑗 ∉𝑊 for ℓ ∈𝑊 as long as the committee remains a basis of the matroid and the

pav score strictly improves. Note that unlike Global, this algorithm is computationally efficient.

In Appendix B, we go back to the restrained core, and show that the Local rule applied to

snw lies in the 2-approximate restrained core for a matroid constraint and submodular utilities

(Theorem B.1). The proof builds on Peters and Skowron [2020], who show a 2-approximate core for

the special case of pav with approval utilities and no constraints. They also show that the factor of

2 is tight for the pav rule without constraints, and the same tightness will hold for our setting.

1.3.5 Improved Analysis of pav for Large Coalitions. We next consider the multiwinner election

problem without allocation constraints and with additive utilities. We consider the Local rule

with the gpav score. This reduces to classical pav for approval utilities, where Peters and Skowron

[2020] show an approximation factor of 2, which is tight. However, this tightness holds only for

small coalitions of voters. This begs the question: Is there an improved analysis of the Local rule for
any coalition size?We answer this in the affirmative: We show that as the coalition size increases,

the approximation factor of the local optimum to gpav approaches 1. In particular, this shows

Local is weakly Pareto-optimal. In addition, our analysis holds for general additive utilities (and

not just approval), which shows the desirability of gpav as a scoring rule. The proof is in Section 4.

Theorem 1.8. For multiwinner elections with additive utilities (and no allocation constraints),
suppose only coalitions of size at least 𝛼𝑛 are allowed to deviate, where 𝛼 ∈ [0, 1]. Then any local
optimum to gpav lies in the 2 − 𝛼 approximate core. Further, this bound is tight for such local optima.

1.3.6 Participatory Budgeting without Constraints. We finally consider the generalization of mul-

tiwinner elections to Participatory Budgeting. Recall that the Participatory Budgeting problem,

candidates can have arbitrary sizes. Let 𝑠 𝑗 denote the size of candidate 𝑗 , and let Size(𝑊 ) = ∑
𝑗∈𝑊 𝑠 𝑗

denote the total size of committee𝑊 . Any feasible committee𝑊 should satisfy Size(𝑊 ) ≤ 𝑏.

We consider the setting without allocation constraints and with 𝛽-self bounding utilities. Defini-

tion 1.1 extends naturally if a deviating coalition 𝑆 can choose committee 𝑇 so that Size(𝑇 ) ≤ |𝑆 | ·𝑏
𝑛

.
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See Definition C.1 in Appendix C.1. In this setting, we cannot hope to achieve an analog of Theo-

rem 1.6 via optimizing snw (resp. gpav), since it was shown by Peters et al. [2021] that this outcome

cannot lie in any constant approximate core. Nevertheless, we show the following theorem.

Theorem 1.9 (Proved in Appendix C.1). For the Participatory Budgeting problem with 𝛽-self
bounding utilities (where 𝛽 ≥ 1 is an integer) and no allocation constraints, a 𝑐-approximate core is
always non-empty, where 𝑐 = 𝑒𝑂 (𝛽 ) .

Note that Definition 1.1 approximates the utilities coalitions must receive for them to be blocking.

We show the above theorem via a generic reduction from a different notion of approximation

from Cheng et al. [2020]; Jiang et al. [2020], where the endowment of a coalition is scaled down

when they deviate; this scaling factor represents the approximation ratio. This is formally defined

in Definition C.2 in Appendix C.1, and here, Jiang et al. [2020] show that a 32-approximate core

exists for all monotone utilities and arbitrary candidate sizes (with no allocation constraints).

We show that this result for endowment approximation implies Theorem 1.9 for 𝛽-self bounding

utilities. The key ingredient in the reduction is a sampling lemma (Lemma C.5) that lower bounds

the expected utility of a random sample of candidates. This lemma may be of independent inter-

est. We combine this with Chernoff-style lower tail bounds of such sampling for self-bounding

functions Lemma C.6 from Boucheron et al. [2000] to complete the reduction.

In contrast to Theorem 1.6, Theorem 1.9 holds only in the absence of constraints. Further, for the

case of multiwinner elections with XOS utilities, the constant factor in Theorem 1.9 is much worse

than the factor of 𝑒 for snw in Theorem 1.6, showing the superiority of snw in this setting.

1.3.7 Lower Bound for Self-bounding Functions. We complement this by showing that the expo-

nential dependence of the approximation factor on 𝛽 in Theorems 1.6 and 1.9 is unavoidable even

in the absence of constraints (Definition 1.1). This extends a result of in Munagala et al. [2022],

who show that a 1.015-approximate core can be empty for submodular utilities (where 𝛽 = 1).

Theorem 1.10 (Proved in Appendix C.2). For multiwinner elections with 𝛽-self bounding functions
(𝛽 ≥ 5) and no allocation constraints, the 𝑐-approximate core can be empty for 𝑐 = 1

2

(
4

3

)𝛽/2 − 𝑜 (1).
Summary of Results. In Table 1, we present a summary of the results for approximate core under

various utility functions, candidate sizes (unit vs. general), and allocation constraints. We have

omitted Theorem 1.8, and the restrained EJR result in Section 3.

Utility Sizes Constraints Approx. Lower Bd. Run Time

𝛽-self bounding Unit General 𝑒𝛽 (Sec. 2.1)
1

2

(
4

3

)𝛽/2
(Sec. C.2) –

XOS Unit General 𝑒 (Sec. 2.1)

16/15 (Sec. 2.2)
–

Submodular Unit Matroid

2 (Sec. B)

Poly.

Approval Unit Matroid Poly.

𝛽-self bounding General None 𝑒𝑂 (𝛽 )
(Sec. C)

1

2

(
4

3

)𝛽/2
(Sec. C) –

Table 1. Summary of results for approximate core. The upper bound of 2 for submodular utilities also holds
for approval utilities, while the lower bound of 16/15 for approval utilities also holds for submodular and XOS
utilities. An empty box in “Run Time” implies an existence result.

1.4 Other Related Work
A long line of recent literature has studied voting rules that achieve proportionality; see Aziz et al.

[2019]; Brandt et al. [2016]; Endriss [2017]; Lackner and Skowron [2023] for recent surveys. The

core represents the ultimate form of proportionality, since the guarantee holds for any demographic,

whether explicitly specified or based on cohesiveness of opinions.
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Nash Social Welfare. The snw objective is closely related to Nash Social Welfare [Arrow and

Debreu 1954; Brainard and Scarf 2005; Nash 1950]. This has been widely studied in the allocation of

private goods, where each participant has an additive utility over the bundle of goods they receive.

When goods are divisible, Nash Welfare is the solution to the Fisher market equilibrium [Eisenberg

and Gale 1959]. When goods are indivisible, Caragiannis et al. [2019] show that a local optimum to

this objective (where pairs of goods can be swapped between individuals) satisfies approximate

envy-freeness (EF1). The global optimum of the Nash Welfare objective satisfies Pareto-optimality

as well. We note that this setting, there are pseudo-polynomial time algorithms achieving both

properties [Barman et al. 2018]. In contrast, our paper shows fairness properties for Nash Welfare

in settings where no computationally efficient approximations to stability are even possible.

Core with Constraints. Prior work has tried addressing the aspect of constraints via either chang-

ing the definition of the core or what an approximation means. We now contrast these with the

present work. As mentioned before, the work of Cheng et al. [2020]; Jiang et al. [2020] considers

a different approximation notion where the endowment of a coalition is scaled down when they

deviate. Their results extend to packing constraints of the form 𝐴®𝑥 ≤ 𝑏, where ®𝑥 is a binary vector

representing which candidates are present in the committee. However, for a coalition of size 𝛼𝑛,

they require the deviating committee ®𝑦 satisfy 𝐴®𝑦 ≤ 𝛼𝑏, that is, they change the constraint set to

make it more strict. This may make the constraint on deviation impossible to satisfy – for instance,

an independent set constraint is of the form 𝑥 𝑗 + 𝑥ℓ ≤ 1, where 𝑗, ℓ ∈ 𝐶 . If we replace the RHS by

𝛼 < 1, this forces both of 𝑗, ℓ to not be chosen, so that the only feasible committee for any deviation

is empty. In contrast, Definition 1.4 does not change the constraint set, and further, works not just

for packing constraints, but for other constraints such as the Rooney Rule.

A different notion of core for multiwinner elections, defined in Fain et al. [2018], is the following:

When a coalition 𝑆 deviates, they are allowed to choose a committee of size 𝑘 ; however, they

need to obtain a factor 𝛾 · 𝑛/|𝑆 | factor larger utility on deviation for it to be a 𝛾-approximate core.

Like our notion, their notion also allows for constraints. Indeed, they consider the same setting

as Theorem B.1 except with additive utilities and show that the same Local algorithm yields an

approximate core solution in their notion as well. However, the approximation factor becomes

super-constant for multiple matroid constraints or for general packing constraints, even with

approval utilities. Indeed, they show that the core does not exist to any non-trivial approximation

for independent set constraints with approval utilities. In contrast, Definition 1.4 extends smoothly

to arbitrary constraints, yielding a 𝑒𝛽 -approximate core for very general 𝛽-self bounding utilities.

Participatory Budgeting. In the absence of constraints, the proof of Theorem 1.9 shows a generic

reduction of approximation on utility (Definition C.1) to approximation on endowment (Defini-

tion C.2) from Jiang et al. [2020]. However, the algorithm in Jiang et al. [2020] does not run in

polynomial time even for approval utilities and unit size candidates. For Participatory Budget-

ing with general sizes, Peters et al. [2021] present a polynomial time logarithmic approximation

(under Definition C.1) for approval utilities, which is improved to a polynomial time constant

approximation for submodular utilities by Munagala et al. [2022].

2 RESTRAINED CORE FOR MULTIWINNER ELECTIONS
We will prove Theorems 1.6 and 1.7, respectively upper and lower bounding the approximation to

the restrained core (Definition 1.4) for 𝛽-self-bounding utilities and arbitrary constraints.

2.1 Proof of Theorem 1.6
We will first show that the 𝛾-approximate restrained core is non-empty for 𝛾 = 𝑒𝛽 , for 𝛽-self

bounding functions, when the chosen committee of size at most 𝑘 needs to belong to some P ⊆ 2
𝐶
.
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Define Φ(𝑥) = ln(1 + 𝑥). Note that the Global rule optimizes snw(𝑊 ) =
∑

𝑖 Φ(𝑢𝑖 (𝑊 )) over
𝑊 ∈ P. We will need the following analytic lemma.

Lemma 2.1. If 𝑢𝑖 (𝑊 ) > 0 then Φ(𝑢𝑖 (𝑊 )) − Φ(𝑢𝑖 (𝑊 \ { 𝑗})) ≤ 𝑢𝑖 (𝑊 )−𝑢𝑖 (𝑊 \{ 𝑗 })
𝑢𝑖 (𝑊 ) .

Proof.

Φ(𝑢𝑖 (𝑊 )) − Φ(𝑢𝑖 (𝑊 \ { 𝑗})) = ln(𝑢𝑖 (𝑊 ) + 1) − ln(𝑢𝑖 (𝑊 \ { 𝑗}) + 1)

= − ln

(
1 − 𝑢𝑖 (𝑊 ) − 𝑢𝑖 (𝑊 \ { 𝑗})

𝑢𝑖 (𝑊 ) + 1

)
≤ 𝑢𝑖 (𝑊 ) − 𝑢𝑖 (𝑊 \ { 𝑗})

𝑢𝑖 (𝑊 ) .

The last inequality follows since − ln

(
1 − 𝑥

1+𝑢𝑖

)
≤ 𝑥

𝑢𝑖
for all 𝑥 ∈ [0, 1] and 𝑢𝑖 > 0. □

We will now show that the Global rule lies in the 𝑒𝛽 -approximate restrained core, for arbitrary

constraints P ⊆ 𝐶 on the committee.

Proof. (of Theorem 1.6) Suppose Global finds a committee𝑊 ∈ P. If𝑊 does not lie in the

𝛾-approximate restrained core, there exists 𝑆 ⊂ 𝑉 of voters that deviate. Let 𝛼 = |𝑆 |/𝑛 and let

𝑘 ′ = ⌊𝛼 · 𝑘⌋. Then for any completable 𝑊̃ ⊆ 𝑊 with size at most 𝑘 − 𝑘 ′, there exists𝑊 ′
with

|𝑊 ′ | ≤ 𝑘 ′ such that (1)𝑊 ′ ∪ 𝑊̃ ∈ P and (2) 𝑢𝑖 (𝑊 ′ ∪ 𝑊̃ ) ≥ 𝛾 (𝑢𝑖 (𝑊 ) + 1)∀𝑖 ∈ 𝑆 . We will show a

contradiction for 𝛾 = 𝑒𝛽 .

We consider the sets 𝑆 and 𝑆 separately. We first consider the latter set. By the 𝛽-self-bounding

property of the utilities, we have for all 𝑖 ∉ 𝑆 ,∑︁
𝑗∈𝑊

𝑢𝑖 (𝑊 ) − 𝑢𝑖 (𝑊 \ { 𝑗}) ≤ 𝛽 · 𝑢𝑖 (𝑊 ).

Since |𝑆 | = (1 − 𝛼)𝑛, summing these inequalities over 𝑖 ∉ 𝑆 , there exists 𝑗 ∈𝑊 such that∑︁
𝑖∉𝑆 :𝑢𝑖 (𝑊 )>0

(
1 − 𝑢𝑖 (𝑊 \ { 𝑗})

𝑢𝑖 (𝑊 )

)
≤ 𝛽 · |{𝑖 ∉ 𝑆 : 𝑢𝑖 (𝑊 ) > 0}|

𝑘
≤ 𝛽 · (1 − 𝛼) · 𝑛

𝑘
.

By combining this inequality with Lemma 2.1, we have∑︁
𝑖∉𝑆

Φ(𝑢𝑖 (𝑊 )) − Φ(𝑢𝑖 (𝑊 \ { 𝑗})) =
∑︁

𝑖∉𝑆 :𝑢𝑖 (𝑊 )>0
Φ(𝑢𝑖 (𝑊 )) − Φ(𝑢𝑖 (𝑊 \ { 𝑗}))

≤
∑︁

𝑖∉𝑆 :𝑢𝑖 (𝑊 )>0

𝑢𝑖 (𝑊 ) − 𝑢𝑖 (𝑊 \ { 𝑗})
𝑢𝑖 (𝑊 ) ≤ 𝛽 · (1 − 𝛼) · 𝑛

𝑘
.

We continue removing such a candidate 𝑗 from the current committee until we have removed 𝑘 ′

candidates. Set 𝑊̂ to the set of all remaining candidates. This set is 𝑘 ′-completable since 𝑊̂ ∪ (𝑊 \
𝑊̂ ) ∈ P and |𝑊 \ 𝑊̂ | = 𝑘 ′. Iteratively using the previous inequality, we have∑︁

𝑖∉𝑆

Φ(𝑢𝑖 (𝑊 )) − Φ(𝑢𝑖 (𝑊̂ )) ≤
𝑘∑︁

𝑘0=𝑘−⌊𝛼𝑘 ⌋+1

𝛽 · (1 − 𝛼) · 𝑛
𝑘0

≤ 𝛽 · (1 − 𝛼) · 𝑛 · (ln𝑘 − ln⌈(1 − 𝛼)𝑘⌉)

≤ −𝛽 · (1 − 𝛼) · 𝑛 · ln(1 − 𝛼).

Now consider the set 𝑆 . By assumption, there exists𝑊 ′ ⊆ 𝐶 with |𝑊 ′ | ≤ 𝑘 ′ such that for any 𝑖 ∈ 𝑆 ,

𝑢𝑖 (𝑊̂ ∪𝑊 ′) ≥ 𝛾 · (𝑢𝑖 (𝑊 ) + 1), and further 𝑊̂ ∪𝑊 ′ ∈ P.
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Consider adding𝑊 ′
to 𝑊̂ . This cannot decrease the snw score for voters 𝑖 ∉ 𝑆 since we assume

the utilities are monotone. Therefore,∑︁
𝑖∉𝑆

Φ(𝑢𝑖 (𝑊̂ ∪𝑊 ′)) − Φ(𝑢𝑖 (𝑊 )) ≥ 0 ≥ 𝛽 · (1 − 𝛼) · 𝑛 · ln(1 − 𝛼).

For voters 𝑖 ∈ 𝑆 , since 𝑢𝑖 (𝑊̂ ∪𝑊 ′) ≥ 𝛾 · (𝑢𝑖 (𝑊 ) + 1), we have:∑︁
𝑖∈𝑆

Φ(𝑢𝑖 (𝑊̂ ∪𝑊 ′)) − Φ(𝑢𝑖 (𝑊 )) ≥
∑︁
𝑖∈𝑆

ln(𝛾 · 𝑢𝑖 (𝑊 ) + 𝛾 + 1) − ln(𝑢𝑖 (𝑊 ) + 1) > 𝛼 · 𝑛 · ln𝛾 .

Adding the previous two inequalities, when 𝛾 ≥ 𝑒𝛽 , we have

snw(𝑊̂ ∪𝑊 ′) − snw(𝑊 ) > 𝑛 · 𝛽 · (𝛼 + (1 − 𝛼) · ln(1 − 𝛼)) ≥ 0,

where the final inequality holds for any 𝛼 ∈ (0, 1]. Since 𝑊̂ ∪𝑊 ′ ∈ P, this contradicts the

assumption that𝑊 had the largest snw score. Therefore,𝑊 lies in the restrained 𝑒𝛽 -core. □

Remark. Note that the social planner can choose𝑊̂ ⊆𝑊 of size𝑘−𝑘 ′ to maximize

∑
𝑖∉𝑆 Φ(𝑢𝑖 (𝑊̂ )),

that is, the snw score for voters in 𝑆 . Therefore, the social planner can be viewed as giving 𝑆 a good

solution from their perspective before giving 𝑆 their choice.

2.2 Lower Bound: Proof of Theorem 1.7
We now show that for 𝑐 = 16/15 − 𝑜 (1), the 𝑐-approximate restrained core can be empty even for

approval utilities and a single packing (resp. partition matroid) constraint. We show the theorem

for a stronger version of Definition 1.4, where 𝑊̂ could be any committee of size at most 𝑘 − 𝑘 ′

(and not necessarily a subset of𝑊 ) such that there exists𝑊 ′
making 𝑊̂ ∪𝑊 ′ ∈ P. A lower bound

for this setting will also imply a lower bound for the setting where we require 𝑊̂ ⊆𝑊 .

The voters have approval utilities, that is, the utility is additive across candidates, and the utility

for any candidate is in {0, 1}. There are 6 parties and 4 voters {𝑎, 𝑏, 𝑐, 𝑑}. Each party has an infinite

number of candidates and each voter’s utility for all candidates in a single party is identical, that is,

either a voter approves all candidates in a party (gets utility one from any of them) or disapproves

all of them (gets utility zero from any of them). Each party is approved by two voters. For the set of

voters {𝑎, 𝑏}, denote their jointly approved party by 𝑔𝑎𝑏 . Similarly, define 𝑔𝑐𝑎 , 𝑔𝑎𝑑 , 𝑔𝑏𝑐 , 𝑔𝑏𝑑 , and 𝑔𝑐𝑑 .

Note that voter 𝑎 approves all candidates in parties 𝑔𝑎𝑏, 𝑔𝑐𝑎 , and 𝑔𝑎𝑑 . Set 𝑘 = 6.4𝑟 , where 𝑟 is a large

number. Denote by 𝑢𝑎 , 𝑢𝑏 , 𝑢𝑐 and 𝑢𝑑 as the voters’ utility functions.

There is a single packing constraint on the entire candidate set, saying that any solution can

choose at most 6𝑟 candidates. We can equivalently make this a partition matroid constraint by

placing a dummy party that no voter approves, and having no bound on the number of these

candidates that can be chosen.

We begin with a feasible committee𝑊 that lies in the (16/15 − 𝜖)-approximate restrained core

for any 𝜖 > 0, and derive a contradiction.

Without loss of generality, assume

𝑢𝑎 (𝑊 ) ≤ 𝑢𝑏 (𝑊 ) ≤ 𝑢𝑐 (𝑊 ) ≤ 𝑢𝑑 (𝑊 ). (4)

Lemma 2.2. If𝑊 lies in the 16/15-approximate restrained core, 𝑢𝑎 (𝑊 ) ≥ 9

8
· 𝑟 and 𝑢𝑏 (𝑊 ) ≥ 21

8
· 𝑟 .

Proof. Suppose 𝑢𝑎 (𝑊 ) < 9

8
· 𝑟 . Consider {𝑎} as the deviating group. Since {𝑏, 𝑐, 𝑑} are entitled

to 4.8𝑟 candidates, the worst selection of a committee𝑊 ′
of this size includes candidates from

parties not approved by 𝑎. Now voter 𝑎 has 1.6𝑟 endowment and the packing constraint implies it

can choose 1.2𝑟 more candidates given𝑊 ′
. Since 1.2𝑟 ≥ 16

15
·
(
9

8
· 𝑟

)
, 𝑎 can deviate and choose at

least 1.2𝑟 voters in 𝑔𝑎𝑏 to make𝑊 fail the 16/15-restrained core. This is a contradiction.
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Similarly, if 𝑢𝑏 < 21

8
· 𝑟 , consider {𝑎, 𝑏} as the deviating group. The set {𝑐, 𝑑} has an endowment

of 3.2𝑟 , and the worst selection of𝑊 ′
by them includes only candidates from 𝑔𝑑𝑐 . The packing

constraint now implies {𝑎, 𝑏} can select 2.8𝑟 candidates from 𝑔𝑎𝑏 . Since 2.8𝑟 ≥ 16

15

(
21

8
· 𝑟

)
,𝑊 again

fails the 16/15-restrained core. This completes the proof. □

Consider the total utility of the voters in a feasible committee𝑊 of size at most 6𝑟 . Since each

candidate contributes exactly 2 to the total utility, we have

𝑢𝑎 (𝑊 ) + 𝑢𝑏 (𝑊 ) + 𝑢𝑐 (𝑊 ) + 𝑢𝑑 (𝑊 ) ≤ 12𝑟 . (5)

Suppose𝑊 lies in the (16/15 − 𝜖)-restrained core. By Lemma 2.2, we have

𝑢𝑐 (𝑊 ) ≤ 12𝑟 − 𝑢𝑎 (𝑊 ) − 𝑢𝑏 (𝑊 )
2

≤ 33

8

· 𝑟 . (6)

Now consider the deviating group {𝑎, 𝑏, 𝑐}. Voter 𝑑 can deviate to 𝑊 ′
with size at most its

endowment, 1.6𝑟 . Consider 𝑑’s choice of𝑊 ′
. Since selecting any candidate from 𝑔𝑎𝑏, 𝑔𝑐𝑎, 𝑔𝑏𝑐 gives

utility 2 to some voter 𝑖 ∈ {𝑎, 𝑏, 𝑐}, we can always switch this out to a candidate that gives utility

one to voter 𝑖 , and zero to other voters in {𝑎, 𝑏, 𝑐}. Therefore, without loss of generality,𝑊 ′
only

contains candidates from 𝑔𝑎𝑑 , 𝑔𝑏𝑑 , 𝑔𝑐𝑑 . Denote the number of candidates selected in𝑊 ′
from these

three groups as 𝑡𝑎, 𝑡𝑏, 𝑡𝑐 respectively. Therefore𝑊
′
satisfies the constraint set:

Q = {𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐 ≤ 1.6𝑟 ; 𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ≥ 0}

As mentioned before, though Definition 1.4 insists𝑊 ′ ⊆𝑊 , we will not enforce this, but instead

show that for any choice𝑊 ′ ∈ Q, the set {𝑎, 𝑏, 𝑐} has a deviation that increases their utility by at

least 16/15.
Fix some𝑊 ′ ∈ Q. Suppose {𝑎, 𝑏, 𝑐} selects 𝑥𝑎𝑏, 𝑥𝑏𝑐 , 𝑥𝑐𝑎 candidates from the groups 𝑔𝑎𝑏 , 𝑔𝑏𝑐 and

𝑔𝑐𝑎 respectively as their deviating committee 𝑇 . If the following constraints are simultaneously

satisfied, then𝑊 will not lie in the (16/15 − 𝜖)-core for any 𝜖 > 0:

𝑥𝑎𝑏 + 𝑥𝑏𝑐 + 𝑥𝑐𝑎 + 𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐 ≤ 6𝑟, (7)

𝑥𝑎𝑏 + 𝑥𝑐𝑎 + 𝑡𝑎 ≥ 16

15

· 𝑢𝑎 (𝑊 ), (8)

𝑥𝑎𝑏 + 𝑥𝑏𝑐 + 𝑡𝑏 ≥ 16

15

· 𝑢𝑏 (𝑊 ), (9)

𝑥𝑐𝑎 + 𝑥𝑏𝑐 + 𝑡𝑐 ≥ 16

15

· 𝑢𝑐 (𝑊 ), (10)

𝑥𝑎𝑏, 𝑥𝑏𝑐 , 𝑥𝑐𝑎 ≥ 0, (11)

We now show that this system has a feasible solution for any ®𝑡 ∈ Q and for any setting of utilities

that satisfy Lemma 2.2, Eq. (5), and Eq. (6). This will complete the proof.

We analyze the following cases:

1. 𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐 ≤ 1.2𝑟 and 𝑢𝑎 (𝑊 ) + 𝑢𝑏 (𝑊 ) ≥ 𝑢𝑐 (𝑊 ). In this case, we set
𝑥𝑎𝑏
𝑥𝑐𝑎
𝑥𝑏𝑐

 =
8

15


𝑢𝑎 (𝑊 ) + 𝑢𝑏 (𝑊 ) − 𝑢𝑐 (𝑊 )
𝑢𝑎 (𝑊 ) + 𝑢𝑐 (𝑊 ) − 𝑢𝑏 (𝑊 )
𝑢𝑏 (𝑊 ) + 𝑢𝑐 (𝑊 ) − 𝑢𝑎 (𝑊 )

 .
Clearly, Eqs. (7) to (9) hold. For instance,

𝑥𝑎𝑏 + 𝑥𝑐𝑎 + 𝑡𝑎 =
16

15

𝑢𝑎 (𝑊 ) + 𝑡𝑎 ≥ 16

15

𝑢𝑎 (𝑊 ).

975



EC ’23, July 9–12, 2023, London, United Kingdom

Further, by Eq. (4) and our assumption for this case, we have 𝑢𝑎 (𝑊 ) + 𝑢𝑏 (𝑊 ) ≥ 𝑢𝑐 (𝑊 ) ≥
max{𝑢𝑎 (𝑊 ), 𝑢𝑏 (𝑊 )}. Therefore, Eq. (11) holds. Since 𝑢𝑑 (𝑊 ) ≥ 3𝑟 from Eqs. (4) and (5),

𝑢𝑎 (𝑊 ) + 𝑢𝑏 (𝑊 ) + 𝑢𝑐 (𝑊 ) ≤ 9𝑟 .

Combining this with the choice of 𝑥 above, we have

𝑥𝑎𝑏 + 𝑥𝑐𝑎 + 𝑥𝑏𝑐 ≤ 9𝑟 · 8

15

= 4.8𝑟 .

Therefore, Eq. (7) also holds.

2. 𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐 ≤ 1.2𝑟 and 𝑢𝑎 (𝑊 ) + 𝑢𝑏 (𝑊 ) < 𝑢𝑐 (𝑊 ). In this case, we set
𝑥𝑎𝑏
𝑥𝑐𝑎
𝑥𝑏𝑐

 =
16

15


0

𝑢𝑎 (𝑊 )
𝑢𝑐 (𝑊 ) − 𝑢𝑎 (𝑊 )

 .
It is easy to check that Eqs. (7) to (9) hold. For instance,

𝑥𝑎𝑏 + 𝑥𝑏𝑐 + 𝑡𝑏 =
16

15

(𝑢𝑐 (𝑊 ) − 𝑢𝑎 (𝑊 )) + 𝑡𝑏 ≥ 16

15

𝑢𝑏 (𝑊 ) + 𝑡𝑏 ≥ 16

15

𝑢𝑏 (𝑊 ),

where we have used the assumption that 𝑢𝑐 (𝑊 ) − 𝑢𝑎 (𝑊 ) ≥ 𝑢𝑏 (𝑊 ). Further, since 𝑢𝑐 (𝑊 ) ≤
33

8
· 𝑟 by Eq. (6), we have

𝑥𝑎𝑏 + 𝑥𝑏𝑐 + 𝑥𝑐𝑎 ≤ 16

15

· 33
8

· 𝑟 = 4.4𝑟 < 4.8𝑟 .

Therefore, Eq. (7) holds. Finally, since 𝑢𝑐 (𝑊 ) ≥ 𝑢𝑎 (𝑊 ) by Eq. (4), all 𝑥 ≥ 0.

3. 𝑡𝑎 +𝑡𝑏 +𝑡𝑐 ≥ 1.2𝑟 . Since any ®𝑡 ∈ Q satisfies 𝑡𝑎 +𝑡𝑏 +𝑡𝑐 ≤ 1.6𝑟 , Eq. (7) implies 𝑥𝑎𝑏 +𝑥𝑏𝑐 +𝑥𝑐𝑎 ≤ 𝜃

for some 𝜃 ≥ 4.4𝑟 . We will show a ®𝑥 feasible for Eqs. (8) to (10) when 𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐 = 1.2𝑟 and

𝑥𝑎𝑏 + 𝑥𝑏𝑐 + 𝑥𝑐𝑎 ≤ 4.4𝑟 . This will imply a feasible solution for any ®𝑡 ∈ Q by simply increasing

the ®𝑡 appropriately.
Denote 𝑢𝑖 ≜

16

15
· 𝑢𝑖 (𝑊 ) − 𝑡𝑖 , for each 𝑖 ∈ {𝑎, 𝑏, 𝑐}. Note that 𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐 = 1.2𝑟 . Further by

Lemma 2.2 and since 𝑢𝑐 (𝑊 ) ≥ 𝑢𝑎 (𝑊 ) by Eq. (4), we have 16

15
·𝑢𝑖 (𝑊 ) ≥ 1.2𝑟 for all 𝑖 ∈ {𝑎, 𝑏, 𝑐}.

Therefore, all 𝑢𝑖 ≥ 0.

a) If 𝑢𝑎 + 𝑢𝑏 ≥ 𝑢𝑐 , we set 
𝑥𝑎𝑏
𝑥𝑐𝑎
𝑥𝑏𝑐

 =
1

2


𝑢𝑎 + 𝑢𝑏 − 𝑢𝑐
𝑢𝑎 + 𝑢𝑐 − 𝑢𝑏
𝑢𝑏 + 𝑢𝑐 − 𝑢𝑎

 .
It can be checked that this satisfies Eqs. (7) to (9). For instance,

𝑥𝑎𝑏 + 𝑥𝑐𝑎 + 𝑡𝑎 = 𝑢𝑎 + 𝑡𝑎 =
16

15

𝑢𝑎 (𝑊 ),

since 𝑢𝑎 = 16

15
· 𝑢𝑎 (𝑊 ) − 𝑡𝑎 ≥ 0. We also have

𝑥𝑎𝑏 + 𝑥𝑏𝑐 + 𝑥𝑐𝑎 =
1

2

(𝑢𝑎 + 𝑢𝑏 + 𝑢𝑐 ) ≤
8

15

(𝑢𝑎 (𝑊 ) + 𝑢𝑏 (𝑊 ) + 𝑢𝑐 (𝑊 )) − 1

2

(𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐 )

≤ 8

15

· 9𝑟 − 𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐

2

< 4.4𝑟 .

Therefore, Eq. (7) holds. The following inequalities show that 𝑥𝑏𝑐 , 𝑥𝑐𝑎 ≥ 0.

𝑢𝑐 + 𝑢𝑎 − 𝑢𝑏 ≥ 16

15

(𝑢𝑎 (𝑊 ) + (𝑢𝑐 (𝑊 ) − 𝑢𝑏 (𝑊 ))) − (𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐 ) ≥
16

15

𝑢𝑎 (𝑊 ) − 1.2𝑟 ≥ 0,

𝑢𝑏 + 𝑢𝑐 − 𝑢𝑎 ≥ 𝑢𝑏 (𝑊 ) + (𝑢𝑐 (𝑊 ) − 𝑢𝑎 (𝑊 )) − (𝑡𝑎 + 𝑡𝑏 + 𝑡𝑐 ) ≥ 𝑢𝑏 (𝑊 ) − 1.2𝑟 ≥ 0,

where we have used Eq. (4). Further, 𝑥𝑎𝑏 ≥ 0 by assumption. Therefore, all constraints hold.
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b) If 𝑢𝑎 + 𝑢𝑏 ≤ 𝑢𝑐 , this implies 𝑢𝑐 − 𝑢𝑎 ≥ 𝑢𝑏 ≥ 0. We set
𝑥𝑎𝑏
𝑥𝑐𝑎
𝑥𝑏𝑐

 =


0

𝑢𝑎
𝑢𝑐 − 𝑢𝑎

 .
As before, it is easy to check that Eqs. (7) to (9) hold; further, the 𝑥 variables are non-negative.

To verify Eq. (7), we have

𝑥𝑎𝑏 + 𝑥𝑏𝑐 + 𝑥𝑐𝑎 = 𝑢𝑐 ≤ 16

15

· 𝑢𝑐 (𝑊 ) ≤ 16

15

· 33
8

· 𝑟 = 4.4𝑟,

where the final inequality follows from Eq. (6).

Therefore, no matter which𝑊 ′
the remaining voter 𝑑 selects with size limit 1.6𝑟 , there is always a

deviation profile (𝑥𝑎𝑏, 𝑥𝑐𝑎, 𝑥𝑏𝑐 ) for {𝑎, 𝑏, 𝑐} to expand their utility by a factor of 16/15. Therefore,
any feasible committee𝑊 fails the (16/15 − 𝜖)-restrained core for any 𝜖 > 0.

3 RESTRAINED EJR FOR APPROVAL UTILITIES AND MATROID CONSTRAINT
One weakening of the core for approval elections is Extended Justified Representation (EJR) [Aziz
et al. 2017]. In the absence of constraints, it is known that any local optimum of pav satisfies this

notion. We now define a restrained version of this notion when there are constraints.

3.1 Restrained EJR for Approval Utilities
We first define restrained EJR for arbitrary constraints P and approval utilities. Recall that in

approval utilities, each voter 𝑖 has an approval set 𝐴𝑖 of candidates, and the utility of this voter for

subset 𝑇 of candidates is simply 𝑢𝑖 (𝑇 ) = |𝐴𝑖 ∩𝑇 |. Further recall the notion of 𝑞-completable from

Definition 1.4. Finally, given a set 𝑆 of voters and𝑇 of candidates, let A𝑆 (𝑇 ) = (∩𝑖∈𝑆𝐴𝑖 ) ∩𝑇 denote

the candidates from 𝑇 that are commonly approved by 𝑆 . Note that |A𝑆 (𝑇 ) | ≤ 𝑢𝑖 (𝑇 ) for all 𝑖 ∈ 𝑆 .

Definition 3.1 (Restrained EJR for Approval Utilities). We are given a set P of feasible committees

of size at most 𝑘 . A committee𝑊 ∈ P satisfied restrained-EJR if there is no constraint-feasible

blocking coalition 𝑆 ⊆ 𝑉 of voters. Such a blocking coalition with endowment 𝑘 ′ = ⌊ |𝑆 |
𝑛
𝑘⌋ satisfies

the following: For all 𝑘 ′-completable committees 𝑊̂ ⊆𝑊 with |𝑊̂ | ≤ 𝑘 − 𝑘 ′, there exists𝑊 ′
with

|𝑊 ′ | ≤ 𝑘 ′ such that

(1) 𝑇 =𝑊 ′ ∪ 𝑊̂ ∈ P, and

(2) For all 𝑖 ∈ 𝑆 , |A𝑆 (𝑇 ) | ≥ max𝑖∈𝑆 𝑢𝑖 (𝑊 ) + 1.

To interpret this definition, given coalition 𝑆 , suppose for every 𝑘 ′-completable 𝑊̂ , there was

a deviation 𝑇 = 𝑊̂ ∪𝑊 ′
where at least 𝑞′ = |A𝑆 (𝑇 ) | commonly approved candidates are chosen.

Then restrained EJR implies some voter in 𝑆 obtains utility at least 𝑞′ in the committee𝑊 .

Note that this is a specialization of Definition 1.4 where in Condition (2), 𝑢𝑖 (𝑇 ) is replaced by

|A𝑆 (𝑇 ) |, which is at most as large. Further, as with Definition 1.4, in the absence of constraints, we

can set 𝑊̂ = ∅ and 𝑇 to be an arbitrary subset of ∩𝑖∈𝑆𝐴𝑖 of size 𝑘
′
, so that |A𝑆 (𝑇 ) | = min(𝑘 ′, 𝜃 ),

where 𝜃 = | ∩𝑖∈𝑆 𝐴𝑖 |. In this case, restrained EJR is equivalent to classic EJR [Aziz et al. 2017].

3.2 Local Achieves Restrained EJR under a Matroid Constraint
We now show that when P form the independent sets of size at most 𝑘 of a matroidM, then any

local optimum of pav (Eq. (1)) satisfies restrained EJR.

Recall the terminology from Appendix B. Formally, for a matroid M on candidates, a committee

𝑊 ∈ M is a basis iff there does not exist𝑊 ′
such that𝑊 ⊊𝑊 ′

. All bases of M have the same size,
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in this case, the size of the committee, 𝑘 . We therefore assume P is the set of all independent sets

of the matroid of size at most 𝑘 .

The Local algorithm swaps a pair of candidates as long as the committee remains a basis ofM
and the pav score strictly increases. We will prove the following theorem.

Theorem 3.2. When P form the independent sets of size at most 𝑘 of a matroid M, the Local
algorithm applied to the pav score finds a committee satisfying restrained EJR (Definition 3.1).

3.2.1 Proof of Theorem 3.2. We prove this by contradiction. Suppose local outputs a committee

𝑊 of size 𝑘 that fails restrained EJR. Then there exists a blocking coalition 𝑆 with endowment

𝑘 ′ = ⌊ |𝑆 |
𝑛
𝑘⌋, such that both conditions in Definition 3.1 hold for any 𝑊̂ . We will show a feasible

Local swap that strictly increases the pav score.

Let 𝐴 =
⋂

𝑖∈𝑆 𝐴𝑖 . For 𝑐 ∈ 𝑊 , let ∇𝑐 (𝑊 ) = pav(𝑊 ) − pav(𝑊 \ {𝑐}). For 𝑐 ∉ 𝑊 , let Δ𝑐 (𝑊 ) =

pav(𝑊 ∪ {𝑐}) − pav(𝑊 ).
Let ℓ = max𝑖∈𝑆 𝑢𝑖 (𝑊 ). If 𝑘 ′ ≤ ℓ , we can set 𝑊̂ = ∅, which is trivially 𝑘 ′-completable. Then

any selection of𝑊 ′
will make 𝑢𝑖1 (𝑊̂ ∪𝑊 ′) ≤ ℓ, ∀ 𝑖1 ∈ 𝑆 . This violates the second condition��A𝑆 (𝑊̂ ∪𝑊 ′)

�� ≥ 𝑢𝑖 (𝑊 ) + 1 in Definition 3.1. Therefore, 𝑘 ′ ≥ ℓ + 1.

Next, we set 𝑊̂ to be the 𝑘 − 𝑘 ′ candidates in𝑊 \𝐴 with the highest ∇𝑐 (𝑊 )’s. If there are ties,
we first include candidates outside

⋃
𝑖∈𝑆 𝐴𝑖 first.

Since 𝑆 forms a blocking coalition, there exists𝑊 ′
(where𝑊 ′∪𝑊̂ ∈ P) such that |A𝑆 (𝑊 ′∪𝑊̂ ) | ≥

ℓ + 1. Let 𝑇 =𝑊 ′ ∪ 𝑊̂ . Since 𝑇 ∈ P, by the matroid property, we have 𝑇 ∩ (𝐴 ∪𝑊 ) is also in P.

Since𝑊 ∈ P is a basis, we can augment 𝑇 ∩ (𝐴 ∪𝑊 ) with candidates in𝑊 until it contains 𝑘

candidates and is also a basis. Denote this new committee as𝑇0. Since all added candidates are from

𝑊 , we have 𝑇0 ⊆ 𝐴 ∪𝑊 and 𝑇0 ∈ P. Further, note that the new candidates added do not belong to

𝐴, so that |A𝑆 (𝑇 ) | = |A𝑆 (𝑇0) | ≥ ℓ + 1.

We now define the following sets:

𝑊𝑎 = A𝑆 (𝑇0 ∩𝑊 ), 𝑊𝑏 = 𝑇0 \𝑊, 𝑊𝑑 = A𝑆 (𝑊 \𝑇0), 𝑊𝑒 = (𝑊 \𝑇0) \𝐴,
𝑊𝑐 =𝑊 \ (𝑊̂ ∪𝑊𝑎 ∪𝑊𝑑 ∪𝑊𝑒 ).

These sets are illustrated in Fig. 1. Denote the number of candidates in𝑊𝑞 as𝜂𝑞 ·𝑘 for𝑞 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.
Since all voters in 𝑆 have utility at most ℓ , we have |A𝑆 (𝑊 ) | ≤ ℓ . Therefore, |𝑊 \𝐴| ≥ 𝑘 − ℓ ≥

𝑘 − 𝑘 ′ + 1. Note that

|𝑊𝑑 | + |𝑊𝑒 | = |𝑊 \𝑇0 | = |𝑇0 \𝑊 | = |𝑊𝑏 |.
Further, since 𝑇0 ⊆ 𝐴 ∪𝑊 , we have𝑊𝑏 ⊆ 𝐴 \𝑊 , so that𝑊𝑏 = A𝑆 (𝑊𝑏). Therefore,

|𝑊𝑎 | + |𝑊𝑏 | = |A𝑆 (𝑇0) | = |A𝑆 (𝑇 ) | ≥ ℓ + 1 ≥ |A𝑆 (𝑊 ) | + 1 = |𝑊𝑎 | + |𝑊𝑑 | + 1.

Therefore, we have |𝑊𝑒 | ≥ 1, so that𝑊𝑒 ≠ ∅.
Denote the number of voters with strictly positive utility as 𝑛+. We have∑︁

𝑐∈𝑊
∇𝑐 (𝑊 ) =

∑︁
𝑐∈𝑊

∑︁
𝑖:𝑐∈𝐴𝑖

1

|𝐴𝑖 ∩𝑊 | =
∑︁

𝑖:𝑢𝑖 (𝑊 )>0

|𝐴𝑖 ∩𝑊 |
|𝐴𝑖 ∩𝑊 | = 𝑛+.

Now select candidate 𝑐1 ∈ 𝑊̂ ∩𝑊𝑒 with the smallest ∇𝑐 (𝑊 ). Note that by definition of 𝑊̂ and since

𝑊𝑒 ⊆𝑊 is non-empty, this candidate lies in𝑊𝑒 . If there are ties, select a candidate approved by

the maximum number of voters in 𝑆 . We now consider two cases and show the same bound for

∇𝑐1 (𝑊 ) in either case.

Lemma 3.3. Δ𝑐1 (𝑊 ) ≤ 𝑛−(𝜂𝑎+𝜂𝑑 ) ·𝑘 · |𝑆 |
ℓ+1

𝑘−(𝜂𝑎+𝜂𝑑+𝜂𝑐 ) ·𝑘 .

Proof. We analyze the upper bound of Δ𝑐1 (𝑤) in the following two cases:
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𝑊̂ 𝑊𝑎 𝑊𝑑 𝑊𝑒 𝑊𝑐

𝑊𝑏

𝐴 \𝑊

W

𝑊 ∩𝐴

Fig. 1. Illustration of the candidate groups. The first row illustrate the five candidate sets which compose𝑊 .
The deeper blue boxes are candidates in 𝑇0. The red boxes represent candidates in 𝐴, which are candidates
approved by all voters in 𝑆 .

• Case 1: ℓ = 0. In this case,𝑊 ∩𝐴 = ∅, and thus 𝜂𝑎 = 𝜂𝑑 = 0. Further, since max𝑖∈𝑆 𝑢𝑖 (𝑊 ) = 0,

we have 𝑛 > 𝑛+. Since 𝑐1 has the lowest ∇𝑐 (𝑊 ) in 𝑊̂ ∪𝑊𝑒 , we have

∇𝑐1 (𝑊 ) ≤ 𝑛+

|𝑊̂ | + |𝑊𝑒 |
<

𝑛 − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 · |𝑆 |
ℓ+1

|𝑊̂ | + |𝑊𝑒 |
(Since 𝑢𝑖 (𝑊 ) = 0,∀𝑖 ∈ 𝑆 and 𝑛 > 𝑛+)

=
𝑛 − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 · |𝑆 |

ℓ+1
𝑘 − (𝜂𝑎 + 𝜂𝑏 + 𝜂𝑐 ) · 𝑘 + 𝜂𝑒 · 𝑘

=
𝑛 − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 · |𝑆 |

ℓ+1
𝑘 − (𝜂𝑎 + 𝜂𝑑 + 𝜂𝑐 ) · 𝑘

.

(Since 𝜂𝑏 = 𝜂𝑑 + 𝜂𝑒 )
• Case 2: ℓ ≥ 1. In this case let 𝑆+ = {𝑖 ∈ 𝑆 : 𝑢𝑖 (𝑊 ) ≥ 1}. Let 𝑛0 = 𝑛 − 𝑛+ denote the total

number of voters with zero utility, and let 𝑆0 = 𝑆 \ 𝑆+ be the subset from 𝑆 with zero utility.

Since each 𝑖 ∈ 𝑆+ has utility at most ℓ , their individual contribution to ∇𝑐 (𝑊 ) is at least 1

ℓ
.

Since

∑
𝑐∈𝑊 ∇𝑐 (𝑊 ) = 𝑛+,

∑
𝑐∈𝑊̂∪𝑊𝑒∪𝑊𝑐

∇𝑐 (𝑊 ) ≤ 𝑛+− |𝑊𝑎∪𝑊𝑑 | · |𝑆
+ |
ℓ

= 𝑛+− (𝜂𝑎 +𝜂𝑑 ) ·𝑘 · |𝑆
+ |
ℓ
.

Therefore, we have

∇𝑐1 (𝑊 ) ≤
𝑛+ − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 · |𝑆+ |

ℓ

|𝑊̂ | + |𝑊𝑒 |
=
𝑛 − 𝑛0 − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 · |𝑆 |− |𝑆0 |

ℓ

𝑘 − (𝜂𝑎 + 𝜂𝑑 + 𝜂𝑐 ) · 𝑘
(The first equality holds only when ∇𝑐 (𝑊 )’s are all equal within 𝑊̂ ∪𝑊𝑒 )

=
𝑛 − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 · |𝑆 |

ℓ
− (𝑛0 − |𝑆0 | · (𝜂𝑎+𝜂𝑑 ) ·𝑘

ℓ
)

𝑘 − (𝜂𝑎 + 𝜂𝑑 + 𝜂𝑐 ) · 𝑘
≤

𝑛 − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 · |𝑆 |
ℓ

𝑘 − (𝜂𝑎 + 𝜂𝑑 + 𝜂𝑐 ) · 𝑘
(Since 𝑛0 ≥ |𝑆0 | and (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 = |A𝑆 (𝑊 ) | ≤ ℓ)

≤
𝑛 − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 · |𝑆 |

ℓ+1
𝑘 − (𝜂𝑎 + 𝜂𝑑 + 𝜂𝑐 ) · 𝑘

. (Equality holds only when 𝜂𝑎 = 𝜂𝑑 = 0 and 𝑛 = 𝑛+)

□

Since𝑊 and 𝑇0 are bases of M, and 𝑇0 \𝑊 =𝑊𝑏 , for any 𝑐2 ∈𝑊𝑏 we have𝑊 \ {𝑐1} ∪ {𝑐2} ∈ P.

Since 𝑐2 ∈ 𝑊𝑏 , it is approved by all voters in 𝑆 , so that Δ𝑐2 (𝑊 ) ≥ |𝑆 |
ℓ+1 . Combining this with the

bound on ∇𝑐1 (𝑊 ) from above, we have

∇𝑐1 (𝑊 ) ≤
𝑛 − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘 · |𝑆 |

ℓ+1
𝑘 − (𝜂𝑎 + 𝜂𝑑 + 𝜂𝑐 ) · 𝑘

=
|𝑆 |
ℓ + 1

·
𝑛· (ℓ+1)

|𝑆 | − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘
𝑘 − (𝜂𝑎 + 𝜂𝑑 + 𝜂𝑐 ) · 𝑘

≤ |𝑆 |
ℓ + 1

·
𝑘 · 𝜂𝑎+𝜂𝑏

𝜂𝑎+𝜂𝑏+𝜂𝑐 − (𝜂𝑎 + 𝜂𝑑 ) · 𝑘
𝑘 − (𝜂𝑎 + 𝜂𝑑 + 𝜂𝑐 ) · 𝑘

(Since (𝜂𝑎 + 𝜂𝑏) · 𝑘 = |𝑊𝑎 | + |𝑊𝑏 | ≥ ℓ + 1 and
|𝑆 |
𝑛

= 𝑘 ′

𝑘
= 1 − |𝑊̂ |

|𝑊 | = 𝜂𝑎 + 𝜂𝑏 + 𝜂𝑐 )

=
|𝑆 |
ℓ + 1

·
𝜂𝑎+𝜂𝑏

𝜂𝑎+𝜂𝑏+𝜂𝑐 − (𝜂𝑎 + 𝜂𝑑 )
(1 − 𝜂𝑐 ) − (𝜂𝑎 + 𝜂𝑑 )

.
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Since
𝜂𝑎+𝜂𝑏

𝜂𝑎+𝜂𝑏+𝜂𝑐 ≤ 1 − 𝜂𝑐 (equality holds only when 𝜂𝑐 = 0), we further have

∇𝑐1 (𝑊 ) ≤ |𝑆 |
ℓ + 1

≤ Δ𝑐2 (𝑊 ) (Equality holds only when 𝑢𝑖 (𝑊 ) = ℓ for all 𝑖 ∈ 𝑆)

≤ Δ𝑐2 (𝑊 \ {𝑐1}). (Equality holds only when 𝑐1 ∉ 𝐴𝑖 for all 𝑖 ∈ 𝑆)

We finally argue that some inequality above must be strict. We have ∇𝑐1 (𝑊 ) = Δ𝑐2 (𝑊 \ {𝑐1})
only if all the following conditions are met: (a) 𝜂𝑎 = 𝜂𝑑 = 𝜂𝑐 = 0; (b) all ∇𝑐 (𝑊 )’s are equal within
𝑊̂ ∪𝑊𝑒 ; (c) ∀𝑖 ∈ 𝑆 , 𝑐1 ∉ 𝐴𝑖 ; and (d) 𝑛 = 𝑛+. By (a) and (b), we have𝑊̂ ∪𝑊𝑒 =𝑊 and thus ∇𝑐 (𝑊 ) = 𝑛

𝑘

for all 𝑐 ∈𝑊 . Recall that in choosing𝑊̂ , we break ties in favor of candidates which are not approved

by any voter in 𝑆 , and we select 𝑐1 from𝑊𝑒 to be the one approved by the maximum number of

voters in 𝑆 . Since by (d), we have 𝑢𝑖 (𝑊 ) ≥ 1 for all 𝑖 ∈ 𝑆 , there exists 𝑖∗ ∈ 𝑆 such that 𝑐1 ∈ 𝐴𝑖∗ . This

contradicts (c).

Therefore, all the equalities cannot hold simultaneously and ∇𝑐1 (𝑊 ) < Δ𝑐2 (𝑊 \ {𝑐1}). Since
𝑊 \ {𝑐1} ∪ {𝑐2} ∈ P, switching 𝑐1 to 𝑐2 strictly increases the pav score of𝑊 . This contradicts the

fact that𝑊 is a local optimum for pav.

4 TIGHT ANALYSIS FOR ADDITIVE UTILITIES: PROOF OF THEOREM 1.8
We assume the voter utility functions {𝑢𝑖 (·)}𝑖∈𝑉 are additive. Let 𝑢𝑖 (𝑐) denote the utility of voter 𝑖

for candidate 𝑐 . The committee size is 𝑘 and there are no additional constraints.

Recall Φ(𝑥) = 𝐻 (⌊𝑥⌋) + 𝑥−⌊𝑥 ⌋
⌈𝑥 ⌉ and the gpav rule from Eq. (3) is gpav(𝑇 ) = ∑

𝑖∈𝑉 Φ(𝑢𝑖 (𝑇 )). The
Local rule keeps swapping a candidate in 𝑇 ⊆ 𝐶 (of size 𝑘) with one not in 𝑇 as long as the gpav
score strictly improves. Note that for the special case of approval utilities, gpav reduces to pav,
which was shown to be 2-approximately stable in Peters and Skowron [2020].

4.1 Upper Bound
We first prove the upper bound. Let𝑊 denote any local optimum found, with size 𝑘 . Consider any

subset 𝑆 ⊆ 𝑉 of size 𝛼 · 𝑛, where 𝑛 = |𝑉 |. Assume it does not lie in the (2 − 𝛼) core.
Analogous to Peters and Skowron [2020], we first define the marginal change in gpav on adding

or deleting a candidate.

• ∀𝑐 ∉𝑊,Δ𝑖,𝑐 (𝑊 ) = Φ(𝑢𝑖 (𝑊 ∪ {𝑐})) − Φ(𝑢𝑖 (𝑊 )) and Δ𝑐 (𝑊 ) = ∑
𝑖∈𝑉 Δ𝑖,𝑐 (𝑊 ).

• ∀𝑐 ∈𝑊,∇𝑖,𝑐 (𝑊 ) = Φ(𝑢𝑖 (𝑊 )) − Φ(𝑢𝑖 (𝑊 \ {𝑐})) and ∇𝑐 (𝑊 ) = ∑
𝑖∈𝑉 ∇𝑖,𝑐 (𝑊 ).

Note that Δ𝑐 (𝑊 ) = gpav(𝑊 ∪ {𝑐}) − gpav(𝑊 ) and ∇𝑐 (𝑊 ) = gpav(𝑊 ) − gpav(𝑊 \ {𝑐}). A key

lemma that extends the results in Peters and Skowron [2020] to additive utilities is the following:

Lemma 4.1. ∀ 𝑖 ∈ 𝑉 ,
∑

𝑐∈𝑊 ∇𝑖,𝑐 (𝑊 ) ≤ 1.

Proof. If 𝑢𝑖 (𝑊 ) ≤ 1, we get

∑
𝑐∈𝑊

𝑢𝑖 (𝑐 )
⌈𝑢𝑖 (𝑊 ) ⌉ =

∑
𝑐∈𝑊 𝑢𝑖 (𝑐) = 𝑢𝑖 (𝑊 ) ≤ 1. Therefore, assume

𝑢𝑖 (𝑊 ) > 1. Let 𝛿 = 𝑢𝑖 (𝑊 ) − ⌊𝑢𝑖 (𝑊 )⌋. We partition candidates in𝑊 into two groups:𝑊𝑠 = {𝑐 :

𝑢𝑖 (𝑐) ≤ 𝛿} and𝑊ℓ = {𝑐 : 𝑢𝑖 (𝑐) > 𝛿}. We have∑︁
𝑐∈𝑊

∇𝑖,𝑐 (𝑊 ) =
∑︁
𝑐∈𝑊𝑠

∇𝑖,𝑐 (𝑊 ) +
∑︁
𝑐∈𝑊ℓ

∇𝑖,𝑐 (𝑊 ) =
∑︁
𝑐∈𝑊𝑠

𝑢𝑖 (𝑐)
⌈𝑢𝑖 (𝑊 )⌉ +

∑︁
𝑐∈𝑊ℓ

(
𝛿

⌈𝑢𝑖 (𝑊 )⌉ + 𝑢𝑖 (𝑐) − 𝛿

⌊𝑢𝑖 (𝑊 )⌋

)
(Since 𝑢𝑖 (𝑐) ≤ 1)

=
𝑢𝑖 (𝑊 )
⌈𝑢𝑖 (𝑊 )⌉ +

(
1

⌊𝑢𝑖 (𝑊 )⌋ − 1

⌈𝑢𝑖 (𝑊 )⌉

)
·
∑︁
𝑐∈𝑊ℓ

(𝑢𝑖 (𝑐) − 𝛿). (12)

We now need to maximize

∑
𝑐∈𝑊ℓ

(𝑢𝑖 (𝑐) − 𝛿). Consider these two cases:
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Case 1. If |𝑊ℓ | ≥ ⌈𝑢𝑖 (𝑊 )⌉, we have∑︁
𝑐∈𝑊ℓ

(𝑢𝑖 (𝑐) − 𝛿) =
∑︁
𝑐∈𝑊

𝑢𝑖 (𝑐) − 𝛿 · |𝑊ℓ | ≤ 𝑢𝑖 (𝑊 ) − 𝛿 · ⌈𝑢𝑖 (𝑊 )⌉ .

Case 2. If |𝑊ℓ | ≤ ⌊𝑢𝑖 (𝑊 )⌋, we have∑︁
𝑐∈𝑊ℓ

(𝑢𝑖 (𝑐)−𝛿) ≤ |𝑊ℓ | · (1−𝛿) ≤ ⌊𝑢𝑖 (𝑊 )⌋ · (1−𝛿) ≤ ⌊𝑢𝑖 (𝑊 )⌋+𝛿−𝛿 · ⌈𝑢𝑖 (𝑊 )⌉ ≤ 𝑢𝑖 (𝑊 )−𝛿 · ⌈𝑢𝑖 (𝑊 )⌉ .

Combining with Eq. (12), we have∑︁
𝑐∈𝑊

∇𝑖,𝑐 (𝑊 ) ≤ 𝑢𝑖 (𝑊 )
⌈𝑢𝑖 (𝑊 )⌉ +

(
1

⌊𝑢𝑖 (𝑊 )⌋ − 1

⌈𝑢𝑖 (𝑊 )⌉

)
· (𝑢𝑖 (𝑊 ) − 𝛿 · ⌈𝑢𝑖 (𝑊 )⌉)

= 1 + 𝛿 (⌊𝑢𝑖 (𝑊 )⌋ + 1 − ⌈𝑢𝑖 (𝑊 )⌉)
⌊𝑢𝑖 (𝑊 )⌋ = 1.

The last equality holds since either ⌊𝑢𝑖 (𝑊 )⌋ + 1 = ⌈𝑢𝑖 (𝑊 )⌉ or 𝛿 = 0 is true. □

For any 𝑐 ∈ 𝐶 , let Δ∗
𝑖,𝑐 (𝑤) = 𝑢𝑖 (𝑐 )

𝑢𝑖 (𝑊 )+1 and let Δ∗
𝑆,𝑐

(𝑊 ) = ∑
𝑖∈𝑆 Δ

∗
𝑖,𝑐 (𝑤). We show upper and lower

bounds on

∑
𝑐∈𝑇 Δ∗

𝑆,𝑐
(𝑊 ), where 𝑇 is the deviating committee. Crucially, we bound the sum over

𝑇 ∩𝑊 and 𝑇 \𝑊 separately. We need the following technical lemma.

Lemma 4.2 (Proved in Appendix A.1). Given a committee𝑊 ⊆ 𝐶 , for all 𝑖 ∈ 𝑉 , we have the
following properties: (a) ∀𝑐 ∉𝑊,Δ∗

𝑖,𝑐 (𝑊 ) ≤ Δ𝑖,𝑐 (𝑊 ), and (b) ∀𝑐 ∈𝑊,Δ∗
𝑖,𝑐 (𝑊 ) ≤ ∇𝑖,𝑐 (𝑊 ).

We now complete the proof of the upper bound of 2 − 𝛼 . By the local optimality of𝑊 , we

have Δ𝑐 (𝑊 ) ≤ ∇𝑐′ (𝑊 ) for all 𝑐 ∉ 𝑊,𝑐′ ∈ 𝑊 . Since 𝑆 with |𝑆 | ≥ 𝛼𝑛 deviates, there exists 𝑇 s.t.

|𝑇 | ≤ 𝛼 · 𝑘 and 𝑢𝑖 (𝑇 ) ≥ (2 − 𝛼) · (𝑢𝑖 (𝑊 ) + 1) for all 𝑖 ∈ 𝑆 . Assume that |𝑇 ∩𝑊 | = 𝛽 · 𝑘 , so that

|𝑇 \𝑊 | ≤ (𝛼 − 𝛽) · 𝑘 . First, we have the following lower bound:∑︁
𝑐∈𝑇

Δ∗
𝑆,𝑐 (𝑊 ) =

∑︁
𝑖∈𝑆

∑︁
𝑐∈𝑇

𝑢𝑖 (𝑐)
𝑢𝑖 (𝑊 ) + 1

≥
∑︁
𝑖∈𝑆

(2 − 𝛼) (𝑢𝑖 (𝑊 ) + 1)
𝑢𝑖 (𝑊 ) + 1

= |𝑆 | · (2 − 𝛼). (13)

Nowwe show an upper bound for

∑
𝑐∈𝑇 Δ∗

𝑆,𝑐
(𝑊 ). Let𝑀∗

1
=

∑
𝑐∈𝑇∩𝑊 Δ∗

𝑆,𝑐
(𝑊 ) and𝑀∗

2
=

∑
𝑐∈𝑇 \𝑊 Δ∗

𝑆,𝑐
(𝑊 ).

We first upper bound𝑀∗
2
by the following lemma:

Lemma 4.3 (Proved in Appendix A.2). 𝑀∗
2
≤ 𝛼−𝛽

1−𝛽 · (𝑛 −𝑀∗
1
).

Adding back𝑀∗
1
to the inequality in Lemma 4.3, we have the final upper bound on

∑
𝑐∈𝑇 Δ∗

𝑆,𝑐
(𝑊 ):∑︁

𝑐∈𝑇
Δ∗
𝑆,𝑐 (𝑊 ) ≤ 𝑀∗

1
+ 𝛼 − 𝛽

1 − 𝛽
· (𝑛 −𝑀∗

1
) =

𝑀∗
1
· (1 − 𝛼) + (𝛼 − 𝛽) · 𝑛

1 − 𝛽

<
(1 − 𝛼) · 𝛼 · 𝑛 + (𝛼 − 𝛽) · 𝑛

1 − 𝛽
(see below)

=
(2 − 𝛼) · 𝛼 − 𝛽

1 − 𝛽
· 𝑛 ≤ (2 − 𝛼) · 𝛼 · 𝑛 = (2 − 𝛼) · |𝑆 |.

(Since (2 − 𝛼) · 𝛼 ∈ [0, 1] and ∀𝑥 ∈ [0, 1], 𝑥−𝛽
1−𝛽 is maximized when 𝛽 = 0)

where the first inequality holds because

𝑀∗
1
=

∑︁
𝑐∈𝑇∩𝑊

Δ∗
𝑆,𝑐 (𝑊 ) ≤

∑︁
𝑖∈𝑆

(∑︁
𝑐∈𝑊

Δ∗
𝑖,𝑐 (𝑊 )

)
=

∑︁
𝑖∈𝑆

∑
𝑐∈𝑊 𝑢𝑖 (𝑐)

𝑢𝑖 (𝑊 ) + 1

=
∑︁
𝑖∈𝑆

𝑢𝑖 (𝑊 )
𝑢𝑖 (𝑊 ) + 1

< |𝑆 |.
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The bound on

∑
𝑐∈𝑇 Δ∗

𝑆,𝑐
(𝑊 ) contradicts Eq. (13). Thus𝑊 lies in the (2 − 𝛼)-approximate core,

completing the proof of the upper bound. Note that if we stop Local when gpav increases by at

most
𝜖
𝑛𝑘
, it runs in polynomial time for constant 𝜖 > 0 and lies in the (2 − 𝛼 + 𝜖)-approximate core.

4.2 Lower Bound
We now show that given an 𝛼 ∈ (0, 1], there is an instance and a committee𝑊 that is the output of

Local, such that𝑊 cannot lie in the (2 − 𝛼 − 𝜖)-core for any 𝜖 > 0 if deviations are restricted to

sets of size at least 𝛼𝑛. Our construction is similar to that in Peters and Skowron [2020] who show

a lower bound of 2 − 𝜖 if the deviating sets can become very small, that is, as 𝛼 → 0. The setting is

approval utilities. There are 𝑛 >
2(1−𝛼 )
𝜀 ·𝛼 voters and let 𝑦 >

2(2−𝛼 )
𝜀

. The instance is:

• Voter group 𝑉1 has 𝛼 · 𝑛 voters, they commonly approve 𝑦 candidates (set 𝐶1); each of them

also approves a disjoint set of 𝛼 · 𝑦 candidates, denote these 𝛼2 · 𝑛 · 𝑦 candidates as set 𝐶2.

• Voter group 𝑉2 has (1 − 𝛼) · 𝑛 voters, each of them approves a disjoint set of 𝑦 candidates.

Denote these (1 − 𝛼) · 𝑛 · 𝑦 candidates as set 𝐶3.

Set 𝑘 = (1−𝛼) ·𝑛𝑦 +𝑦. One local optimum of gpav (equivalently PAV) will output all the candidates

in 𝐶3 and 𝐶1. Switching any candidate in 𝐶3 for any candidate in 𝐶2 strictly decreases the PAV

score. Consider the subset 𝑉1. This subset has budget 𝛼 · 𝑘 = 𝛼 (1 − 𝛼) · 𝑛𝑦 + 𝛼𝑦. They can deviate

to choose all candidates in 𝐶1 and at least

𝛼 (1 − 𝛼) · 𝑛𝑦 − (1 − 𝛼)𝑦
𝛼 · 𝑛 approved candidates in 𝐶2 for

each voter in 𝑉1. Since 𝑛 >
2(1−𝛼 )
𝜀 ·𝛼 and 𝑦 >

2(2−𝛼 )
𝜀

, each voter in 𝑉1 will obtain utility

𝑦 + 𝛼 (1 − 𝛼)𝑛𝑦 − (1 − 𝛼)𝑦
𝛼𝑛

= (2 − 𝛼)𝑦 − 1 − 𝛼

𝛼
· 𝑦
𝑛
≥ (2 − 𝛼 − 𝜀)𝑦 + 𝜀

2

𝑦 > (2 − 𝛼 − 𝜀) (𝑦 + 1).

Since voter 𝑖 ∈ 𝑉1 has initial utility 𝑦, Local fails (2−𝛼 − 𝜖)-core for any 𝜖 > 0. Following Peters

and Skowron [2020], the above bound extends as is to rules that satisfy the Pigou-Dalton principle,

which captures optimizing any monotone, symmetric, concave function of utilities.

5 CONCLUSION
Via the notion of 𝛽-self-bounding functions and the new notion of restrained core, we have shown

that neither (discrete) convexity of utilities nor allocation constraints nor computational hardness

are a barrier to showing fairness properties for the NashWelfare allocation in multiwinner elections.

There are several open questions that arise. First, can the results in Theorem 1.6 be extended to

general sub-additive functions?We note that though these functions need not be self-bounding [Von-

drák 2010], they are amenable to constant-factor approximate welfare maximizing allocations [Feige

2006]. It would also be interesting to extend the Participatory Budgeting results (Theorem 1.9) to the

restrained core with constraints (Definition 1.4). This will require fundamentally new ideas, since

the snw rule in Theorem 1.6 does not work with arbitrary sizes, and it is not clear how to extend

the endowment approximation in Jiang et al. [2020] that is used for proving Theorem 1.9 to handle

constraints without scaling them down. Finally, it would be interesting to study the restrained core

as a standalone notion of fairness in other contexts, for instance, allocation of private goods or for

justified representation under arbitrary constraints, extending Theorem 3.2 beyond matroids.
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A OMITTED PROOFS
A.1 Proof of Lemma 4.2

(a) If 𝑢𝑖 (𝑊 ) + 𝑢𝑖 (𝑐) ≤ ⌈𝑢𝑖 (𝑊 )⌉, we have Δ𝑖,𝑐 (𝑊 ) = 𝑢𝑖 (𝐶 )
⌈𝑢𝑖 (𝑊 ) ⌉ ≥ 𝑢𝑖 (𝑐 )

𝑢𝑖 (𝑊 )+1 = Δ∗
𝑖,𝑐 (𝑊 ).

If 𝑢𝑖 (𝑊 ) + 𝑢𝑖 (𝑐) > ⌈𝑢𝑖 (𝑊 )⌉, denote 𝛿 = ⌈𝑢𝑖 (𝑊 )⌉ − 𝑢𝑖 (𝑊 ) and 𝜆 = 𝑢𝑖 (𝑐) − 𝛿 . We have

Δ𝑖,𝑐 (𝑊 ) − Δ∗
𝑖,𝑐 (𝑊 ) = 𝛿

𝑢𝑖 (𝑊 ) + 𝛿
+ 𝜆

𝑢𝑖 (𝑊 ) + 𝛿 + 1

− 𝛿 + 𝜆

𝑢𝑖 (𝑊 ) + 1

≥ 𝛿 (1 − 𝛿)
(𝑢𝑖 (𝑊 ) + 𝛿) (𝑢𝑖 (𝑊 ) + 1) −

𝜆 · 𝛿
(𝑢𝑖 (𝑊 ) + 1) (𝑢𝑖 (𝑊 ) + 𝛿 + 1)

≥ 𝛿 · 𝜆
(𝑢𝑖 (𝑊 ) + 𝛿) (𝑢𝑖 (𝑊 ) + 1) −

𝜆 · 𝛿
(𝑢𝑖 (𝑊 ) + 1) (𝑢𝑖 (𝑊 ) + 𝛿 + 1) > 0.

Therefore, we have Δ𝑖,𝑐 (𝑊 ) ≥ Δ∗
𝑖,𝑐 (𝑊 ).

(b) We have ∇𝑖,𝑐 (𝑊 ) ≥ 𝑢𝑖 (𝑐 )
⌈𝑢𝑖 (𝑊 ) ⌉ ≥ 𝑢𝑖 (𝑐 )

𝑢𝑖 (𝑊 )+1 = Δ∗
𝑖,𝑐 (𝑊 ), completing the proof.

A.2 Proof of Lemma 4.3
A proof sketch of Lemma 4.3 can be obtained from Fig. 2. First we have the white area (which is the

sum of all ∇𝑐 (𝑊 )’s of candidates in𝑊 ) is 𝑛. The white area in the middle part is larger than𝑀∗
1
(by

Lemma 4.2), so the the white area on the right is upper bounded by 𝑛 −𝑀∗
1
. The highest Δ∗

𝑆,𝑐
(𝑊 ) in

𝑇 \𝑊 is upper bounded by the lowest ∇𝑐 (𝑊 ) in𝑊 \𝑇 , which is at most

𝑛−𝑀∗
1

(1−𝛽 )𝑘 . Therefore, we have

area𝑀∗
2
is upper-bounded by

𝑛−𝑀∗
1

(1−𝛽 )𝑘 · (𝛼 − 𝛽)𝑘 =
𝛼−𝛽
1−𝛽 · (𝑛 −𝑀∗

1
). The formal proof is as follows:

By part (a) in Lemma 4.2, we have

𝑀∗
2
=

∑︁
𝑐∈𝑇 \𝑊

Δ∗
𝑆,𝑐 (𝑊 ) ≤

∑︁
𝑐∈𝑇 \𝑊

Δ𝑐 (𝑊 ).

Since𝑊 locally optimizes gpav, for any 𝑐 ∈ 𝑇 \𝑊 and 𝑐′ ∈𝑊 \𝑇 , we have Δ𝑐 (𝑊 ) ≤ ∇𝑐′ (𝑊 ). This
gives us the following:∑︁

𝑐∈𝑇 \𝑊
Δ𝑐 (𝑊 ) ≤ |𝑇 \𝑊 | min

𝑐∈𝑊 \𝑇
∇𝑐 (𝑊 ) ≤ (𝛼 − 𝛽) · 𝑘 ·

∑
𝑐∈𝑊 \𝑇 ∇𝑐 (𝑊 )
|𝑊 \𝑇 | .

Note that

∑
𝑐∈𝑊 \𝑇 ∇𝑐 (𝑊 ) = ∑

𝑐∈𝑊 \𝑇 ∇𝑐 (𝑊 ) − ∑
𝑐∈𝑊∩𝑇 ∇𝑐 (𝑊 ). By part (b) in Lemma 4.2, we have∑

𝑐∈𝑊∩𝑇 ∇𝑐 (𝑊 ) ≥ ∑
𝑐∈𝑊∩𝑇 Δ∗

𝑆,𝑐
(𝑊 ) = 𝑀∗

1
. We obtain the further upper bound as follows:

(𝛼 − 𝛽) · 𝑘 ·
∑

𝑐∈𝑊 \𝑇 ∇𝑐 (𝑊 )
|𝑊 \𝑇 | = (𝛼 − 𝛽) · 𝑘 ·

∑
𝑖∈𝑉

(∑
𝑐∈𝑊 ∇𝑖,𝑐 (𝑊 )

)
−𝑀∗

1

(1 − 𝛽) · 𝑘

≤ 𝛼 − 𝛽

1 − 𝛽
· (𝑛 −𝑀∗

1
),
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M∗1

M∗2

(α− β)k βk (1− β)k

minc∈W ∇c(W ) ≤ n−M∗
1

(1−β)k

T \W W ∩ T W \ T

∇c(W )

∆∗S,c(W )

Fig. 2. Illustration of Δ∗
𝑆,𝑐

(𝑊 ) and ∇𝑐 (𝑊 ) for all the candidates in𝑊 ∪𝑇 . We divide these candidates into
three groups:𝑇 \𝑊 ,𝑊 ∩𝑇 and𝑊 \𝑇 . The dotted line indicates that the lowest ∇𝑐 (𝑊 ) in𝑊 \𝑇 serves as an
upper bound for the highest Δ∗

𝑆,𝑐
(𝑊 ) in 𝑇 \𝑊 .

where the final inequality is by Lemma 4.1.

B MATROID CONSTRAINT AND SUBMODULAR UTILITIES
Recall from Section 3 that a basis is a maximum independent set of a matroid. Formally, for a

matroid M on candidates, a committee𝑊 ∈ M is a basis iff there does not exist𝑊 ′
such that

𝑊 ⊊𝑊 ′
. All bases ofM have the same size, in this case, the size of the committee, 𝑘 . We therefore

assume P is the set of all independent sets of the matroid of size at most 𝑘 .

Recall also that the Local algorithm swaps a pair of candidates as long as the committee remains

a basis ofM and the snw score improves. We assume utilities of voters are submodular. We will

show the following theorem.

Theorem B.1. The Local rule for snw yields a 2-approximate restrained core for a single matroid
constraint with submodular utilities.

Our proof uses the following result from matroid theory:

Theorem B.2 (Basis Exchange Property [Brualdi 1969]). For two bases𝑊1 ≠𝑊2 of the matroid
M, there exists a bijection 𝑓 :𝑊1 \𝑊2 →𝑊2 \𝑊1 such that ∀𝑒 ∈𝑊1 \𝑊2,𝑊1 \ {𝑒} ∪ {𝑓 (𝑒)} ∈ M.

For any committee𝑊 and a candidate 𝑐 ∉𝑊 , we define Δ𝑐 (𝑊 ) = snw(𝑊 ∪ {𝑐}) − snw(𝑊 ). For
a candidate 𝑐 ∈𝑊 , we define ∇𝑐 (𝑊 ) = snw(𝑊 ) − snw(𝑊 \ {𝑐}). We need the following technical

lemmas. In the sequel, by E𝑐∈𝐴 [∇𝑐 (𝑊 )], we will mean
1

|𝐴 |
∑

𝑐∈𝐴 ∇𝑐 (𝑊 ).

Lemma B.3. Given a committee𝑊 , if there exists an 𝑆 ⊆ 𝑉 and𝑇 ⊆ 𝐶 where𝑇 ∩𝑊 = ∅, such that
𝑢𝑖 (𝑇 ∪𝑊 ) ≥ 2 · (𝑢𝑖 (𝑊 ) + 1), we have E𝑐∈𝑇 \𝑊 [Δ𝑐 (𝑊 )] > |𝑆 |

|𝑇 | .
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Proof.

E𝑐∈𝑇 \𝑊 [Δ𝑐 (𝑊 )] ≥
∑

𝑐∈𝑇 \𝑊 (∑𝑖∈𝑆 (ln (𝑢𝑖 (𝑊 ∪ {𝑐}) + 1) − ln (𝑢𝑖 (𝑊 ) + 1)))
|𝑇 |

>

∑
𝑐∈𝑇 \𝑊

(∑
𝑖∈𝑆

𝑢𝑖 (𝑊∪{𝑐 })−𝑢𝑖 (𝑊 )
𝑢𝑖 (𝑊 )+2

)
|𝑇 |

(Since ln(1 + 𝑥
𝑢+1 ) >

𝑥
𝑢+2 , ∀𝑥 ∈ [0, 1] and 𝑢 > 0)

≥
∑

𝑖∈𝑆
𝑢𝑖 (𝑊∪𝑇 )−𝑢𝑖 (𝑊 )

𝑢𝑖 (𝑊 )+2
|𝑇 | (By submodularity)

≥
∑

𝑖∈𝑆
𝑢𝑖 (𝑊 )+2
𝑢𝑖 (𝑊 )+2
|𝑇 | =

|𝑆 |
|𝑇 | .

□

Lemma B.4. Given𝑊 ⊆ 𝐶 with size 𝑘 , we have E𝑐∈𝑊 [∇𝑐 (𝑊 )] ≤ 𝑛/𝑘.

Proof.

E𝑐∈𝑊 [∇𝑐 (𝑊 )] =
∑

𝑐∈𝑊 (∑𝑖∈𝑉 (ln (𝑢𝑖 (𝑊 ) + 1) − ln (𝑢𝑖 (𝑊 \ {𝑐}) + 1)))
𝑘

=

∑
𝑐∈𝑊

∑
𝑖∈𝑉 − ln

(
1 − 𝑢𝑖 (𝑊 )−𝑢𝑖 (𝑊 \{𝑐 })

𝑢𝑖 (𝑊 )+1

)
𝑘

≤
∑

𝑐∈𝑊
∑

𝑖:𝑢𝑖 (𝑊 )>0
𝑢𝑖 (𝑊 )−𝑢𝑖 (𝑊 \{𝑐 })

𝑢𝑖 (𝑊 )
𝑘

(Since − ln

(
1 − 𝑥

1+𝑢
)
≤ 𝑥

𝑢
, ∀𝑥 ∈ [0, 1] and 𝑢 > 0)

=

∑
𝑖:𝑢𝑖 (𝑊 )>0

(∑
𝑐∈𝑊

𝑢𝑖 (𝑊 )−𝑢𝑖 (𝑊 \{𝑐 })
𝑢𝑖 (𝑊 )

)
𝑘

≤
∑

𝑖:𝑢𝑖 (𝑊 )>0 1

𝑘
≤ 𝑛

𝑘
. (Since

∑
𝑐∈𝑊

𝑢𝑖 (𝑊 )−𝑢𝑖 (𝑊 \{𝑐 })
𝑢𝑖 (𝑊 ) ≤ 1 by submodularity)

□

Proof of Theorem B.1. Suppose the Local outputs a basis𝑊 and it does not lie in the 2-approximate

restrained core. Assume 𝑆 ⊆ 𝑉 is deviating. Denote 𝛼 = ⌊ |𝑆 | ·𝑘
𝑛

⌋/𝑘 . Let 𝑊̂ be (1 − 𝛼) · 𝑘 candidates

with the highest ∇𝑐 (𝑊 )’s. Since𝑊 fails the 2-approximate restrained core, there exists 𝑇 such that

𝑢𝑖 (𝑇 ∪ 𝑊̂ ) ≥ 2 · (𝑢𝑖 (𝑊 ) + 1), for any 𝑖 ∈ 𝑆 , where 𝑇 ∪ 𝑊̂ ∈ P.

Let𝑇 ′ = 𝑇 \𝑊 and𝑊 ′ = (𝑊 \𝑊̂ ) \𝑇 . Denote 𝜂 =
|𝑇 ′ |
|𝑇 | ≤ 1. Assume |𝑊̂ ∪𝑇 | = 𝑘 , otherwise add

candidates to 𝑇 until 𝑊̂ ∪𝑇 becomes a basis ofM. Therefore, |𝑊 ′ | = |𝑇 ′ | = 𝜂 · 𝛼 · 𝑘 .
Since𝑊 and 𝑊̂ ∪𝑇 are both bases of M, by using Theorem B.2 on𝑊 and 𝑊̂ ∪𝑇 , there exists a

bijection 𝑓 from𝑊 ′
to 𝑇 ′

, such that ∀𝑐 ∈𝑊 ′
,𝑊 \ 𝑐 ∪ {𝑓 (𝑐)} ∈ M. Since none of these swaps can

improve the objective by the local optimality of𝑊 ,

E𝑐∈𝑊 ′ [∇𝑐 (𝑊 )] ≥ E𝑐∈𝑇 ′ [Δ𝑐 (𝑊 )] . (14)

Since𝑊 \𝑊̂ contains candidateswith the lowest∇𝑐 (𝑊 )’s, we haveE𝑐∈𝑊 [∇𝑐 (𝑊 )] ≥ E𝑐∈𝑊 \𝑊̂ [∇𝑐 (𝑊 )].
Since𝑊 ′ ⊆𝑊 \𝑊̂ and |𝑊 ′ | = 𝜂 · |𝑊 \𝑊̂ |, we have E𝑐∈𝑊 \𝑊̂ [∇𝑐 (𝑊 )] ≥ 𝜂 ·E𝑐∈𝑊 ′ [∇𝑐 (𝑊 )]. Therefore,

E𝑐∈𝑊 [∇𝑐 (𝑊 )] ≥ 𝜂 · E𝑐∈𝑊 ′ [∇𝑐 (𝑊 )] . (15)
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Combining Eq. (14) with Eq. (15), we have

E𝑐∈𝑇 ′ [Δ𝑐 (𝑊 )] ≤ E𝑐∈𝑊 ′ [∇𝑐 (𝑊 )] ≤ 1

𝜂
· E𝑐∈𝑊 [∇𝑐 (𝑊 )] . (16)

By Lemma B.4, we have E𝑐∈𝑊 [∇𝑐 (𝑊 )] ≤ 𝑛
𝑘
. Since 𝑢𝑖 (𝑇 ′ ∪𝑊 ) ≥ 2(𝑢𝑖 (𝑊 ) + 1), by applying

Lemma B.3 on 𝑇 ′
, we also have

E𝑐∈𝑇 ′ [Δ𝑐 (𝑊 )] > |𝑆 |
|𝑇 ′ | ≥

𝛼 · 𝑛
𝜂 · 𝛼 · 𝑘 =

𝑛

𝜂 · 𝑘 ≥ 1

𝜂
· E𝑐∈𝑊 [∇𝑐 (𝑊 )] . (17)

Since Eq. (17) contradicts Eq. (16),𝑊 must lie in the 2-approximate restrained core.

C PARTICIPATORY BUDGETINGWITH SELF-BOUNDING FUNCTIONS
Recall that the Participatory Budgeting problem is a generalization of multiwinner elections where

candidates can have arbitrary sizes. Let 𝑠 𝑗 denote the size of candidate 𝑗 ∈ 𝐶 . There is a size

constraint 𝑏, so that for any feasible committee 𝑂 , we require Size(𝑂) = ∑
𝑗∈𝑂 𝑠 𝑗 ≤ 𝑏. As before,

there is a utility function 𝑢𝑖 for each voter 𝑖 that is monotone, 1-Lipschitz, and 𝛽-self bounding.

We assume there are no constraints on the allocation except for the size constraint. We can

generalize Definition 1.1 as follows:

Definition C.1 (𝛾-approximate core for Participatory Budgeting). A committee 𝑊 is in the 𝛾-
approximate core if there is no 𝑆 ⊆ 𝑉 and 𝑇 ⊆ 𝐶 with

∑
𝑗∈𝑇 𝑠 𝑗 ≤ |𝑆 |

𝑛
· 𝑏, such that 𝑢𝑖 (𝑇 ) ≥

𝛾 · (𝑢𝑖 (𝑊 ) + 1) for every 𝑖 ∈ 𝑆 .

We will present an upper bound first in Appendix C.1 by proving Theorem 1.9. We will subse-

quently show the lower bound in Appendix C.2 by proving Theorem 1.10.

C.1 Upper Bound: Proof of Theorem 1.9
We will show a reduction to a different notion of approximate core first considered in [Jiang et al.

2020]. This is called the “endowment approximation”.

Definition C.2. A committee𝑊 is in the 𝜃 -approximate endowment core for 𝜃 ≥ 1 if there is no

𝑆 ⊆ 𝑉 and 𝑇 ⊆ 𝐶 with Size(𝑇 ) ≤ 1

𝜃
· |𝑆 |

𝑛
· 𝑏, such that 𝑢𝑖 (𝑇 ) ≥ 𝑢𝑖 (𝑊 ) for every 𝑖 ∈ 𝑆 .

The following theorem is shown in [Jiang et al. 2020]:

Theorem C.3 ([Jiang et al. 2020]). The 32-approximate endowment core is non-empty for Partici-
patory Budgeting with any monotone utility functions.

We will now show the following theorem, which will imply Theorem 1.9 via Theorem C.3.

Theorem C.4. For Participatory Budgeting with 𝛽-self bounding functions, where 𝛽 ≥ 1 is an integer,
any 32-approximate endowment core is a 𝑐-approximate core under Definition C.1 for 𝑐 ≤ 11.7 · 𝛽 · 55𝛽 .

Random Sampling Bounds. We first show the following result for the expected utility of randomly

sampled subsets for 𝛽-self bounding functions, which may be of independent interest.

Lemma C.5. We are given a 𝛽-self bounding function 𝑢𝑖 where 𝛽 ≥ 1 is an integer. Given 𝑇 ⊆ 𝐶 ,
suppose we include each 𝑗 ∈ 𝑇 in𝑂 independently with probability 𝛼 ≤ 1. Then E[𝑢𝑖 (𝑂)] ≥ 𝛼𝛽𝑢𝑖 (𝑇 ).

Proof. Let 𝑇 have 𝑘 candidates. For each ℓ ∈ [𝑘], let 𝐺ℓ = {𝑊 ⊆ 𝑇, |𝑊 | = ℓ}, and let 𝑍ℓ =∑
𝑊 ∈𝐺ℓ

𝑢𝑖 (𝑊 ). Note that 𝑍𝑘 = 𝑢𝑖 (𝑇 ). Then, we can write

E[𝑢𝑖 (𝑂)] =
𝑘∑︁
ℓ=1

𝛼 ℓ (1 − 𝛼)𝑘−ℓ𝑍ℓ ≥
𝑘∑︁
ℓ=𝛽

𝛼 ℓ (1 − 𝛼)𝑘−ℓ𝑍ℓ .
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For a 𝛽-self bounding function and any𝑊 ∈ 𝐺ℓ+1 for ℓ ≥ 𝛽 , we have∑︁
𝑗∈𝑊

𝑢𝑖 (𝑊 \ { 𝑗}) ≥ (ℓ + 1 − 𝛽) · 𝑢𝑖 (𝑊 ).

Summing this over𝑊 ∈ 𝐺ℓ+1, we obtain:

(𝑘 − ℓ) · 𝑍ℓ ≥ (ℓ + 1 − 𝛽) · 𝑍ℓ+1 .

By telescoping, 𝑍ℓ ≥
(𝑘−𝛽
𝑘−ℓ

)
𝑍𝑘 for 𝛽 ≤ ℓ ≤ 𝑘 − 1. Plugging this into the expression for E[𝑢𝑖 (𝑂)]:

E[𝑢𝑖 (𝑂)] ≥ 𝑍𝑘

𝑘∑︁
ℓ=𝛽

𝛼 ℓ (1 − 𝛼)𝑘−ℓ
(
𝑘 − 𝛽

𝑘 − ℓ

)
= 𝑍𝑘𝛼

𝛽 = 𝛼𝛽𝑢𝑖 (𝑇 ).

This completes the proof. □

Another nice property of self-bounding functions is the existence of Chernoff-style lower-tail

bounds [Boucheron et al. 2000], whose proof uses the log-Sobolev inequality of entropy.

Lemma C.6 (Lower Tail [Boucheron et al. 2000]). Suppose 𝑢𝑖 is a 𝛽-self bounding 1-Lipschitz
function. Given 𝑇 ⊆ 𝐶 , suppose we include each 𝑗 ∈ 𝑇 in 𝑂 independently with probability 𝛼 ≤ 1. Let
𝜇0 = E[𝑢𝑖 (𝑂)]. Then for any 𝛿 ∈ (0, 1), we have:

Pr [𝑢𝑖 (𝑂) ≤ (1 − 𝛿)𝜇0] ≤ 𝑒
− 𝛿2𝜇

0

2𝛽 .

Proof of Theorem C.4. We will show this by contradiction. Let𝑊 denote the 32-approximate

endowment core found by Theorem C.3, so that Size(𝑊 ) ≤ 𝑏. For the sake of contradiction,

suppose there is 𝑆 ⊆ 𝑉 of size 𝜙 · 𝑛 and a 𝑇 ⊆ 𝐶 with Size(𝑇 ) ≤ 𝜙 · 𝑏, so that for all 𝑖 ∈ 𝑆 , we have

𝑢𝑖 (𝑇 ) ≥ 𝜂 · 𝛽 · 𝛾𝛽 · (𝑢𝑖 (𝑊 ) + 1).
Let 𝑏′ = 𝜙 · 𝑏, and 𝑏′′ = 𝜙

𝛾
· 𝜅 · 𝑏. Any candidate in 𝑇 has size at most 𝑏′. Therefore, the number

of candidates of size at least
𝜙

𝛾
· 𝑏 is at most 𝛾 , and these have a total utility of at most 𝛾 for

any voter, since the utility functions are 1-Lipschitz. Let 𝑇 ′ = { 𝑗 ∈ 𝑇 | 𝑠 𝑗 ≤ 𝜙

𝛾
· 𝑏}. We have

𝑢𝑖 (𝑇 ′) ≥ (𝜂 − 1) · 𝛽 · 𝛾𝛽 · (𝑢𝑖 (𝑊 ) + 1) for all 𝑖 ∈ 𝑆 .

Suppose we sample each candidate in 𝑇 ′
with probability

1

𝛾
. Let 𝑂 denote the sampled set. By

Lemma C.5, we have E[𝑢𝑖 (𝑂)] ≥ 1

𝛾𝛽 ·𝑢𝑖 (𝑇 ′) ≥ (𝜂 − 1) · 𝛽 · (𝑢𝑖 (𝑊 ) + 1) for all 𝑖 ∈ 𝑆 . Since 𝛽 ≥ 1, by

Lemma C.6, we have

Pr[𝑢𝑖 (𝑂) ≤ 𝑢𝑖 (𝑊 )] ≤ 𝑒
− (𝜂−2)2

2(𝜂−1) .

for all 𝑖 ∈ 𝑆 . Let 𝑆 ′ = {𝑖 ∈ 𝑆 |𝑢𝑖 (𝑂) > 𝑢𝑖 (𝑊 )}, so that E[|𝑆 ′ |] ≥
(
1 − 𝑒

− (𝜂−2)2
2(𝜂−1)

)
· |𝑆 |. Thus for any

0 < 𝑞 < 1, we have Pr[|𝑆 ′ | < 𝑞 · |𝑆 |] < 1

1−𝑞 · 𝑒−
(𝜂−2)2
2(𝜂−1)

.

Further, we have E[Size(𝑂)] = 1

𝛾
· Size(𝑇 ′) ≤ 𝜙

𝛾
· 𝑏. Since each 𝑗 ∈ 𝑂 has 𝑠 𝑗 ≤ 𝜙

𝛾
· 𝑏, recall that

𝑏′′ = 𝜙

𝛾
· 𝜅 · 𝑏, from Chernoff bounds, we have Pr[Size(𝑂) > 𝑏′′] ≤ 𝑒𝜅−1

𝜅𝜅
.

Therefore, if 𝑞 > 32 · 𝜅
𝛾
and Pr[|𝑆 ′ | < 𝑞 · |𝑆 |] + Pr[Size(𝑂) > 𝑏′′] < 1, there is a constant

probability that both |𝑆 ′ | > 𝑞 · |𝑆 | and Size(𝑂) ≤ 𝑏′′ holds. This means such a set 𝑆 ′ and committee

𝑂 always exists by the probabilistic method. We have |𝑆 ′ | ≥ 𝑞 · |𝑆 | = 𝑞 · 𝜙 · 𝑛 > 32 · 𝜅
𝛾
· 𝜙 · 𝑛 and

Size(𝑂) ≤ 𝑏′′ = 𝜅
𝛾
·𝜙 ·𝑏. This contradicts that𝑊 is a 32-approximate endowment core. By plugging
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in the two inequalities 𝑞 > 32 · 𝜅
𝛾
and Pr[|𝑆 ′ | < 𝑞 · |𝑆 |] + Pr[Size(𝑂) > 𝑏′′] < 1, we get𝑊 is a

𝑐-approximate core under Definition C.1 for

𝑐 ≤ 𝜂 · 𝛽 · ©­« 32𝜅

1 − 𝑒−(𝜂−2)2/2(𝜂−1)

1−𝑒𝜅−1/𝜅𝜅

ª®¬
𝛽

.

By setting 𝜅 = 1.454 and 𝜂 = 11.63, we get 𝑐 ≤ 11.63 · 𝛽 · 54.6𝛽 , completing the proof.

C.2 Lower Bound: Proof of Theorem 1.10
We finally show Theorem 1.10. The exponential in 𝛽 lower bound holds even for multiwinner

elections and even with no additional constraints, hence complementing both Theorems 1.6 and 1.9.

At a high level, the instance is similar to that in [Munagala et al. 2022]. Fix constant 𝛽 ≥ 5 and

let 𝑟 be a large number. There are 6 parties, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 and 𝑟 candidates in each party. Choose

𝑘 = 3𝑟 as the committee size. There are 6 voters denoted 𝑣𝑎𝑏, 𝑣𝑏𝑐 , 𝑣𝑐𝑎, 𝑣𝑑𝑒 , 𝑣𝑒 𝑓 , 𝑣 𝑓 𝑑 .

Given committee𝑊 , let 𝑟 · 𝑥𝑎 denote the number of candidates belonging to party 𝑎 that are

chosen in𝑊 , and analogously for the remaining parties. Note that these quantities are multiples of

1

𝑟
and further, 𝑥𝑎 + 𝑥𝑏 + 𝑥𝑐 + 𝑥𝑑 + 𝑥𝑒 + 𝑥 𝑓 = 3.

Fix a constant 𝑧 =
(
3

4

)𝛽/2
. The utility function of voters 𝑣𝑎𝑏, 𝑣𝑏𝑐 , 𝑣𝑐𝑎 are

𝑢𝑎𝑏 (𝑊 ) = 𝑟

𝛽
·
(
𝑥
𝛽
𝑎 + 𝑧 · (1 − 𝑥

𝛽
𝑎 ) · 𝑥

𝛽

𝑏

)
.

Similarly, we define the utility functions of 𝑣𝑏𝑐 , 𝑣𝑐𝑎, 𝑣𝑑𝑒 , 𝑣𝑒 𝑓 , 𝑣 𝑓 𝑑 . Note that these utility functions

are monotone in each 𝑥 variable since 𝑧 ≤ 1.

Focus on utility function 𝑢𝑎𝑏 . We will show it is 𝛽-self bounding and 1-Lipschitz. Since 𝑥𝑎, 𝑥𝑏 are

multiples of 1/𝑟 , removing one candidate from party 𝑎 corresponds to decreasing 𝑥𝑎 by 1/𝑟 . The
decrease in utility is upper bounded by

Δ𝑢𝑎𝑏 (𝑊 ) ≤ 𝑟

𝛽
· 𝛽𝑥𝛽−1𝑎 · (1 − 𝑧 · 𝑥𝛽

𝑏
) · 1

𝑟
= 𝑥

𝛽−1
𝑎 · (1 − 𝑧 · 𝑥𝛽

𝑏
) ≤ 𝑥

𝛽−1
𝑎 ≤ 1.

Similarly, the decrease in utility by removing any one candidate in 𝑏 is upper bounded by

Δ𝑢𝑎𝑏 (𝑊 ) ≤ 𝑟

𝛽
· 𝑧 · (1 − 𝑥

𝛽
𝑎 ) · 𝛽𝑥

𝛽−1
𝑏

· 1
𝑟
= 𝑧 · (1 − 𝑥

𝛽
𝑎 ) · 𝑥

𝛽−1
𝑏

≤ 1.

Therefore, the total decrease in utility from removing each candidate in𝑊 is bounded by

𝑟 · 𝑥𝑎 · 𝑥𝛽−1𝑎 + 𝑟 · 𝑥𝑏 · 𝑧 · (1 − 𝑥
𝛽
𝑎 ) · 𝑥

𝛽−1
𝑏

≤ 𝛽 · 𝑢𝑎𝑏 (𝑊 ).
Therefore, the utility functions are 𝛽-self bounding. Further, since each decrease is utility is upper

bounded by 1, the function is 1-Lipschitz. The other utility functions behave identically.

We will now argue the lower bound on approximation to the core. First observe that in committee

𝑊 , there exists a pair of parties from either {𝑎, 𝑏, 𝑐} or from {𝑑, 𝑒, 𝑓 } so that their fractions are both
at most 3/4. Otherwise, there are at least two parties from either set whose fractions are strictly

larger than 3/4, which contradicts the total fraction being at most 3. Suppose 𝑥𝑏 ≤ 3

4
and 𝑥𝑐 ≤ 3

4
.

Consider the utilities of voters 𝑣𝑏𝑐 and 𝑣𝑐𝑎 . We have

𝑢𝑏𝑐 (𝑊 ) = 𝑟

𝛽
·
(
𝑥
𝛽

𝑏
+ 𝑧 · (1 − 𝑥

𝛽

𝑏
) · 𝑥𝛽𝑐

)
≤ 𝑟

𝛽
· (1 + 𝑧) ·

(
3

4

)𝛽
≤ 2𝑟

𝛽
·
(
3

4

)𝛽
,

where we used 𝑧 ≤ 1. Since 𝑥𝑎 ≤ 1, we have

𝑢𝑐𝑎 (𝑊 ) = 𝑟

𝛽
·
(
𝑥
𝛽
𝑐 + 𝑧 · (1 − 𝑥

𝛽
𝑐 ) · 𝑥

𝛽
𝑎

)
≤ 𝑟

𝛽
· (𝑥𝛽𝑐 + 𝑧 · 1) ≤ 2𝑟

𝛽
· 𝑧,
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where the final inequality holds since 𝑧 =
(
3

4

)𝛽/2
and therefore 𝑥

𝛽
𝑐 ≤

(
3

4

)𝛽 ≤ 𝑧.

Now suppose voters 𝑣𝑏𝑐 and 𝑣𝑐𝑎 use their endowment of 𝑟 candidates to choose a deviating

committee𝑊 ′
with 𝑥𝑐 = 1 and 𝑥𝑎 = 𝑥𝑏 = 0. Then,

𝑢𝑏𝑐 (𝑊 ′) = 𝑟

𝛽
· 𝑧 and 𝑢𝑐𝑎 (𝑊 ′) = 𝑟

𝛽
.

Therefore, the increase in utility for either voter is a multiplicative factor of

min

(
𝑢𝑏𝑐 (𝑊 ′)
𝑢𝑏𝑐 (𝑊 ) ,

𝑢𝑐𝑎 (𝑊 ′)
𝑢𝑐𝑎 (𝑊 )

)
= min

(
1

2𝑧
,
𝑧

2

(
4

3

)𝛽 )
=
1

2

(
4

3

)𝛽/2
,

which is larger than 1 assuming 𝛽 ≥ 5. Since we assumed 𝑟 → ∞ and 𝛽 (and hence 𝑧) is a constant,

the quantities 𝑢𝑏𝑐 (𝑊 ′), 𝑢𝑐𝑎 (𝑊 ′) ≫ 1 and therefore, the additive term in Definition 1.1 can be

ignored. This shows the 𝑐-approximate core is empty for 𝑐 = 1

2

(
4

3

)𝛽/2 − 𝑜 (1), completing the proof.
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