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Comment on ‘Fickian Non-Gaussian Diffusion
in Glass-Forming Liquids’.

A recent Letter [1] examined the statistics of individ-
ual particles displacements ∆x(t) over time t in two-
dimensional glass-formers and concluded that the cor-
responding probability distribution Gs(∆x, t), called the
van-Hove distribution, is non-Gaussian in a time regime
where the mean-squared displacement (MSD) is Fickian,
⟨∆x2(t)⟩ ∝ Dst, where Ds is the self-diffusion constant.
If this analysis were correct, glass-formers would be ‘Fick-
ian non-Gaussian’ materials [2, 3].

Here, we clarify that the multiple lengthscales and
timescales reported in [1] have either been characterized
before, or are not well-defined. This leads us to dis-
pute the conclusions that glass-formers display Fickian
non-Gaussian behaviour and that this analogy fruitfully
addresses the central questions regarding the nature of
dynamic heterogeneity in these systems.

Let us first recall that the main features of self-diffusion
in supercooled liquids are explained by invoking two char-
acteristic timescales [4–7]. The self-diffusion coefficient
Ds controls the first one, τD = σ2/Ds, where σ is the
particle size. The second one is the structural relax-
ation time τα determined from usual time correlations,
such as the self-intermediate scattering function. The
adimensional ratio X = τα/τD plays a special role. It
controls both the amount of decoupling X(T ) ∼ Dsτα
(akin to violations of the Stokes-Einstein relation [8])),
and the Fickian lengthscale ℓF ∝

√
X [4]. These known

results [4–10] paint a picture that is inconsistent with
several conclusions reported in [1, 3] as we now show.

Let us start with the van Hove distribution. It was
found in [9] that Gs(∆x, t) approaches a Gaussian dis-
tribution only for times much longer than τD, a result
rediscovered in [1] with equivalent tools. However, the
non-Gaussian parameter α2(t) used in [1] to reveal Gaus-
sianity decays as a power law at large times. Hence, the
gradual emergence of Gaussian behaviour from α2(t) is a
scale-free process and there is no characteristic timescale
after which self-diffusion is Gaussian, although of course
empirically α2(t) will be small when ⟨∆x2⟩ ≫ ℓ2F . It was
found numerically [8] and explained theoretically [4] that
it is the lengthscale ℓF that controls the crossover in the
wavevector dependence of the self-intermediate scatter-
ing function, a result ignored in [1].

For times t < τα, Gs(∆x, t) is characterized by a
Gaussian core at small ∆x and a nearly exponential tail
Gs ∝ exp(−|∆x|/λ) at large ∆x [5]. Refs. [1, 3] discuss
the existence and possible universality of a power law
description of the time evolution of the exponential tail,
λ(t) ∼ tα. As noticed in [5, 6, 11], the exponential tail is
generically explained by a large deviation argument, but
asymptotic convergence is so slow that the actual value
of λ depends on the fitted range (see [6] for an explicit
test and [11] for analytic results suggesting that α = 0),
which may explain reported discrepancies [1, 3]. More

fundamentally λ(t) is difficult to measure, and α is not a
novel characteristic exponent.
Linear behaviour of the MSD is visually detected [1] in

log-log representations after a time τD which grows more
slowly than τα at low temperature, but the approach to
linearity is algebraic [12]. This power law approach to
Fickian behaviour is again scale free and no characteristic
timescale controls the emergence of Fickian behaviour in
⟨∆x2(t)⟩; in particular τD does not play this role.
Even though glass-formers may appear empirically

close to Fickian non-Gaussian materials, there is no char-
acteristic timescales or lengthscales controlling the ap-
proach to either Fickian and Gaussian dynamics, and
the existence of a Fickian non-Gaussian regime cannot
be decided. Instead, the salient features of self-diffusion,
including algebraic approach to Fickian and Gaussian
behaviours as well as nearly exponential van Hove dis-
tributions, are analytically captured by (effective) non-
interacting continuous time random walk models [4–7, 10]
based on the only two important and well-defined char-
acteristic timescales τD and τα. The multiple time and
length scales determined empirically in [1, 3] are either
related to those, or conceptually ill-defined.
The complexity of glass-formers is that the timescales

τD and τα emerge from many-body interactions (disorder
is self-induced) and have non-trivial temperature depen-
dencies which are not fully understood, but from which
the very rich statistics of single particle displacement nat-
urally follows. The behaviour of supercooled liquids is
very different from several Fickian non Gaussian materi-
als, which are described by interesting, but quite differ-
ent, models [15].
We end by noting that the use of two-dimensional sim-

ulations to study the statistics of particle displacements
in glass-formers is profoundly influenced at all timescales
by Mermin-Wagner fluctuations [13, 14], which presum-
ably adds to the profusion of timescales reported in [1].
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