Comment on ‘Fickian Non-Gaussian Diffusion
in Glass-Forming Liquids’.

A recent Letter [I] examined the statistics of individ-
ual particles displacements Axz(t) over time ¢ in two-
dimensional glass-formers and concluded that the cor-
responding probability distribution G4(Awx,t), called the
van-Hove distribution, is non-Gaussian in a time regime
where the mean-squared displacement (MSD) is Fickian,
(Az2(t)) o< Dst, where Dy is the self-diffusion constant.
If this analysis were correct, glass-formers would be ‘Fick-
ian non-Gaussian’ materials [2] B].

Here, we clarify that the multiple lengthscales and
timescales reported in [I] have either been characterized
before, or are not well-defined. This leads us to dis-
pute the conclusions that glass-formers display Fickian
non-Gaussian behaviour and that this analogy fruitfully
addresses the central questions regarding the nature of
dynamic heterogeneity in these systems.

Let us first recall that the main features of self-diffusion
in supercooled liquids are explained by invoking two char-
acteristic timescales [4H7]. The self-diffusion coefficient
D, controls the first one, 7p = 02/DS7 where o is the
particle size. The second one is the structural relax-
ation time 7, determined from usual time correlations,
such as the self-intermediate scattering function. The
adimensional ratio X = 7,/7p plays a special role. It
controls both the amount of decoupling X (T') ~ Ds7,
(akin to violations of the Stokes-Einstein relation []])),
and the Fickian lengthscale /r o< vX []. These known
results [4HI0] paint a picture that is inconsistent with
several conclusions reported in [Il, B] as we now show.

Let us start with the van Hove distribution. It was
found in [9] that Gs(Ax,t) approaches a Gaussian dis-
tribution only for times much longer than 7p, a result
rediscovered in [I] with equivalent tools. However, the
non-Gaussian parameter as(t) used in [I] to reveal Gaus-
sianity decays as a power law at large times. Hence, the
gradual emergence of Gaussian behaviour from as(t) is a
scale-free process and there is no characteristic timescale
after which self-diffusion is Gaussian, although of course
empirically as(t) will be small when (Az?) > (2. It was
found numerically [§] and explained theoretically [4] that
it is the lengthscale ¢ that controls the crossover in the
wavevector dependence of the self-intermediate scatter-
ing function, a result ignored in [I].

For times ¢ < 7o, Gs(Ax,t) is characterized by a
Gaussian core at small Az and a nearly exponential tail
Gy x exp(—|Az|/\) at large Az [5]. Refs. [II B] discuss
the existence and possible universality of a power law
description of the time evolution of the exponential tail,
A(t) ~ t*. As noticed in [5 [6] [T1], the exponential tail is
generically explained by a large deviation argument, but
asymptotic convergence is so slow that the actual value
of X\ depends on the fitted range (see [0] for an explicit
test and [I1] for analytic results suggesting that o = 0),
which may explain reported discrepancies [T, B]. More

fundamentally A(¢) is difficult to measure, and « is not a
novel characteristic exponent.

Linear behaviour of the MSD is visually detected [I] in
log-log representations after a time 7p which grows more
slowly than 7, at low temperature, but the approach to
linearity is algebraic [12]. This power law approach to
Fickian behaviour is again scale free and no characteristic
timescale controls the emergence of Fickian behaviour in
(Ax?(t)); in particular 7p does not play this role.

Even though glass-formers may appear empirically
close to Fickian non-Gaussian materials, there is no char-
acteristic timescales or lengthscales controlling the ap-
proach to either Fickian and Gaussian dynamics, and
the existence of a Fickian non-Gaussian regime cannot
be decided. Instead, the salient features of self-diffusion,
including algebraic approach to Fickian and Gaussian
behaviours as well as nearly exponential van Hove dis-
tributions, are analytically captured by (effective) non-
interacting continuous time random walk models [4H7] [10]
based on the only two important and well-defined char-
acteristic timescales 7p and 7,. The multiple time and
length scales determined empirically in [I, [3] are either
related to those, or conceptually ill-defined.

The complexity of glass-formers is that the timescales
7p and 7, emerge from many-body interactions (disorder
is self-induced) and have non-trivial temperature depen-
dencies which are not fully understood, but from which
the very rich statistics of single particle displacement nat-
urally follows. The behaviour of supercooled liquids is
very different from several Fickian non Gaussian materi-
als, which are described by interesting, but quite differ-
ent, models [15].

We end by noting that the use of two-dimensional sim-
ulations to study the statistics of particle displacements
in glass-formers is profoundly influenced at all timescales
by Mermin-Wagner fluctuations [13] [14], which presum-
ably adds to the profusion of timescales reported in [I].
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