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We consider the classical multiwinner election problem where the goal is to choose a subset of k unit-sized
candidates (called committee) given utility functions of the voters. We allow arbitrary additional constraints
on the chosen committee, and the utilities of voters to belong to a very general class of set functions called
B-self bounding. When f = 1, this class includes XOS (and hence, submodular and additive) utilities as special
cases. We define a novel generalization of core stability called restrained core to handle constraints on the
committee, and consider multiplicative approximations on the utility under this notion.

Our main result is the following: If a smooth version of Nash Welfare is globally optimized over committees
that respect the constraints, then the resulting optimal committee lies in the ef -approximate restrained core
for f-self bounding utilities and arbitrary constraints. As a result we obtain the first constant approximation
for stability with arbitrary additional constraints even for additive utilities (factor of e), as well as the first
analysis of the stability of Nash Welfare with XOS functions even in the absence of constraints.

We complement this positive result by showing that the c-approximate restrained core can be empty for
¢ < 16/15 even for additive utilities and one additional constraint. Furthermore, the exponential dependence
on f in the approximation is unavoidable for f-self bounding functions even in the absence of any constraints.

We next present improved and tight approximation results for multiwinner elections with simpler classes
of utility functions and simpler types of constraints. We also present an extension of restrained core to
extended justified representation with constraints, and show an existence result for the special case of matroid
constraints. We finally generalize our results to the setting when candidates have arbitrary sizes (Participatory
Budgeting) and there are no additional constraints. Our proof techniques are different from previous analyses
of Nash Welfare and are of independent interest.
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1 INTRODUCTION

The multiwinner election problem [Aziz et al. 2019; Brams et al. 2007; Brandt et al. 2016; Chamberlin
and Courant 1983; Endriss 2017; Monroe 1995; Thiele 1895] is central to social choice, and has
attracted attention for over a century. In this problem, there is a set V of n voters and a set C of m
candidates, out of which a committee of k candidates needs to be chosen. Voters express preferences
over subsets of candidates. In this paper, we will assume these are specified via cardinal utility
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functions {u;, i € V}. A generalization of this problem is called Participatory Budgeting [Aziz and
Shah 2021; Cabannes 2004; Fain et al. 2016; Goel et al. 2019; SPBP 2022], where the candidates are
public projects, whose size is their monetary cost, and a feasible committee is constrained by a
total size (or budget) of k. This generalization is motivated by real-world budgeting elections.

1.1 Background and Moeotivation

1.1.1  Utility Functions. Each voter i is associated with a non-negative function u;(-), where u;(T)
captures their utility for committee T € C. We assume these functions satisfy two properties:

o Monotonicity. u;(T) < u;(T U {j}) forall T C C and j € A, with u;(0) = 0.

o 1-Lipschitz. u;(T) — u;(T \ {j}) < 1forallT C Cand j € A.

If there are no other constraints on the utilities, we call them general. In this paper, we will
consider several natural utility functions in increasing order of generality:

e ArprovAL. Each voter i has an approval set A; C C. Their utility for T is u;(T) = |T N A;].
o ADDITIVE. Each voter i has utility u;; for j € C. For committee T, u;(T) = X je7 uij-
e SUBMODULAR. Forany Ty C T; and j € T;:

ui(T) —wi (T \ {j}) 2 wi(T2) —wi (T2 \ {j})-
e XOS [Feige 2006; Lehmann et al. 2001]: For additive functions {u;;q, j € C,q € [£]},

t
ui(T) = max Z Uijq-

jeT
e [-SELF BOUNDING [Boucheron et al. 2000]. Given constant § > 1, foreach T C C:

D7) = u(T\ (7)) < B~ ui(T),
jeT

We note that approval utilities are a special case of additive, which are a special case of submodular,
which are a special case of XOS, which are a special case of 1-self bounding [Boucheron et al. 2000].
Note that though XOS functions are sub-additive, in general, f-self bounding functions need not be
sub-additive, where sub-additivity means that u; (A U B) < u;(A) +u;(B) forall A,B € C.

To motivate these classes, approval utilities capture the classical setting of “approval ballots” in
elections, and have a rich history in social choice. See the recent book [Lackner and Skowron 2023]
for a comprehensive survey of this topic. Submodular functions capture diminishing returns from
choosing additional candidates, and have been widely studied as a discrete analog of concavity.

XOS functions can be motivated in settings where individuals vote on behalf of a family. Consider
Participatory Budgeting, where the projects either pertain to children or adults, and are additive
within each group. An individual voting on behalf of themselves and their children may feel their
taxes have been well spent if the maximum utility received by anyone in their family is large.

Similarly, in graph theory, the maximum size of a subgraph for any hereditary property is
XOS (see Dubhashi and Panconesi [2009]). Such functions can capture diversity or harmony in the
committee. Consider approval utilities with a twist: There is a graph G on candidates, where an
edge captures “too similar”, say in terms of opinion. Given committee W and voter i’s approval set
Aj;, their utility is the maximum independent set of the sub-graph induced on W N A;. This captures
opinion diversity in the subset of approved candidates that are on the committee, and is XOS since
independent set is hereditary. On the other hand, if the graph edges model a social network and are
interpreted as “gets along with”, the voter’s utility may be the maximum size of a clique in W N A;,
which corresponds to the maximum sub-committee among approved candidates that all get along.
This captures “harmony” in the committee from the voter’s perspective, and is XOS as well.
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If instead of defining the utility from diversity (resp. harmony) as the size of the maximum
independent set (resp. max clique), this is defined as u; (W) = log N(A; N W), where N(A; N W) is
the number of independent sets (resp. cliques) in the subgraph on W N A;, such utilities are called
“combinatorial entropies” and remain 1-self bounding [Boucheron et al. 2000].

1.1.2  Fairness via Core Stability. An important consideration in multiwinner elections is fairness
via proportional representation. In the context of multi-winner elections, one widely studied notion
of proportionality is core stability [Droop 1881; Fain et al. 2018; Lindahl 1958; Scarf 1967; Thiele
1895]. Given a committee W of size k, a subset S C V of voters forms a blocking coalition if there
is another committee T of size Lklnﬂj, such that for all voters i € S, we have u;(T) > u;(W). A
committee W is said to be core-stable if it does not admit to blocking coalitions.

The quantity Lk%] represents the “endowment” of coalition S. To interpret it, imagine each
candidate costs a unit amount, and this cost is paid for evenly as tax by the population. Therefore,
each voter’s endowment in terms of tax contribution is k/n, so that if coalition S uses its total
endowment, it can “purchase” a blocking committee of size Lk%] The core therefore implies no
subset of voters have a justified complaint in terms of how their tax money was spent.

Note that the core is scale-invariant, so that the definition is robust to scaling utility functions
differently for different voters. Therefore, the 1-Lipschitz condition on the utilities is w.l.o.g.

The core is the most general notion of proportionality, and subsumes Pareto-optimality and
proportionality. It is known that when candidates can be fractionally chosen, then the core exists via
a market clearing solution called the Lindahl equilibrium that admits to a fixed point solution [Foley
1970; Lindahl 1958]. However, it is easy to construct examples even with additive utility functions
where a core stable solution need not exist. Motivated by this impossibility, various restrictions and
approximations have been defined. For instance, various notions of justified representation [Aziz
et al. 2017, 2018; Fernandez et al. 2017] restrict the coalitions of voters that can be blocking. In this
paper, we consider the following well-studied notion of multiplicative approximate core[Fain et al.
2018; Munagala et al. 2022; Peters et al. 2021; Peters and Skowron 2020]:

Definition 1.1 (y-approximate Core). A committee W of size k is in the y-approximate core for
y = lifthereisno S C Vand T C C with |T| < ‘inl -k, such that u;(T) >y - (u;(W)+1)VieS.

Here, the multiplicative guarantee is against u;(W) + 1, since no multiplicative approximation is
possible against u; (W) even with additive utilities [Cheng et al. 2020; Fain et al. 2018]. We use an
additive term of 1 because the utilities are 1-Lipschitz.

1.1.3  Proportional Approval Voting (PAV). This is a classical committee selection rule for multiwin-
ner elections with ApPrROVAL utilities, dating back a century to Thiele [Thiele 1895]. For integer
x> 1,letH(x) = ’;:1 i denote the harmonic sum till x. We define H(0) = 0. The PAV score of a
committee W is defined as:

pav(W) = " H(ui(W)). (1)
i=1

Consider the following algorithm that we will term LocAr:

LocaL. Given the current committee W of size k, if there is a j; € W and j, ¢ W such
that pav(W U {j.} \ {j1}) > pav(W), then replace W by W U {j>} \ {j1}.

When this process terminates, we have a local optimum for the pav score. The work of Aziz
et al. [2017]; Fernandez et al. [2017] shows that any such local optimum satisfies a special case
of the core termed extended justified representation (EJR), where the blocking coalitions satisfy
certain cohesiveness conditions. More recently and more relevant to us, it was shown by Peters and
Skowron [2020] that any such local optimum also lies in the 2-approximate core. Further, they show
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this result is tight — any rule that maximizes the sum of symmetric concave functions over voters’
utilities cannot do better than a 2-approximation. (As an aside, it is an open question whether a
1-approximate core exists for this setting via a rule not based on scoring functions.)

Generalizations of PAV. In this paper, we will consider modifications of the PAV rule to allow
for real-valued utility functions. We first define Smooth Nash Welfare, which has been previously
studied in Fain et al. [2018]; Fluschnik et al. [2019]. The score of committee W is defined as:

n
snw(W) = Z In(1 + u; (W)). @)
i=1
The second generalization is new, and we term it Generalized PAV. For x > 0, we define
x — |x]
O(x) = H([x]) +
[x]
Then the score of committee W is defined as:
n
gpav(W) = > (u;(W)). (3)
i=1

These rules are very similar to each other. The gpav rule reduces to PAV for approval utilities, and
satisfies properties like EJR there. On the other hand, the snw rule is analytically simpler and leads
to somewhat better approximation bounds in our analysis.

In Theorem B.1, we show that the argument in Peters and Skowron [2020] can be extended
to show that a local optimum for snw lies in the 2-approximate core with submodular utilities.
However, submodular utilities represents the limit to which Locat lies in the approximate core.
Once we consider very simple XOS utilities, the following example that local optima to snw or
gpav need not lie in any y-approximate core for constant y.

Example 1.2. There are m = 2k candidates and n = k voters, where k is the committee size. There
are two sets of k candidates each: A = {ay,...,ax}, and B = {by, ..., bi}. The utility function of
voter i is as follows: For set T, u;(T) = max(|T N B|,|T N {a;}|). Since this is the maximum of two
additive functions, it is XOS. Consider the committee W = A. If any q; is replaced by any b, the
utilities of all voters are unchanged at value 1. Therefore, W = A is a local optimum to snw (resp.
gpav). However, all voters can together choose blocking committee B, which gives each of them a
factor k larger utility. Therefore, the local optimum A does not lie in the y-core for any constant y.

Indeed, no fairness analysis of Nash Welfare type objectives is known for multiwinner elections
under XOS utilities and beyond. Since these utilities are convex, this begs the question: Is concavity
or submodularity the limit to which the Nash Welfare allocation is fair?

1.2 Multiwinner Elections with Allocation Constraints: Restrained Core

In addition to going beyond submodular utilities, our focus in this paper is the practically relevant

aspect of having exogenous constraints on a feasible committee. We assume there is a set £ of

feasible committees (each of size at most k), and the chosen committee W must belong to this set.
Several types of constraints could arise in practice, and we now give some examples.

e Matroid Constraint. Multiwinner elections with a single matroid constraint were previously
considered in Fain et al. [2018]. Here,  consists of all independent sets of size at most k in
the matroid M. The simplest example of matroids is a partition matroid constraint. The set C
of candidates are partitioned into disjoint groups Gy, G, . . ., G, and any feasible committee
of size k can choose at most k; candidates from group G;, where the k; are exogenously
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specified. As an example, the groups could represent geographic regions the candidates hail
from, or the type of project in Participatory Budgeting.

e Packing Constraints. Here, there are multiple downward-closed constraints, meaning that
any sub-committee of a feasible committee is also feasible. For instance, imagine candidates
belong to multiple overlapping groups (different races, genders, income levels), and there is a
constraint on the number of candidates that can be chosen from any group.

o Independent Set. This is a special case of packing constraints. We have a graph over the candi-
dates, with the constraint that a feasible committee is an independent set in this graph. This
captures pairs of candidates who have conflicts or pairs of projects that cannot simultaneously
be funded. These projects cannot be simultaneously put on the committee.

® Rooney Rule. Going beyond packing constraints, we can have minimum (or covering) re-
quirements. For instance, if we seek diversity in the selected candidates, we could impose
minimum numbers on candidates chosen from certain groups. As an example, a committee
needs to include at least x female candidates, or a Participatory Budgeting outcome needs to
include at least one public safety project and at least two child-friendly projects.

In this paper, we consider the most general model where the set # of feasible committees of
size at most k can be an arbitrary subset of 2€. Though it is tempting to use Definition 1.1 while
restricting the blocking committee T to also lie within #, the y-core may be empty for any constant
y even for a single packing (or partition matroid) constraint.

Example 1.3. Consider ApprOVAL utilities. There are g = Vk groups V4, Vs, . . ., Vg of voters each
of size n/q. The committee size is k. Corresponding to each group V;, there is a disjoint set T; of
q candidates, each of which are approved by all voters in V;. There are infinitely many dummy
candidates not approved by any voters. The partition matroid constraint insists that at most g
candidates from U?lej and any number of dummy candidates can be chosen in any feasible
committee. We therefore choose at most one candidate from some group T;. But this group can

deviate and choose all of T; as the blocking committee, increasing their utility by a factor of Q(Vk).

1.2.1 Restrained Core. In the above example, the deviating coalition of voters has too much power
in the sense that their choice entirely ignores the presence of other voters. We instead use the
perspective of social planner protecting the rights of the voters who do not deviate by providing
them first their “fair share” of the budget. This leads to our first contribution, defining the restrained
core. To understand this definition, given allocation W € P, suppose subset S of voters deviates
with its endowment k’ = L%kj. Then, S’ =V \ S is also entitled to k — k’ candidates. The social
planner picks at most k — k” candidates from the current allocation W for S’. This leaves space for
S to pick k’ candidates from C subject to the feasibility constraint. Formally,

Deﬁmtzon 1.4 (y-approximate restrained core). Given a set P of committees of size at most k, a
committee W is said to be g-completable if there exists W with |W”’'| < q such that W’ UW € P.
A committee W € P lies in the y-approximate restrained core if there is no constraint-feasible
y-blocking coalition S C V of voters. Such a blocking coalition with endowment k’ = [%k] satisfies
the following: For all k’-completable committees W C W with |W| < k — k’, there exists W’ with
|[W’| <k’ such that (1) T = W/ UW € P, and (2) for all i € S, it holds that u;(T) >y - (u;(W) + 1).

We insist W is k’-completable in order to ensure there is always some choice of W’ for Condition
(1), which is important to make sure the condition is not vacuously false when |[W| < k—k’. Further,
note that when P is the set of all committees of size at most k, that is, when there are no allocation
constraints, then Definition 1.4 reduces to Definition 1.1. To see this, simply note that the choice of
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W’ in Definition 1.4 is now not affected by the choice of W, so that W = 0 without loss of generality.
Therefore, Definition 1.4 generalizes Definition 1.1 to constraints.

Example 1.5. Continuing Example 1.3, suppose W includes g candidates from U, T;. Then, if group
V; attempts to deviate, the complement can simply choose any committee of size k — g that includes
all of W N (U,T;). Since this committee already includes g candidates from U,T;, this means V;
can only choose dummy candidates and hence cannot increase its utility. Our definition therefore
circumvents the impossibility in Example 1.3 on this instance.

1.3 Our Contributions

1.3.1 Restrained Core. Our first main contribution is the definition of the restrained core (Defini-
tion 1.4). Building on this definition, our main technical contribution is the following theorem.

THEOREM 1.6 (PROVED IN SECTION 2.1). For multiwinner elections with arbitrary allocation con-
straints P and f-self bounding utility functions for f > 1, an e -approximate restrained core is always
non-empty. As a consequence, the eﬂ-approximate core is non-empty without allocation constraints.

As we mention in Section 1.4, though there has been prior work on core with constraints, these
either require scaling down the constraints on deviation often rendering them meaningless, or
work in very limited settings. Our Definition 1.4 and the associated Theorem 1.6 are the first results
that achieve a constant approximate core for arbitrary constraints even for approval utilities.

Since XOS utilities are 1-self bounding [Vondrak 2010], Theorem 1.6 implies an e-approximate
restrained core for XOS utilities (and hence, for approval, additive, and submodular utilities) with
any allocation constraints, or an e-approximate core without allocation constraints (Definition 1.1).

One choice of W in Definition 1.4 that yields Theorem 1.6 is to maximize the snw score for voters
not in the deviating coalition. Therefore, the social planner takes care of the complement in the
best possible fashion for any deviation, which itself can be viewed as a form of fairness.

Finally, the exponential dependence of the approximation on f is unavoidable; see Theorem 1.10.

1.3.2  Algorithm. The algorithm that yields the above result is surprisingly simple:
GroBAL: Find W € P such that snw(W) is maximized.

Note that we are not finding a local optimum, but instead computing the global optimum of
snw; indeed, when P is arbitrary, the LocaL algorithm may get stuck simply for lack of swaps that
preserve membership in P. Further, Example 1.2 shows Locat is insufficient for XOS functions
even without any additional constraints. Our use of the global optimum necessitates an entirely
new analysis compared to prior work, and this analysis forms a key contribution.

We have therefore presented the first fairness analysis of Nash Welfare for multiwinner elections
with XOS utilities even without additional constraints. We note that compared to prior work on
welfare maximization with XOS utilities [Feige 2006; Lehmann et al. 2001] that were based on
linear programming, our proof for snw is entirely combinatorial. This is because we only use the
self-bounding property of these functions, while welfare maximization uses the stronger property of
fractional subadditivity of XOS functions. To highlight the difference, our results hold for arbitrary
self-bounding functions, while welfare maximization results extend to sub-additive functions. These
classes are incomparable, and we do not know how to extend our results to sub-additive functions.

Finally, we note that for one voter, core stability reduces to utility maximization, which cannot
be approximated in polynomial time within sub-polynomial factors for either XOS functions (value
oracle model; [Mirrokni et al. 2008]) or independent set constraints (NP-HARDNESs; [Feige et al.
1996]). Our results therefore show fairness properties for Nash Welfare even in settings where
there are no computationally efficient and fair algorithms possible via any method.
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1.3.3  Lower Bound for Restrained Core. One may wonder if Definition 1.4 makes the problem “too
easy” so that there is always a 1-approximate (exact) restrained core. We show this is not the case
even in the presence of very simple constraints and approval utilities, via the following theorem:

THEOREM 1.7 (PROVED IN SECTION 2.2). Forc = 16/15 — 0(1), a c-approximate restrained core can
be empty even for approval utilities and a single packing or partition matroid constraint.

This lower bound complements the upper bound of e for additive utilities (f = 1) in Theorem 1.6.
Note that in the absence of constraints, it is a long-standing open question whether a 1-approximate
(exact) core exists for approval utilities. The above theorem shows that surprisingly, even with a
single constraint, the exact (restrained) core for this setting is empty. Indeed, the theorem holds
even for a weaker version of Definition 1.4, where W could be any committee of size k — k" (and
not necessarily a subset of W) such that there exists W’ making W U W’ € P.

1.3.4 Restrained Core and EJR under Matroid Constraint via LocAL. In Section 3 and Appendix B,
we consider the special case where P is the set of independent sets of a matroid.

We first consider the notion of extended justified representation (EJR) [Aziz et al. 2017], which
is a weakening of the core for approval utilities. This is exactly satisfied by LocaL applied to pav
rule in the absence of constraints. In Section 3, we define a generalization to constraints, called
restrained EJR (Definition 3.1), and show that pav satisfies exact restrained EJR for approval utilities
when the constraints form the independent sets of a matroid (Theorem 3.2). In contrast, the exact
restrained core for this setting can be empty from Theorem 1.7. In this setting, the LocAL rule
swaps a candidate j ¢ W for £ € W as long as the committee remains a basis of the matroid and the
pav score strictly improves. Note that unlike GLoBAL, this algorithm is computationally efficient.

In Appendix B, we go back to the restrained core, and show that the LocaL rule applied to
snw lies in the 2-approximate restrained core for a matroid constraint and submodular utilities
(Theorem B.1). The proof builds on Peters and Skowron [2020], who show a 2-approximate core for
the special case of pav with approval utilities and no constraints. They also show that the factor of
2 is tight for the pav rule without constraints, and the same tightness will hold for our setting.

1.3.5 Improved Analysis of pav for Large Coalitions. We next consider the multiwinner election
problem without allocation constraints and with additive utilities. We consider the LocAL rule
with the gpav score. This reduces to classical pav for approval utilities, where Peters and Skowron
[2020] show an approximation factor of 2, which is tight. However, this tightness holds only for
small coalitions of voters. This begs the question: Is there an improved analysis of the LocaL rule for
any coalition size? We answer this in the affirmative: We show that as the coalition size increases,
the approximation factor of the local optimum to gpav approaches 1. In particular, this shows
Locat is weakly Pareto-optimal. In addition, our analysis holds for general additive utilities (and
not just approval), which shows the desirability of gpav as a scoring rule. The proof is in Section 4.

THEOREM 1.8. For multiwinner elections with additive utilities (and no allocation constraints),
suppose only coalitions of size at least an are allowed to deviate, where a € [0,1]. Then any local
optimum to gpav lies in the 2 — a approximate core. Further, this bound is tight for such local optima.

1.3.6  Participatory Budgeting without Constraints. We finally consider the generalization of mul-
tiwinner elections to Participatory Budgeting. Recall that the Participatory Budgeting problem,
candidates can have arbitrary sizes. Let s; denote the size of candidate j, and let Size(W) = ¥ ;v s;
denote the total size of committee W. Any feasible committee W should satisfy Size(W) < b.

We consider the setting without allocation constraints and with f-self bounding utilities. Defini-
tion 1.1 extends naturally if a deviating coalition S can choose committee T so that Size(T) < %.
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See Definition C.1 in Appendix C.1. In this setting, we cannot hope to achieve an analog of Theo-
rem 1.6 via optimizing snw (resp. gpav), since it was shown by Peters et al. [2021] that this outcome
cannot lie in any constant approximate core. Nevertheless, we show the following theorem.

THEOREM 1.9 (PROVED IN APPENDIX C.1). For the Participatory Budgeting problem with f-self
bounding utilities (where > 1 is an integer) and no allocation constraints, a c-approximate core is

always non-empty, where ¢ = %),

Note that Definition 1.1 approximates the utilities coalitions must receive for them to be blocking.
We show the above theorem via a generic reduction from a different notion of approximation
from Cheng et al. [2020]; Jiang et al. [2020], where the endowment of a coalition is scaled down
when they deviate; this scaling factor represents the approximation ratio. This is formally defined
in Definition C.2 in Appendix C.1, and here, Jiang et al. [2020] show that a 32-approximate core
exists for all monotone utilities and arbitrary candidate sizes (with no allocation constraints).

We show that this result for endowment approximation implies Theorem 1.9 for f-self bounding
utilities. The key ingredient in the reduction is a sampling lemma (Lemma C.5) that lower bounds
the expected utility of a random sample of candidates. This lemma may be of independent inter-
est. We combine this with Chernoff-style lower tail bounds of such sampling for self-bounding
functions Lemma C.6 from Boucheron et al. [2000] to complete the reduction.

In contrast to Theorem 1.6, Theorem 1.9 holds only in the absence of constraints. Further, for the
case of multiwinner elections with XOS utilities, the constant factor in Theorem 1.9 is much worse
than the factor of e for snw in Theorem 1.6, showing the superiority of snw in this setting.

1.3.7 Lower Bound for Self-bounding Functions. We complement this by showing that the expo-
nential dependence of the approximation factor on f in Theorems 1.6 and 1.9 is unavoidable even
in the absence of constraints (Definition 1.1). This extends a result of in Munagala et al. [2022],
who show that a 1.015-approximate core can be empty for submodular utilities (where § = 1).

THEOREM 1.10 (PROVED IN APPENDIX C.2). For multiwinner elections with -self bounding functions

(B = 5) and no allocation constraints, the c-approximate core can be empty for ¢ = % (%)ﬁ/2 —o0(1).

Summary of Results. In Table 1, we present a summary of the results for approximate core under
various utility functions, candidate sizes (unit vs. general), and allocation constraints. We have
omitted Theorem 1.8, and the restrained EJR result in Section 3.

H Utility H Sizes \ Constraints \ Approx. \ Lower Bd. \ Run Time H
B-self bounding || Unit General e/ (Sec.2.1) | 1 (%)ﬁ/2 (Sec. C.2) -
XO0S Unit General e (Sec. 2.1) -
Submodular Unit Matroid 2 (Sec. B) 16/15 (Sec. 2.2) Poly.
Approval Unit Matroid ' Poly.

B-self bounding || General None 9P (Sec.C) | 1 (%)ﬂ 2 (Sec. C) -

Table 1. Summary of results for approximate core. The upper bound of 2 for submodular utilities also holds
for approval utilities, while the lower bound of 16/15 for approval utilities also holds for submodular and XOS
utilities. An empty box in “Run Time” implies an existence result.

1.4 Other Related Work

A long line of recent literature has studied voting rules that achieve proportionality; see Aziz et al.
[2019]; Brandt et al. [2016]; Endriss [2017]; Lackner and Skowron [2023] for recent surveys. The
core represents the ultimate form of proportionality, since the guarantee holds for any demographic,
whether explicitly specified or based on cohesiveness of opinions.
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Nash Social Welfare. The snw objective is closely related to Nash Social Welfare [Arrow and
Debreu 1954; Brainard and Scarf 2005; Nash 1950]. This has been widely studied in the allocation of
private goods, where each participant has an additive utility over the bundle of goods they receive.
When goods are divisible, Nash Welfare is the solution to the Fisher market equilibrium [Eisenberg
and Gale 1959]. When goods are indivisible, Caragiannis et al. [2019] show that a local optimum to
this objective (where pairs of goods can be swapped between individuals) satisfies approximate
envy-freeness (EF1). The global optimum of the Nash Welfare objective satisfies Pareto-optimality
as well. We note that this setting, there are pseudo-polynomial time algorithms achieving both
properties [Barman et al. 2018]. In contrast, our paper shows fairness properties for Nash Welfare
in settings where no computationally efficient approximations to stability are even possible.

Core with Constraints. Prior work has tried addressing the aspect of constraints via either chang-
ing the definition of the core or what an approximation means. We now contrast these with the
present work. As mentioned before, the work of Cheng et al. [2020]; Jiang et al. [2020] considers
a different approximation notion where the endowment of a coalition is scaled down when they
deviate. Their results extend to packing constraints of the form AX < b, where X is a binary vector
representing which candidates are present in the committee. However, for a coalition of size an,
they require the deviating committee 3 satisfy Ay < ab, that is, they change the constraint set to
make it more strict. This may make the constraint on deviation impossible to satisfy - for instance,
an independent set constraint is of the form x; + x, < 1, where j, ¢ € C. If we replace the RHS by
a < 1, this forces both of j, £ to not be chosen, so that the only feasible committee for any deviation
is empty. In contrast, Definition 1.4 does not change the constraint set, and further, works not just
for packing constraints, but for other constraints such as the Rooney Rule.

A different notion of core for multiwinner elections, defined in Fain et al. [2018], is the following:
When a coalition S deviates, they are allowed to choose a committee of size k; however, they
need to obtain a factor y - n/|S| factor larger utility on deviation for it to be a y-approximate core.
Like our notion, their notion also allows for constraints. Indeed, they consider the same setting
as Theorem B.1 except with additive utilities and show that the same LocAL algorithm yields an
approximate core solution in their notion as well. However, the approximation factor becomes
super-constant for multiple matroid constraints or for general packing constraints, even with
approval utilities. Indeed, they show that the core does not exist to any non-trivial approximation
for independent set constraints with approval utilities. In contrast, Definition 1.4 extends smoothly
to arbitrary constraints, yielding a e#-approximate core for very general -self bounding utilities.

Participatory Budgeting. In the absence of constraints, the proof of Theorem 1.9 shows a generic
reduction of approximation on utility (Definition C.1) to approximation on endowment (Defini-
tion C.2) from Jiang et al. [2020]. However, the algorithm in Jiang et al. [2020] does not run in
polynomial time even for approval utilities and unit size candidates. For Participatory Budget-
ing with general sizes, Peters et al. [2021] present a polynomial time logarithmic approximation
(under Definition C.1) for approval utilities, which is improved to a polynomial time constant
approximation for submodular utilities by Munagala et al. [2022].

2 RESTRAINED CORE FOR MULTIWINNER ELECTIONS

We will prove Theorems 1.6 and 1.7, respectively upper and lower bounding the approximation to
the restrained core (Definition 1.4) for f-self-bounding utilities and arbitrary constraints.

2.1 Proof of Theorem 1.6

We will first show that the y-approximate restrained core is non-empty for y = e”, for -self
bounding functions, when the chosen committee of size at most k needs to belong to some P C 2.
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Define ®(x) = In(1 + x). Note that the GLoBAL rule optimizes snw(W) = ; ®(u;(W)) over
W € P. We will need the following analytic lemma.

Lemma 2.1 Ifu;(W) > 0 then ®(u;(W)) — ®(u;(W \ {j})) < “00-ulRUD.

Proor.

O(u;(W)) — @(ui(W\ {j})) = In(u;(W) +1) = In(w; (W \ {j}) +1)

[y O —mWA D) wW) - w(W ()
a ui(W)+1 - ul(W)

The last inequality follows since —In (1 - 1+Lu,) < ul, for all x € [0,1] and u; > 0. O

We will now show that the GLoBAL rule lies in the ef-approximate restrained core, for arbitrary
constraints  C C on the committee.

Proor. (of Theorem 1.6) Suppose GLOBAL finds a committee W € P.If W does not lie in the
Y-approximate restrained core, there exists S C V of voters that deviate. Let « = |S|/n and let
k' = |a - k). Then for any completable W C W with size at most k — k’, there exists W’ with
|[W’| < k’ such that (1) W UW € P and (2) u;(W’ UW) > y(u;(W) + 1)Vi € S. We will show a
contradiction for y = ef.

We consider the sets S and S separately. We first consider the latter set. By the f-self-bounding
property of the utilities, we have for all i ¢ S,

D w(W) —w(W\{j}) < B us(W).

JjEwW
Since |S| = (1 — a)n, summing these inequalities over i ¢ S, there exists j € W such that

1_ui(W\{j}) |{i¢5¢ui(W)>0}|</3'(1—05)’n
ui (W) k - k :

o

i¢S:u; (W)>0 (

By combining this inequality with Lemma 2.1, we have

Doe@W) - @(W\ (D)= D, (W) - w(W\ {j})
igS igS:u; (W)>0
w(W) —u(W\ (Y _f-(1-a)n

<
= ui (W) = k

i¢S:u; (W)>0

We continue removing such a candidate j from the current committee until we have removed k’
candidates. Set W to the set of all remaining candidates. This set is k’-completable since W U (W \
W) € P and |W \ W| = k’. Iteratively using the previous inequality, we have

k

o) —ewn s > PP o g g k- lnf(1 - k)

igS ko=k—Lak |+1 ko
<-f-(1-a) -n-In(1-a).

Now consider the set S. By assumption, there exists W’ C C with |[W’| < k’ such that for any i € S,
w(WUW’) >y (u;(W) +1), and further WU W’ € P.
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Consider adding W’ to W. This cannot decrease the snw score for voters i ¢ S since we assume
the utilities are monotone. Therefore,

ZCD(ui(W UW’) —®(w;(W)>0>4-(1-a)-n-In(1-a).
i¢S

For voters i € S, since u;(W U W’) > y - (u;(W) + 1), we have:

Z O(u; (WU W) — d(us(W)) > Z In(y - w(W) +y+1) - In(w;(W) +1) > - n-Iny.
ieS ieS
Adding the previous two inequalities, when y > ¢, we have
snw(WUW') —snw(W) >n-f-(a+(1-a)-In(1-a)) >0,

where the final inequality holds for any ¢ € (0, 1]. Since WUW € P, this contradicts the
assumption that W had the largest snw score. Therefore, W lies in the restrained e?-core. O

Remark. Note that the social planner can choose W C W of size k—k’ to maximize Digs P(u; (W)),
that is, the snw score for voters in S. Therefore, the social planner can be viewed as giving S a good
solution from their perspective before giving S their choice.

2.2 Lower Bound: Proof of Theorem 1.7

We now show that for ¢ = 16/15 — 0(1), the c-approximate restrained core can be empty even for
approval utilities and a single packing (resp. partition matroid) constraint. We show the theorem
for a stronger version of Definition 1.4, where W could be any committee of size at most k — k’
(and not necessarily a subset of W) such that there exists W’ making W U W’ € P. A lower bound
for this setting will also imply a lower bound for the setting where we require W C W.

The voters have approval utilities, that is, the utility is additive across candidates, and the utility
for any candidate is in {0, 1}. There are 6 parties and 4 voters {a, b, ¢, d}. Each party has an infinite
number of candidates and each voter’s utility for all candidates in a single party is identical, that is,
either a voter approves all candidates in a party (gets utility one from any of them) or disapproves
all of them (gets utility zero from any of them). Each party is approved by two voters. For the set of
voters {a, b}, denote their jointly approved party by g,p. Similarly, define gcq, gad> Joe> gba, and geq.
Note that voter a approves all candidates in parties gap, geq, and gqq. Set k = 6.4r, where r is a large
number. Denote by u,, up, u. and u, as the voters’ utility functions.

There is a single packing constraint on the entire candidate set, saying that any solution can
choose at most 6r candidates. We can equivalently make this a partition matroid constraint by
placing a dummy party that no voter approves, and having no bound on the number of these
candidates that can be chosen.

We begin with a feasible committee W that lies in the (16/15 — €)-approximate restrained core
for any € > 0, and derive a contradiction.

Without loss of generality, assume

uag(W) < up(W) < ue(W) < ug(W). (4)
LEmMMA 2.2, IfW lies in the 16/15-approximate restrained core, u,(W) > % -rand up(W) > % -T.

Proor. Suppose u, (W) < % - r. Consider {a} as the deviating group. Since {b, ¢, d} are entitled
to 4.8r candidates, the worst selection of a committee W’ of this size includes candidates from
parties not approved by a. Now voter a has 1.6r endowment and the packing constraint implies it
can choose 1.2r more candidates given W’. Since 1.2r > i—g . (% . r), a can deviate and choose at
least 1.2r voters in g,p to make W fail the 16/15-restrained core. This is a contradiction.
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Similarly, if u; < %1 - r, consider {a, b} as the deviating group. The set {c, d} has an endowment
of 3.2r, and the worst selection of W’ by them includes only candidates from g4.. The packing
constraint now implies {a, b} can select 2.8r candidates from g,p. Since 2.8r > 1—2 (% -r), W again
fails the 16/15-restrained core. This completes the proof. O

Consider the total utility of the voters in a feasible committee W of size at most 6r. Since each
candidate contributes exactly 2 to the total utility, we have

ug(W) +up(W) + uc (W) + ug(W) < 12r. (5)
Suppose W lies in the (16/15 — €)-restrained core. By Lemma 2.2, we have

2r —ug(W) —upy(W) 33
2 =37

Now consider the deviating group {a, b, c}. Voter d can deviate to W’ with size at most its
endowment, 1.6r. Consider d’s choice of W’. Since selecting any candidate from g4, gcq, gpe gives
utility 2 to some voter i € {a, b, ¢}, we can always switch this out to a candidate that gives utility
one to voter i, and zero to other voters in {a, b, c}. Therefore, without loss of generality, W’ only
contains candidates from g,4, gpd, gcq. Denote the number of candidates selected in W’ from these
three groups as t,, tp, t, respectively. Therefore W’ satisfies the constraint set:

u.(W) < !

(6)

Q={ta+1ty+t. <1.6r; tgtp,t. >0}

As mentioned before, though Definition 1.4 insists W’ € W, we will not enforce this, but instead
show that for any choice W’ € Q, the set {a, b, c} has a deviation that increases their utility by at
least 16/15.

Fix some W’ € Q. Suppose {a, b, c} selects xgp, Xpc, X candidates from the groups g,p, gpc and
Jea Tespectively as their deviating committee T. If the following constraints are simultaneously
satisfied, then W will not lie in the (16/15 — ¢)-core for any € > 0:

Xab + Xpe + Xeq +tg +1p + 1. S 61, (7)
16

Xab + Xea + g = T ua(W), 3)
16

Xap +Xpe+lp 2 o up(W), 9)
16

Xea + Xpe + e > T uc.(W), (10)

Xabs Xbes Xca 2= 0, (11)

We now show that this system has a feasible solution for any 7 € Q and for any setting of utilities
that satisfy Lemma 2.2, Eq. (5), and Eq. (6). This will complete the proof.
We analyze the following cases:

1. tg+tp +t. < 1.2r and uy (W) + up(W) > u.(W). In this case, we set
Xab 8 ua(W) +up(W) — uc(W)
Xea| = — [Ua(W) +uc(W) —upy (W) .

x| T |up(W) + uc(W) = ug(W)

Clearly, Egs. (7) to (9) hold. For instance,

16 16
Xab + Xea +1g = Eua(W) +1, > Eua(W).
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Further, by Eq. (4) and our assumption for this case, we have u,(W) + up(W) > u. (W) >
max{ug, (W), up(W)}. Therefore, Eq. (11) holds. Since uy(W) > 3r from Egs. (4) and (5),

ug(W) +up(W) +u. (W) < 9r.
Combining this with the choice of x above, we have
8
Xab + Xcqg + Xpe < 91 - E =4.38r.

Therefore, Eq. (7) also holds.
tatitp+te < 1.2rand ug (W) + up (W) < uc(W). In this case, we set

Xea| = ¢ Ug
pe| P |ue(W) — ug(W)

It is easy to check that Eqgs. (7) to (9) hold. For instance,
16 16 16
Xab * Xpe + tp = E(UC(W) —ua(W)) +1tp > 1—5ub(W) +ip 2 1—5ub(W),

where we have used the assumption that u.(W) — u,(W) > u,(W). Further, since u.(W) <
3—83 - r by Eq. (6), we have
16 33
Xab + Xpe + Xca < E . E cr=44r < 4.8r.
Therefore, Eq. (7) holds. Finally, since u.(W) > u,(W) by Eq. (4), all x > 0.

. ta+tp+t. > 1.2r. Since any f € Q satisfies t,+1t, +1t. < 1.6r, Eq. (7) implies x4p + Xpe +xcq < 0
for some 0 > 4.4r. We will show a X feasible for Egs. (8) to (10) when ¢, + t, + t. = 1.2r and
Xab + Xpe + Xeq < 4.4r. This will imply a feasible solution for any € Q by simply increasing
the  appropriately.

Denote i; = }—g -u;(W) — t;, for each i € {a, b, c}. Note that t, + t, + t. = 1.2r. Further by
Lemma 2.2 and since u.(W) > u,(W) by Eq. (4), we have i—g -u;(W) = 1.2rforalli € {a, b, c}.
Therefore, all #; > 0.
a) If 4, + 0, > 1., we set
Xab 1 Ug + Up — U
Xeal| = E ﬁa+ﬁc—ﬁb .
Xbe iy + U — g
It can be checked that this satisfies Egs. (7) to (9). For instance,
N 16
Xab + Xca t1lqg =Ug+1g = 1_5ua(W),
since 1, = % ~ug(W) — t; = 0. We also have
1 . . N 8 1
Xab t Xpe + Xca =§(ua +p + ) < E(ua(w) +up(W) +uc(W)) - E(ta + by + 1)

S—9r— —— < 44r.
Therefore, Eq. (7) holds. The following inequalities show that x;¢, x¢q > 0.
iy +, — fy > % (e (W) + (1 (W) = up (W) = (£ + £y + 1) > gua(W) —12r >0,
U +te — g = up(W) + (ue(W) —ug(W)) = (tg + tp + t) = up(W) — 1.2r > 0,

where we have used Eq. (4). Further, x,;, > 0 by assumption. Therefore, all constraints hold.
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b) If 4, + 4 < 4, this implies @, — 4, > 4 > 0. We set

Xab 0
Xea| = Ug
Xbe Ue — Ug

As before, it is easy to check that Egs. (7) to (9) hold; further, the x variables are non-negative.
To verify Eq. (7), we have

16 33

16
Xab + Xpe + Xeq = Ue < — - uc(W) < s = 4.4r,

15 15
where the final inequality follows from Eq. (6).
Therefore, no matter which W’ the remaining voter d selects with size limit 1.6r, there is always a

deviation profile (x4p, Xcq, Xpc) for {a, b, c} to expand their utility by a factor of 16/15. Therefore,
any feasible committee W fails the (16/15 — €)-restrained core for any € > 0.

3 RESTRAINED EJR FOR APPROVAL UTILITIES AND MATROID CONSTRAINT

One weakening of the core for approval elections is Extended Justified Representation (EJR) [Aziz
et al. 2017]. In the absence of constraints, it is known that any local optimum of pav satisfies this
notion. We now define a restrained version of this notion when there are constraints.

3.1 Restrained EJR for Approval Utilities

We first define restrained EJR for arbitrary constraints # and approval utilities. Recall that in
approval utilities, each voter i has an approval set A; of candidates, and the utility of this voter for
subset T of candidates is simply u;(T) = |A; N T|. Further recall the notion of g-completable from
Definition 1.4. Finally, given a set S of voters and T of candidates, let As(T) = (N;esA;) N T denote
the candidates from T that are commonly approved by S. Note that |As(T)| < u;(T) foralli € S.

Definition 3.1 (Restrained EJR for Approval Utilities). We are given a set P of feasible committees
of size at most k. A committee W € P satisfied restrained-EJR if there is no constraint-feasible
blocking coalition S C V of voters. Such a blocking coalition with endowment k’ = [%k] satisfies
the following: For all k’-completable committees W C W with |W| < k — k’, there exists W’ with
[W’| < k’ such that

() T=W/ UW € P, and

(2) Foralli € S, |As(T)| > max;jes u;(W) + 1.

To interpret this definition, given coalition S, suppose for every k’-completable W, there was
a deviation T = W U W’ where at least ¢ = |As(T)| commonly approved candidates are chosen.
Then restrained EJR implies some voter in S obtains utility at least ¢’ in the committee W.

Note that this is a specialization of Definition 1.4 where in Condition (2), u;(T) is replaced by
|As(T)|, which is at most as large. Further, as with Definition 1.4, in the absence of constraints, we
can set W = 0 and T to be an arbitrary subset of N;ecgA; of size k’, so that |Ag(T)| = min(k’, 6),
where 0 = | Njes A;|. In this case, restrained EJR is equivalent to classic EJR [Aziz et al. 2017].

3.2 LocAL Achieves Restrained EJR under a Matroid Constraint

We now show that when # form the independent sets of size at most k of a matroid M, then any
local optimum of pav (Eq. (1)) satisfies restrained EJR.

Recall the terminology from Appendix B. Formally, for a matroid M on candidates, a committee
W € M is a basis iff there does not exist W’ such that W ¢ W’. All bases of M have the same size,
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in this case, the size of the committee, k. We therefore assume % is the set of all independent sets
of the matroid of size at most k.

The Locat algorithm swaps a pair of candidates as long as the committee remains a basis of M
and the pav score strictly increases. We will prove the following theorem.

THEOREM 3.2. When P form the independent sets of size at most k of a matroid M, the LocaL
algorithm applied to the pav score finds a committee satisfying restrained EJR (Definition 3.1).

3.2.1 Proof of Theorem 3.2. We prove this by contradiction. Suppose LoCAL outputs a committee
W of size k that fails restrained EJR. Then there exists a blocking coalition S with endowment
k' = L%kj, such that both conditions in Definition 3.1 hold for any W. We will show a feasible
LocaL swap that strictly increases the pav score.

Let A = (jes Ai. For ¢ € W, let V. (W) = pav(W) — pav(W \ {c}). For ¢ ¢ W, let A, (W) =
pav(W U {c}) — pav(W).

Let £ = max;esu;(W). If kK’ < £, we can set W = 0, which is trivially k’-completable. Then
any selection of W’ will make uil(W UW’) < ¢ Vi € S. This violates the second condition
|ﬂ5(W v W’)‘ > u;(W) + 1 in Definition 3.1. Therefore, K’ > £ + 1.

Next, we set W to be the k — k’ candidates in W \ A with the highest V.(W)’s. If there are ties,
we first include candidates outside | J;cg A; first.

Since S forms a blocking coalition, there exists W’ (where W’ UW € P) such that |Ag(W UW)| >
f+1.LetT=W UW.Since T € P, by the matroid property, we have T N (AU W) is also in P.
Since W € P is a basis, we can augment T N (A U W) with candidates in W until it contains k
candidates and is also a basis. Denote this new committee as Tj. Since all added candidates are from
W, we have Ty € AU W and Ty € P. Further, note that the new candidates added do not belong to
A, so that |As(T)| = |As(Ty)| = £+ 1.

We now define the following sets:

Wa=As(loNW), Wp=To\W, Wag=As(W\Tp), We=(W\T)\A,
We=W\ (WUW,UW;UW,).

These sets are illustrated in Fig. 1. Denote the number of candidates in W, as ng-k for q € {a, b, c,d, e}.

Since all voters in S have utility at most ¢, we have |As(W)| < £. Therefore, |[W \ A| > k- ¢ >
k — k" + 1. Note that

[Wal + [We| = [WN\ To| = |To \ W| = [Wj|.
Further, since Ty € AU W, we have W, C A\ W, so that W}, = As(W},). Therefore,
[Wal +[Wp| = [As(To)| = [As(D)| 2 £+1 2 [As(W)| + 1 = [Wa| + [Wa| + 1.

Therefore, we have |W,| > 1, so that W, # 0.

Denote the number of voters with strictly positive utility as n*. We have

1 |A; N W]
ZVC(W):ZZ—: Z = nt.
cew  een, WA O W iui (W)>0 A O W]

Now select candidate ¢; € W N W, with the smallest V.(W). Note that by definition of W and since
W, € W is non-empty, this candidate lies in W,. If there are ties, select a candidate approved by
the maximum number of voters in S. We now consider two cases and show the same bound for
V¢, (W) in either case.

n—(na+na) k- £k

LEMMA 3.3. AL‘] (W) < m

Proor. We analyze the upper bound of A, (w) in the following two cases:
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WnA
DN - | -
W

Fig. 1. lllustration of the candidate groups. The first row illustrate the five candidate sets which compose W.
The deeper blue boxes are candidates in Ty. The red boxes represent candidates in A, which are candidates
approved by all voters in S.

e Case 1: ¢ = 0. In this case, W N A = 0, and thus 5, = 14 = 0. Further, since max;cs u;(W) =0,
we have n > n". Since c¢; has the lowest V.(W) in W U W,, we have

nt n=(na+na) k-t
Ve, (W) < — < = (Since u;(W) = 0,Vi € S and n > n*)
(W] + [Wel W1+ [Wel
n—(na+na) k-t B n—(na+nq) k-2t

S k=(atmp+ne) k+ne-k k—(atnatne) -k’

(Since np = ng + 1e)

e Case 2: £ > 1. In this case let S* = {i € S : u;(W) > 1}. Let ny = n — n* denote the total

number of voters with zero utility, and let S = S\ S* be the subset from S with zero utility.

Since each i € S* has utility at most ¢, their individual contribution to V.(W) is at least %

Since Seew Ve(W) = 1%, Secpumow, Ve(W) < = [WoUWa|- Bl = n—(na+na) k- .

Therefore, we have

V. (W) < n* = (na+na) k- 1 _ n—ng— (na+1q) - k- E5L
T+l k= (na+na+no) -k

(The first equality holds only when V. (W)’s are all equal within W U W,)

n—(na+na) - k- 5L = (no ISl - P2%) = (a+na) k-

k—=(na+na+ne)-k “k—(natna+ne) -k
(Since ng > |So| and (5, + 1g) - k = |[As(W)| < ¢)

Is|
- n—(Ma+na) k-3

T k=(atnatne) -k

(Equality holds only when 5, = g = 0 and n = n*)
[m]

Since W and Ty are bases of M, and Tp \ W = W}, for any ¢; € W), we have W \ {c1} U {c,} € P.

Since ¢, € W, it is approved by all voters in S, so that A, (W) > %. Combining this with the
bound on V., (W) from above, we have
-(£+1) Na+1)
v (W) < n—(na+nq) k-2l _ sl 5~ (a+na) -k _ s k- i~ (ma+na) -k
T k= (atna+ne) k€41 k=(a+na+ne) -k T £+1 k= (a+na+ne) -k
(Since (7a + 1) -+ k = |Wa| + [Wp| > £+ 1and 2l = & =1—% =1Na+1Mb +1c)

Natnb
S| Faenorne ~ (la+1a)

t+1 (1-no)—(ma+na)
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Since nﬂfw 1 — 5. (equality holds only when 7, = 0), we further have
Ve, (W) < — l | < A, (W) (Equality holds only when u;(W) = ¢ for alli € S)
< ACZ(W \ {c1}). (Equality holds only when ¢; ¢ A; foralli € S)

We finally argue that some inequality above must be strict. We have V., (W) = A,,(W \ {c1})
only if all the following conditions are met: (a) n, = ng = 5. = 0; (b) all V.(W)’s are equal within
WUW,;(c)Vi €S, c1 ¢ A;;and (d) n = n*. By (a) and (b), we have WUW, = W and thus V(W) = s
for all ¢ € W. Recall that in choosing W, we break ties in favor of candidates which are not approved
by any voter in S, and we select ¢; from W, to be the one approved by the maximum number of
voters in S. Since by (d), we have u;(W) > 1for alli € S, there exists i* € S such that ¢; € A;+. This
contradicts (c).

Therefore, all the equalities cannot hold simultaneously and V., (W) < A.,(W \ {c1}). Since
WA\ {c1} U{c2} € P, switching c; to ¢, strictly increases the pav score of W. This contradicts the
fact that W is a local optimum for pav.

4 TIGHT ANALYSIS FOR ADDITIVE UTILITIES: PROOF OF THEOREM 1.8

We assume the voter utility functions {u;(-)};cy are additive. Let u;(c) denote the utility of voter i
for candidate c. The committee size is k and there are no additional constraints.

Recall ®(x) = H(|x]) + XEJHCJ and the gpav rule from Eq. (3) is gpav(T) = 3oy ®(u;(T)). The
LocaL rule keeps swapping a candidate in T C C (of size k) with one not in T as long as the gpav
score strictly improves. Note that for the special case of approval utilities, gpav reduces to pav,

which was shown to be 2-approximately stable in Peters and Skowron [2020].

4.1 Upper Bound

We first prove the upper bound. Let W denote any local optimum found, with size k. Consider any
subset S C V of size « - n, where n = |V|. Assume it does not lie in the (2 — «) core.

Analogous to Peters and Skowron [2020], we first define the marginal change in gpav on adding
or deleting a candidate.

e Ve g W, A (W) = &(u;(W U {c})) — ©(u;(W)) and A (W) = ey Aie(W).
o Ve e W, Vie(W) = (u;(W)) — ®(w;(W \ {c})) and Vo (W) = Yjey Vie(W).

Note that A.(W) = gpav(W U {c}) — gpav(W) and V.(W) = gpav(W) — gpav(W \ {c}). A key
lemma that extends the results in Peters and Skowron [2020] to additive utilities is the following:

LEMMA 4.1. VieV, Y e Vie(W) < 1.

Proor. If u;(W) < 1, we get ) .oy % = Yeew Ui(c) = u;(W) < 1. Therefore, assume
u;(W) > 1. Let § = u;(W) — |u;(W)]. We partition candidates in W into two groups: W; = {c :
ui(c) < 8t and W, = {c : u;j(c) > §}. We have

_ ui(c) 5 ui(c) =6
2,TeW)= 3, VieW)+ ), VieOW) = )y o+ ), (rui(wn * (W)
(Since u;(c) < 1)

— ui(W) 1 1 | )
~ Tu (W) (Lui(W)J B fui(W)]) 'C;V((uz(C) 5). (12)

We now need to maximize 3’ .cyy, (u;i(c) — ). Consider these two cases:
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Cask 1. If [W;| = [u;(W)], we have
D uile) =8 = > ui(e) = 8- Wl < wi(W) = 8- [us(W)].
ceW, ceW

Cask 2. If |W,| < |u;(W)], we have

Z (ui(c)=6) < [We|-(1-9) < [w;(W)]-(1-6) < [ws(W)]+6=8-Tus(W)] < u;(W) =6 [u;(W)].

ceW,

Combining with Eq. (12), we have

_ u; (W) 11
2, Vi) < oy * fatw] ™ T

(@i (W) =6 - [ui(W)1)

ceEW
L W)+ 1= T (WD)
lus(W)]
The last equality holds since either |u;(W)]| + 1 = [u;(W)] or § = 0 is true. )

For any ¢ € C, let A} (w) = u~1zivf/c))+1 and let A5 (W) = Yes A; (w). We show upper and lower

bounds on 3 .1 A§ (W), where T is the deviating committee. Crucially, we bound the sum over
TNW and T\ W separately. We need the following technical lemma.

LEMMA 4.2 (PROVED IN APPENDIX A.1). Given a committee W C C, for alli € V, we have the
following properties: (a)V ¢ ¢ W, A; (W) < Aj (W), and (b)Y c € W, A7 (W) <V, (W).

We now complete the proof of the upper bound of 2 — a. By the local optimality of W, we
have Ac(W) < Vo (W) for all c ¢ W,¢’ € W. Since S with |S| > an deviates, there exists T s.t.
IT| < a-kand u;(T) 2 (2—«a) - (u;(W) +1) forall i € S. Assume that |T N W| = - k, so that
T\ W| < (@ — p) - k. First, we have the following lower bound:

Sagwy =S O, 9 QoWIED g p_a). 3
ieS

ceT ieS ceT u’(W) +1 ul(W) +1

Now we show an upper bound for }.c1 Ag (W).Let Mj = Y crnw Ag (W) and My = ¥ .oy A (W).
We first upper bound M by the following lemma:

LEMMA 4.3 (PROVED IN APPENDIX A.2). M, < Dll%ﬁﬁ - (n—=M).

Adding back M} to the inequality in Lemma 4.3, we have the final upper bound on 3 .7 A5 .(W):

) a- o M -(Q-a)+(@-p)-
;AS,C(W)SM1+T_§'(”_M1)= 1 T_ﬁa n
< (1-a) '051' ’i‘;(a —p)-n (see below)
:%.ng(2—a)-a~n=(2—0!)'|5|-
(Since (2 - a) - @ € [0,1] and Vx € [0, 1], 35 is maximized when f = 0)

1-
where the first inequality holds because

* * * _ Zcewui(c) _ ul(W)
= 3 w0 = 5] - 3G - 5 <

ceTNW ieS \cewW ieS
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The bound on 2 cr Aj (W) contradicts Eq. (13). Thus W lies in the (2 — a)-approximate core,
completing the proof of the upper bound. Note that if we stop LocaL when gpav increases by at
most -7, it runs in polynomial time for constant € > 0 and lies in the (2 — & + €)-approximate core.

4.2 Lower Bound

We now show that given an & € (0, 1], there is an instance and a committee W that is the output of
LocaL, such that W cannot lie in the (2 — @ — €)-core for any € > 0 if deviations are restricted to
sets of size at least an. Our construction is similar to that in Peters and Skowron [2020] who show
a lower bound of 2 — € if the deviating sets can become very small, that is, as « — 0. The setting is

2(1 a)

approval utilities. There are n > voters and let y > 2(2 %) The instance is:

e Voter group V; has a - n Voters, they commonly approve y candidates (set Cy); each of them
also approves a disjoint set of « - y candidates, denote these o - n - y candidates as set C,.

e Voter group V; has (1 — a) - n voters, each of them approves a disjoint set of y candidates.
Denote these (1 — a) - n - y candidates as set Cs.

Set k = (1—a) - ny+y. One local optimum of gpav (equivalently PAV) will output all the candidates
in C; and C;. Switching any candidate in Cs for any candidate in C, strictly decreases the PAV
score. Consider the subset V;. This subset has budget « - k = a(1 — @) - ny + ay. They can deviate
a(1-a) -ny-(1-ay

to choose all candidates in C; and at least approved candidates in C, for

a .
each voter in V;. Since n > (1 “) and y > 2(2 @) each voter in V; will obtain utility
1- - (1- 1-
+a( @ny = ( a)yz(z—a)y— z Y >2-a —s)y+gy>(2—a—£)(y+l).
an

Since voter i € V; has initial utility y, LocaL fails (2 — a — €)-core for any € > 0. Following Peters
and Skowron [2020], the above bound extends as is to rules that satisfy the Pigou-Dalton principle,
which captures optimizing any monotone, symmetric, concave function of utilities.

5 CONCLUSION

Via the notion of S-self-bounding functions and the new notion of restrained core, we have shown
that neither (discrete) convexity of utilities nor allocation constraints nor computational hardness
are a barrier to showing fairness properties for the Nash Welfare allocation in multiwinner elections.
There are several open questions that arise. First, can the results in Theorem 1.6 be extended to
general sub-additive functions? We note that though these functions need not be self-bounding [Von-
drak 2010], they are amenable to constant-factor approximate welfare maximizing allocations [Feige
2006]. It would also be interesting to extend the Participatory Budgeting results (Theorem 1.9) to the
restrained core with constraints (Definition 1.4). This will require fundamentally new ideas, since
the snw rule in Theorem 1.6 does not work with arbitrary sizes, and it is not clear how to extend
the endowment approximation in Jiang et al. [2020] that is used for proving Theorem 1.9 to handle
constraints without scaling them down. Finally, it would be interesting to study the restrained core
as a standalone notion of fairness in other contexts, for instance, allocation of private goods or for
justified representation under arbitrary constraints, extending Theorem 3.2 beyond matroids.
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A OMITTED PROOFS
A.1 Proof of Lemma 4.2
(@) fu;(W) +u;(c) < [u;(W)], we have A; (W) = % > % = Azc(W).
If u;(W) +ui(c) > [u;(W)], denote 6 = [u;(W)] — u;(W) and A = u;(c) — §. We have

Do (W) = g (W) = ——o— L _0+4
’ be uy(W)y+6 uy(W)+6+1 w;(W)+1
5(1-19) )
T (W) +8) (W) +1)  (ui(W) + 1) (u;(W) + 5 +1)
6-A A-d

. wW) + ) (w(W) + 1) (W) + D(wm(W) +5+1) o
Therefore, we have A; (W) > A} (W).

(b) We have V; (W) > % > % = A} (W), completing the proof.

A.2 Proof of Lemma 4.3
A proof sketch of Lemma 4.3 can be obtained from Fig. 2. First we have the white area (which is the

sum of all V.(W)’s of candidates in W) is n. The white area in the middle part is larger than M; (by
Lemma 4.2), so the the white area on the right is upper bounded by n — M;. The highest A (W) in

T \ W is upper bounded by the lowest V. (W) in W \ T, which is at most % Therefore, we have

area M is upper-bounded by % (a—- Pk = T%g - (n — M7). The formal proof is as follows:

By part (a) in Lemma 4.2, we have
M = Z Ay (W) < Z Ac(W).
ceT\W ceT\W
Since W locally optimizes gpav, for any c € T\ W and ¢’ € W\ T, we have A.(W) < V. (W). This
gives us the following:
2icew\T Ve(W)

Z Ac(W) < [T\ W] cénui]r\lTVc(W) <(a-p) k- T

ceT\W

Note that .yt Ve(W) = Zeewrr Ve(W) = 2Zcewnr Ve(W). By part (b) in Lemma 4.2, we have
Ycewnt Ve(W) 2 ¥ ewnr A (W) = M;. We obtain the further upper bound as follows:

Zeew\r Ve(W) Tiev (Zeew Vie(W)) = M}
R Y IR a-p) F
< ?:g'(n—Mik),
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Ag (W)

(a =Pk Bk (1-B)k
T\W wnT WAT

Fig. 2. lllustration of Ag (W) and V(W) for all the candidates in W U T. We divide these candidates into
three groups: T\ W, WN T and W \ T. The dotted line indicates that the lowest V(W) in W \ T serves as an
upper bound for the highest A (W) in T\ W.

where the final inequality is by Lemma 4.1.

B MATROID CONSTRAINT AND SUBMODULAR UTILITIES

Recall from Section 3 that a basis is a maximum independent set of a matroid. Formally, for a
matroid M on candidates, a committee W € M is a basis iff there does not exist W’ such that
W ¢ W’. All bases of M have the same size, in this case, the size of the committee, k. We therefore
assume P is the set of all independent sets of the matroid of size at most k.

Recall also that the LocaL algorithm swaps a pair of candidates as long as the committee remains
a basis of M and the snw score improves. We assume utilities of voters are submodular. We will
show the following theorem.

THEOREM B.1. The LocAL rule for snw yields a 2-approximate restrained core for a single matroid
constraint with submodular utilities.

Our proof uses the following result from matroid theory:

THEOREM B.2 (BAsis EXCHANGE PROPERTY [BRUALDI 1969]). For two bases Wy # W, of the matroid
M, there exists a bijection f : Wy \ Wy — Wo \ W such thatVe € Wy \ Wp, Wi \ {e} U {f(e)} € M.

For any committee W and a candidate ¢ ¢ W, we define A, (W) = snw(W U {c}) — snw(W). For
a candidate ¢ € W, we define V(W) = snw(W) — snw(W \ {c}). We need the following technical
lemmas. In the sequel, by Ecca[V.(W)], we will mean ﬁ Deea Ve(W).

LEmMmA B.3. Given a committee W, if there existsan S €V and T C C where T "W = @, such that

w(TUW) 2 2+ (uy(W) + 1), we have Ecer\w [Ac(W)] > {31
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Proor.
Zeer\w (Zies In(wi(W U {c}) +1) —In (u;(W) + 1)))
T
ZceT\W (Zies W)
>
7|
(Since In(1+ %) > X Vx € [0,1] and u > 0)

u+l u+2’
Z' u; (WUT)—u; (W)
i€S Ui (W)+2

IT|

EcET\W [AC(W)] 2

(By submodularity)

u; (W)+2
> ZiGS ui(W)+2 _ ﬂ
- IT| Tl

LEMMA B.4. Given W C C with size k, we have Eccy [V.(W)] < n/k.

Proor.
ey (In (w;(W) +1) —In (u;(W \ {c}) +1
B [V, (W)] = 2eew (Diey (In (u; (W) k) (ui(W\ {c}) +1)))
2icew Diey —In (1 B %)
- k
(W) —u; (W\{c})
< Dicew Zi:ui(W)>0 %

- k
(Since —In (1 - ﬁ) <%, Vx €[0,1] and u > 0)
i(W)—u; (W
Dk (W)>0 (ZCEW W)
k

Diuy(w)>o 1
<———<

n ui (W) —u; (W\{c})
N k k W)

(Since Y cw i < 1 by submodularity)

]

Proof of Theorem B.1. Suppose the LocaL outputs a basis W and it does not lie in the 2-approximate
restrained core. Assume S C V is deviating. Denote a = L%J/k Let W be (1 — a) - k candidates
with the highest V.(W)’s. Since W fails the 2-approximate restrained core, there exists T such that
u(TUW) > 2- (u;(W) + 1), forany i € S, where TUW € P.

Let T’ =T\ W and W = (W \ W) \ T. Denote 5 = % < 1. Assume |W U T| = k, otherwise add
candidates to T until W U T becomes a basis of M. Therefore, |W’| = |T’| =5 - « - k.

Since W and W U T are both bases of M, by using Theorem B.2 on W and W U T, there exists a
bijection f from W’ to T, such that Vc € W/, W\ c U {f(c)} € M. Since none of these swaps can
improve the objective by the local optimality of W,

Ecew' [Ve(W)] > Ecer [Ac(W)]. (14)

Since W\W contains candidates with the lowest V. (W)’s, we have Eccw [V (W)] > EceW\W [V.(W)].
Since W C W\W and |W’| = n-|W \ W/, we have EceW\W[VC(W)] > n-Ecew/ [Ve(W)]. Therefore,

Ecew[Ve(W)] 2 1+ Ecews [V (W)]. (15)
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Combining Eq. (14) with Eq. (15), we have
1
Ecer [Ac(W)] < Ecew [V (W)] < = . “Ecew [Ve(W)]. (16)
By Lemma B.4, we have Ecew [Vc(W)] < 7. Since u;(T" U W) > 2(u;(W) + 1), by applying
Lemma B.3 on T/, we also have
|S| L _an n 1

T2 T kT r R 2y B[Vl (17)

Since Eq. (17) contradicts Eq. (16), W must lie in th 2-a prox1mate restrained core.

ECET’ [AC(W)] >

C PARTICIPATORY BUDGETING WITH SELF-BOUNDING FUNCTIONS

Recall that the Participatory Budgeting problem is a generalization of multiwinner elections where

candidates can have arbitrary sizes. Let s; denote the size of candidate j € C. There is a size

constraint b, so that for any feasible committee O, we require Size(O) = ZjEO sj < b. As before,

there is a utility function u; for each voter i that is monotone, 1-Lipschitz, and f-self bounding.
We assume there are no constraints on the allocation except for the size constraint. We can

generalize Definition 1.1 as follows:

Definition C.1 (y-approximate core for Participatory Budgeting). A committee W is in the y-
approximate core if there isno S € Vand T C C with }jcrs; < % - b, such that u;(T) >
Y- (ui(W) +1) for every i € S.

We will present an upper bound first in Appendix C.1 by proving Theorem 1.9. We will subse-
quently show the lower bound in Appendix C.2 by proving Theorem 1.10.

C.1 Upper Bound: Proof of Theorem 1.9
We will show a reduction to a different notion of approximate core first considered in [Jiang et al.
2020]. This is called the “endowment approximation”.

Definition C.2. A committee W is in the 0-approximate endowment core for 0 > 1 if there is no

S CVandT C C with Size(T) < 1 81, such that u;(T) = u;(W) for every i € S.

n

The following theorem is shown in [Jiang et al. 2020]:

THEOREM C.3 ([JIANG ET AL. 2020]). The 32-approximate endowment core is non-empty for Partici-
patory Budgeting with any monotone utility functions.

We will now show the following theorem, which will imply Theorem 1.9 via Theorem C.3.

TuEOREM C.4. For Participatory Budgeting with f-self bounding functions, where § > 1 is an integer,
any 32-approximate endowment core is a c-approximate core under Definition C.1 forc < 11.7- 8- 55P.

Random Sampling Bounds. We first show the following result for the expected utility of randomly
sampled subsets for -self bounding functions, which may be of independent interest.

LemMaA C.5. We are given a B-self bounding function u; where > 1 is an integer. Given T C C,
suppose we include each j € T in O independently with probability & < 1. Then E[u;(0)] > aPu;(T).

Proor. Let T have k candidates. For each ¢ € [k],let G, = {W C T,|W| = ¢}, and let Z, =
2weg, 4i(W). Note that Zy = u;(T). Then, we can write

E[w(0)] —Za (1-a)k 'z >Za (1-a)k 'z,
=5
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For a f-self bounding function and any W € Gy for £ > 5, we have

D u(W\ ) 2 (£+1-p) - w(W),

JEW
Summing this over W € G4, we obtain:
(k=€) Zy = (t+1-=p) - Zps1.

By telescoping, Z, > (iif)Zk for f < ¢ < k — 1. Plugging this into the expression for E[u;(0)]:

k-p

k
E[u;(0)] = Zx ;ﬁ a'(1- a)kf(k B [) = Zra? = odPui(T).

This completes the proof. O

Another nice property of self-bounding functions is the existence of Chernoff-style lower-tail
bounds [Boucheron et al. 2000], whose proof uses the log-Sobolev inequality of entropy.

LEMMA C.6 (LOWER TAIL [BOUCHERON ET AL. 2000]). Suppose u; is a f-self bounding 1-Lipschitz
function. Given T C C, suppose we include each j € T in O independently with probability o < 1. Let
1o = E[u;(O)]. Then for any § € (0,1), we have:

82

Pr{u(0) <(1-8ml <e 7.

Proof of Theorem C.4. We will show this by contradiction. Let W denote the 32-approximate
endowment core found by Theorem C.3, so that Size(W) < b. For the sake of contradiction,
suppose there is S C V of size ¢ - nand a T C C with Size(T) < ¢ - b, so that for all i € S, we have
wi(T) 2 - By (w(W) +1).

Letb’ =¢ -b,and b” = % -k - b. Any candidate in T has size at most b’. Therefore, the number

of candidates of size at least % - b is at most y, and these have a total utility of at most y for

any voter, since the utility functions are 1-Lipschitz. Let T’ = {j € T | s; < % - b}. We have
wi(T) > (=1 -B-yP - (wy(W)+1) foralli€S.

Suppose we sample each candidate in T” with probability %. Let O denote the sampled set. By
Lemma C.5, we have E[u;(0)] > YL/, ui(T)y =2 (n—=1)- - (w;(W)+1) foralli € S. Since f > 1, by
Lemma C.6, we have

(n-2)%

Pr[u;(0) <u;(W)] <e 270,

(n-2)°
foralli € S.Let S’ = {i € S|u;(0) > u;(W)}, so that E[|S']] > (1 - e_Z?W*U) - |S|. Thus for any
(n-2)°
0 < g <1, wehavePr[|S]| <q-|S]] < ﬁ e

Further, we have E[Size(0)] = % - Size(T’) < % - b. Since each j € O has s; < % - b, recall that

K—1

b’ = % -k - b, from Chernoff bounds, we have Pr[Size(O) > b"'] < “+.

Therefore, if ¢ > 32 - ? and Pr[|S’| < q - |S|] + Pr[Size(O) > b”] < 1, there is a constant
probability that both |S’| > g - |S| and Size(O) < b holds. This means such a set S’ and committee
O always exists by the probabilistic method. We have |S'| > ¢ |S|=q ¢ -n > 32- ? -¢-nand
Size(0) < b” = % - ¢ - b. This contradicts that W is a 32-approximate endowment core. By plugging
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in the two inequalities ¢ > 32 - f and Pr[|S’| < q - |S|] + Pr[Size(O) > b"] < 1, we get W is a
c-approximate core under Definition C.1 for

32k

e—(n-2)2/2(n-1)
1—e*=1/k*

cSr).ﬂ.
1-—

By setting k = 1.454 and 5 = 11.63, we get ¢ < 11.63 - f§ - 54.6F, completing the proof.

C.2 Lower Bound: Proof of Theorem 1.10

We finally show Theorem 1.10. The exponential in  lower bound holds even for multiwinner
elections and even with no additional constraints, hence complementing both Theorems 1.6 and 1.9.

At a high level, the instance is similar to that in [Munagala et al. 2022]. Fix constant f > 5 and
let r be a large number. There are 6 parties, a, b, c,d, e, f and r candidates in each party. Choose
k = 3r as the committee size. There are 6 voters denoted vap, Vpc, Vcas Vdes Vef> Vfd-

Given committee W, let r - x, denote the number of candidates belonging to party a that are
chosen in W, and analogously for the remaining parties. Note that these quantities are multiples of
% and further, xq + xp + xc + Xg + X, + x5 = 3.

Bl2

Fix a constant z = (%) . The utility function of voters v,p, Up¢, 0cq are

r
wa (W) = 5 (w2 (1= )
Similarly, we define the utility functions of vy, 0cq, Ude, Ve f» 04 Note that these utility functions
are monotone in each x variable since z < 1.

Focus on utility function u,,. We will show it is S-self bounding and 1-Lipschitz. Since x,, x}, are
multiples of 1/r, removing one candidate from party a corresponds to decreasing x, by 1/r. The
decrease in utility is upper bounded by
r
p

Similarly, the decrease in utility by removing any one candidate in b is upper bounded by

_ 1 _ _
Augpy(W) < ﬁxg 1-(1—z-xf)-—=xg 1-(1—2-xf)§xaﬁ <1
r

-1 1 _
Augpy(W) < L-z-(l—xg)-ﬁxf - =z-(1—xf)-xf <1
B r
Therefore, the total decrease in utility from removing each candidate in W is bounded by

r-xa~xﬁ_1+r-xb-z~(1—xg)'xf_lSﬁ'”ab(w)'

Therefore, the utility functions are f-self bounding. Further, since each decrease is utility is upper
bounded by 1, the function is 1-Lipschitz. The other utility functions behave identically.

We will now argue the lower bound on approximation to the core. First observe that in committee
W, there exists a pair of parties from either {a, b, c} or from {d, e, f} so that their fractions are both
at most 3/4. Otherwise, there are at least two parties from either set whose fractions are strictly
larger than 3/4, which contradicts the total fraction being at most 3. Suppose x; < % and x, < %.

Consider the utilities of voters v, and v.,. We have

B B
ubc(W)=%'(xf+2'(1—x5)-xcﬁ) S%-(1+z)-(—) S%(é) ,

where we used z < 1. Since x, < 1, we have

uca<w>=%~( Lz (1-al) o)) <
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where the final inequality holds since z = (%)ﬁ /% and therefore xf < (%)ﬁ <z

Now suppose voters vp. and v., use their endowment of r candidates to choose a deviating
committee W’ with x, = 1 and x, = x;, = 0. Then,
r
5

Therefore, the increase in utility for either voter is a multiplicative factor of

. ubc(W/) uca(W’) . 1 z (4 b 1(4 B2
min s =min|—,—- |- =—|- S
upe(W) ~ uea(W) 2z 2 \3 213
which is larger than 1 assuming > 5. Since we assumed » — oo and f (and hence z) is a constant,
the quantities up.(W’), ucq(W’) > 1 and therefore, the additive term in Definition 1.1 can be
1 ( )ﬁ/Z

ignored. This shows the c-approximate core is empty for ¢ = 5 %

upc (W) = % -z and u.a(W') =

—0(1), completing the proof.
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