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AbstractÐCircuit quantum electrodynamics is one of the
most promising platforms for building quantum information
processors. To meet the stringent performance requirements,
high-fidelity general-purpose numerical methods are increasingly
needed to improve designs. Currently, there exist a limited num-
ber of methods for analyzing these systems and they suffer from
problematic efficiency limitations. One challenge in developing
more efficient methods is the lack of available reference data that
can be generated to validate them. Here, we develop an analytical
quantum full-wave solution for a transmon qubit in a 3D cavity
that can validate numerical methods in the future. We start
by reviewing the basics of the field-based quantization method
used before showing how classical electromagnetic theories can
be used to analytically evaluate all field-based parameters in
our formulation. We validate our analytical solution by calculat-
ing experimentally-relevant system parameters and comparing
against approaches that use numerical EM eigenmodes in their
solution.

Index TermsÐCircuit quantum electrodynamics, transmon
qubit, quantum theory, microwave resonators, cavity perturba-
tion theory, and antenna theory.

I. INTRODUCTION

Quantum information processing devices have the potential

to revolutionize computing due to their unmatched perfor-

mance compared to classical computers on important classes

of difficult computational tasks. The circuit quantum elec-

trodynamics (cQED) platform using transmon quantum bits

(qubits) [1], [2] is one of the most promising architectures

for building quantum information processors, whose maturity

was recently demonstrated through landmark achievements of

a quantum advantage compared to classical technologies [3],

[4]. However, substantial improvements are still needed for

these technologies to address practical problems of interest,

which requires component-level design improvements while

massively scaling the number of qubits in the system [5], [6].

To overcome these engineering challenges, general-purpose

and high-fidelity numerical analysis tools are becoming in-

creasingly important for optimizing designs [7].

Currently, one of the few general-purpose numerical meth-

ods available is the energy participation ratio (EPR) quan-

tization method [7]. In this approach, all quantities in the

quantum Hamiltonian describing a system are related to results

of a linear electromagnetic (EM) eigenmode analysis of the

geometry being considered. Although the EPR method has

been validated for systems involving multiple transmon qubits

[1], [2], the computational cost of the EM eigenmode analysis

is problematic for analyzing large-scale systems. Further, as

will be shown later, the method requires the use of a large

quantum state space to reach numerical convergence that also

significantly limits the size of system that can be analyzed in

practice.

An alternative method to EPR quantization is the field-based

quantization approach for cQED systems proposed in [8]. In

this formalism, key parameters in the quantum Hamiltonian

describing a system can also be evaluated in terms of results of

a linear EM eigenmode analysis. However, due to differences

in how qubits are incorporated into this formalism, a much

smaller quantum state space can be used to reach numerical

convergence for an accurate solution, as will be shown later.

Both aforementioned methods rely on numerically finding

EM eigenmodes, which becomes computationally prohibitive

for large devices. As a result, there is a need for more

efficient methods to be formulated. Since measured data is

not a widely-available resource and numerically performing

a 3D EM eigenmode analysis can also be prohibitive, it

becomes difficult to validate new numerical methods as they

are developed. To help address this, we have designed a simple

geometry for which all field-based aspects of the quantum

Hamiltonian proposed in [8] can be evaluated analytically

using results from cavity perturbation theory [9] and antenna

theory [10]. In the future, this analytical solution can be used

to validate new numerical methods, as well as build intuition

about important quantum effects that occur in cQED devices.

The remainder of this work is organized in the following

manner. In Section II, we review the necessary basics of the

field-based quantization approach used in this work. Following

this, in Section III we introduce the system geometry and then

discuss how traditional analytical EM theories can be used

to evaluate the parameters in the total system Hamiltonian.

Next, we present numerical results in Section IV to validate

our analytical solution against an implementation of our theory

using numerical EM eigenmodes and the EPR method. Finally,

we discuss conclusions and future work in Section V.

II. BACKGROUND

Before discussing the formulation of our analytical solution,

it is necessary to review some basics of the field-based

quantization method discussed in [8]. There, the quantum



Hamiltonian for a general system composed of a transmon

qubit [1], [2] coupled to the quantum EM field is given as

Ĥ = ĤF + ĤT + ĤI , (1)

where ĤF corresponds to the total energy of the EM field,

ĤT is transmon energy, and ĤI is the interaction Hamiltonian

describing the coupling between the two subsystems. For an

introduction to Hamiltonian methods in electromagnetics, see

[11] and references therein. Also, note that ªhatsº in this work

denote quantum operators rather than geometric unit vectors.

More specifically, the EM field Hamiltonian is

ĤF =
1

2

∫∫∫

(

ϵÊ2 + µĤ2
)

dr, (2)

where Ê and Ĥ are quantum electric and magnetic field

operators. These operators can be expressed in many different

ways, but here we will consider them in terms of eigenmodes

found by solving the EM wave equation as an eigenvalue

problem. In this case, the field operators are

Ê(r) =
∑

k

√

h̄ωk

2ϵ0

(

âk + â†k
)

Ek(r), (3)

Ĥ(r) = −i
∑

k

√

h̄ωk

2µ0

(

âk − â†k
)

Hk(r), (4)

where ωk is an eigenfrequency, Ek and Hk are orthonormal

field modes, and â†k and âk are the creation and annihilation

operators of the kth field mode [8].

Next, the transmon Hamiltonian is

ĤT = 4EC n̂
2 − EJ cos φ̂, (5)

which from a circuit theory perspective corresponds to a linear

capacitor in parallel with a nonlinear inductor. Here, n̂ and

φ̂ are the qubit charge and phase operators that serve as

canonically conjugate operators for the qubit [1], [2]. Further,

EC = e2/(2CΣ) is the charging energy of the total qubit

capacitance CΣ, where e is the electron charge. We also

have that the Josephson energy is EJ = (h̄/2e)2/LJ , where

LJ is the Josephon inductance. For a transmon, the energy

parameters are designed such that EJ/EC ≫ 1 to minimize

the qubit sensitivty to a common form of noise [1], [2].

Finally, the interaction Hamiltonian is

ĤI = 2e

∫∫∫

Ê · d(r)n̂dr, (6)

where d parameterizes a line integration path so that its

integral with Ê computes the voltage seen by the Josephson

junction in the transmon qubit [8].

At this point, it is useful to simplify (1) by substituting in

(3) and (4) and evaluating the spatial integrals leveraging the

orthonormality of the field modes. Further, it is convenient to

re-express the transmon operators in terms of the qubit states

that are eigenstates of the transmon Hamiltonian given in (5).

Denoting the jth eigenstate in Dirac bra-ket notation as |j⟩ and

Fig. 1. Schematic illustration of a transmon qubit embedded in a rectangular
waveguide cavity structure that is analytically solvable for all field-based
aspects of the quantum full-wave Hamiltonian analysis.

its ªHermitian conjugateº as ⟨j|, we can eventually simplify

(1) to

Ĥ =
∑

k

h̄ωkâ
†
kâk +

∑

j

h̄ωj |j⟩⟨j|

+
∑

k,j

(

h̄gk,j â
†
k|j⟩⟨j + 1|+ h̄g∗k,j âk|j + 1⟩⟨j|

)

, (7)

where we have also applied the ªrotating wave approximationº

to drop terms that are unimportant in the operating regime

considered in Section IV and noted that the charge operator ap-

proximately only allows transitions between nearest-neighbor

energy eigenstates for transmon qubits [1]. Further, ωj is the

qubit eigenfrequency associated with energy eigenstate |j⟩ and

gk,j is the coupling rate between specific field and transmon

modes given by

gk,j = 2e⟨j|n̂|j + 1⟩

√

ωk

2ϵ0h̄

∫∫∫

Ek(r) · d(r)dr. (8)

In the next section, we will show how all of the EM field-

dependent parameters discussed throughout this section can

be evaluated using analytical methods of classical EM theory

for an appropriately-designed system geometry.

III. FORMULATION

So the parameters of the total Hamiltonian can be evalu-

ated in an analytical manner, we have considered the simple

geometry shown in Fig. 1. This system is inspired by cQED

structures that have been experimentally studied in the past that

are often referred to as 3D transmons [12], which consist of a

transmon qubit formed by a small planar dipole antenna that

is embedded in a waveguide cavity. For our system, we have

made the cavity a rectangular waveguide due to the simplicity

of the field distributions [9] and formed the transmon from a

small wire dipole antenna so typical antenna theory techniques

can be leveraged in our analytical solution [10]. Further, we

developed our geometry in the broader context of the mode-

matching (or projector-based) quantization approach of [8] that

is useful for analyzing systems with ports, so we have included

two coaxial probes in our geometry that would facilitate

coupling to ports as in [13]. These ports would typically be

used to control the system with microwave drives; however,

this will not be considered directly here.



As alluded to previously, the transmon in our system is

composed of a linear wire dipole antenna that has a Josephson

junction and an additional load capacitance connected in

parallel across the dipole’s terminals. The Josephson junction

itself can be considered to be composed of a linear junction

capacitance and a nonlinear inductance. In our system, we

keep the length of the dipole electrically small compared to the

variation of the relevant cavity field modes. This then makes

the cavity field modes appear effectively like plane waves to

the dipole antenna so that typical antenna theory formulas

developed for free space operation can still be applied for the

dipole in the cavity, as will be substantiated by the numerical

results in Section IV.

We will now summarize how the different parameters in

the total system Hamiltonian of (7) can be evaluated using

traditional EM theories. To begin, we will consider computing

the cavity resonant frequency ωk. Based on the field quanti-

zation process [8], we need to determine ωk in the absence

of the transmon, which leaves only the perturbation due to

the coaxial probes to be accounted for. Due to the small size

of the coaxial probes, their effect on ωk can be determined

using cavity perturbation theory for ªshape perturbationsº [9].

In this case, the resonant frequency of the cavity including the

effect of perturbation is evaluated as

ωk ≈ ω′
k + ω′

k

∫

∆V

(µ|Hk|
2 − ϵ|Ek|

2)dV
∫

V

(µ|Hk|
2 + ϵ|Ek|

2)dV

, (9)

where ωk is the perturbed resonant frequency, ω′
k is the

unperturbed resonant frequency (i.e., of the empty cavity), V
is the volume of the unperturbed cavity, ∆V is the volume of

the perturbation corresponding to the coaxial probes, Ek and

Hk are the EM fields of the unperturbed cavity for the kth

field mode, and µ and ϵ are the constitutive parameters of the

material inside the cavity (free space in the case considered

here). We integrated the EM energy over the coaxial probes

by sampling the EM field at the tips of the coaxial probes

and multiplying by the volume of the probe [9], which is

reasonable for the lower cavity modes considered in our

solution that do not vary along the length of the coaxial probes.

Next, the eigenfrequencies of the transmon ωj in (7) will

be considered. In typical scenarios, EJ is a given parameter

that depends on the microscopic structure of the Josephson

junction and is not influenced by the surrounding geometry.

Hence, the only other parameter needed to characterize the

transmon is EC , which is a function of the total capacitance

in parallel to the Josephson junction. Here, this is

CΣ = Cant + CJ + Cℓ (10)

where Cant is the geometric capacitance of the dipole antenna,

CJ is the linear Josephson junction capacitance, and Cℓ is

the load capacitance due to a lumped element placed across

the dipole terminals. This load capacitance is needed to boost

the total qubit capacitance so that the qubit operates in the

ªtransmon regimeº where EJ/EC ≫ 1. Since CJ and Cℓ

are given parameters in a design, the only capacitance that

actually needs to be determined from the geometry of the

system is Cant. For a small dipole antenna, this capacitance

can be computed using

Cant =
tan(kL/2)

120ωk(ln(L/(2r))− 1)
, (11)

where L is the length of the dipole, r is the radius of the

cylinder of the dipole, k is the free space wave number, and

ωk is the operating frequency of the fundamental mode of

the cavity [10]. With EC and EJ determined, they can be

used to calculate the eigenfrequencies of the transmon either

analytically [1] or numerically. In our work, we have used a

simple finite element method to compute the eigenfrequencies

of the transmon as described in [14].

Lastly, evaluating the coupling rate gk,r in (8) can be started

by evaluating the transition matrix element of the charge

operator, ⟨j|n̂|j + 1⟩. This can be computed numerically, or

can be approximated analytically as [1]

⟨j|n̂|j + 1⟩ ≈ −i

(

EJ

8EC

)1/4
√

j + 1

2
. (12)

The spatial integral in (8) also must be evaluated, and cor-

responds to computing the voltage induced across the dipole

terminals in the absence of the nonlinear inductance of the

Josephson junction. To begin, we first use the vector effective

length from antenna theory to find the open circuit voltage

that would be induced. For a small linear dipole antenna, the

open circuit voltage assuming broadside incidence is

Voc =
1

2
ℓ̃ ·Ek(r0)L (13)

where ℓ̃ is a unit vector pointing along the length of the dipole

and r0 is the position at the center of the dipole [10]. Then,

the voltage induced across the dipole terminals accounting for

the load capacitances can be found by performing a voltage

division as

Vt = Voc

Cant

Cant + Cℓ
. (14)

With all the parameters in the Hamiltonian operator now

determined, a matrix representation of it can be found in

terms of a suitable basis [15]. Here, we will form our basis

as a tensor product between the ªnaturalº basis of each of the

constituent parts of the system. For the qubit, this corresponds

to its free energy levels, denoted by |j⟩ for j an integer in the

range [0, J − 1]. Similarly, each cavity mode is expressed in

terms of its own eigenstates that correspond to a fixed number

of photons in the mode (these are typically referred to as

Fock states). The matrix representation of Ĥ is then found

by evaluating

Hmn = ⟨m|Ĥ|n⟩, (15)

where Hmn is the element in the mth row and nth column

of the matrix and |m⟩ and |n⟩ are two states of the tensor

product basis being used. In any calculation, it is imperative

that a sufficiently large basis is used to achieve numerically

converged results for the system parameters of interest.



(a) (b)

Fig. 2. Numerical convergence of the different computation methodologies
for (a) the qubit anharmonicity α and (b) the first qubit transition frequency
ω01. The reference solution for each computation method is its own results
using 15 Fock states for each mode in the basis.

IV. NUMERICAL RESULTS

Our simulation is considered for a geometry as shown in

Fig. 1 . The dimensions of the cavity are 22.86 × 10.16 ×
40mm3, and the cavity is filled with vacuum. The coaxial

probes have a radii of 0.05mm and lengths of 0.75mm.

The transmon consists of a linear dipole antenna with length

1mm, radius 0.04mm, and terminal gap size 0.102mm that

is oriented along the electric field direction of the dominant

cavity modes. Also, a load capacitance of 50 fF is included

across the dipole terminals. The Josephson junction of the

transmon has properties of LJ = 9.40 nH and CJ = 0.34 fF.

For our simulations we will only consider the lowest two

cavity modes, which for this system are the TE101 and TE102

modes. Further, in our analysis, we move the transmon over

one quadrant of the cross-sectional plane held at a fixed

vertical position of the cavity with each transmon location

corresponding to an independent solution.

These system parameters have been selected so that our

device operates in the dispersive regime of cQED, which is

the common operating regime of most practical devices. This

regime is characterized by having the detuning between cavity

resonant frequencies and qubit transition frequencies being

large relative to their coupling; i.e., ∆k,j = |ωk − ωj,j+1| ≫
|gk,j |, where ωj,j+1 = ωj+1 − ωj is the qubit transition

frequency between states |j⟩ and |j + 1⟩. In this regime,

strong quantum interactions between the cavity and qubit are

suppressed, which has certain advantages for controlling and

measuring the state of the qubit [16].

To test our solution approach, we have computed various

system parameters of experimental relevance for a cQED

system operated in the dispersive regime. In particular, we

compute the first qubit transition frequency ω01, the qubit

anharmonicity α = ω12−ω01, the cavity resonant frequencies

ω1 and ω2, and the AC-Stark shift χ [16]. This final parameter

characterizes the interaction strength between the qubit and

cavity modes in the dispersive regime, and is important for

designing qubit state measurement protocols.

As an initial test, we consider the numerical convergence of

typical system parameters as a function of the number of basis

states used for the qubit and cavity modes. These convergence

plots are shown in Fig. 2 for α and ω01 computed using three

(a) (b)

(c)

Fig. 3. AC-Stark shift χ computed while moving the transmon over one
quadrant of the cross-sectional plane at a fixed vertical position in the cavity
center for (a) analytical, (b) numerical eigenmode, and (c) EPR solution
methods.

different methods. In particular, for our analytical solution,

an implementation of our field-based Hamiltonian where all

parameters are computed using numerical EM eigenmodes

of the cavity, and the EPR method. The relative error is

computed for each method by comparing to the results of its

own calculation using 15 Fock states for each mode in the

basis. From the results, it is clear that the field-based approach

described here converges immediately with the lowest number

of possible Fock states while the EPR method requires a

substantial number of Fock states to converge. We attribute our

formulation’s quick convergence to explicitly incorporating the

nonlinearity of the qubit in the analysis of the qubit subsystem

in formulating our Hamiltonian matrix. In constrast, the EPR

method treats the nonlinear effects as a perturbation to the

linear effects, which then requires a large number of Fock

states to be considered to achieve convergence even in the

properties of the lowest energy levels of the system. Since the

size of the Hamiltonian matrix grows exponentially with the

number of Fock states considered, achieving fast numerical

convergence is a key property for a numerical method. For

the remaining results, we use 8 Fock states for all methods to

compare results fairly.

Next, we show the effect of moving the transmon throughout

the cavity on χ, which is sensitive to these movements. This is

shown in Fig. 3, where it is clear that all methods demonstrate

similar behavior due to the coupling to the dominant TE101

mode. This also highlights that the approximations in the

analytical solution do not break down so long as the dipole is

kept a few millimeters away from the walls of the cavity.

Finally, we summarize the relative error of all computed

dispersive regime parameters in Table I. Here, the dispersive

regime parameters are averaged as a function of the transmon



TABLE I
AVERAGE SYSTEM PARAMETERS AND RELATIVE PERCENT ERRORS WITH

RESPECT TO THE NUMERICAL EIGENMODE DATA

System

Parameter

Numerical

Eigenmode
EPR

Analytical

Solution

ω01/2π (GHz) 6.44 6.43 (0.21) 6.39 (0.84)

ω1/2π (GHz) 7.55 7.55 (8.82e-5) 7.55 (1.5e-2)

ω2/2π (GHz) 9.96 9.96 (8.88e-5) 9.96 (2.6e-2)

α/2π (MHz) -379.00 -360.78 (-4.81) -371.72 (-1.92)

χ/2π (MHz) -0.025 -0.026 (-2.23) -0.028 (-10.38)

location in the cavity. Relative errors are also computed

between the methods as compared to the numerical eigenmode

solution of our field-based formulation, which are shown

in parentheses in Table I. Given the typical experimental

precision, the relative errors are within reasonable ranges [7].

The main source of error in our analytical solution has been

found to be due to the approximation of the capacitance of

the dipole antenna from (11). With a better estimation of this

capacitance, the accuracy of the analytical solution can become

much closer to that of the numerical eigenmode approach for

this geometry.

V. CONCLUSION

This work presented an analytical quantum full-wave solu-

tion for a transmon qubit in a rectangular waveguide cavity

using a field-based quantization approach. The analytical so-

lution utilized the classical EM methods of cavity perturbation

theory and antenna theory to evaluate all the field-based

aspects of the Hamiltonian of the system. This approach

was shown to be valid by computing experimentally-relevant

system parameters and comparing them to an implementation

of the same theory using numerical EM eigenmodes and to

the independent EPR quantization method. Future work can

involve extending the analytical quantum full-wave solution

to include multiple qubits, improving its accuracy using more

sophisticated classical EM theories, and applying similar tech-

niques to more complicated geometries.
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