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Abstract—Circuit quantum electrodynamics is one of the
most promising platforms for building quantum information
processors. To meet the stringent performance requirements,
high-fidelity general-purpose numerical methods are increasingly
needed to improve designs. Currently, there exist a limited num-
ber of methods for analyzing these systems and they suffer from
problematic efficiency limitations. One challenge in developing
more efficient methods is the lack of available reference data that
can be generated to validate them. Here, we develop an analytical
quantum full-wave solution for a transmon qubit in a 3D cavity
that can validate numerical methods in the future. We start
by reviewing the basics of the field-based quantization method
used before showing how classical electromagnetic theories can
be used to analytically evaluate all field-based parameters in
our formulation. We validate our analytical solution by calculat-
ing experimentally-relevant system parameters and comparing
against approaches that use numerical EM eigenmodes in their
solution.

Index Terms—Circuit quantum electrodynamics, transmon
qubit, quantum theory, microwave resonators, cavity perturba-
tion theory, and antenna theory.

I. INTRODUCTION

Quantum information processing devices have the potential
to revolutionize computing due to their unmatched perfor-
mance compared to classical computers on important classes
of difficult computational tasks. The circuit quantum elec-
trodynamics (cQED) platform using transmon quantum bits
(qubits) [1], [2] is one of the most promising architectures
for building quantum information processors, whose maturity
was recently demonstrated through landmark achievements of
a quantum advantage compared to classical technologies [3],
[4]. However, substantial improvements are still needed for
these technologies to address practical problems of interest,
which requires component-level design improvements while
massively scaling the number of qubits in the system [5], [6].
To overcome these engineering challenges, general-purpose
and high-fidelity numerical analysis tools are becoming in-
creasingly important for optimizing designs [7].

Currently, one of the few general-purpose numerical meth-
ods available is the energy participation ratio (EPR) quan-
tization method [7]. In this approach, all quantities in the
quantum Hamiltonian describing a system are related to results
of a linear electromagnetic (EM) eigenmode analysis of the
geometry being considered. Although the EPR method has
been validated for systems involving multiple transmon qubits
[1], [2], the computational cost of the EM eigenmode analysis

is problematic for analyzing large-scale systems. Further, as
will be shown later, the method requires the use of a large
quantum state space to reach numerical convergence that also
significantly limits the size of system that can be analyzed in
practice.

An alternative method to EPR quantization is the field-based
quantization approach for cQED systems proposed in [8]. In
this formalism, key parameters in the quantum Hamiltonian
describing a system can also be evaluated in terms of results of
a linear EM eigenmode analysis. However, due to differences
in how qubits are incorporated into this formalism, a much
smaller quantum state space can be used to reach numerical
convergence for an accurate solution, as will be shown later.

Both aforementioned methods rely on numerically finding
EM eigenmodes, which becomes computationally prohibitive
for large devices. As a result, there is a need for more
efficient methods to be formulated. Since measured data is
not a widely-available resource and numerically performing
a 3D EM eigenmode analysis can also be prohibitive, it
becomes difficult to validate new numerical methods as they
are developed. To help address this, we have designed a simple
geometry for which all field-based aspects of the quantum
Hamiltonian proposed in [8] can be evaluated analytically
using results from cavity perturbation theory [9] and antenna
theory [10]. In the future, this analytical solution can be used
to validate new numerical methods, as well as build intuition
about important quantum effects that occur in cQED devices.

The remainder of this work is organized in the following
manner. In Section II, we review the necessary basics of the
field-based quantization approach used in this work. Following
this, in Section III we introduce the system geometry and then
discuss how traditional analytical EM theories can be used
to evaluate the parameters in the total system Hamiltonian.
Next, we present numerical results in Section IV to validate
our analytical solution against an implementation of our theory
using numerical EM eigenmodes and the EPR method. Finally,
we discuss conclusions and future work in Section V.

II. BACKGROUND

Before discussing the formulation of our analytical solution,
it is necessary to review some basics of the field-based
quantization method discussed in [8]. There, the quantum



Hamiltonian for a general system composed of a transmon
qubit [1], [2] coupled to the quantum EM field is given as

H=Hp + Hr + Hy, (D

where H corresponds to the total energy of the EM field,

H T is transmon energy, and H 1 18 the interaction Hamiltonian

describing the coupling between the two subsystems. For an

introduction to Hamiltonian methods in electromagnetics, see

[11] and references therein. Also, note that “hats” in this work

denote quantum operators rather than geometric unit vectors.
More specifically, the EM field Hamiltonian is

Hp = % / / / (¢B? + pH?)dr, )

where E and H are quantum electric and magnetic field
operators. These operators can be expressed in many different
ways, but here we will consider them in terms of eigenmodes
found by solving the EM wave equation as an eigenvalue
problem. In this case, the field operators are
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where wy, is an eigenfrequency, Ej; and Hj are orthonormal
field modes, and dL and a, are the creation and annihilation
operators of the kth field mode [8].

Next, the transmon Hamiltonian is

Hp = 4Echn? — Ejcos @, 5)

which from a circuit theory perspective corresponds to a linear
capacitor in parallel with a nonlinear inductor. Here, 7 and
¢ are the qubit charge and phase operators that serve as
canonically conjugate operators for the qubit [1], [2]. Further,
Ec = €2/(2Cy) is the charging energy of the total qubit
capacitance Cy, where e is the electron charge. We also
have that the Josephson energy is E; = (/2¢e)?/L;, where
L; is the Josephon inductance. For a transmon, the energy
parameters are designed such that E;/Ec > 1 to minimize
the qubit sensitivty to a common form of noise [1], [2].
Finally, the interaction Hamiltonian is

Hy = 2e / / / E - d(r)adr, (6)

where d parameterizes a line integration path so that its
integral with E computes the voltage seen by the Josephson
junction in the transmon qubit [8].

At this point, it is useful to simplify (1) by substituting in
(3) and (4) and evaluating the spatial integrals leveraging the
orthonormality of the field modes. Further, it is convenient to
re-express the transmon operators in terms of the qubit states
that are eigenstates of the transmon Hamiltonian given in (5).
Denoting the jth eigenstate in Dirac bra-ket notation as |j) and
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Fig. 1. Schematic illustration of a transmon qubit embedded in a rectangular
waveguide cavity structure that is analytically solvable for all field-based
aspects of the quantum full-wave Hamiltonian analysis.

its “Hermitian conjugate” as (j
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, we can eventually simplify

where we have also applied the “rotating wave approximation”
to drop terms that are unimportant in the operating regime
considered in Section IV and noted that the charge operator ap-
proximately only allows transitions between nearest-neighbor
energy eigenstates for transmon qubits [1]. Further, w; is the
qubit eigenfrequency associated with energy eigenstate |j) and
gk,; s the coupling rate between specific field and transmon
modes given by

Ky = 2e(jIRlj + 1)&/// Ei(r)-d(r)dr.  (8)

In the next section, we will show how all of the EM field-
dependent parameters discussed throughout this section can
be evaluated using analytical methods of classical EM theory
for an appropriately-designed system geometry.

III. FORMULATION

So the parameters of the total Hamiltonian can be evalu-
ated in an analytical manner, we have considered the simple
geometry shown in Fig. 1. This system is inspired by cQED
structures that have been experimentally studied in the past that
are often referred to as 3D transmons [12], which consist of a
transmon qubit formed by a small planar dipole antenna that
is embedded in a waveguide cavity. For our system, we have
made the cavity a rectangular waveguide due to the simplicity
of the field distributions [9] and formed the transmon from a
small wire dipole antenna so typical antenna theory techniques
can be leveraged in our analytical solution [10]. Further, we
developed our geometry in the broader context of the mode-
matching (or projector-based) quantization approach of [8] that
is useful for analyzing systems with ports, so we have included
two coaxial probes in our geometry that would facilitate
coupling to ports as in [13]. These ports would typically be
used to control the system with microwave drives; however,
this will not be considered directly here.



As alluded to previously, the transmon in our system is
composed of a linear wire dipole antenna that has a Josephson
junction and an additional load capacitance connected in
parallel across the dipole’s terminals. The Josephson junction
itself can be considered to be composed of a linear junction
capacitance and a nonlinear inductance. In our system, we
keep the length of the dipole electrically small compared to the
variation of the relevant cavity field modes. This then makes
the cavity field modes appear effectively like plane waves to
the dipole antenna so that typical antenna theory formulas
developed for free space operation can still be applied for the
dipole in the cavity, as will be substantiated by the numerical
results in Section IV.

We will now summarize how the different parameters in
the total system Hamiltonian of (7) can be evaluated using
traditional EM theories. To begin, we will consider computing
the cavity resonant frequency wy. Based on the field quanti-
zation process [8], we need to determine wy in the absence
of the transmon, which leaves only the perturbation due to
the coaxial probes to be accounted for. Due to the small size
of the coaxial probes, their effect on wy can be determined
using cavity perturbation theory for “shape perturbations” [9].
In this case, the resonant frequency of the cavity including the
effect of perturbation is evaluated as

[ b~ i
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where wy, is the perturbed resonant frequency, wj, is the
unperturbed resonant frequency (i.e., of the empty cavity), V'
is the volume of the unperturbed cavity, AV is the volume of
the perturbation corresponding to the coaxial probes, Ej; and
H,, are the EM fields of the unperturbed cavity for the kth
field mode, and p and € are the constitutive parameters of the
material inside the cavity (free space in the case considered
here). We integrated the EM energy over the coaxial probes
by sampling the EM field at the tips of the coaxial probes
and multiplying by the volume of the probe [9], which is
reasonable for the lower cavity modes considered in our
solution that do not vary along the length of the coaxial probes.

Next, the eigenfrequencies of the transmon w; in (7) will
be considered. In typical scenarios, E/y is a given parameter
that depends on the microscopic structure of the Josephson
junction and is not influenced by the surrounding geometry.
Hence, the only other parameter needed to characterize the
transmon is F¢, which is a function of the total capacitance
in parallel to the Josephson junction. Here, this is

Cy, = Cant + C5 + Cy (10)

where C,y; is the geometric capacitance of the dipole antenna,
C; is the linear Josephson junction capacitance, and CY is
the load capacitance due to a lumped element placed across
the dipole terminals. This load capacitance is needed to boost
the total qubit capacitance so that the qubit operates in the
“transmon regime” where F;/Ec > 1. Since C; and Cy

are given parameters in a design, the only capacitance that
actually needs to be determined from the geometry of the
system is Cy,. For a small dipole antenna, this capacitance
can be computed using
tan(kL/2)

120wy (In(L/(2r)) — 1)’
where L is the length of the dipole, r is the radius of the
cylinder of the dipole, k is the free space wave number, and
wy is the operating frequency of the fundamental mode of
the cavity [10]. With E¢c and E; determined, they can be
used to calculate the eigenfrequencies of the transmon either
analytically [1] or numerically. In our work, we have used a
simple finite element method to compute the eigenfrequencies
of the transmon as described in [14].

Lastly, evaluating the coupling rate g;, ,- in (8) can be started
by evaluating the transition matrix element of the charge
operator, (j|f|j + 1). This can be computed numerically, or
can be approximated analytically as [1]

o BN
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The spatial integral in (8) also must be evaluated, and cor-
responds to computing the voltage induced across the dipole
terminals in the absence of the nonlinear inductance of the
Josephson junction. To begin, we first use the vector effective
length from antenna theory to find the open circuit voltage
that would be induced. For a small linear dipole antenna, the
open circuit voltage assuming broadside incidence is

Cant = (11)

12)

Voc = %E . Ek(l‘o)L (13)
where / is a unit vector pointing along the length of the dipole
and r( is the position at the center of the dipole [10]. Then,
the voltage induced across the dipole terminals accounting for
the load capacitances can be found by performing a voltage
division as

C’ant
Cant + CZ .

With all the parameters in the Hamiltonian operator now
determined, a matrix representation of it can be found in
terms of a suitable basis [15]. Here, we will form our basis
as a tensor product between the “natural” basis of each of the
constituent parts of the system. For the qubit, this corresponds
to its free energy levels, denoted by |j) for j an integer in the
range [0, J — 1]. Similarly, each cavity mode is expressed in
terms of its own eigenstates that correspond to a fixed number
of photons in the mode (these are typically referred to as
Fock states). The matrix representation of H is then found
by evaluating

Vi = Ve (14)

Hypp = (m|H]n), (15)

where H,,, is the element in the mth row and nth column
of the matrix and |m) and |n) are two states of the tensor
product basis being used. In any calculation, it is imperative
that a sufficiently large basis is used to achieve numerically
converged results for the system parameters of interest.
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Fig. 2. Numerical convergence of the different computation methodologies
for (a) the qubit anharmonicity « and (b) the first qubit transition frequency
wo1. The reference solution for each computation method is its own results
using 15 Fock states for each mode in the basis.

IV. NUMERICAL RESULTS

Our simulation is considered for a geometry as shown in
Fig. 1 . The dimensions of the cavity are 22.86 x 10.16 x
40 mm?, and the cavity is filled with vacuum. The coaxial
probes have a radii of 0.05mm and lengths of 0.75mm.
The transmon consists of a linear dipole antenna with length
1mm, radius 0.04 mm, and terminal gap size 0.102 mm that
is oriented along the electric field direction of the dominant
cavity modes. Also, a load capacitance of 50 fF is included
across the dipole terminals. The Josephson junction of the
transmon has properties of L; = 9.40nH and C; = 0.34{F.
For our simulations we will only consider the lowest two
cavity modes, which for this system are the TE;p; and TE;g9
modes. Further, in our analysis, we move the transmon over
one quadrant of the cross-sectional plane held at a fixed
vertical position of the cavity with each transmon location
corresponding to an independent solution.

These system parameters have been selected so that our
device operates in the dispersive regime of cQED, which is
the common operating regime of most practical devices. This
regime is characterized by having the detuning between cavity
resonant frequencies and qubit transition frequencies being
large relative to their coupling; i.e., Ay j = |wp — wj j41| >
lgk,;|, where w;iy1 = w;jt1 — w; is the qubit transition
frequency between states |j) and |7 + 1). In this regime,
strong quantum interactions between the cavity and qubit are
suppressed, which has certain advantages for controlling and
measuring the state of the qubit [16].

To test our solution approach, we have computed various
system parameters of experimental relevance for a cQED
system operated in the dispersive regime. In particular, we
compute the first qubit transition frequency wpi, the qubit
anharmonicity o = wys — wp1, the cavity resonant frequencies
wy and wo, and the AC-Stark shift y [16]. This final parameter
characterizes the interaction strength between the qubit and
cavity modes in the dispersive regime, and is important for
designing qubit state measurement protocols.

As an initial test, we consider the numerical convergence of
typical system parameters as a function of the number of basis
states used for the qubit and cavity modes. These convergence
plots are shown in Fig. 2 for o and wg; computed using three
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Fig. 3. AC-Stark shift x computed while moving the transmon over one
quadrant of the cross-sectional plane at a fixed vertical position in the cavity
center for (a) analytical, (b) numerical eigenmode, and (c) EPR solution
methods.

different methods. In particular, for our analytical solution,
an implementation of our field-based Hamiltonian where all
parameters are computed using numerical EM eigenmodes
of the cavity, and the EPR method. The relative error is
computed for each method by comparing to the results of its
own calculation using 15 Fock states for each mode in the
basis. From the results, it is clear that the field-based approach
described here converges immediately with the lowest number
of possible Fock states while the EPR method requires a
substantial number of Fock states to converge. We attribute our
formulation’s quick convergence to explicitly incorporating the
nonlinearity of the qubit in the analysis of the qubit subsystem
in formulating our Hamiltonian matrix. In constrast, the EPR
method treats the nonlinear effects as a perturbation to the
linear effects, which then requires a large number of Fock
states to be considered to achieve convergence even in the
properties of the lowest energy levels of the system. Since the
size of the Hamiltonian matrix grows exponentially with the
number of Fock states considered, achieving fast numerical
convergence is a key property for a numerical method. For
the remaining results, we use 8 Fock states for all methods to
compare results fairly.

Next, we show the effect of moving the transmon throughout
the cavity on y, which is sensitive to these movements. This is
shown in Fig. 3, where it is clear that all methods demonstrate
similar behavior due to the coupling to the dominant TEy;
mode. This also highlights that the approximations in the
analytical solution do not break down so long as the dipole is
kept a few millimeters away from the walls of the cavity.

Finally, we summarize the relative error of all computed
dispersive regime parameters in Table I. Here, the dispersive
regime parameters are averaged as a function of the transmon



TABLE I
AVERAGE SYSTEM PARAMETERS AND RELATIVE PERCENT ERRORS WITH
RESPECT TO THE NUMERICAL EIGENMODE DATA

System Numerical EPR Analytical
Parameter Eigenmode Solution
wo1/2m (GHz) 6.44 6.43 (0.21) 6.39 (0.84)
w1 /27 (GHz) 7.55 7.55 (8.82¢-5) 7.55 (1.5e-2)
wa /27 (GHz) 9.96 9.96 (8.88¢-5) 9.96 (2.6e-2)
/27 (MHz) -379.00 -360.78 (-4.81) | -371.72 (-1.92)
x/2m (MHz) -0.025 -0.026 (-2.23) -0.028 (-10.38)

location in the cavity. Relative errors are also computed
between the methods as compared to the numerical eigenmode
solution of our field-based formulation, which are shown
in parentheses in Table I. Given the typical experimental
precision, the relative errors are within reasonable ranges [7].
The main source of error in our analytical solution has been
found to be due to the approximation of the capacitance of
the dipole antenna from (11). With a better estimation of this
capacitance, the accuracy of the analytical solution can become
much closer to that of the numerical eigenmode approach for
this geometry.

V. CONCLUSION

This work presented an analytical quantum full-wave solu-
tion for a transmon qubit in a rectangular waveguide cavity
using a field-based quantization approach. The analytical so-
lution utilized the classical EM methods of cavity perturbation
theory and antenna theory to evaluate all the field-based
aspects of the Hamiltonian of the system. This approach
was shown to be valid by computing experimentally-relevant
system parameters and comparing them to an implementation
of the same theory using numerical EM eigenmodes and to
the independent EPR quantization method. Future work can
involve extending the analytical quantum full-wave solution
to include multiple qubits, improving its accuracy using more
sophisticated classical EM theories, and applying similar tech-
niques to more complicated geometries.
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