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Abstract

The presence or absence of synaptic plasticity can dramatically influence the collective

behavior of populations of coupled neurons. In this work, we consider spike-timing

dependent plasticity (STDP) and its resulting influence on phase cohesion in compu-

tational models of heterogeneous populations of conductance-based neurons. STDP

allows for the influence of individual synapses to change over time, strengthening or

weakening depending on the relative timing of the relevant action potentials. Using

phase reduction techniques, we derive an upper bound on the critical coupling strength

required to retain phase cohesion for a network of synaptically coupled, heterogeneous

neurons with STDP. We find that including STDP can significantly alter phase cohe-

sion as compared to a network with static synaptic connections. Analytical results are

validated numerically. Our analysis highlights the importance of the relative ordering

of action potentials emitted in a population of tonically firing neurons and demon-

strates that order switching can degrade the synchronizing influence of coupling when

STDP is considered.

Keywords Synchronization · Neuroscience · Phase models · Synaptic plasticity ·

Phase cohesion · Critical coupling strength · Oscillations

Mathematics Subject Classification 37N25 · 92B25 · 34C15

1 Introduction

Neural synchrony is thought to play a key role in cognitive processing (Hipp et al.

2011; Senkowski et al. 2008), is a hallmark of the neural dysfunction that manifests
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in Parkinson’s disease (Pogosyan et al. 2010; Wichmann et al. 2011), and is essential

in the maintenance of circadian rhythms (Golombek and Rosenstein 2010; Reppert

and Weaver 2002). Synchronization among large populations of coupled neurons has

been widely studied from a dynamical systems perspective, yielding insight into the

mechanisms by which neural synchronization emerges in conductance-based models

of tonically firing neurons (Brown et al. 2003; Ermentrout 1996; Ermentrout and Ter-

man 2010; Hansel et al. 1995; Hoppensteadt and Izhikevich 1997; Van Vreeswijk et al.

1994), and providing insight into strategies by which pathological synchronization can

be suppressed (Holt et al. 2016; Pyragas et al. 2018; Toth and Wilson 2022; Wilson

2020). The vast majority of the phase-based analysis of neural oscillators, however,

neglects the influence of synaptic plasticity. Often summarized by the aphorism: ‘neu-

rons that fire together, wire together’, synaptic plasticity refers to the widely observed

characteristic of real neurons to modify the strength of synaptic connections over

time in response to the relative firing time between neurons (Ho et al. 2011; Kennedy

2013; Khoshkhou and Montakhab 2019). Recent evidence suggests synaptic plastic-

ity is critical to the brain’s ability to learn from memory (Kennedy 2013) motivating

its implementation in artificial spiking neural networks to develop machine learning

algorithms capable of pattern, image, and feature recognition (Iakymchuk et al. 2015;

Manna et al. 2022).

Incorporation of spike-timing dependent plasticity (STDP) in computational models

of synaptically coupled populations of neurons can have profound effects on their

collective behavior. This point is illustrated by numerical simulations summarized in

Figs. 1 and 2 for a population of N = 5 homogeneous neurons of the form

CV̇i = −I i
ion −

1

N − 1

∑

j �=i

I
j→i

syn , (1)

for i = 1, . . . , N , where Vi is the neural membrane potential (in mV), I i
ion represents

the ionic current derived from the neuron’s internal dynamics, I
j→i

syn represents the

synaptic current from the presynaptic neuron j to the postsynaptic neuron i , and C

is the constant membrane capacitance. Since self coupling is not considered here, the

I
j→i

syn term is scaled by 1/(N − 1) and not 1/N . The synaptic current is (Ermentrout

and Terman 2010)

I
j→i

syn = K g j→i (t)s j (t)(Vi − Esyn), (2)

where K > 0 is a maximum synaptic conductance, g j→i ∈ [gmin, 1] is governed

by a Hebbian STDP rule where the update is a function of the current weight of the

synaptic connection and the time difference between spikes (Van Rossum et al. 2012),

s j is a synaptic variable associated with neuron j , and Esyn is the reversal potential

that governs whether coupling is inhibitory or excitatory. A complete description of

the model parameters can be found in Sect. 2. Figures 1 and 2 present the voltage

dynamics and the corresponding Kuramoto order parameter using inhibitory and exci-

tatory coupling, respectively. The Kuramoto order parameter, ζ , is used to quantify

the level of synchronization with ζ = 1 indicating complete synchronization and

lower values indicating less synchronization in the network (the full definition of the
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Fig. 1 Representative simulations for an inhibitory neural population with and without synaptic plasticity.

Panel A shows the voltage dynamics of a homogeneous population of five neurons with inhibitory coupling

and a static synaptic coupling strength of K g j→i = 0.1 mS/cm2 for all i and j . Panel B shows the

corresponding Kuramoto order parameter indicating stable synchronization. Panel C shows the voltage

dynamics of the same network with Hebbian STDP where g j→i ∈ [0, 1] is allowed to change in time as

described in Sect. 2.2. Panel D shows the associated Kuramoto order parameter

order parameter for this network is given in Eq. (10)). In both figures, panels A and B

show the results with static coupling. Panels C and D in each figure provide the same

information when using a Hebbian STDP rule instead. In both simulations, stability

of the synchronous state depends on the presence or absence of synaptic plasticity in

the network leading to substantial changes in the aggregate behavior. Figures 1 and

2 demonstrate that the presence or absence of synaptic plasticity can have a substan-

tial influence on the aggregate behavior of a coupled population of neurons. Figure 1

demonstrates that a population of inhibitory neurons with static synaptic coupling

and dynamics governed by (1) and (2) will tend toward a stable synchronized state.

However, the inclusion of STDP prohibits this same population from synchronizing.

Figure 2 illustrates that a homogenous population of excitatory neurons with static

synaptic coupling and dynamics governed by (1) and (2) will tend toward a stable

antiphase state. However, the inclusion of STDP allows this same population to reach

a phase cohesive state.

While the dynamics that govern synaptic plasticity are well documented (Dayan

and Abbott 2001) and often included in computational studies, its influence on network
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Fig. 2 Representative simulations for an excitatory neural population with and without synaptic plasticity.

Panel A shows the voltage dynamics of a homogeneous population of five neurons with excitatory coupling

and a static synaptic coupling strength of K g j→i = 0.1 mS/cm2 for all i and j . Panel B shows the associated

Kuramoto order parameter indicating near complete desynchronization. Panel C shows the voltage dynamics

of the same network with Hebbian STDP where g j→i ∈ [0, 1] is allowed to change in time as described in

Sect. 2.2 and Panel D gives the corresponding Kuramoto order parameter

synchronization is of particular interest in this work. Reference (Nowotny et al. 2003)

concludes that STDP enhances neural synchronization when compared to populations

of neurons without plastic synaptic coupling in results obtained on a hybrid network

comprised of a spike generator, a clamp to simulate an excitatory synapse, and a neuron

from an Aplysia abdominal ganglion. Reference (Karbowski and Ermentrout 2002)

analyzes the parameters and factors that contribute to the development of a stable syn-

chronized state in a population of heterogeneous excitatory oscillators coupled with

STDP. Reference (Levy et al. 2001) studies the emergence of distributed synchrony

throughout a population of coupled neurons with STDP. Reference (Maistrenko et al.

2007) discusses bifurcations in stability that occur among populations of Kuramoto

oscillators coupled with STDP as the synaptic potentiation and depression windows

change, with a stable synchronous state existing above some threshold coupling

strength for equal window lengths and the emergence of multistability with asym-

metric windows. Reference (Ozkan et al. 2014) analyzes how various parameters

affect both the induction and retention of phase and period locking in a two-neuron

network with plastic synaptic connections, and reference (Khoshkhou and Montakhab
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2019) focuses on the effect of the axonal delay in a network of conductance-based

neural oscillators with plastic synaptic connections in the context of the critical brain

hypothesis (Chialvo 2010; Levina et al. 2007). In this work, we are primarily focused

on understanding the synchronization (or lack thereof) that emerges in large popula-

tions of neurons with synaptic connections that are subject to Hebbian STDP rules as

illustrated, for instance, in Figs. 1 and 2. While much research has been conducted on

the implications of STDP on synchronization, none has addressed the existence of a

threshold critical coupling strength for phase cohesion and the conditions which would

affect this critical coupling strength. This work extends prior work from Wilson et al.

(2018) to investigate the impact of Hebbian STDP on the critical coupling strength

required to maintain phase cohesion.

Extending prior results from Wilson et al. (2018) that did not consider STDP, we

derive upper bounds for the critical coupling strength required to maintain phase cohe-

sion in a network of neurons with excitatory coupling and STDP. Note here that the

critical coupling strength is the minimum coupling strength required to retain phase

cohesion. Here, a population of oscillators is considered phase cohesive if the phase dif-

ference between any two oscillators remains bounded within a prespecified arclength.

Critically, we find that the presence or absence of STDP can lead to qualitatively

different collective behavior of the aggregate population. Our analysis highlights the

importance of the relative ordering between phase cohesive neurons and that order

switching can degrade the synchronizing influence of coupling when STDP is con-

sidered. The organization of this paper is as follows: in Sect. 2 we provide necessary

background on the neural models used in this study in addition to the phase reduction

techniques used to represent the oscillatory dynamics with a low order basis. In Sect. 3

we derive upper bounds on the critical coupling strength to maintain phase cohesion.

Section 4 shows the result of numerical simulations validating our analytical results,

and Sect. 5 provides concluding remarks.

2 Background

2.1 Neural model equations

The theoretical analysis presented in this work can be applied to any tonically firing

conductance-based neural model. For concreteness, and for the purposes of illustration,

we will consider a synaptically coupled model of a population of thalamic neurons

from Rubin and Terman (2004)

CV̇i = −IL (Vi ) − INa(Vi , hi ) − IK (Vi , hi ) − IT (Vi , ri ) + Istim,i −
1

N − 1

∑

j �=i

I
j→i

syn (s j , Vi ),

ḣi = (h∞ − hi )/τh,

ṙi = (r∞ − ri )/τr ,

ṡi =
c1(1 − si )

1 + exp(−(Vi − VT )/σT )
− c2si , (3)
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for i = 1, . . . , N . Above, Vi denotes the transmembrane voltage of neuron i , hi and

ri are associated gating variables, si is a state variable used to determine the synaptic

current, and C = 1 µF/cm2 is the constant membrane capacitance. The synaptic

current I
j→i

syn , was defined in Eq. (2). Parameters that govern the dynamics of the

synaptic variable are c1 = 3 ms−1, c2 = 0.3 ms−1, VT = −20 mV, and σT = 0.8

mV. The form of Hebbian plasticity implemented in this model is discussed in the next

subsection. IL , INa , IK , and IT are the leak, sodium, potassium, and low-threshold

calcium ionic currents, respectively, with dynamics

IL(V ) = gL(V − EL),

INa(V , h) = gNa(m3
∞)h(V − ENa),

IK (V , h) = gK ((0.75(1 − h))4)(V − EK ),

IT (V , r) = gT (p2
∞)r(V − ET ), (4)

where gL = 0.05 mS/cm2, gNa = 3 mS/cm2, gK = 5 mS/cm2, gT = 5

mS/cm2, EL = −70 mV, ENa = 50 mV, EK = −90 mV, and ET = 0 mV.

Istim,i ∈ [4.84, 5.16] is a baseline current applied to neuron i chosen so that the indi-

vidual neurons are in a tonically firing regime. For homogeneous cases, Istim,i = 5 for

all N neurons. However, we will ultimately be looking specifically at situations where

Istim,i is different between neurons yielding a heterogeneous population. Auxiliary

functions are given below:

h∞ = 1/(1 + exp((V + 41)/4)),

r∞ = 1/(1 + exp((V + 84)/4)),

αh = 0.128 exp(−(V + 46)/18),

βh = 4/(1 + exp(−(V + 23)/5)),

τh = 1/(αh + βh),

τr = 28 + exp(−(V + 25)/10.5),

m∞ = 1/(1 + exp(−(V + 37)/7)),

p∞ = 1/(1 + exp(−(V + 60)/6.2)). (5)

2.2 Modelling synaptic plasticity

To incorporate synaptic plasticity, we consider a soft bound spike-timing dependent

plasticity (STDP) rule (Khoshkhou and Montakhab 2019). In the context of Eq. (2),

the STDP is incorporated by updating g j→i (t) ∈ [gmin, 1] each time either neuron i or

j spike. We specifically register an action potential or spike time whenever Vi = −30

mV and V̇i > 0. For two arbitrary neurons i and j , letting ti be the time that neuron i

spikes and t j be the time that neuron j most recently spikes, immediately after neuron

i spikes, both g j→i (t) and gi→ j (t) are updated according to
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gα→β(t+i ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

gα→β(t−i ) + A+(1 − gα→β(t−i ))e
−�tα→β

τ+ , 0 < �tα→β < tc,

gα→β(t−i ) − A−(gα→β(t−i ) − gmin)e
�tα→β

τ− , −tc < �tα→β ≤ 0,

gα→β(t−i ), |�tα→β | ≥ tc,

(6)

where α = {i, j}, β = { j, i}, and �tα→β = tβ − tα . Above, gmin is a lower bound

on the synaptic strength (typically at or near 0). The magnitude of each update is

determined by the amplitudes A+ = A− = 2, and the size of the synaptic potentiation

and depression learning windows are set by τ+ = τ− = 10 ms. Note that the assump-

tions A+ = A− and τ+ = τ− are simplifications made for this particular model and

not representative of biologically realistic values. We assume here that the synaptic

potentiation and depression windows are equal in size, although these values could be

changed as desired in the model.

For the synaptic update to occur, there must be some indication of a causal or

noncausal relationship between the presynaptic neuron firing and the postsynaptic

neuron firing. In this case, if �tα→β falls within a predefined time window |�tα→β | <

tc, the synaptic update specified in Eq. (6) will occur. When 0 < �tα→β < tc, the

presynaptic neuron fires before the postsynaptic neuron so that the relationship is

causal and the synaptic strength of that relationship will correspondingly increase.

Conversely, if −tc < �tα→β ≤ 0 (meaning that the postsynaptic neuron fires before

or at the same time as the presynaptic neuron), the relationship between the neurons is

noncausal and the synaptic strength will decrease (Panda et al. 2018). Outside of the

|�tα→β | < tc window, no update will occur. Note that the tc value should be selected

so that a single firing relationship is not classified as both causal and noncausal over

the same firing period; that is, tc should be less than T /2, where T is the average

period of of the coupled oscillators. In our model, we elect to use tc = 3ms since the

average period of the coupled oscillators (corresponding to Istim = 5) is approximately

8.4ms. In simulations with static synaptic connections, for instance from Figs. 1 and

2, gα→β = 1 for all α and β.

2.3 Phase reduction

Weakly perturbed limit cycle oscillators can be written in a reduced order form using

phase reduction. Consider a general dynamical system of the form

ẋ = F(x) + εu(t), (7)

where x ∈ R
N is the state, F sets the dynamics, u is an external perturbation, and

0 < ε � 1. Suppose that when u = 0, Eq. (7) has a stable T -periodic limit cycle xγ ,

with T = 2π/ω. States on the limit cycle can be mapped to a phase θ ∈ [0, 2π) which

is scaled so that θ̇ = ω where ω = 2π/T . Using isochrons to extend phase to the

basin of attraction of the limit cycle and changing variables to phase coordinates (see,

for instance Ermentrout and Terman 2010; Monga et al. 2019), the phase dynamics
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when u(t) �= 0 can be represented according to

θ̇ = ω + ε
∂θ

∂x
· u(t), (8)

where the gradient is evaluated on the periodic orbit at xγ (θ) and the dot denotes

the dot product. In the context of the neural model (3), for neuron i , F(x) denotes

everything except for the synaptic current and u(t) is comprised of only the synaptic

current received by neuron i . Writing Eq. (3) in phase reduced form yields

θ̇i = ωi −
ε

N − 1

∑

j �=i

Zi (θi )K̂ g j→i (t)s j (t)(Vi − Esyn), (9)

for i = 1, . . . , N where Zi (θ) is the gradient of the phase with respect to voltage

perturbations evaluated on the limit cycle of the i th neuron and K̂ = K
εC

> 0. We

explicitly assume that K̂ = O(1) so that the overall input is an order ε term. The

phase response curve can be calculated numerically using the adjoint equation or

from data; we refer the interested reader to Monga et al. (2019) or Wilson and Moehlis

(2022) for more information on phase reduction techniques pertaining to neuroscience

applications.

With a phase reduced model that can accurately reflect the dynamics of the full

order model, we can consider the Kuramoto order parameter to assess the level of

synchronization of the overall population:

ζ =

∣

∣

∣

∣

1

N

N
∑

i=1

eiθi

∣

∣

∣

∣

. (10)

When ζ = 1 the system (9) is fully synchronized. Values of ζ closer to zero generally

indicate less synchronization in the overall network but can also correspond to rotating

block states (see for instance, Ashwin and Swift 1992). We consider the Kuramoto

order parameter in Figs. 1 and 2 to be a general gauge of synchronization. Note that

the phase is not directly measurable for simulations of (3); in this case, we take θi = 0

to correspond to the moment that neuron i spikes and linearly interpolate all phases

in between to compute (10).

3 Upper bounds for the critical coupling strength for a population of
coupled neurons with synaptic plasticity

Consider a population of N tonically firing neurons of the form (3) with a Heb-

bian STDP update rule of the form (6). After phase reduction, the dynamics can

be represented according to Eq. (9) as described in Sect. 2.3 with natural frequency

ω ∈ [ωmin, ωmax ]. Define ω0 = (ωmin + ωmax )/2. In this work, we use the notion

of phase cohesion to characterize synchronization of the population. A population is

phase cohesive at time t if there exists some arclength ν(t) ∈ [0, π) that contains θi for

123



The influence of synaptic plasticity on critical coupling… Page 9 of 24 39

Fig. 3 Phase cohesion in a population of five neural oscillators. The phase of each oscillator is contained

within the arclength ν

all i = 1, . . . , N . Figure 3 provides an illustration of phase cohesion with a population

N = 5 neural oscillators.

The goal here is to identify an upper bound on the critical coupling strength for

phase cohesion. This critical coupling strength, Kcri t (ν), is defined such that if K̂ ≥

Kcri t (ν), then a phase cohesive population of N neurons contained within an arclength

ν will remain phase cohesive within that arclength for all forward time. To begin, let

φi ≡ θi − ω0t , where φ is a residual phase when working in a rotating reference

frame (Karbowski and Ermentrout 2002). Working in this rotating reference frame,

the dynamics of (9) become

φ̇i = �ωi − ε
K̂

N − 1

∑

j �=i

Zi (θi )g j→i (t)s j (θ j )(Vi (θi ) − Esyn), (11)

where �ωi = ωi − ω0. Again, defining a new variable, ψi, j = φi − φ j , we can write

Eq. (11) in terms of the phase difference between neurons i and j .

ψ̇i, j = ωi − ω j − ε
K̂

N − 1

∑

k �=i

[

Zi (θi )gk→i (t)sk(θk)(Vi (θi ) − Esyn)
]

+ ε
K̂

N − 1

∑

k �= j

[

Z j (θ j )gk→ j (t)sk(θk)(V j (θ j ) − Esyn)
]

. (12)

In Eq. (12), we have designated the i th and j th neurons to be arbitrary neurons

that are presently at the leading and lagging edges of a population (neurons 1 and 5 in

Fig. 3). The phase difference dynamics of any other pair of neurons contained within
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this population will be bounded above by the phase difference dynamics of these edge

neurons.

3.1 A limiting value of synaptic conductance when spike order is preserved

To simplify (12), we next focus on the synaptic plasticity. If two tonically-firing cou-

pled neurons have nonidentical spike times, we define the leading neuron to be the

neuron which spikes first in a given limit cycle with spike time tlead , and the lagging

neuron to be the neuron which spikes some time later with spike time tlag , so that

0 < tlag − tlead < T /2. Recall that each pair of neurons has a synaptic relationship

which updates reciprocally; in our two neuron example, this means that when the rela-

tionship from the leading neuron to lagging neuron is strengthened, the relationship

from the lagging neuron to the leading neuron is weakened. With this in mind, con-

sider two neurons with phases θm and θn where neuron m, the leading neuron, always

spikes before neuron n, the lagging neuron. Considering the update rule from (6), and

provided ν is small enough at some initial time t = 0 so that the time between neuron

m spiking and neuron n spiking is smaller than tc, that is 0 < tn − tm < tc, then gm→n

and gn→m will update reciprocally when the current lagging neuron (neuron n) fires,

and limt→∞(gm→n) = 1 while limt→∞(gn→m) = gmin regardless of initial condi-

tions. With this in mind, for any initial condition gm→n(0), where m is the leading

neuron and n is the lagging neuron for all t ≥ 0, let tm→n
s be the maximum possible

time required so that |gm→n(t) − 1| ≤ M where M > 0 is an order ε term. Corre-

spondingly, for any initial condition gn→m(0) let tn→m
s be the maximum possible time

required so that |gn→m(t) − gmin| ≤ M . Finally, we define

ts = max(tn→m
s , tm→n

s ). (13)

Intuitively, ts is defined so that if neuron m always spikes before neuron n on any

time interval of length ts , then gm→n will be within order ε of its maximum value and

gn→m will be within order ε of gmin at the end of that time interval.

In simulations of the neural model with synaptic plasticity (3), for instance, shown

in Figs. 1 and 2, and shown in detail in Fig. 4, the firing order of neurons is capable

of changing over time. To accommodate this feature, we define two new variables to

track potential order changes in a given time window of duration τ :

ρi, j (t, τ ) =

{

1, if θ j (t) = θi (t) for any t ∈ [t − τ, t],

0, otherwise,
(14)

ηi (t, τ ) =
∑

j �=i

ρi, j (t, τ ). (15)

Above, Eq. (14) tracks whether the order of θ j and θi could have switched on the

given time interval and (15) gives the sum of all possible ordinal switches for neuron

i in that same time interval. We emphasize that the maximum value of ρi, j (t, τ ) is

1, even if multiple switches occur on the given interval. An illustrative example is

provided in Fig. 5 taking τ = 25 for a population of N = 25 neurons. The leading
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Fig. 4 A 30 ms window from a single simulation of N = 5 excitatory neurons with dynamics governed

by (3) and the synaptic update rule in (6). Ordinal switches can be clearly seen in the full order model

in panel A and the phase reduced model in panel B. In the phase reduced model, φi was computed by

interpolating the phase from each neuron’s respective spike times in the corresponding full order model and

φ̄(t) = 1
N

∑N
i=1 φi (t)

(resp. lagging) edge is highlighted in panel A (resp., B). In panel A (resp., B), the black

line highlights the phase of a neuron that is leading (resp., lagging) at some point in the

simulation; the line is solid at all moments that the neuron is leading (resp., lagging)

and dashed otherwise. In panels A and B, the phases of other neurons that change order

relative to the black trace (yielding nonzero ρi, j ) are shown in color, while all others

appear in grey. All switches with the black traces in panels A and B are marked with

yellow circles, and in panel A these switches are numbered 1, 2, or 3, with the number

corresponding to the same numbered subplot in panel C. Panel C (resp., D) shows the

value of ρi, j (t, 25) associated with the change in ordering between the black trace and

the trace of corresponding color from panel A (resp., B). In panel C, each ρi, j is shown

on its own subplot since more than one neuron switched with the neuron of interest.

The first switch in panels A and B between the neuron with the black trace and the

corresponding colored neuron marks the instant that ρi, j = 1 for that pair. Prior to

this switch, ρi, j = 0. ρi, j remains at 1 unless τ time passes without a switch. Note

that per the definition from (14), ρi, j = 1 if neurons i and j switch one or more times

on the interval [t − τ, t]; multiple switches on the same interval still yield ρi, j = 1.
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Fig. 5 Panels A and B show the phases of an example population of N = 25 neurons plotted with respect to

the rotating reference frame. Panels A and B show the leading and the lagging edge, respectively. The black

line in panel A (resp., B) highlights a trace associated with a single neuron that is leading (resp., lagging)

at some point in the simulation; this black line is solid at the moments when this neuron is the leading

(resp., lagging) neuron and dashed otherwise. For this specific neuron, all ordinal shifts are highlighted

with yellow circles. In panel A, the yellow circles are numbered 1, 2, or 3 with the number corresponding

to the identically numbered subplot in panel C. In panels A and B, the traces associated with neurons that

do not change order with the black traces are shown in gray while those that do change order are colored.

Panel C (resp., D) shows the value of ρi, j (t, 25) associated with the change in ordering between the black

trace and the trace of corresponding color from panel A (resp., B)

Considering the definition of ts from Eq. (13) one can show ρi, j (t, ts) = 0 implies

{

gi→ j (t) > 1 − M, if θi leads θ j , and θi − θj < tc/T,

gi→ j (t) < gmin + M, if θ j leads θi , and θj − θi < tc/T
(16)

Above, recall that M > 0 is an O(ε) term and the values θi and θ j are continuous

functions of time and do not refer to the phase at a given spike time.

3.2 An upper bound on the critical coupling strength

To proceed, suppose that at some initial time, t0, the phases of the neurons from (3)

are contained within an arclength ν(t) ∈ [0, π ] for which

max
i, j

|θi (t0) − θ j (t0)| ≤ ν. (17)
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Phase cohesion is maintained so long as (17) holds for all forward time. As a

reminder, for synaptic plasticity to modulate the synaptic weights in the model, the

neurons need to have a causal or noncausal relationship (firing within tc of one another).

If the arclength, ν, is small enough, then there will always be a causal or anticausal rela-

tionship. Therefore, this derivation will focus on determining what coupling strength,

Kcri t , is required to ensure maxi, j |θi (t) − θ j (t)| ≤ ν for all t > t0.

To begin, consider any two oscillators with phases θm and θn for which θm −θn = ν.

Here, θm is at the leading edge of ν and θn is at the trailing edge. The goal here is

to provide general conditions that ensure that θ̇m − θ̇n ≤ 0, thereby ensuring that the

phase differences do not increase beyond ν. Towards this goal, suppose that

ηk(t, ts) ≤ β, (18)

for k = {m, n}, that is, the current leading and lagging neuron experience at most β

order shifts in the time interval [t − ts, t]. Note that (18) is an assumption that limits

the amount of order switching between neurons on a given time interval. Combining

Eqs. (18) and (16) with Eq. (12), one can write

ψ̇m,n ≤ ωm − ωn − ε
K̂

N − 1

∑

k|ρk,m(t,ts )=0

[

gmin Zm(θm)sk(θk)(Vm(θm) − Esyn)

]

− ε
β K̂

N − 1
min
θ,υ

[

υZm(θ)sk(θ)(Vm(θ) − Esyn)

]

+ ε
K̂

N − 1

∑

k|ρk,n(t,ts )=0

[

Zn(θn)sk(θk)(Vn(θn) − Esyn)

]

+ ε
β K̂

N − 1
max
θ,υ

[

υZn(θ)sk(θ)(Vn(θ) − Esyn)

]

+ O(ε2), (19)

where υ ∈ [gmin, 1]. The above inequality is obtained by considering the maximum

value and minimum value for the influence of synaptic coupling from neurons that

have switched order in the time interval considered, Eq. (19) can be rewritten as

ψ̇m,n ≤ μ̇m,n = ωm − ωn − ε
K̂

N − 1

∑

k|ρk,m (t,ts )=0

[

gmin Zm(θm)sk(θk)(Vm(θm) − Esyn)

]

+ ε
K̂

N − 1

∑

k|ρk,n(t,ts )=0

[

Zn(θn)sk(θk)(Vn(θn) − Esyn)

]

+ ε
β K̂

N − 1
(C1 + C2) + O(ε2),

(20)

where C1 and C2 are appropriately defined constants and μm,n provides an upper

bound for ψm,n . Recalling that φi = θi − ω0t , one can rewrite Eq. (20) as
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μ̇m,n = ωm − ωn − ε
K̂

N − 1

∑

k|ρk,m (t,ts )=0

[

gmin Zm(φm + ω0t)sk(φk + ω0t)(Vm(φm + ω0t) − Esyn)

]

+ ε
K̂

N − 1

∑

k|ρk,n(t,ts )=0

[

Zn(φn + ω0t)sk(φk + ω0t)(Vn(φn + ω0t) − Esyn)

]

+ ε
β K̂

N − 1
(C1 + C2) + O(ε2). (21)

Equation (21) is T0-periodic, where T0 = 2π/ω0 so that provided ωm − ωn = O(ε),

its dynamics can be well-approximated using averaging theory (Sanders et al. 2007)

μ̇m,n =
1

T0

∫ T0

0

(

ωm − ωn + ε
β K̂

N − 1
(C1 + C2)

− ε
K̂

N − 1

∑

k|ρk,m (t,ts )=0

[

gmin Zm(φm + ω0t)sk(φk + ω0t)(Vm(φm + ω0t) − Esyn)

]

+ ε
K̂

N − 1

∑

k|ρk,n(t,ts )=0

[

Zn(φn + ω0t)sk(φk + ω0t)(Vn(φn + ω0t) − Esyn)

]

+ O(ε2)

)

dt .

(22)

Noting that the integral in Eq. (22) is evaluated over a single period, it can be rewritten

in terms of the phase differences, i.e.,

μ̇m,n = ωm − ωn + ε
β K̂

N − 1
(C1 + C2)

−
∑

k|ρk,m (t,ts )=0

[

ε K̂

N − 1
gmin�m,k(φm − φk)

]

+
∑

k|ρk,n(t,ts )=0

[

ε K̂

N − 1
�n,k(φn − φk)

]

,

(23)

where

�i, j (φ) =
1

T0

∫ T0

0

Zi (ω0t)s j (φ + ω0t)(Vi (ω0t) − Esyn)dt . (24)

Allowing for heterogeneity in the population of neurons, Eq. (23) can be upper bounded

by

μ̇m,n ≤ ωm − ωn + ε
β K̂

N − 1
(C1 + C2) −

∑

k|ρk,m(t,ts )=0

ε K̂

N − 1
gmin�min(φm − φk)

+
∑

k|ρk,n(t,ts )=0

ε K̂

N − 1
�max (φn − φk), (25)

where

�max (φ) = max
i=1,...,N
j=1,...,N

�i, j (φ),
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�min(φ) = min
i=1,...,N
j=1,...,N

�i, j (φ). (26)

Noting that φm − φk ∈ [0, ν] and φn − φk ∈ [−ν, 0] for any k, the right hand side of

Eq. (25) can be bounded by

μ̇m,n ≤ ωm − ωn + ε
β K̂

N − 1
(C1 + C2) −

ε K̂ gmin(N − β − 1)

N − 1
min

φ∈(0,ν)

(

�min(φ)
)

+
ε K̂ (N − β − 1)

N − 1
max

φ∈(−ν,0)

(

�max (φ)
)

. (27)

Above, φ = 0 is not included in the maximization and minimization because otherwise

ρm,k and ρn,k would equal 1. Considering Eq. (27), μ̇m,n ≤ 0, and hence cannot

increase, provided

K̂ ≥
(N − 1)(�ωmax )

ε

[

(N − β − 1)

(

gmin min
φ∈(0,ν)

(�min(φ)) − max
φ∈(−ν,0)

(�max (φ))

)

− β(C1 + C2)

] ,

(28)

where �ωmax = maxi, j (ωi − ω j ) for any possible value of i and j . Recalling that

ψm,n ≤ μm,n , if Eq. (28) is satisfied, the phase difference between neurons m and n

cannot increase. By definition, this provides an upper bound on the coupling strength

to retain phase cohesion in the overall network of neurons. Recalling that K̂ = K
εC

,

Kcri t (β, ν) ≤
C(N − 1)(�ωmax )

[

(N − β − 1)

(

gmin min
φ∈(0,ν)

(�min(φ)) − max
φ∈(−ν,0)

(�max (φ))

)

− β(C1 + C2)

]

(29)

is an upper bound on the critical coupling strength, K , required to maintain phase cohe-

sion. The actual critical coupling strength is guaranteed to be less than this estimated

value. Notice that the bound (29) is a function of β. In the limit that the effect from order

switching is negligible, β = 0 will provide an accurate estimate for the upper bound.

The individual terms that comprise (29) give insight about when phase cohesion is pos-

sible. For instance, the right hand side of (29) grows with the dispersion in frequencies

�ωmax indicating that larger coupling strengths will be required when the difference in

frequencies is larger. Noting that C1 and C2 will generally be positive and also recall-

ing that K̂ must be positive, gmin minφ∈(0,ν)(�min(φ)) − maxφ∈(−ν,0)(�max (φ)) > 0

must be true for any upper bound on K to exist. Assuming gmin ≈ 0, this would

require �max (φ) < 0. As β increases, i.e., as the reordering of the neurons becomes

faster relative to the time scales associated with the plastic synaptic conductances, the

contribution from constants C1 and C2 increases, thereby increasing the upper bound

on K̂ .
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3.3 Comparison with upper bounds using static synaptic strengths

The result (29) provides an upper bound for the critical coupling strength where the

synaptic weights are governed by the Hebbian STDP rule from Eq. (6). Previous work

(Wilson et al. 2018) considered upper bounds for coupled inhibitory neural populations

when the coupling strength is static. Excitatory neurons were not considered in Wilson

et al. (2018) as phase cohesion is not possible with static synaptic coupling. Using a

simplified form of the synaptic conductance

I
j→i

syn = K s j (t)(Vi − Esyn), (30)

where K > 0 is a constant synaptic conductance and the remaining terms are defined

identically to those from Eq. (2), the analysis from Wilson et al. (2018) determined

the following upper bound for the critical coupling strength:

Kcri t (ν) ≤
C�ωmax

min
φ∈[0,ν]

(

�min(φ) − �max (φ − ν)
) . (31)

In Eq. (31), the contribution from �min(φ) is weighted equally to the contribution

from �max (φ − ν). As a consequence, particularly when the effect of heterogeneity is

negligible, the slope of �min(φ) and �max (φ) is important in determining the upper

bound on K̂ . Equation (31) provided a viable solution in Wilson et al. (2018) for

populations of inhibitory neurons but yields an impossible solution for populations of

excitatory neurons as the right hand side is negative. This is consistent with the results

shown in Figs. 1 and 2 when the coupling strength is static. As a reminder, �max and

�min are defined the same way that they were defined in Eq. (26), and so the solution

presented here is dependent on our specific model parameters.

Compared to the upper bound with Hebbian plasticity (29), and considering that

gmin is generally very close to zero, only �max (φ) contributes to determining the upper

bound on the critical coupling strength, which again would require �max (φ) < 0. This

property does not hold for heterogeneous populations of inhibitory neurons. It does

hold, however, for heterogeneous populations of excitatory neurons. Additionally, the

ordering of the neurons within the network has a significant influence on the upper

bound from (29) but has no bearing on the estimate from (31).

Figure 6 provides a visual comparison of the upper bound on Kcri t calculated using

Eqs. (31) and (29), that is with and without the inclusion of synaptic plasticity, for a

population of excitatory neurons. Panels A and B show the denominator terms from

Eqs. (29) and (31), respectively, while panels C and D show the corresponding values

of max Kcri t . Panel E shows the coupling functions, �max and �min , used in these

calculations. Here β = 0 is assumed when considering the bound for the population

with STDP. We emphasize that without synaptic plasticity, the right hand side of (31)

is negative, indicating that no positive value of K can be chosen in order to yield

phase cohesion. The results from Fig. 6 are consistent with those from Fig. 2, where

the population remains phase cohesive if synaptic plasticity is considered but loses

phase cohesion when there is no synaptic plasticity. Note that although we consider
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Fig. 6 Panels A and B give a visual representation of the denominator of (29) taking β = 0 and (31),

respectively. Panel C provides the corresponding max Kcri t for populations of excitatory neurons with

plastic synaptic coupling calculated in (29). Panel D gives the right hand side of Eq. (31); because this value

is negative, no positive value of K will result in a phase cohesive population when STDP is not considered.

Panel E provides plots of �min and �max for reference

β = 0 here, this is to get an initial sense of how well this bound works for small values

of β. Nonzero values of β will be considered in Sect. 4.
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3.4 The critical coupling strength for inhibitory neurons

This paper has focused on the implications of STDP on the retention of phase cohe-

sion in a population of heterogeneous excitatory neurons. However, our results would

be incomplete if we did not include some of our studies on populations of inhibitory

neurons. Reference (Wilson et al. 2018) found the critical coupling strength required

for phase cohesion in populations of heterogeneous inhibitory neurons with static

synaptic coupling. To demonstrate why inhibitory populations could not be included

in this paper, we present Fig. 7. Here we have considered a population of neurons with

Istim ∈ [4.92, 5.08]. Note that in panels B and D, the denominator shown in Panel B

is positive and the critical coupling strength is therefore positive for φ ∈ [0.2, 0.6],

indicating that within this region, phase cohesion among these heterogeneous oscilla-

tors with inhibitory synaptic coupling is possible. Adding synaptic plasticity, however,

removes the possibility of phase cohesion, as can be verified in panels A and C, which

are consistently negative for all values of φ. Again panel E shows the coupling func-

tions, �max and �min , used in these calculations.

4 Numerical results

For validation of the bound obtained in Sect. 3.2, we consider a population of N

coupled excitatory neurons from Eq. (3). For these simulations Istim,i ∈ [4.84, 5.16]

with specific values taken from the distributions described below. To numerically

determine the actual critical coupling strength, we choose a synaptic conductance,

K , (i.e., the coupling strength) larger than the critical value and slowly decrease until

phase cohesion is lost. Here, we consider a population to be phase cohesive if the

phases of all neurons remain within an arclength of size ν = 2.3 radians.

Results are shown in Fig. 8. In each panel of Fig. 8, the upper bound on the critical

coupling strength is computed according to Eq. (29), taking β = 0 and using the

maximum value over all values of φ. This bound is shown with a dashed line for

reference. In panel A, we consider populations of N = 5, 10, 15, 20, 25, and 30

excitatory neurons with baseline currents that are evenly spread between the upper

and lower bounds. For each trial, the actual critical coupling strength is approximately

35 percent below the predicted critical coupling strength value. In panel B, we consider

populations of neurons with two neurons having the minimum and maximum values

for the baseline current and we draw the remaining baseline currents from a uniform

distribution. We again consider population sizes of N = 5, 10, 15, 20, 25, and 30

excitatory neurons. For each population size considered, we numerically compute the

critical coupling strength for 30 trials. Due to the randomness in each population,

there is some spread in the critical coupling strengths obtained. Panel B shows the

maximum, minimum, and mean of each group of 30 trials. We also consider even

numbered populations of excitatory neurons where N/2 neurons have the smallest

possible baseline current and the remaining N/2 neurons have the largest possible

baseline current. The results for these trials are shown in panel C of Fig. 8. Particularly

for these simulations, it is expected that there will be more order switching between

the neurons on the boundary because the unperturbed natural frequencies are clustered
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Fig. 7 Panels A and B give a visual representation of the denominator of (29) taking β = 0 and (31),

respectively, for populations of inhibitory neurons with Istim ∈ [4.92, 5.08]. Panel C provides the corre-

sponding right hand side of Eq. (29), given β = 0 for these same populations of inhibitory neurons with

plastic synaptic coupling. Since this value is negative, no positive value of K will result in a phase cohesive

population when the synaptic coupling is subject to this specific form of Hebbian STDP. Panel D gives the

upper bound on the critical coupling strength, max Kcri t , for populations of inhibitory neurons with static

synaptic coupling, which is positive in the region φ ∈ [0.2, 0.6]. Panel E provides plots of �min and �max

for reference

at the maximum and minimum values. For this reason, these simulations ultimately

require a larger coupling strength to retain phase cohesion with some trials having a

critical coupling strength above the value predicted from Eq. (29) for β = 0.
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Fig. 8 In each panel, the dashed black line represents the upper bound on the critical coupling strength

computed according to Eq. (29), takingβ = 0 (i.e., assuming no switching between neurons on the boundary)

and taking the maximum over all values of φ. In panel A, the true critical coupling strength for populations

of different sizes with baseline currents spread evenly between the maximum and minimum values are

shown with dots. Panel B is similar, except with the baseline currents drawn from a uniform distribution.

Here the triangles and circles represent the minimum, average, and maximum value of the numerically

computed critical coupling strength obtained from 30 total trials for each population size. In panel C, half

of the neurons have the maximum value of baseline current and the other half have the minimum baseline

current

Figure 9 is included to more carefully investigate the influence of order switching

among the neurons in a population. Here we consider simulations with baseline cur-

rents taken identically to those considered in Fig. 8 and plot the corresponding η value

over time for one of these simulations. Note that in each simulation, K is taken to be

close to the critical value for phase cohesion. Panel A shows η calculated according

to (15) for the leading and lagging neurons from a population of N = 25 neurons

with evenly distributed natural frequencies, as was done in panel A of Fig. 8. In panel

B of Fig. 9, we show the η value for a single simulation of N = 25 neurons where

the baseline currents are drawn from a uniform distribution, as was done in panel B

of Fig. 8. In panel C of Fig. 9, we finally present the η value for a simulation of N =

24 neurons with half of the natural frequencies clustered at the lower bound and half

at the upper bound as was done in panel C of Fig. 8. For these trials, to ensure that

our leading and lagging edge neurons were contained within and near the limits of the

arclength ν, we set K = 0.025 in panels A and B and K = 0.035 in panel C. The fact

that the true critical coupling strength in panel C of Fig. 8 exceeds the predicted critical
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Fig. 9 In each panel, the value ηi (t, 50) is calculated over time for a single simulation of N = 25 neurons

in panels A and B and N = 24 neurons in panel C. For these trials the coupling strength is near the actual

critical coupling strength. In panel A, the natural frequencies are evenly distributed as is done in panel A

of Fig. 8. In panel B, the natural frequencies are taken from a uniform distribution as was done in the trials

from panel B of Fig. 8. In panel C, half of the neurons have natural frequencies of ωmax and half of the

neurons have natural frequencies of ωmin , as was done in the trials from panel C of Fig. 8

coupling strength is consistent with the fact that in panel C of Fig. 9, order switching

is nonnegligible. Note that η is shown in these plots for the current leading or lagging

neuron at time, t . Large jumps in η, such as those in panel B, often occur when a new

neuron takes over as the leading or lagging neuron in a population. As such, when a

switch occurs at the leading or lagging edge, the value of η can increase/decrease by

several natural numbers in a single time step.

5 Discussion and conclusion

The presence or absence of spike timing dependent plasticity (STDP) can qualita-

tively alter the collective behavior of a synaptically coupled population of neurons.

In this work, we derive an upper bound for the critical coupling strength required for

maintaining phase cohesion in a population of conductance based, synaptically cou-

pled neurons subject to Hebbian STDP. This work can be viewed as an extension of

results from Wilson et al. (2018) (which assumed static coupling strengths between
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oscillators with inhibitory connections). In addition to providing a reasonably tight

upper bound on the critical coupling strength required to retain phase cohesion in

populations of excitatory neurons, the results also explain the qualitative differences

in the aggregate behavior in Figs. 1 and 2, where the populations are simulated with

and without synaptic plasticity. When the influence of coupling felt by the leading

neurons is diminished over time (as is the case here) the stability of the phase cohesive

state can change depending on whether the coupling is excitatory or inhibitory.

In contrast to results that do not consider STDP, the critical coupling strength

depends on the ordering of neurons. In particular, changes to the ordering of the

neurons on the edge of the arclength will degrade the synchronizing influence of

synaptic coupling, ultimately requiring a stronger coupling strength to retain phase

cohesion. This effect is reflected in the results from Figs. 8 and 9. Individual neurons

from larger populations with evenly spaced natural frequencies switch spike order less

often and consequently require smaller coupling strengths to retain phase cohesion.

Individual neurons from larger populations with natural frequencies clustered at the

maximum and minimum values switch spike order more and hence require larger

coupling strengths to retain phase cohesion. As emphasized in Figs. 8 and 9, even

when the overall population remains phase cohesive, there are still a small number of

order shifts between neurons in the overall population.

There are a number of limitations and possible extensions of the present work. Here,

we are only concerned with the stability of the phase cohesive state but are not able to

make any deductions about its basin of attraction or make inferences about spontaneous

synchronization that may emerge in a coupled population of oscillators. We are also

unable to make any direct inferences about frequency synchronization, although this

phenomenon was not observed in any of the examples considered. Additionally, we

do not directly consider the influence of noise in the population which would certainly

be a factor in a more realistic population of neural oscillators. Furthermore, the phase-

based reduction techniques used here are only valid in the weakly perturbed limit and

it may be necessary to incorporate alternative phase-based reduction strategies that

can accommodate larger magnitude inputs in more realistic models. We elected to

use soft bound Hebbian STDP in our model, which does not allow for unrestricted

growth or decay of a given synaptic connection, bounding the synaptic strength so that

gi→ j ∈ [gmin, 1] and |�gi→ j | decreases as the synaptic strength approaches a bound-

ary. However, there exist qualitative differences when hard bounds are implemented

instead, where the update to the synaptic connection is linearly additive and no longer

a function of the current synaptic weight. Some of these qualitative differences, such

as those mentioned in Van Rossum et al. (2012) and Gütig et al. (2003), could affect

these results. It would be of interest to conduct further analysis on how hard bounds

would alter the findings presented here. Finally, the analysis considered in this work is

only valid for tonically firing neurons and it would be of interest to investigate possible

extensions for bursting neurons or for neurons without a well-defined firing rate.
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