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Abstract

The presence or absence of synaptic plasticity can dramatically influence the collective
behavior of populations of coupled neurons. In this work, we consider spike-timing
dependent plasticity (STDP) and its resulting influence on phase cohesion in compu-
tational models of heterogeneous populations of conductance-based neurons. STDP
allows for the influence of individual synapses to change over time, strengthening or
weakening depending on the relative timing of the relevant action potentials. Using
phase reduction techniques, we derive an upper bound on the critical coupling strength
required to retain phase cohesion for a network of synaptically coupled, heterogeneous
neurons with STDP. We find that including STDP can significantly alter phase cohe-
sion as compared to a network with static synaptic connections. Analytical results are
validated numerically. Our analysis highlights the importance of the relative ordering
of action potentials emitted in a population of tonically firing neurons and demon-
strates that order switching can degrade the synchronizing influence of coupling when
STDP is considered.

Keywords Synchronization - Neuroscience - Phase models - Synaptic plasticity -
Phase cohesion - Critical coupling strength - Oscillations

Mathematics Subject Classification 37N25 - 92B25 - 34C15

1 Introduction

Neural synchrony is thought to play a key role in cognitive processing (Hipp et al.
2011; Senkowski et al. 2008), is a hallmark of the neural dysfunction that manifests

B Dan Wilson
dwilso81@utk.edu

Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville,
TN 37966, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-024-02061-4&domain=pdf
http://orcid.org/0000-0003-1363-147X

39 Page2of24 K. Toth, D. Wilson

in Parkinson’s disease (Pogosyan et al. 2010; Wichmann et al. 2011), and is essential
in the maintenance of circadian rhythms (Golombek and Rosenstein 2010; Reppert
and Weaver 2002). Synchronization among large populations of coupled neurons has
been widely studied from a dynamical systems perspective, yielding insight into the
mechanisms by which neural synchronization emerges in conductance-based models
of tonically firing neurons (Brown et al. 2003; Ermentrout 1996; Ermentrout and Ter-
man 2010; Hansel et al. 1995; Hoppensteadt and Izhikevich 1997; Van Vreeswijk et al.
1994), and providing insight into strategies by which pathological synchronization can
be suppressed (Holt et al. 2016; Pyragas et al. 2018; Toth and Wilson 2022; Wilson
2020). The vast majority of the phase-based analysis of neural oscillators, however,
neglects the influence of synaptic plasticity. Often summarized by the aphorism: ‘neu-
rons that fire together, wire together’, synaptic plasticity refers to the widely observed
characteristic of real neurons to modify the strength of synaptic connections over
time in response to the relative firing time between neurons (Ho et al. 2011; Kennedy
2013; Khoshkhou and Montakhab 2019). Recent evidence suggests synaptic plastic-
ity is critical to the brain’s ability to learn from memory (Kennedy 2013) motivating
its implementation in artificial spiking neural networks to develop machine learning
algorithms capable of pattern, image, and feature recognition (Iakymchuk et al. 2015;
Manna et al. 2022).

Incorporation of spike-timing dependent plasticity (STDP) in computational models
of synaptically coupled populations of neurons can have profound effects on their
collective behavior. This point is illustrated by numerical simulations summarized in
Figs. 1 and 2 for a population of N = 5 homogeneous neurons of the form

CVim—pi =L N i (1)
= ion N —1 syn s
J#

fori =1,..., N, where V; is the neural membrane potential (in mV), / ii P

represents
the ionic current derived from the neuron’s internal dynamics, ISJy;” represents the
synaptic current from the presynaptic neuron j to the postsynaptic neuron i, and C
is the constant membrane capacitance. Since self coupling is not considered here, the
IS]:\:i term is scaled by 1/(N — 1) and not 1/N. The synaptic current is (Ermentrout

and Terman 2010) o
L' = Kgji(0)s;((Vi = Egyn), @)

where K > 0 is a maximum synaptic conductance, g;; € [gmin, 1] is governed
by a Hebbian STDP rule where the update is a function of the current weight of the
synaptic connection and the time difference between spikes (Van Rossum et al. 2012),
s is a synaptic variable associated with neuron j, and Ejy, is the reversal potential
that governs whether coupling is inhibitory or excitatory. A complete description of
the model parameters can be found in Sect.2. Figures1 and 2 present the voltage
dynamics and the corresponding Kuramoto order parameter using inhibitory and exci-
tatory coupling, respectively. The Kuramoto order parameter, ¢, is used to quantify
the level of synchronization with ¢ = 1 indicating complete synchronization and
lower values indicating less synchronization in the network (the full definition of the
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Fig. 1 Representative simulations for an inhibitory neural population with and without synaptic plasticity.
Panel A shows the voltage dynamics of a homogeneous population of five neurons with inhibitory coupling
and a static synaptic coupling strength of Kg;,; = 0.1 mS/Crn2 for all i and j. Panel B shows the
corresponding Kuramoto order parameter indicating stable synchronization. Panel C shows the voltage
dynamics of the same network with Hebbian STDP where g;_.; € [0, 1] is allowed to change in time as
described in Sect.2.2. Panel D shows the associated Kuramoto order parameter

order parameter for this network is given in Eq. (10)). In both figures, panels A and B
show the results with static coupling. Panels C and D in each figure provide the same
information when using a Hebbian STDP rule instead. In both simulations, stability
of the synchronous state depends on the presence or absence of synaptic plasticity in
the network leading to substantial changes in the aggregate behavior. Figures 1 and
2 demonstrate that the presence or absence of synaptic plasticity can have a substan-
tial influence on the aggregate behavior of a coupled population of neurons. Figure 1
demonstrates that a population of inhibitory neurons with static synaptic coupling
and dynamics governed by (1) and (2) will tend toward a stable synchronized state.
However, the inclusion of STDP prohibits this same population from synchronizing.
Figure?2 illustrates that a homogenous population of excitatory neurons with static
synaptic coupling and dynamics governed by (1) and (2) will tend toward a stable
antiphase state. However, the inclusion of STDP allows this same population to reach
a phase cohesive state.

While the dynamics that govern synaptic plasticity are well documented (Dayan
and Abbott 2001) and often included in computational studies, its influence on network
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Fig.2 Representative simulations for an excitatory neural population with and without synaptic plasticity.
Panel A shows the voltage dynamics of a homogeneous population of five neurons with excitatory coupling
and a static synaptic coupling strengthof K g;,; = 0.1 mS/ em? foralli and j. Panel B shows the associated
Kuramoto order parameter indicating near complete desynchronization. Panel C shows the voltage dynamics
of the same network with Hebbian STDP where g, ; € [0, 1] is allowed to change in time as described in
Sect. 2.2 and Panel D gives the corresponding Kuramoto order parameter

synchronization is of particular interest in this work. Reference (Nowotny et al. 2003)
concludes that STDP enhances neural synchronization when compared to populations
of neurons without plastic synaptic coupling in results obtained on a hybrid network
comprised of a spike generator, a clamp to simulate an excitatory synapse, and a neuron
from an Aplysia abdominal ganglion. Reference (Karbowski and Ermentrout 2002)
analyzes the parameters and factors that contribute to the development of a stable syn-
chronized state in a population of heterogeneous excitatory oscillators coupled with
STDP. Reference (Levy et al. 2001) studies the emergence of distributed synchrony
throughout a population of coupled neurons with STDP. Reference (Maistrenko et al.
2007) discusses bifurcations in stability that occur among populations of Kuramoto
oscillators coupled with STDP as the synaptic potentiation and depression windows
change, with a stable synchronous state existing above some threshold coupling
strength for equal window lengths and the emergence of multistability with asym-
metric windows. Reference (Ozkan et al. 2014) analyzes how various parameters
affect both the induction and retention of phase and period locking in a two-neuron
network with plastic synaptic connections, and reference (Khoshkhou and Montakhab
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2019) focuses on the effect of the axonal delay in a network of conductance-based
neural oscillators with plastic synaptic connections in the context of the critical brain
hypothesis (Chialvo 2010; Levina et al. 2007). In this work, we are primarily focused
on understanding the synchronization (or lack thereof) that emerges in large popula-
tions of neurons with synaptic connections that are subject to Hebbian STDP rules as
illustrated, for instance, in Figs. 1 and 2. While much research has been conducted on
the implications of STDP on synchronization, none has addressed the existence of a
threshold critical coupling strength for phase cohesion and the conditions which would
affect this critical coupling strength. This work extends prior work from Wilson et al.
(2018) to investigate the impact of Hebbian STDP on the critical coupling strength
required to maintain phase cohesion.

Extending prior results from Wilson et al. (2018) that did not consider STDP, we
derive upper bounds for the critical coupling strength required to maintain phase cohe-
sion in a network of neurons with excitatory coupling and STDP. Note here that the
critical coupling strength is the minimum coupling strength required to retain phase
cohesion. Here, a population of oscillators is considered phase cohesive if the phase dif-
ference between any two oscillators remains bounded within a prespecified arclength.
Critically, we find that the presence or absence of STDP can lead to qualitatively
different collective behavior of the aggregate population. Our analysis highlights the
importance of the relative ordering between phase cohesive neurons and that order
switching can degrade the synchronizing influence of coupling when STDP is con-
sidered. The organization of this paper is as follows: in Sect.2 we provide necessary
background on the neural models used in this study in addition to the phase reduction
techniques used to represent the oscillatory dynamics with a low order basis. In Sect. 3
we derive upper bounds on the critical coupling strength to maintain phase cohesion.
Section4 shows the result of numerical simulations validating our analytical results,
and Sect. 5 provides concluding remarks.

2 Background
2.1 Neural model equations

The theoretical analysis presented in this work can be applied to any tonically firing
conductance-based neural model. For concreteness, and for the purposes of illustration,
we will consider a synaptically coupled model of a population of thalamic neurons
from Rubin and Terman (2004)

. 1 i
CVi = =1L (Vi) = Ina(Vis hi) = T (Vi hi) = T7 (Vi 1) + Dssimi = ~— 2 B (s, Vi),

J#i
hi = (hoo — hi)/Th,
ri = (reo — 1)/,
c1(1—s)

T Fexp—(Vi = ViyJory )

Si
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fori = 1,..., N. Above, V; denotes the transmembrane voltage of neuron i, #; and
r; are associated gating variables, s; is a state variable used to determine the synaptic
current, and C = 1pF/cm? is the constant membrane capacitance. The synaptic
current IS]yT, was defined in Eq. (2). Parameters that govern the dynamics of the
synaptic variable are ¢; = 3 ms~, ¢ =03ms™L, Vp = =20 mV, and o7 = 0.8
mV. The form of Hebbian plasticity implemented in this model is discussed in the next
subsection. I1, Iy,, Ik, and I are the leak, sodium, potassium, and low-threshold
calcium ionic currents, respectively, with dynamics

I1(V)=g1L(V—-EL),
Ina(V. h) = gna(ml)h(V — Ena),
Ik (V. h) = gg ((0.75(1 — W)*)(V — Ex),
Ir(V.r) = gr(p)r(V — Ep), @)

where g; = 0.05 mS/cm?, gnyo = 3 mS/em?, gg = 5 mS/em?, g7 = 5
mS/cm?, E;, = =70 mV, Ey, = 50 mV, Ex = —90 mV, and Er = 0 mV.
Igtim,i € [4.84,5.16] is a baseline current applied to neuron i chosen so that the indi-
vidual neurons are in a tonically firing regime. For homogeneous cases, Iy, ; = 5 for
all N neurons. However, we will ultimately be looking specifically at situations where
Isiim,i 1s different between neurons yielding a heterogeneous population. Auxiliary
functions are given below:

hoo = 1/(1 +exp((V + 41)/4)),
roo = 1/(1 +exp((V + 84)/4)),
ap = 0.128 exp(—(V + 46)/18),
Bn =4/ +exp(—=(V +23)/5)),
™ = 1/(an + Bn)s
7, = 28 + exp(—(V + 25)/10.9),
Mmoo = 1/(1 +exp(—(V +37)/7)),
Poo = 1/(1 +exp(—(V 4+ 60)/6.2)). 5)

2.2 Modelling synaptic plasticity

To incorporate synaptic plasticity, we consider a soft bound spike-timing dependent
plasticity (STDP) rule (Khoshkhou and Montakhab 2019). In the context of Eq. (2),
the STDP is incorporated by updating g ;. ; () € [gmin, 1] each time either neuron i or
J spike. We specifically register an action potential or spike time whenever V; = —30
mV and V; > 0. For two arbitrary neurons i and j, letting #; be the time that neuron i
spikes and ¢; be the time that neuron j most recently spikes, immediately after neuron
i spikes, both g;_;(¢) and g;, ;(t) are updated according to
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’Atotaﬂ
Ba—spt; )+ Ap(l — gumsp(t e ™, 0< Algp <e,
= _ _ Alasp
8o p(1i7) 8a—sp(t; ) — A_(a—p(t; ) — gmin)e ™ , —tc < Alyp <0,
ga—)ﬂ(ti_)’ |Atg—pl = Ic,

(6)
where o = {i, j}, B = {j,i}, and Aty_.g = tg — ty. Above, gy, is a lower bound
on the synaptic strength (typically at or near 0). The magnitude of each update is
determined by the amplitudes A = A_ = 2, and the size of the synaptic potentiation
and depression learning windows are set by 7, = 7_ = 10 ms. Note that the assump-
tions Ay = A_ and t4 = t_ are simplifications made for this particular model and
not representative of biologically realistic values. We assume here that the synaptic
potentiation and depression windows are equal in size, although these values could be
changed as desired in the model.

For the synaptic update to occur, there must be some indication of a causal or
noncausal relationship between the presynaptic neuron firing and the postsynaptic
neuron firing. In this case, if Az, g falls within a predefined time window Aty g| <
fc, the synaptic update specified in Eq. (6) will occur. When 0 < Aty .5 < t., the
presynaptic neuron fires before the postsynaptic neuron so that the relationship is
causal and the synaptic strength of that relationship will correspondingly increase.
Conversely, if —t. < Aty p < 0 (meaning that the postsynaptic neuron fires before
or at the same time as the presynaptic neuron), the relationship between the neurons is
noncausal and the synaptic strength will decrease (Panda et al. 2018). Outside of the
| Aty g| <t window, no update will occur. Note that the 7. value should be selected
so that a single firing relationship is not classified as both causal and noncausal over
the same firing period; that is, 7, should be less than 7' /2, where T is the average
period of of the coupled oscillators. In our model, we elect to use 7. = 3ms since the
average period of the coupled oscillators (corresponding to I, = 5) is approximately
8.4ms. In simulations with static synaptic connections, for instance from Figs. 1 and
2, ga—sp = lforall o and B.

2.3 Phase reduction

Weakly perturbed limit cycle oscillators can be written in a reduced order form using
phase reduction. Consider a general dynamical system of the form

X = F(x)+eut), @)

where x € RY is the state, F sets the dynamics, u is an external perturbation, and
0 < € < 1. Suppose that when u = 0, Eq. (7) has a stable T -periodic limit cycle x7,
with T = 27 /w. States on the limit cycle can be mapped to a phase 6 € [0, 2) which
is scaled so that § = w where @ = 27/T. Using isochrons to extend phase to the
basin of attraction of the limit cycle and changing variables to phase coordinates (see,
for instance Ermentrout and Terman 2010; Monga et al. 2019), the phase dynamics
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when u(t) # 0 can be represented according to
. 20
0=w+e— u)), ®)
ox

where the gradient is evaluated on the periodic orbit at x¥ (9) and the dot denotes
the dot product. In the context of the neural model (3), for neuron i, F(x) denotes
everything except for the synaptic current and u(¢) is comprised of only the synaptic
current received by neuron i. Writing Eq. (3) in phase reduced form yields

o € A
0 = 0 = =7 D Zi0)Kgji ()3, (Vi = Eqy), ©)
J#
fori =1,..., N where Z;(0) is the gradient of the phase with respect to voltage

perturbations evaluated on the limit cycle of the i™ neuron and K = % > 0. We

explicitly assume that K = 0(1) so that the overall input is an order € term. The
phase response curve can be calculated numerically using the adjoint equation or
from data; we refer the interested reader to Monga et al. (2019) or Wilson and Moehlis
(2022) for more information on phase reduction techniques pertaining to neuroscience
applications.

With a phase reduced model that can accurately reflect the dynamics of the full
order model, we can consider the Kuramoto order parameter to assess the level of
synchronization of the overall population:

. (10)

1N
_ § i6;
5_‘N, le
1=

When ¢ = 1 the system (9) is fully synchronized. Values of ¢ closer to zero generally
indicate less synchronization in the overall network but can also correspond to rotating
block states (see for instance, Ashwin and Swift 1992). We consider the Kuramoto
order parameter in Figs. 1 and 2 to be a general gauge of synchronization. Note that
the phase is not directly measurable for simulations of (3); in this case, we take 6; = 0
to correspond to the moment that neuron i spikes and linearly interpolate all phases
in between to compute (10).

3 Upper bounds for the critical coupling strength for a population of
coupled neurons with synaptic plasticity

Consider a population of N tonically firing neurons of the form (3) with a Heb-
bian STDP update rule of the form (6). After phase reduction, the dynamics can
be represented according to Eq. (9) as described in Sect.2.3 with natural frequency
W € [Wmin, Omax]. Define wg = (min + @max)/2. In this work, we use the notion
of phase cohesion to characterize synchronization of the population. A population is
phase cohesive at time 7 if there exists some arclength v(¢) € [0, &) that contains 6; for
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5
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Fig. 3 Phase cohesion in a population of five neural oscillators. The phase of each oscillator is contained
within the arclength v

alli =1, ..., N.Figure3 provides an illustration of phase cohesion with a population
N = 5 neural oscillators.

The goal here is to identify an upper bound on the critical coupling strength for
phase cohesion. This critical coupling strength, K.,;;(v), is defined such that if K >
K.rit(v), then a phase cohesive population of N neurons contained within an arclength
v will remain phase cohesive within that arclength for all forward time. To begin, let
¢i = 6; — wot, where ¢ is a residual phase when working in a rotating reference
frame (Karbowski and Ermentrout 2002). Working in this rotating reference frame,
the dynamics of (9) become

A

K

¢5i=Awi—6N_1

D Zi00)8j—i(1)sjO)(Vi(0) — Esyn). (1)
J#

where Aw; = w; — wp. Again, defining a new variable, ¥; ; = ¢; — ¢;, we can write
Eq. (11) in terms of the phase difference between neurons i and ;.

A

; K
Vij = 01— o) — e 3 [Z0D81 05O (Vi 6) — Eoy)]
ki
teN > 208k DOk @) (V(6)) — Eyn)]- (12)

k#j
In Eq. (12), we have designated the i’” and j'" neurons to be arbitrary neurons
that are presently at the leading and lagging edges of a population (neurons 1 and 5 in

Fig. 3). The phase difference dynamics of any other pair of neurons contained within
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this population will be bounded above by the phase difference dynamics of these edge
neurons.

3.1 A limiting value of synaptic conductance when spike order is preserved

To simplify (12), we next focus on the synaptic plasticity. If two tonically-firing cou-
pled neurons have nonidentical spike times, we define the leading neuron to be the
neuron which spikes first in a given limit cycle with spike time #.,4, and the lagging
neuron to be the neuron which spikes some time later with spike time #,¢, so that
0 < tiag — treaa < T /2. Recall that each pair of neurons has a synaptic relationship
which updates reciprocally; in our two neuron example, this means that when the rela-
tionship from the leading neuron to lagging neuron is strengthened, the relationship
from the lagging neuron to the leading neuron is weakened. With this in mind, con-
sider two neurons with phases 6,, and 6, where neuron m, the leading neuron, always
spikes before neuron n, the lagging neuron. Considering the update rule from (6), and
provided v is small enough at some initial time = 0 so that the time between neuron
m spiking and neuron n spiking is smaller than 7, thatis 0 < t,, — #,, < t., then g,
and g, will update reciprocally when the current lagging neuron (neuron n) fires,
and lim;_, 5o (gm—n) = 1 while lim;_ 5 (gn—m) = gmin regardless of initial condi-
tions. With this in mind, for any initial condition g,,—.,(0), where m is the leading
neuron and » is the lagging neuron for all # > 0, let #"~" be the maximum possible
time required so that |g,,—,(#) — 1| < M where M > 0 is an order € term. Corre-
spondingly, for any initial condition g, , (0) let ]~ be the maximum possible time
required so that |g,—, (t) — gmin| < M. Finally, we define

ty = max (! ", 1. (13)

Intuitively, 7, is defined so that if neuron m always spikes before neuron n on any
time interval of length #,, then g,,,—,, will be within order € of its maximum value and
gn—m Will be within order € of g;,;, at the end of that time interval.

In simulations of the neural model with synaptic plasticity (3), for instance, shown
in Figs. 1 and 2, and shown in detail in Fig.4, the firing order of neurons is capable
of changing over time. To accommodate this feature, we define two new variables to
track potential order changes in a given time window of duration 7:

1, if 0;(t) = 0;(¢) for any t € [t — 7, 1],
0, otherwise,

ni(t.T) =Y pij(t. 7). (15)
i

pi,jt, ) = (14)

Above, Eq. (14) tracks whether the order of 6; and 6; could have switched on the
given time interval and (15) gives the sum of all possible ordinal switches for neuron
i in that same time interval. We emphasize that the maximum value of p; ;(, 7) is
1, even if multiple switches occur on the given interval. An illustrative example is
provided in Fig.5 taking t = 25 for a population of N = 25 neurons. The leading
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Fig. 4 A 30 ms window from a single simulation of N = 5 excitatory neurons with dynamics governed
by (3) and the synaptic update rule in (6). Ordinal switches can be clearly seen in the full order model
in panel A and the phase reduced model in panel B. In the phase reduced model, ¢; was computed by
interpolating the phase from each neuron’s respective spike times in the corresponding full order model and

o) =% N 00

(resp. lagging) edge is highlighted in panel A (resp., B). In panel A (resp., B), the black
line highlights the phase of a neuron that is leading (resp., lagging) at some point in the
simulation; the line is solid at all moments that the neuron is leading (resp., lagging)
and dashed otherwise. In panels A and B, the phases of other neurons that change order
relative to the black trace (yielding nonzero p; ;) are shown in color, while all others
appear in grey. All switches with the black traces in panels A and B are marked with
yellow circles, and in panel A these switches are numbered 1, 2, or 3, with the number
corresponding to the same numbered subplot in panel C. Panel C (resp., D) shows the
value of p; ; (¢, 25) associated with the change in ordering between the black trace and
the trace of corresponding color from panel A (resp., B). In panel C, each p; ; is shown
on its own subplot since more than one neuron switched with the neuron of interest.
The first switch in panels A and B between the neuron with the black trace and the
corresponding colored neuron marks the instant that p; ; = 1 for that pair. Prior to
this switch, p; ; = 0. p; ; remains at 1 unless 7 time passes without a switch. Note
that per the definition from (14), p; ; = 1 if neurons i and j switch one or more times
on the interval [t — 7, #]; multiple switches on the same interval still yield p; ; = 1.
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Fig.5 Panels A and B show the phases of an example population of N = 25 neurons plotted with respect to
the rotating reference frame. Panels A and B show the leading and the lagging edge, respectively. The black
line in panel A (resp., B) highlights a trace associated with a single neuron that is leading (resp., lagging)
at some point in the simulation; this black line is solid at the moments when this neuron is the leading
(resp., lagging) neuron and dashed otherwise. For this specific neuron, all ordinal shifts are highlighted
with yellow circles. In panel A, the yellow circles are numbered 1, 2, or 3 with the number corresponding
to the identically numbered subplot in panel C. In panels A and B, the traces associated with neurons that
do not change order with the black traces are shown in gray while those that do change order are colored.
Panel C (resp., D) shows the value of p;_;(t, 25) associated with the change in ordering between the black
trace and the trace of corresponding color from panel A (resp., B)

Considering the definition of 7, from Eq. (13) one can show p; ;(z, t;) = 0 implies

gi»jt)>1-M, if 0; leads 6;, and 6; — 6; < t./T,

16
8i—j(t) < gmin+M, if 6} leads 6;, and 0; — 6; < tc/T (16)

Above, recall that M > 0 is an O(¢) term and the values 6; and 6; are continuous
functions of time and do not refer to the phase at a given spike time.

3.2 An upper bound on the critical coupling strength

To proceed, suppose that at some initial time, 7y, the phases of the neurons from (3)
are contained within an arclength v(¢) € [0, ] for which

rll?f}xlé’i(to) —0j(1)] = v. A7)
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Phase cohesion is maintained so long as (17) holds for all forward time. As a
reminder, for synaptic plasticity to modulate the synaptic weights in the model, the
neurons need to have a causal or noncausal relationship (firing within 7. of one another).
If the arclength, v, is small enough, then there will always be a causal or anticausal rela-
tionship. Therefore, this derivation will focus on determining what coupling strength,
Kyit, is required to ensure max; ; |6;(t) — 0;(¢)] < v forall t > ;.

To begin, consider any two oscillators with phases 6,, and 6,, for which 6, —6,, = v.
Here, 6, is at the leading edge of v and 6, is at the trailing edge. The goal here is
to provide general conditions that ensure that 6,, — 6, < 0, thereby ensuring that the
phase differences do not increase beyond v. Towards this goal, suppose that

m(t, ts) < B, (18)

for k = {m, n}, that is, the current leading and lagging neuron experience at most j
order shifts in the time interval [t — £y, t]. Note that (18) is an assumption that limits
the amount of order switching between neurons on a given time interval. Combining
Egs. (18) and (16) with Eq. (12), one can write

A

K
N -1

> [gmmzm Ok 01) (Vi (O) — Esyn)}

k‘pk.m(f,tx):o

Wm,n Sy — Wy — €

pK
TN [”Zm O)5k(O)(Vn (0) — Esy,,)}

K
te—— > [zn(en>sk(ek><w<9n>—Esy,o}
klpk,n(tats):o
BK 2
e Max | VZa @5k @) (Va(0) = Egyn) | + O(€?), (19)

where v € [gmin, 1]. The above inequality is obtained by considering the maximum
value and minimum value for the influence of synaptic coupling from neurons that
have switched order in the time interval considered, Eq. (19) can be rewritten as

. ) 12
Y < o = O — Wy — Gﬁ Z |:gmmZm (681 (Ok) (Vi (6y) — Esyn)j|
Kl pkm (£,5)=0
K sk 2
TN Z ZnOn)sk O (Va0n) = Esyn) | + ‘No1 (C1+C)+ 0(e),
Kl or,n (,15)=0

(20)

where Cy and C; are appropriately defined constants and (,, , provides an upper
bound for v, ,. Recalling that ¢; = 6; — wot, one can rewrite Eq. (20) as
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K
N —

Z |:gmian (Pm + wot)sk (b + wot) (Vi (P + wot) — Esyn)j|

klpie,m (t,15)=0

Mm,n = Wy — Wy — €

> [Zn (én + wo)sk (¢ + @01) (Vi (o + wot) — Es_m)}

K|k (2.5)=0

BK )
S ). (1)

Equation (21) is Tp-periodic, where Ty = 27 /wy so that provided w,, — w, = O(€),
its dynamics can be well-approximated using averaging theory (Sanders et al. 2007)

. 1 (B BK
/fLm.nZT0 A Wy — Wy +€m(C1+C2)

K

Z |:gminzm(¢m + wot)sk (P + @0t) (Vin (Pm + wot) — E.ryn):|

klpg,m (,15)=0

— €

K

+€

Z |:Zn (Pn + wot)sk(Px + wot) (Vi (¢ + wot) — Esyn)] + 0(62)>dt~
k| pr.n (,15)=0

(22)

Noting that the integral in Eq. (22) is evaluated over a single period, it can be rewritten
in terms of the phase differences, i.e.,

an—wm w11+5N 1(C1+C2)
€K K
|: gminFm,k(¢m - ¢k):| + Z [ﬁ Ly (pn — ¢k):|7

klpx, m(t 15)=0 klpk,n (t,15)=0

(23)
where
1 [T
Iij(9) = Fo/o Zi(wot)sj(¢ + wot)(Vi(wot) — Egyn)dt. (24)

Allowing for heterogeneity in the population of neurons, Eq. (23) can be upper bounded
by

A A

C+e— Y T — 0
1 1 2 N — 1gmm min\®m k
klpk.m(t,ts)*o

. B
/’Lm,nfwm_wn+€N_

ek
+ Z N — 1Fmax (¢n - ¢k), (25)
k‘Pk,n(txts)=O

where

Cinax (@) = 2 max L (@),
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Cinin (@) = i‘:IB.i.l.l,N 1—‘i,j(qs)' (26)

Noting that ¢,, — ¢ € [0, v] and ¢, — ¢ € [—V, 0] for any £, the right hand side of
Eq. (25) can be bounded by

Ie El%gmin(N_,B_l) .
Ci+C)— |
N _—1 (C1+C) N —1 ¢2}(1){]v) ( mzn(‘b))

eK(N-B—1)
? (l)EI?—aS(,O) (Fmax (¢))- (27)

Mmpn < Wy — @y + €

Above, ¢ = 0isnotincluded in the maximization and minimization because otherwise
Pm.k and p, x would equal 1. Considering Eq. (27), ft;,, < 0, and hence cannot
increase, provided

(N — D(Awmax)

6[(1\’ -B- 1)(8min min (Fpin(¢)) — max (Fmax(¢>))> —B(C1 + Cz)}
¢<(,v) ¢e(—v,0)

(28)
where Awpqx = max; j(w; — w;) for any possible value of i and j. Recalling that
Ymn < Wm.n, if Eq. (28) is satisfied, the phase difference between neurons m and n
cannot increase. By definition, this provides an upper bound on the coupling strength

to retain phase cohesion in the overall network of neurons. Recalling that K = %,

K>

s

C(N — )(Awmax)

|:(N - .B - U(gmin d)gz(l)l:lv)(r‘min (¢)) - ¢EI}133(,0)(FmaX ((b))) - ﬁ(cl + CZ)]

(29)
is an upper bound on the critical coupling strength, K, required to maintain phase cohe-
sion. The actual critical coupling strength is guaranteed to be less than this estimated
value. Notice that the bound (29) is a function of 8. In the limit that the effect from order
switching is negligible, B = 0 will provide an accurate estimate for the upper bound.
The individual terms that comprise (29) give insight about when phase cohesion is pos-
sible. For instance, the right hand side of (29) grows with the dispersion in frequencies
Awpqy indicating that larger coupling strengths will be required when the difference in
frequencies is larger. Noting that Cy and C; will generally be positive and also recall-
ing that K must be positive, g, minge0,v) (Umin () — maxge(—v,0) Cmax (@) > 0
must be true for any upper bound on K to exist. Assuming gui, ~ 0, this would
require ['y,4x (@) < 0. As B increases, i.e., as the reordering of the neurons becomes
faster relative to the time scales associated with the plastic synaptic conductances, the
contribution from constants Cj and C; increases, thereby increasing the upper bound
on K.

Kcrit(ﬂv V) <
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3.3 Comparison with upper bounds using static synaptic strengths

The result (29) provides an upper bound for the critical coupling strength where the
synaptic weights are governed by the Hebbian STDP rule from Eq. (6). Previous work
(Wilson et al. 2018) considered upper bounds for coupled inhibitory neural populations
when the coupling strength is static. Excitatory neurons were not considered in Wilson
et al. (2018) as phase cohesion is not possible with static synaptic coupling. Using a
simplified form of the synaptic conductance

17 = Ksj()(Vi — Egy), (30)

where K > 0 is a constant synaptic conductance and the remaining terms are defined
identically to those from Eq. (2), the analysis from Wilson et al. (2018) determined
the following upper bound for the critical coupling strength:

CAwpmax

i (Cin(®) = Tiax (@ = v)

Kerir(v) = €1y

In Eq. (31), the contribution from I';,;,(¢) is weighted equally to the contribution
from '), (¢ — v). As a consequence, particularly when the effect of heterogeneity is
negligible, the slope of I}, (¢) and I',4.(¢) is important in determining the upper
bound on K. Equation (31) provided a viable solution in Wilson et al. (2018) for
populations of inhibitory neurons but yields an impossible solution for populations of
excitatory neurons as the right hand side is negative. This is consistent with the results
shown in Figs. 1 and 2 when the coupling strength is static. As a reminder, ', and
I')nin are defined the same way that they were defined in Eq. (26), and so the solution
presented here is dependent on our specific model parameters.

Compared to the upper bound with Hebbian plasticity (29), and considering that
gmin 1s generally very close to zero, only I';,4x (¢) contributes to determining the upper
bound on the critical coupling strength, which again would require I';,,4, (¢) < 0. This
property does not hold for heterogeneous populations of inhibitory neurons. It does
hold, however, for heterogeneous populations of excitatory neurons. Additionally, the
ordering of the neurons within the network has a significant influence on the upper
bound from (29) but has no bearing on the estimate from (31).

Figure 6 provides a visual comparison of the upper bound on K,;; calculated using
Eqgs. (31) and (29), that is with and without the inclusion of synaptic plasticity, for a
population of excitatory neurons. Panels A and B show the denominator terms from
Egs. (29) and (31), respectively, while panels C and D show the corresponding values
of max K.,i;. Panel E shows the coupling functions, I',,4, and I'y,i,, used in these
calculations. Here § = 0 is assumed when considering the bound for the population
with STDP. We emphasize that without synaptic plasticity, the right hand side of (31)
is negative, indicating that no positive value of K can be chosen in order to yield
phase cohesion. The results from Fig. 6 are consistent with those from Fig. 2, where
the population remains phase cohesive if synaptic plasticity is considered but loses
phase cohesion when there is no synaptic plasticity. Note that although we consider
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Fig. 6 Panels A and B give a visual representation of the denominator of (29) taking § = 0 and (31),
respectively. Panel C provides the corresponding max K,;; for populations of excitatory neurons with
plastic synaptic coupling calculated in (29). Panel D gives the right hand side of Eq. (31); because this value
is negative, no positive value of K will result in a phase cohesive population when STDP is not considered.
Panel E provides plots of I';;;;, and 'y for reference

B = 0 here, this is to get an initial sense of how well this bound works for small values
of B. Nonzero values of 8 will be considered in Sect. 4.
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3.4 The critical coupling strength for inhibitory neurons

This paper has focused on the implications of STDP on the retention of phase cohe-
sion in a population of heterogeneous excitatory neurons. However, our results would
be incomplete if we did not include some of our studies on populations of inhibitory
neurons. Reference (Wilson et al. 2018) found the critical coupling strength required
for phase cohesion in populations of heterogeneous inhibitory neurons with static
synaptic coupling. To demonstrate why inhibitory populations could not be included
in this paper, we present Fig. 7. Here we have considered a population of neurons with
Istim € [4.92,5.08]. Note that in panels B and D, the denominator shown in Panel B
is positive and the critical coupling strength is therefore positive for ¢ € [0.2, 0.6],
indicating that within this region, phase cohesion among these heterogeneous oscilla-
tors with inhibitory synaptic coupling is possible. Adding synaptic plasticity, however,
removes the possibility of phase cohesion, as can be verified in panels A and C, which
are consistently negative for all values of ¢. Again panel E shows the coupling func-
tions, I'yqx and Iy, used in these calculations.

4 Numerical results

For validation of the bound obtained in Sect.3.2, we consider a population of N
coupled excitatory neurons from Eq. (3). For these simulations Iy, ; € [4.84, 5.16]
with specific values taken from the distributions described below. To numerically
determine the actual critical coupling strength, we choose a synaptic conductance,
K, (i.e., the coupling strength) larger than the critical value and slowly decrease until
phase cohesion is lost. Here, we consider a population to be phase cohesive if the
phases of all neurons remain within an arclength of size v = 2.3 radians.

Results are shown in Fig. 8. In each panel of Fig. 8, the upper bound on the critical
coupling strength is computed according to Eq. (29), taking B = 0 and using the
maximum value over all values of ¢. This bound is shown with a dashed line for
reference. In panel A, we consider populations of N = 5, 10, 15, 20, 25, and 30
excitatory neurons with baseline currents that are evenly spread between the upper
and lower bounds. For each trial, the actual critical coupling strength is approximately
35 percent below the predicted critical coupling strength value. In panel B, we consider
populations of neurons with two neurons having the minimum and maximum values
for the baseline current and we draw the remaining baseline currents from a uniform
distribution. We again consider population sizes of N = 5, 10, 15, 20, 25, and 30
excitatory neurons. For each population size considered, we numerically compute the
critical coupling strength for 30 trials. Due to the randomness in each population,
there is some spread in the critical coupling strengths obtained. Panel B shows the
maximum, minimum, and mean of each group of 30 trials. We also consider even
numbered populations of excitatory neurons where N /2 neurons have the smallest
possible baseline current and the remaining N /2 neurons have the largest possible
baseline current. The results for these trials are shown in panel C of Fig. 8. Particularly
for these simulations, it is expected that there will be more order switching between
the neurons on the boundary because the unperturbed natural frequencies are clustered
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Fig. 7 Panels A and B give a visual representation of the denominator of (29) taking 8 = 0 and (31),
respectively, for populations of inhibitory neurons with I, € [4.92,5.08]. Panel C provides the corre-
sponding right hand side of Eq. (29), given g = 0 for these same populations of inhibitory neurons with
plastic synaptic coupling. Since this value is negative, no positive value of K will result in a phase cohesive
population when the synaptic coupling is subject to this specific form of Hebbian STDP. Panel D gives the
upper bound on the critical coupling strength, max K ,.;;, for populations of inhibitory neurons with static
synaptic coupling, which is positive in the region ¢ € [0.2, 0.6]. Panel E provides plots of I',,;, and ['ynax
for reference

at the maximum and minimum values. For this reason, these simulations ultimately
require a larger coupling strength to retain phase cohesion with some trials having a
critical coupling strength above the value predicted from Eq. (29) for 8 = 0.
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Fig. 8 In each panel, the dashed black line represents the upper bound on the critical coupling strength
computed according to Eq. (29), taking 8 = 0 (i.e., assuming no switching between neurons on the boundary)
and taking the maximum over all values of ¢. In panel A, the true critical coupling strength for populations
of different sizes with baseline currents spread evenly between the maximum and minimum values are
shown with dots. Panel B is similar, except with the baseline currents drawn from a uniform distribution.
Here the triangles and circles represent the minimum, average, and maximum value of the numerically
computed critical coupling strength obtained from 30 total trials for each population size. In panel C, half
of the neurons have the maximum value of baseline current and the other half have the minimum baseline
current

Figure9 is included to more carefully investigate the influence of order switching
among the neurons in a population. Here we consider simulations with baseline cur-
rents taken identically to those considered in Fig. 8 and plot the corresponding 1 value
over time for one of these simulations. Note that in each simulation, K is taken to be
close to the critical value for phase cohesion. Panel A shows 7 calculated according
to (15) for the leading and lagging neurons from a population of N = 25 neurons
with evenly distributed natural frequencies, as was done in panel A of Fig. 8. In panel
B of Fig.9, we show the n value for a single simulation of N = 25 neurons where
the baseline currents are drawn from a uniform distribution, as was done in panel B
of Fig. 8. In panel C of Fig.9, we finally present the n value for a simulation of N =
24 neurons with half of the natural frequencies clustered at the lower bound and half
at the upper bound as was done in panel C of Fig.8. For these trials, to ensure that
our leading and lagging edge neurons were contained within and near the limits of the
arclength v, we set K = 0.025 in panels A and B and K = 0.035 in panel C. The fact
that the true critical coupling strength in panel C of Fig. 8 exceeds the predicted critical
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Fig.9 In each panel, the value n; (¢, 50) is calculated over time for a single simulation of N = 25 neurons
in panels A and B and N = 24 neurons in panel C. For these trials the coupling strength is near the actual
critical coupling strength. In panel A, the natural frequencies are evenly distributed as is done in panel A
of Fig. 8. In panel B, the natural frequencies are taken from a uniform distribution as was done in the trials
from panel B of Fig.8. In panel C, half of the neurons have natural frequencies of w4y and half of the
neurons have natural frequencies of @,;,;,, as was done in the trials from panel C of Fig.8

coupling strength is consistent with the fact that in panel C of Fig. 9, order switching
is nonnegligible. Note that 5 is shown in these plots for the current leading or lagging
neuron at time, 7. Large jumps in 7, such as those in panel B, often occur when a new
neuron takes over as the leading or lagging neuron in a population. As such, when a
switch occurs at the leading or lagging edge, the value of 1 can increase/decrease by
several natural numbers in a single time step.

5 Discussion and conclusion

The presence or absence of spike timing dependent plasticity (STDP) can qualita-
tively alter the collective behavior of a synaptically coupled population of neurons.
In this work, we derive an upper bound for the critical coupling strength required for
maintaining phase cohesion in a population of conductance based, synaptically cou-
pled neurons subject to Hebbian STDP. This work can be viewed as an extension of
results from Wilson et al. (2018) (which assumed static coupling strengths between
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oscillators with inhibitory connections). In addition to providing a reasonably tight
upper bound on the critical coupling strength required to retain phase cohesion in
populations of excitatory neurons, the results also explain the qualitative differences
in the aggregate behavior in Figs. 1 and 2, where the populations are simulated with
and without synaptic plasticity. When the influence of coupling felt by the leading
neurons is diminished over time (as is the case here) the stability of the phase cohesive
state can change depending on whether the coupling is excitatory or inhibitory.

In contrast to results that do not consider STDP, the critical coupling strength
depends on the ordering of neurons. In particular, changes to the ordering of the
neurons on the edge of the arclength will degrade the synchronizing influence of
synaptic coupling, ultimately requiring a stronger coupling strength to retain phase
cohesion. This effect is reflected in the results from Figs. 8 and 9. Individual neurons
from larger populations with evenly spaced natural frequencies switch spike order less
often and consequently require smaller coupling strengths to retain phase cohesion.
Individual neurons from larger populations with natural frequencies clustered at the
maximum and minimum values switch spike order more and hence require larger
coupling strengths to retain phase cohesion. As emphasized in Figs.8 and 9, even
when the overall population remains phase cohesive, there are still a small number of
order shifts between neurons in the overall population.

There are a number of limitations and possible extensions of the present work. Here,
we are only concerned with the stability of the phase cohesive state but are not able to
make any deductions about its basin of attraction or make inferences about spontaneous
synchronization that may emerge in a coupled population of oscillators. We are also
unable to make any direct inferences about frequency synchronization, although this
phenomenon was not observed in any of the examples considered. Additionally, we
do not directly consider the influence of noise in the population which would certainly
be a factor in a more realistic population of neural oscillators. Furthermore, the phase-
based reduction techniques used here are only valid in the weakly perturbed limit and
it may be necessary to incorporate alternative phase-based reduction strategies that
can accommodate larger magnitude inputs in more realistic models. We elected to
use soft bound Hebbian STDP in our model, which does not allow for unrestricted
growth or decay of a given synaptic connection, bounding the synaptic strength so that
8i—j € [gmin, 11and |Ag;_, ;| decreases as the synaptic strength approaches a bound-
ary. However, there exist qualitative differences when hard bounds are implemented
instead, where the update to the synaptic connection is linearly additive and no longer
a function of the current synaptic weight. Some of these qualitative differences, such
as those mentioned in Van Rossum et al. (2012) and Giitig et al. (2003), could affect
these results. It would be of interest to conduct further analysis on how hard bounds
would alter the findings presented here. Finally, the analysis considered in this work is
only valid for tonically firing neurons and it would be of interest to investigate possible
extensions for bursting neurons or for neurons without a well-defined firing rate.
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