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Abstract. An agent who privately knows his type seeks to be retained by a principal.
Agents signal their type with some ambient noise, but can alter this noise, perhaps at
some cost. Our main finding is that in equilibrium, the principal treats extreme signals
in either direction with suspicion, and retains the agent if and only if the signal falls
in some intermediate bounded set. In short, she follows the maxim: “if it seems too
good to be true, it probably is.” We consider extensions and applications, including
non-normal signal structures, dynamics with term limits, risky portfolio management,
and political risk-taking.

1. INTRODUCTION

If it’s too good to be true, it probably is. This is a great motto for the gullible when it
comes to financial decisions, because we all know about fly-by-night financial schemes
— Charles Ponzi or Bernard Madoff come readily to mind. But the concerns go well
beyond deliberate fraud. For instance, consider a fund manager who is eager to carve
out a reputation and must therefore take on significant risk. Is his current performance
any indicator of future success, or does it signal a strategy of excessive risk-taking, in
the hope of masking a lack of competence? After all, even among the high risk-takers
— or more accurately, especially among them — there must be dramatic winners and
losers. A New York Times article (March 7, 2014), which we will return to below, had
the suggestive title: “When You Evaluate a Fund Manager, Look Beyond Results.”
Risk-taking is not an illegal activity of course, but falls into a class of situations in
which a principal must still be wary of excessively good news coming from the agent.

In a different arena, consider a politician who is eager to make his mark on the national
or world stage. He sets up a global summit with a rogue leader — a risky act that might
provide for some real progress, such as a temporary cessation of military exercises.
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This is good news ex post, but was it a wise move ex ante? After all, a politician of
unknown competence could try something of high risk, in the hope of a spectacular
success — but simultaneously braving the chances of abject failure. With the observed
outcome in hand, the median voter would need to infer the extent of risk-taking, and
use these as guidelines, say in her voting decision. Specifically, under the knowledge
that politicians of varying ability might differ in their risk strategies, the median voter
could attach likelihoods of different degrees of risk-taking that led to the observed
outcome, thereby drawing inferences about the politician’s unknown ability.

Or consider a fledgling organization of unknown ability, say an NGO, seeking funding
from donors. The NGO could take on a safe project — say, as a provider of social
services in a familiar location, with outcomes that accurately signal its competence.
Or it could entertain a risky intervention in a distant setting, but with some chance
of attention-grabbing success. A potential donor cannot fully see the ex ante risks in
taking on such a project, and only sees the final outcome. Even if the outcome is a
good one, the donor’s concerns lie with whether the NGO should be funded for future
activities, and for this purpose the outcome, good though it may happen to be, should
also be used to appraise whether an ex ante risk was taken by the NGO, the extent of
that risk, and what it might signal about the NGO’s type.

One could continue in this vein: a government under pressure might inject noise into
official statistics, a researcher might take risky steps to bolster his cv for an upcoming
promotion, a lawyer might call a high-risk witness (who could destroy the case or
win it), an athlete might engage in doping with spectacular outcomes, and so on. In
all these situations, an excellent outcome in the here-and-now is also cause for some
caution in evaluating future performance. The model we propose, while admittedly an
entirely theoretical exercise, might bear on such cases.

Each of these situations has many specific features at play. But we consider the fol-
lowing common thread. There is an agent (fund manager, politician, NGO, etc) who
privately knows his type (good or bad), and who seeks to be retained by a principal (in-
vestor, the median voter, funding agency, etc.). The principal wishes to retain a good
type, and to remove a bad type. The agent generates a noisy but informative signal of
his type. He can choose to amplify or reduce the precision of this process, but there are
two restrictions. First, the signal structure is constrained by the type; specifically, the
mean of the signal is given by the type. Second, signal realizations cannot be tampered
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with ex post.1 That is, a specific realization cannot be augmented nor reduced: there
is no “free disposal.” The principal observes the signal realization (but not the signal
structure, or at least not fully), and makes her retention or replacement decision.

The equilibria of such a game — and some variants of it — form the subject matter
of our paper. A central result that we examine from various angles is that in any
equilibrium, the principal treats both kinds of excessive signals with suspicion, and
retains the agent if and only if the signal falls in some intermediate bounded set. In
short, she follows the maxim: “if it seems too good to be true, it probably is.”

In our baseline setting, the agent emits a normal signal centered around his type. This
centering cannot be changed, but the variance can be freely altered, subject to some
ambient lower bound that’s “small enough” in a sense to be made precise. The princi-
pal sees the outcome, and retains if and only if her posterior on the good type exceeds
some threshold. Observation 1 argues that there are three types of potential equilibria.
The first is monotone retention, in which both types choose the same noise, and the
principal retains if the signal is above some threshold. The second is bounded reten-
tion, in which the bad agent chooses higher noise than the good agent, and the principal
retains for intermediate signal realizations. The third is bounded replacement, in which
the bad agent chooses lower noise than the good agent, and the principal replaces the
agent for intermediate signal realizations.

Our baseline result is Proposition 1, which singles out just the bounded retention equi-
librium when the ambient noise level is sufficiently low.

Our framework is stark and minimal, but easily extendable in several directions. In
Section 6, we study some extensions that show the robustness of this observation and
accommodate various ancillary features. These include costly noise, a dynamic set-
ting with agent term limits, and non-normal signal structures. In the Supplementary
Appendix, we study other extensions: costly mean-shifting, non-binary types, and the
possibility of principals injecting noise into their assessments. In Vohra r© Espinosa
r© Ray (2021), we study an extension to commitment, in which the principal pre-

announces mechanisms to assess agents.

In Section 7, we return to two of the applications mentioned above, to conclude the
paper.

1In Section 6.5, we allow the agent to hide a signal after observing its realization, at some cost.
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2. RELATED LITERATURE

While our main results are (to our knowledge) new, we are far from the first to study
models of deliberate risk or noise.2 The cheap talk literature beginning with Crawford
and Sobel (1982) can be thought of as a leading example of noisy communication. In
that literature, nothing binds the sender. In contrast, as explained above, our chosen
communication structures have mean equal to the true state, the choice could be costly,
and it is crucial that each individual chooses a distribution over signals, and cannot
alter the realized outcome ex post (though see Section 6.5 on non-disclosure).

The choice of an information structure is central to Kamenica and Gentzkow (2011).
But no agent knows the true type ex-ante, and the chosen structure is observed by the
receiver. This last feature is shared by Degan and Li (2016), but the type of the agent is
privately known, as in our model. In contrast, in our setting, the choice of information
structure is not (fully) observed, only the signal, a feature that we share with DeMarzo
et al. (2019). We return to the question of observability (and these references), first in
Section 6.1, and then again in Section 7.

Dewan and Myatt (2008) study a model of leadership in which an individual’s clarity
in communication is a virtue, but the leader also wishes to hold on to an audience
for longer, to dissuade them from listening to others. Therefore extreme clarity is not
chosen. Edmond (2013) studies the obfuscation of states (by a dictatorial regime), but
restricts attention in his analysis (by assumption) to receiver-actions that are monotone
in the signal realization. In contrast, in our setting, the non-monotonicity of receiver
actions is a fundamental and robust outcome of the model.

Harbaugh, Maxwell and Shue (2016) study the inclinations of a sender to distort the
news about multiple projects, depending on the overall realization of news, which can-
not be hidden from the receiver. Such distortions are separate from mean-preserving
noisy announcements; the focus is on the realized spread of multidimensional news
over multiple projects. While our results are entirely distinct, they too take note of a
different “too-good-to-be-true” inference problem. Specifically, the sender will distort

2In this brief review we omit discussion of a related but distinct literature with exogenous noise, as in
the limit pricing game studied by Matthews and Mirman (1983), the choice of mean return by managers
of unknown quality who might seek to herd (Zwiebel, 1995), or inference settings when values have
exogenous but unknown precision (Subramanyam, 1996).
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upwards the spread of the signals when the overall average is bad, and reduce it when
the overall average of news is good.

Hvide (2002) studies tournaments with moral hazard where two risk-neutral agents
compete for a prize. The contractible variable is output, which is the result of agent
effort and a random component. A risk-neutral committee wants to ensure that agents
exert high costly effort. If agents can costlessly increase noise in the random com-
ponent of output (assumed to be normally distributed), rewarding the agent with the
highest realization of output will lead to an equilibrium with low effort and high noise.
If agents are rewarded depending on the extent of closeness to some pre-stipulated,
finite level of output, a high-effort low-noise equilibrium is achieved.

Palomino and Prat (2003) and Barron et al. (2017) also study situations in which agents
can inject noise into a moral hazard setting. In Palomino and Prat (2003), an agent
manages a portfolio for a principal but can hide part of the return, which forces mono-
tonicity of any optimal contract. Barron et al. (2017) study contracts that are immune to
risk-taking, thereby forcing concavity of agent payoff with respect to produced output
before the noise is added. A similar theme is also present in the endogenous risk-taking
model studied in Ray and Robson (2012).

Makarov and Plantin (2015) study the question of manager behavior and the design
of performance contracts (or renewal decisions). Theirs is a dynamic setting with
uncertainty in which managers with career concerns use risky gambles to distort their
perceived skill temporarily. The design of compensation contracts aims at curtailing
excessive risk-taking. Unlike our setting, information is symmetric between investors
and managers, and all actions are publicly observable. Money managers are therefore
not punished for extremely good performance.

Finally, there is also a literature on policy uncertainty (Shepsle, 1972; Campbell, 1983;
Alesina and Cukierman, 1990; Glazer, 1990; Aragones and Neeman, 2000; Aragones
and Postlewaite, 2002; Aragones, Palfrey and Postlewaite, 2007), where candidates
offer deliberately ambiguous policy platforms that generate uncertainty regarding the
policies to be implemented in the event of victory. Our adverse-selection setting is
entirely distinct but shares the same feature of endogenous noise.
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3. A BASELINE MODEL

3.1. Setting. An agent (male) works for a principal (female). The agent can be good
(g) or bad (b), with g > b. He knows his type. The principal doesn’t, but has a prior
q ∈ (0, 1) that the agent is good. After a single round of interaction, to be described
below, the principal decides whether or not to retain the agent. Retention of an agent
of type k = g, b yields an expected payoff of Uk to the principal, with Ug > Ub. Non-
retention has some continuation value V ∈ (Ub, Ug). The agent gets a payoff equal to
1 if he is retained and 0 otherwise. He therefore prefers to be retained regardless of
type, while the principal prefers to retain only the good agent.

The principal receives a signal from the agent, which is indicative of his type. Based on
the realization of that signal, the principal decides whether or not to retain. The agent
has some control over the distribution of this signal, but conditional on this, cannot
alter the signal realization. Specifically, suppose that the signal is given by

x = θk + σkε,

for k = g, b, where θk is a type-specific mean with θg > θb, ε ∼ N (0, 1) is zero-mean
normal noise, and σk is a term that scales the noise, chosen by the agent. That is,
the agent cannot shift the mean of his signal,3 but he can modulate its precision. The
principal does not observe σk, but she observes the realization of the signal.

In our baseline setting the choice of noise is costless but bounded below: σk ≥ σ for
some σ > 0. (We will add costly noise in Section 6.2.) Of course, a condition such as
this is a minimal requirement for the problem to have any interest: otherwise, the high
type can always reveal himself by choosing σg = 0, and there is nothing to discuss.
That said, we will think of σ as “small” (see below). Define p ∈ (0, 1) by

(1) pUg + (1− p)Ub ≡ V ;

then p is interpretable as an “outside option probability” that leaves the principal in-
different between retaining and replacing. A salient benchmark is p = q (the balanced
model). But if V incorporates the option value of retaining an agent in a dynamic con-
text, p could exceed q (see Section 6.3). We call this an optimistic future. On the other
hand, if there is already positive information about the current agent, then p could be
smaller than q; we call this a pessimistic future.

3For an extension to costly mean-shifting, see the Supplementary Appendix.
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3.2. Equilibrium. The principal observes a realized outcome x from N(θk, σ
2
k), and

uses Bayes’ Rule to retain the agent if (and modulo indifference, only if)

(2) Pr (k = g|x) =
q 1
σg
φ
(
x−θg
σg

)
q 1
σg
φ
(
x−θg
σg

)
+ (1− q) 1

σb
φ
(
x−θb
σb

) ≥ p,

where φ is the standard normal density. So we have retention if and only if

(3)
1
σb
φ
(
x−θb
σb

)
1
σg
φ
(
x−θg
σg

) ≤ 1− p
p

q

1− q
:= β.

Simple algebra involving the normal density yields the equivalent expression

(4)
(
σ2
g − σ2

b

)
x2 + 2

(
σ2
bθg − σ2

gθb
)
x+

(
σ2
gθ

2
b − σ2

bθ
2
g + 2Aσ2

gσ
2
b

)
≥ 0,

where A := ln (βσb/σg). Inequality (4) defines a retention regime, a zone X of signals
for which the principal retains the agent. An equilibrium is a configuration (σg, σb, X)

such that given (σg, σb),X is the set of “retention signals” xwhich solve (4), and given
X , each type k chooses σk to maximize the probability of retention; that is

σk ∈ arg max
σ≥σ

∫
X

1

σ
φ

(
x− θk
σ

)
dx.

3.3. A Remark on Interpretation. Principal-agent models are typically concerned
with situations in which an agent takes an action that affects the payoff of the principal.
That action could also influence the principal’s retention decision in a dynamic setting;
see, for instance, Dutta et al. (1989) for the case of moral hazard, and Banks and
Sundaram (1998) for the case of adverse selection.

In our model, the incentives to elicit current effort have been deliberately muted, so
as to concentrate on the retention decision alone, and dynamic effects have also been
suppressed through the device of an outside option. That said, it may be useful to keep
the following structure in mind. Agent-generated signals today are both signals and
payoff-relevant outcomes, such as current output. The principal’s payoff depends on
these outcomes or signals, and she is risk-neutral. So the chosen distribution of signals
— or outcomes — is of no direct consequence to her; only the mean matters for her
retention decision. Therefore her retention decision is entirely based on her update
following the signal. Our model fits this setting precisely.
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This interpretation could be disturbed by the possibility that the agent can shift the
mean outcome (relative to their “natural” type) by expending effort. But this addi-
tional feature is easy to incorporate, as we show in the Supplementary Appendix. Or
there could be dynamic considerations that overturn or unduly complicate the base-
line reasoning. We discuss such an extension in Section 6.3. It supports our static
arguments, and even simplifies the statement of the results.

In summary, our model emphasizes retention, and the incentives for agents to hide or
reveal their types via deliberately noisy actions. Of course those actions could also
have payoff consequences. But nothing we write is inconsistent with that fact.

4. RETENTION REGIMES

4.1. Trivial Retention Regimes. Two examples of retention zones are (a) “always
retain,” so that X = R, and (b) “always replace”: X = ∅. Both generate complete
indifference for either agent. With any cost function for noise that is minimized at
some common value for both types, we then have σg = σb, but then (4) must alter
sign over x, a contradiction (Section 6.2 shows this explicitly). Even without any cost
of noise, these equilibria are eliminated in a dynamic setting (Section 6.3). So in the
benchmark model, we ignore such trivial and delicately supported regimes.

4.2. Monotone Retention Regimes. An equilibrium regime is monotone if there is
a finite threshold x∗ such that the principal replaces the agent for signals on one side
of x∗, and retains him for signals to the other side of x∗. See Figure 1. A monotone
retention regime arises (and can only arise) when both types transmit with the same
noise σb = σg = σ.4 Then (4) reduces to the condition

(5) x ≥ x∗ (σ) :=
θg + θb

2
− σ2

θg − θb
ln (β) .

So x∗(σ) is the threshold above which a signal from two possible noisy sources of
equal variance is more likely to be coming from the higher-mean source. This is the
exact interpretation of x∗(σ) in the balanced model, for then β = 1 and

x∗ (σ) =
θg + θb

2
,

4If σg 6= σb, then by condition (4), the resulting retention regime is either trivial or non-monotone.
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(a) Threshold between types (b) Threshold to one side of types

Figure 1. The Symmetric Threshold x∗(σ)

halfway between the two means. When p 6= q, retention is not simply dependent on
relative likelihoods, but also on how pessimistic or optimistic the principal feels about
future agents, which is measured by the ratio of q to p, as proxied by β in (5).

Consider any monotone equilibrium with threshold between θb and θg (e.g., as in the
balanced case). Then the good type will want to minimize noise, while the bad type
will want to maximize it. But this destroys the putative equilibrium: when the bad type
chooses higher noise than the good type, there cannot be a single threshold for reten-
tion. Good news — but only moderately good news — offer the best likelihood ratios
in favor of the good type, and will generate retention. But a high “good signal” will be
regarded as too good to be true: for those signals, relative likelihoods move in favor of
the bad type by virtue of a larger choice of variance, and despite its lower mean. The
analysis in the rest of this section, and in Section 6.2, extends these arguments to all
single-threshold equilibria, arguing that if the minimal noise level σ is small enough
or if there is a cost of noise, no monotone equilibrium can exist, whether the retention
threshold lies between the means of the two types, or to one side of these.

4.3. Non-Monotone Retention Regimes. When different types transmit at different
noises, the best response for the principal is never monotone. Figure 2 illustrates this
(for the balanced case). In Panel A, σb > σg, and in Panel B, σb < σg. In each
case, the signal densities cross precisely twice. In Panel A, the principal retains for all
signals in between the two intersections, and in Panel B, she retains for all signals not
in between those intersections. We make these observations formal in Observation 1,
but the general point is that one of the two zones must be defined by a bounded zone
of signals. It is convenient to use the notation [x−, x+] to denote the relevant interval
when bounded retention occurs, and by [x+, x−] to denote the interval when bounded
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(a) Bounded Retention
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(b) Bounded Replacement

Figure 2. Differential Noise and the Retention Decision

replacement occurs. Obviously, x+ and x− are the two roots of (4), which means that

(6) β
1

σg
φ

(
x− θg
σg

)
=

1

σb
φ

(
x− θb
σb

)
implies the equalization of weighted likelihoods for both types at x = x−, x+. Further-
more, the weighted likelihood for the good type must have a higher slope in x relative
to that for the bad type, evaluated at x−, so retention occurs for x > x−. That means

β
1

σ2
g

φ′
(
x− − θg
σg

)
>

1

σ2
b

φ′
(
x− − θb
σb

.

)
,

Because φ(z) = (1/
√

2π) exp{−z2/2}, φ′ (z) = −zφ(z), so this is equivalent to:

(7) βφ

(
x− − θg
σg

)
x− − θg
σ3
g

− φ
(
x− − θb
σb

)
x− − θb
σ3
b

< 0.

Exactly the opposite slope condition holds at x+, so that

(8) βφ

(
x+ − θg
σg

)
x+ − θg
σ3
g

− φ
(
x+ − θb
σb

)
x+ − θb
σ3
b

> 0.

Use (6) for x = x− in equation (7) to obtain(
σ2
b − σ2

g

)
x− < σ2

bθg − σ2
gθb.

In the same way, use (6) for x = x+ in equation (8) to see that(
σ2
b − σ2

g

)
x+ > σ2

bθg − σ2
gθb.

Combining these two inequalities, we must conclude that

(9)
(
σ2
b − σ2

g

)
(x+ − x−) > 0
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in any non-monotonic equilibrium. We summarize the above discussion as:

Observation 1. Bounded retention with x+ > x− is associated with σb > σg, while
bounded replacement with x− > x+ is associated with σb < σg.

5. BOUNDED RETENTION EQUILIBRIUM

Our main result, that we extend in several directions, is that there is a unique nontrivial
equilibrium if the ambient noise σ is small, and in it the principal uses a bounded
retention zone. She is suspicious of both bad signals and excessively good signals, and
follows the maxim: “If it seems too good to be true, it probably is.” In what follows
we emphasize both our results and make explicit some qualifications.

5.1. No Bounded Replacement. First, we eliminate bounded replacement equilibria.
In such an equilibrium the principal replaces the agent when the signal falls inside
[x+, x−], with x+ < x−. Observation 1 tells us that this regime is associated with
σb < σg. In this case, the retention probability for any type goes to 1 as σk → ∞,
and therefore in equilibrium, it can’t be that σb < σg. We remark that this argument
is straightforward only because any level of noise above the minimum can be freely
chosen. We will need to revisit it when the choice of noise is costly.

5.2. Small Ambient Noise. Recall that β = 1−p
p

q
1−q . For β ∈ (0, 1) (that is, for p > q

or an optimistic future), define α (β) by the unique solution to

(10) β ≡ 1

α (β) +
√

1 + α (β)2
exp

− α (β)

α (β) +
√

1 + α (β)2

 .
Notice that α(β) is well-defined, that α(β) > 0 for all β ∈ (0, 1) and α(β) → 0 as
β → 1. We will assume that σ is small enough so that:

(11)
σ

θg − θb
<

1

2
α(β)−1.

On the other hand, with a pessimistic future or β > 1, we will use this bound:

(12)
σ

θg − θb
<
[√

2 ln (β)
]−1

.

These bounds weaken as we move to the balanced case. At the balanced case, no
restrictions are imposed at all; both the bounds in (11) and (12) diverge to infinity.
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Moreover, in Section 6.3, which studies a dynamic extension with fixed term limits for
agents, we show that these restrictions on σ will be automatically satisfied.

5.3. The Salience of Bounded Retention. Our baseline result can now be stated:

Proposition 1. (i) With an optimistic future (β < 1), a nontrivial equilibrium exists if
and only if (11) holds. When it exists, it is unique, and has bounded retention.

(ii) With a pessimistic future (β ≥ 1), a unique nontrivial equilibrium exists. This
equilibrium has bounded retention if (12) holds. Otherwise it has monotonic retention.

(iii) In a nontrivial equilibrium with bounded retention, the good type chooses σg = σ,
the bad type chooses higher noise σb > σg, and the principal employs a strategy of the
form: retain if and only if the signal x lies in some bounded interval [x−, x+].

The proposition distinguishes between optimistic and pessimistic futures. In the first
case, there is a low prior on the ability of our current agent, possibly due to unsatis-
factory past performance (not modeled here). So a good type is desperate to reveal
himself by reducing noise as far as possible, while the bad type chooses larger noise
in the hope that his signals will imitate his good counterpart to the extent possible.
So σb > σg, which serves to uniquely precipitate the bounded retention equilibrium,
whenever an equilibrium exists.

In the second case, the future is pessimistic. That is, our current agent is doing well
relative to the market, so the bad type can afford to take less risk. If both types min-
imize risk that resulting equilibrium will involve monotone retention; this is part (ii)
when (12) fails. However, the incentive for the bad type to take on more noise than the
good type is never entirely absent, and it will invariably appear provided the minimal
feasible noise is low enough. This is at the heart of the argument: even in (ii), if the
minimal feasible noise falls below the bound described by (12), then the bad type will
never want to follow the good type all the way to minimum noise, and no monotone
equilibrium can exist.

How permissive is the bound in (12)? One way to view it is to study the perfectly bal-
anced case in which there is neither pessimism nor optimism. Then the right-hand side
of (12) is infinitely large, and we can unequivocally assert that the unique nontrivial
equilibrium involves bounded retention. Now move away from the balanced case by
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placing greater faith in the current agent, so that (12) begins to bite. Suppose that the
principal’s prior on the agent equals 3/4, while p = 1/2. Then (12) implies that the
unique equilibrium involves bounded retention as long as the standard deviation of the
signal can be brought below approximately 2/3 the difference between the two means.

Two extensions continue to underscore the salience of bounded retention. In Section
6.2, we replace the costless choice of noise by a cost function. That effectively com-
pactifies the space of noises, but the cost function is smooth and not “L-shaped” as in
this, our baseline model. Proposition 2 proves that a monotone equilibrium generically
cannot exist. This is a more uncompromising prediction than the one of our baseline
model, which does admit monotone retention under some circumstances.

Second, in Section 6.3, we describe a dynamic model in which q evolves over time in
line with Bayes’ Rule. Specifically, we consider an infinite-horizon setting in which
each agent faces a two-term limit. It turns out that conditions (11) and (12) automati-
cally hold in that exercise, and there is no monotone equilibrium.

In summary, Proposition 1 and our subsequent discussion argue that when the ambient
level of noise is positive but small, we are left with our case of central interest: an
equilibrium in which the types choose different noise levels, the bad noise higher than
the good. The principal does not use a “one-sided” retention strategy. She looks
for good signals to retain the agent, but distrusts signals that are extremely positive,
because she suspects that bad types are injecting noise into the system, and the good
types are not. That suspicion will justifiably yield a bounded retention zone, because
far enough out, the higher variance of the bad-type signal will dominate the lower
mean in determining relative likelihoods.5

In this setting, a basic single-crossing property is missing. Yet the model itself is
tractable. Specifically, low types choose a larger variance in a bid to convince the
sender that she is of higher mean. But that also enhances the relative likelihood for
the low type under extreme signal realizations. The argument is delicate — and there-
fore complex — because the sender understands the previous sentence, and so dislikes
such realizations. Nonetheless, the low type continues to choose higher noise in equi-
librium.

5Of course, the principal also distrusts signals that are bad: after all, lower mean and higher variance
are particularly synergistic in producing lower signals.
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6. EXTENSIONS

Section 6.1 remarks on the unobservability of chosen noise. Section 6.2 introduces
costly noise. Section 6.3 analyzes a dynamic version with agent term limits. Section
6.4 drops the normality assumption. Section 6.6 briefly describes other extensions,
covered in depth in the Supplementary Appendix.

6.1. Unobservable Noise. Our result presumes that the choice of agent noise is not
observable. Consider the opposite presumption that the noise is observable. Then
every type must choose the same noise; i.e., separation is impossible via the choice
itself — the bad type will deviate by mimicking this choice. So all types must choose
the same noise, and then the principal will use a monotone retention rule to retain or
replace the agent, retaining if the signal realization is good enough (see Degan and Li,
20166). If risk choices are costly, as they will be in Section 6.2, the same argument
applies as long as the cost function for noise is the same for both types — again, there
must be pooling in observed components.7

But any augmentation of this scenario with unobserved noise leads back to our model.8

The observed component of noise would be chosen to be the same for all types. (If
noise is costly, it would be set to the minimum-cost level in any equilibrium refined
by intuitive off-path restrictions on beliefs.) The remainder of the analysis dealing
with the unobservable component then proceeds with no change. To summarize: (a)
complete lack of observability is not needed for our results; (b) there will be pooling on
the observable components if the choice of risk is costless or uncorrelated with agent

6For a related exercise, see Titman and Trueman (1986), in which observed auditor quality is used to
signal firm valuation during an initial public offering. (Higher-quality auditors provide more precise
information, by assumption.) An entrepreneur with more favorable private information about the value
of his firm will choose a higher-quality auditor than will an entrepreneur with less favorable private
information.
7If the cost function for risk choices is systematically connected with agent type, then there may be
separation achieved via costly signaling using observable components. In this case the fact that the
action set is a choice of risk is of no separate importance. It is just one of many abstract ways to achieve
separation.
8In an otherwise different setting, DeMarzo et al. (2019) also work with the choice of an unobserved
information structure — correctly guessed at in equilibrium. A sender gathers information about the
quality of an object by selecting a test, which might return a null result. He can choose to disclose
(verifiable) information, but also to suppress test results. The receiver understands this, so there is no
value in observably choosing a test. But there is some value to choosing an unobserved test — the
authors describe this optimal choice.
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type; and (c) our results then apply to the unobserved components of risk. The singular
nature of Proposition 1 is rooted in the presumption that there is some unobserved
component of the signal structure, not that the entire structure is unobservable.

6.2. Costly Noise. Suppose there is a cost to modulating precision σ. Specifically,
consider a strictly convex cost function c(σ), with a minimum at some σ, with c(σ) =

0, and c(0) = c(∞) = ∞. While we use the same notation, σ is no longer the mini-
mum possible variance but just some ambient noise that reflects the usual frequency of
communication glitches, errors of perception, and so on. Deviations from this ambient
noise are costly in either direction. That is, it is costly both to fully reveal one’s type, or
to fully hide it. An equilibrium is a configuration (σg, σb, X) such that given (σg, σb),
x ∈ X solves (4), and given X , each type k chooses σk to maximize the probability of
retention, net of cost:

σk ∈ arg max
σ≥σ

[∫
X

1

σ
φ

(
x− θk
σ

)
dx− c(σ)

]
.

This version of the model presents some new features. First, trivial equilibria never
exist. If the retention regime is trivial, both types must choose the lowest cost signal,
which in turn makes the signal informative, a contradiction. Second, as we shall see,
monotone regimes are generically impossible in equilibrium. But third, the model does
opens up the possibility of the existence of bounded replacement equilibria, which
were easily ruled out in the benchmark model. Now we expand on some of these
points, beginning with the agent’s best response mapping before moving to a fuller
description of equilibrium.

6.2.1. The Agent’s Best Response. We already know that nontrivial equilibria are ei-
ther monotone or have interval cutoffs. Type k chooses σk to maximize Φ

(
x+−θk
σk

)
−

Φ
(
x−−θk
σk

)
− c (σk). In a monotone regime, x+ = ±∞ and x− = x∗. First-order

conditions are

(13) φ

(
x− − θk
σk

)(
x− − θk
σ2
k

)
− φ

(
x+ − θk
σk

)(
x+ − θk
σ2
k

)
= c′ (σk)

for each type k = g, b. Optimally chosen noise now moves in a subtle and quite
complicated way with the location of a player’s type. Figure 3, Panel A, illustrates
this for a monotone retention threshold. When a player’s type is far from the retention



16

�휎

x*

�휎_

Retention zoneReplacement zone

�휃
(a) Monotone Retention

�휎

x-

�휎_

Retention zoneReplacement zone Replacement zone

x+�휃b �휃g �휃
(b) Bounded Retention

Figure 3. How Choice of Noise Varies With Agent Type

threshold, it takes large noise to generate (with any significant probability) a signal
within the retention zone. That’s costly, so noise converges to the zero-cost choice
σ as the type moves far from the retention zone. Moving closer to the zone, chosen
noise increases, but must decline again: after all, when the type is on the edge of the
zone, noise makes no difference to the chances of retention, so chosen noise is back
to σ again. As the type moves into the retention zone, noise can only throw him out
it, so chosen noise now falls below σ. But the downward movement does not continue
forever. Deep in the retention zone, the type is confident of remaining there, and so
noise goes up again, converging to σ, this time from below.

With bounded retention zones, the choice function exhibits more non-monotonicities.
Panel B of Figure 3 shows that there will generally be five turning points. There is
one each for either side of the retention zone, for the same reason as in the earlier
discussion. There are three more within the retention zone: noise initially falls as an
agent with type close to the edge avoids escape from the zone; then rises in the middle
of the zone as the risk of escape falls, then falls again as the risk goes up, and finally
rises as we approach the edge.9 (The noise choice at the edges is below σ, because the
retention zone is bounded.)

This behavior is consistent with empirical findings on risk-taking. Genakos and Pagliero
(2012) find that risk-taking in weightlifting contests exhibits an inverted-U relationship
between risk and rank, with the peak reached around rank 6. Figueiredo et al. (2015)
observe that risk-taking by portfolio managers is non-monotonic: managers signifi-
cantly below a compensation threshold reduce risk-taking relative to those who are
relatively close. These findings are consistent with our predictions when agents are to

9See the Supplementary Appendix, where this discussion is conducted in more detail.
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the left of the retention threshold (Panel A in Figure 3). With costly noise, both mono-
tone and bounded retention can generate this type of behavior. That said, monotone
retention cannot be an equilibrium outcome of this model, except in degenerate cases.

6.2.2. No Monotone Retention.

Proposition 2. Generically, a monotone equilibrium can not exist in the costly noise
model. Specifically, there is at most one value of σ that both types must choose in any
monotone equilibrium, determined independently of the noise cost function.

For some intuition, consider any single retention threshold x∗ as in Figure 1, produced
by some common value σg = σb = σ. The first-order condition (13) becomes

(14) φ

(
x∗ − θk
σk

)
x∗ − θk
σ2
k

− c′ (σk) = 0,

where, in equilibrium, x∗ is given by (5). Setting σg = σb = σ, we can see that the two
first-order conditions cannot hold simultaneously when x∗ ∈ (θb, θg). But it’s possible
that both types lie on the same side of the threshold. Defining ∆ := θg − θb, we can
rewrite the first-order condition for good and bad types as

(15) φ

(
σ

∆
ln (β) +

∆

2σ

)(
σ

∆
ln (β) +

∆

2σ

)
= φ

(
σ

∆
ln (β)− ∆

2σ

)(
σ

∆
ln (β)− ∆

2σ

)
= −σc′(σ).

Equation (15) tells us to study φ(z)z; Figure 4 does so. Denote σ
∆

ln (β)− ∆
2σ

by z1 and
σ
∆

ln (β)+ ∆
2σ

by z2. Given the shape of φ(z)z, Figure 4 indicates how z1 and z2 must be
located: they must both have the same sign and the same “height.” With an optimistic
future (ln β < 0), both z1 and z2 are negative; see Panel A. With a pessimistic future,
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both z1 and z2 are positive; see Panel B. In each case, only one value of σ can solve
this requirement; i.e., just one value that fits the first equality in (15). It is independent
of the cost function for noise, and so the second equality generically can not hold.

This contrasts with the case of costless noise, where corner responses are possible at
lower bounds of noise, thereby permitting monotone thresholds.

6.2.3. Bounded Retention and Replacement Equilibria. We are left with equilibria
in which the principal employs bounded intervals for retention or replacement. To
analyze these, we sidestep a technical complication. The noise distribution generates
nonconvexities in the agent’s optimization problem, which raises the possibility that
an agent’s choice could be multi-valued. These can be handled using mixtures, but
for monotone or bounded retention regimes, such multi-valuedness is more a technical
nuisance than a feature of any economic import, and we rule it out by assumption:

[U] For every monotone or bounded retention zone and for each agent type, the optimal
choice of noise is unique.10

It is possible to deduce [U] by placing alternative primitive restrictions on the param-
eters of the model. One is that the curvature of the cost function is large enough. The
Supplementary Appendix shows that a sufficient condition for [U] is

(16) c′′ (σ) >
κ

σ2
for all σ ∈ [σ∗, σ

∗],

where κ ≈ 0.6626, and σ∗ and σ∗ are two distinct lower and upper bounds on noise
that straddle σ, such that c(σ∗) = c(σ∗) = 1.

Next, recall σ∗ and σ∗ from (16). These are lower and upper bounds on noise that
straddle σ, with c(σ∗) = c(σ∗) = 1. No agent ever transmits noise outside [σ∗, σ

∗].
Suppose both types transmit common noise equal to σ∗; then the principal responds by
choosing a single threshold x∗(σ∗) for retention, as in equation (5). We impose

[T] The threshold x∗(σ∗) lies in [θb, θg].

Condition T is always satisfied in the balanced case: there, x∗ (σ∗) = (θg + θb)/2.
Indeed, [T] can be viewed as a restriction on the extent to which β can depart from 1

10With bounded replacement, multiple responses are more compelling. An agent located in one of the
two retention zones, but close to the replacement zone, could be indifferent between small and large
noise.
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Figure 5. Fixed-Point Mapping to Show Existence of Bounded Retention

on either side of the balanced case. Subtract the formula for x∗(σ∗) — see (5) — from
θb and then θg to obtain an equivalent form of [T]:

(17) − (θg − θb)2

2σ∗2
≤ ln(β) ≤ (θg − θb)2

2σ∗2
.

Proposition 3. Under Conditions U and T, a bounded retention equilibrium exists.

The proof has economic intuition, so we outline it. The first box in Figure 5 shows
the domain of a fixed-point mapping, with agent noise lying between σ∗ and σ∗. The
mapping is derived as follows: for each (σg, σb), find the principal’s retention decision,
shown in the middle graph (x− and x+), and then record the best response to that
decision, shown by the continuation mapping into the last box, a replica of the first.

The problem is that this fixed point mapping is not well-behaved. For any σb < σg,
the principal best-responds with bounded replacement, and the “subsequent” response
that completes the mapping is generally discontinuous in (σg, σb). This problem is
endemic. However, to probe the existence of a bounded retention equilibrium, we
can start from a smaller domain: the shaded triangle over which σb ≥ σg. On this
subdomain, the principal chooses bounded retention (or a monotone threshold), and
the subsequent best response by the agents is unique (by Condition U) and continuous.
While in general, the mapping could slip out of the smaller domain (see lower pair of
arrows in Figure 5), Condition (17) guarantees that this cannot happen.

To see why, study the upper pair of arrows in Figure 5. The first arrow maps a point
on the principal diagonal (where σb = σg) to a monotone retention regime; that is,
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(x−, x+) is of the form (x∗,∞). By (17), x∗ must lie between θb and θg. In response,
the good type will want to reduce noise as much as possible, while the bad type will
want to increase it. Therefore σg < σ, while the opposite is true of the bad type.
But that implies σb > σg, which takes us back into the starting subdomain from its
boundary. A fixed point theorem due to Halpern and Bergman (1968) then completes
the argument, establishing the existence of a bounded retention equilibrium when β
does not take on “extreme” values.

In summary, when the future is neither too optimistic nor too pessimistic — and cer-
tainly when it is balanced — a bounded retention equilibrium must exist. Indeed, under
additional conditions, it is the only type of equilibrium. For instance, assume a sizable
difference between the two types; specifically, that

(18) θg − θb ≥ σ∗,

where recall that σ∗ is defined by the larger of the two solutions to c(σ) = 1.

Proposition 4. Assume (17) and (18). Then only bounded retention equilibria exist.

The argument emphasizes the location of types relative to replacement and retention
zones. When the conditions for Proposition 4 fail, Figure 6 shows how bounded re-
placement might arise. The density for the bad type is the thicker line in both panels.
The figure shows that β must be so large or so small (that is, the future is either so
optimistic or so pessimistic) that the intersections of the two weighted densities are ei-
ther on one side of both the mean types, or straddle them both. These are the only two
possible kinds of bounded replacement equilibria. The Appendix provides complete
numerical examples for each case.11

6.3. Dynamics With Term Limits. We solve for the “outside option probability” p
in a dynamic setting where each agent has a two-period “term limit.” We consider
11In the first kind of bounded replacement equilibrium, both types are in the retention zone as in Panel
A of Figure 6, with x+ < x− < θb < θg . Because they want to remain there, both want noise lower
than the ambient level. But the bad type is closer to the edge, so he will make a bigger effort than the
good type to stay safe, and σb < σg . To justify this configuration as an equilibrium, the future must be
super-pessimistic: q � p. In the second case, shown in Panel B of Figure 6, both θb and θg lie in the
replacement zone, with x+ < θb < θg < x−, and both exert costly effort to escape it. The good type is
embedded closer to the edge of the zone and has a high marginal benefit of noise, while the bad type is
embedded deep in the zone and has only a low marginal benefit. The good type therefore exerts greater
noise. The principal reacts by choosing a bounded replacement zone. To implement this equilibrium,
the future must be super-optimistic: p� q.
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stationary equilibrium, in which every new agent of a given type takes the same action
for the same value of p. Given σk for each type, and a realization x, the update on q is

(19) q(x) :=
qπg(x)

π(x)
,

where for each k, the density of signal x is given by πk(x) = (1/σk)φ ([x− θk]/σk),
and where π(x) = qπg(x) + (1− q)πb(x) is the overall density of signal x.

Start with prior q. At the end of term 1, a signal x is generated, and q is updated
to q(x). If V is the lifetime payoff to the principal starting from a fresh agent, the
retention zone X is the set of all x for which (1 − δ)M(q(x)) + δV ≥ V , where for
any q′, M(q′) := q′Ug + (1 − q′)Ub is the expected flow payoff to the principal when
her current prior is q′. Let Πk :=

∫
X
πk(x)dx be the type-dependent probability of

retention, and Π := qΠg + (1− q)Πb the overall probability of retention. Then

V = (1− δ)M(q) + δ

∫
X

[(1− δ)M(q(x)) + δV ] π(x)dx+ δ

∫
Xc

V π(x)dx

= (1− δ) [q(1 + δΠg)Ug + (1− q)(1 + δΠb)Ub] + δ [1− (1− δ)Π]V.

Transposing terms, we see that V is a convex combination of baseline utilities Ug and
Ub; i.e., V = pUg + (1− p)Ub, where

p =
q (1 + δΠg)

1 + δ [qΠg + (1− q) Πb]
.

We can rewrite this expression to obtain a “general equilibrium formula” for β:

(20) β =
q

1− q
1− p
p

=
1 + δΠb

1 + δΠg

.
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In any equilibrium, Πg ≥ Πb, because the principal will choose a retention zone that
retains the high type at least as often than the low type. Indeed, β cannot even equal
1 in any equilibrium.12 Additionally, (20) shows how to solve the two-term dynamic
extension of our model. For some value of β, solve the equilibrium in the baseline
model. That equilibrium generates retention probabilities Πg and Πb. The circle is
then closed by the additional condition that (β,Πg,Πb) must solve (20). Formally:

Proposition 5. When agents can be hired for up to two terms, and the principal can
replace agents with a new draw from a stationary pool, there is a unique equilibrium
with all the properties of the bounded retention equilibrium identified in Proposition
1. This equilibrium endogenously has an optimistic future, and (11) and (12) do not
need to be assumed.

Under a two-term constraint, Proposition 5 eliminates all monotone and trivial equilib-
ria. That said, we note that a full dynamic extension of our model is beyond the scope
of this paper, and in a more general version, could display regions on the equilibrium
path in which monotone retention is used, along with bounded retention elsewhere.

6.4. Beyond Normal Signals. Suppose that for each type k, the signal x is given by
x = θk + σε, where σ is a parameter (“noise”) to be chosen by the agent, subject to
σ ≥ σ > 0, and ε is distributed according to some differentiable density function f
with support on all of R. The resulting density for x is given by:

f̃ (x|k, σ) =
1

σ
f

(
x− θk
σ

)
.

The familiar monotone likelihood ratio property (MLRP) guarantees that when two
types transmit with the same noise, higher signals are increasingly likely to be associ-
ated with the higher type; that is f(z− a)/f(z) is increasing in z whenever a > 0. We
assume a stronger version of this, which is automatically satisfied in the normal case,
and guarantees a single, finite threshold for retention when both types use the same
noise, no matter how optimistic or pessimistic the principal’s prior is regarding agent
types:

12Suppose β = 1. Then p = q, and we know that in the static model only bounded retention equilibria
are possible. But in that situation the principal can strictly discriminate in favor of the good type, since
there will always exist two distinct real roots to (4). But now Πg > Πb, which contradicts our starting
point that β = 1.
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Strong MRLP. f(z − a)/f(z) is increasing in z whenever a > 0, with

(21) lim
z→∞

f(z − a)

f(z)
=∞ and lim

z→−∞

f(z − a)

f(z)
= 0.

By MLRP, f is single-peaked; it will be expositionally convenient to place this peak
at 0, so f ′(z) < 0 for all z > 0 and f ′(z) > 0 for all z < 0. Define σ(β) by

(22) βf

(
−θg − θb

σ(β)

)
≡ f (0) ,

for all β > 1, and set σ(β) = ∞ otherwise. This function is well-defined and unique
because we place the peak of f at zero and because f(z) → 0 as |z| → ∞. The
Supplementary Appendix establishes the following two-part proposition:

Proposition 6. Assume strong MLRP on signal densities. Then:

(i) A bounded replacement equilibrium cannot exist.

(ii) A monotone retention equilibrium exists if and only if σ ≥ σ(β). In particular,
monotone retention equilibria fail to exist when σ is low, and never exist when β ≤ 1.

Strong MLRP delivers the observation that “spreads dominate means,” which ensures
that likelihood ratios for extreme signals move in favor of the type using the higher
spread. The boundedness of either retention or replacement zones is an easy conse-
quence. This has two implications. First, bounded replacement equilibria do not exist
(part (i) of the Proposition). For if such an equilibrium were to exist, then by “spreads
dominate means,” it must be that σb < σg. But, then, by deviating to some σ 6= σb,
the bad type can assure retention with probability approaching 1 as σ →∞. This is a
profitable deviation.

Second, “spreads dominate means” implies that a monotone equilibrium can only exist
if both types choose the same level of noise. Just as in our benchmark model, that can
only happen if both types choose σ and the putative retention threshold lies below θb.
However, for small σ, that cannot happen — the relative likelihood of the bad type at
x = θb is just too high. This rules out monotone equilibria when the lower bound on
noise is small; specifically, when the condition identified in Proposition 6 holds.

The question that remains is whether a bounded retention equilibrium exists, and
whether (not as central but still of interest) the retention regime has an interval struc-
ture. The following proposition provides sufficient conditions.
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Proposition 7. Consider any signal density satisfying strong MLRP, and with its single
peak at 0. Assume that either β ≥ 1, or that ∂ ln(f(x))

∂x
is convex for all x > 0. Then:

(i) There exists σ̂ > 0 such that a nontrivial equilibrium exists if and only if σ ∈ (0, σ̂).
When it exists, the equilibrium is unique.

(ii) There exists σ̃ > 0 such that if σ ∈ (0,min{σ̃, σ̂}), the nontrivial equilibrium
involves bounded retention. In it, the good type chooses σg = σ, the bad type chooses
higher but finite noise σb > σg, and the principal employs a strategy of the form: retain
if and only if the signal x lies in some bounded interval [x−, x+].

(iii) In the balanced case or with an optimistic future (β ≤ 1), the condition σ ∈ (0, σ̃)

automatically holds, and the nontrivial equilibrium must involve bounded retention.

6.5. Signal-Contingent Disclosure. Consider a variation in which the agent observes
the signal realization and can choose whether to disclose it.13 For concreteness, think
of the agent as a supplier who observes the quality of a produced good and then de-
cides whether or not to ship it to a buyer, the principal. There is also an exogenous
probability ζ > 0 that the good is not received, independent of the agent’s decisions.

Nontransmission of the signal (or good) is costly to the agent, who then pays a penalty
κ > 0. To remove tedious knife-edge cases, assume κ 6= 1, where recall that 1 is the
normalized value of retention for either type of agent. An unsent signal could also be
costly to the principal, but that will not affect her retention decision, so we ignore it.
The principal’s action is r : R ∪ {n} → {0, 1}, which indicates whether she retains
the agent after observing signal x ∈ R or no signal (n). The agent choose variances σ
as before, as a function of her type, but also a disclosure rule d : {g, b} ×R→ {0, 1}.

Proposition 8. (i) Suppose that the future is optimistic, so that q < p. Then in any
sequential equilibrium, each type of agent must intend to transmit every signal, and the
principal replaces in the (accidental) event that no signal is received. All other actions
by both principal and agent coincide exactly with those made in the benchmark model.

(ii) Suppose that the future is pessimistic, with q > p. If κ > 1, then again, each agent
type intends to transmit every signal, but now the principal retains in the (accidental)
event that no signal is received. All other actions by both principal and agent coincide

13We are grateful to a referee for suggesting this extension.
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exactly with those made in the benchmark model. If κ < 1, the agent is always retained
along the equilibrium path, signal or no signal.

(iii) The balanced case q = p, both the scenarios in (i) and (ii) are possible equilibria.

So the results of our benchmark model can be applied with no change to a setting in
which the sender has the power to suppress his signal ex post, provided either that
q < p, or (even if q > p) that the cost of non-disclosure is large. It is only when
non-disclosure costs are small and q > p that agent replacement is no longer observed
in equilibrium, which is reminiscent of the “always retain” trivial equilibrium from
the benchmark model. In this case, the retention sets could take many arbitrary forms,
going well beyond the retention regimes identified in the Section 4. That is because
sequential equilibrium imposes no discipline in the face of an observed signal realiza-
tion which was never supposed to be sent. Yet, under a simple and natural refinement,
the two retention sets can be shown to coincide — see the Supplementary Appendix.

6.6. Other Extensions. In the the Supplementary Appendix, we consider additional
extensions of our rich and tractable baseline model. We mention them here.

Costly shifting of the mean signal. Suppose that each type can exert unobservable
effort to shift the mean value of his signal. The cost of that shift is assumed to be
the same for both types, and it is nondecreasing and strictly convex in effort. So the
good type has an advantage on account of his “initial location.” The environment is
otherwise exactly the same as in the baseline setting. The main result is that in any
equilibrium we have θg > θb, and therefore the choice of noise and principal retention
decisions are the same as in the benchmark model.

Noise created by principals. Suppose that agent effort is separately valuable to the
principal. Then she may have an interest in choosing ambient noise level σ. The
rest of the game is the same, with the agent expending effort to choose a signal, and
the principal retaining or replacing after observing the signal realization. At σ =

0, when the two agent types are sufficiently separated (in terms of the mean signal
values when they both exert no effort), there can be only separating equilibria in which
both types exert zero effort. The principal will therefore want to inject noise into the
environment. Noise serves here as a commitment device: by making it impossible to



26

perfectly identify the agent type ex post, the principal gives both types a chance to be
retained, thus incentivizing them to exert effort.

More than one agent. This acommodates several new scenarios, such as electoral com-
petition. The principal knows that one, and only one of two candidates is good. The
other is bad. The agents know their types, and therefore the types of their opponents.
Each agent chooses noise as before, and in so doing, sends the principal a signal. The
principal decides which agent to retain; her outside option in our baseline model is now
replaced by the value of the discarded agent. The retention regimes must be redefined,
because the principal now observes two signals. In this setting, a monotone regime is
a retention rule in which the principal retains the agent with the higher signal value. In
a bounded retention (replacement) regime, the principal keeps the agent whose signal
value falls closer to (further away from) an endogenous threshold. If an equilibrium
exists, it must have bounded retention.

Several agent types. The distribution of agent types is given by some density q(θ) on
R. The principal obtains a payoff of u(θ) if she retains an agent of type θ, where u is
nondecreasing, bounded, and continuous. The principal’s (exogenous) outside option
is V , which falls somewhere between the inferior and superior limits of u(θ). Then,
using the costly noise model, we show that monotone equilibria cannot generically
exist. This result throws some light on Edmond (2013)’s incisive analysis of infor-
mation manipulation by dictatorial regimes of unknown strength. When considering
the choice of signal precision, Edmond presumes that monotonic retention regimes are
employed by each citizen. Our result suggests that this assumption may not be without
loss of generality.

Commitment. The case of principal commitment to retention mechanisms is the sub-
ject of a separate paper; see Vohra r© Espinosa r© Ray (2021). We consider a more
general mechanism design problem within a setting studied by Ray r© Vohra (2020).
A version of our model, but with principal commitment, emerges as a special case of
that framework. The main result is that the principal gains nothing from commitment
relative to a model with no commitment, such as the one studied in this paper.
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7. APPLICATIONS

Our theory separates three features: the choice of risk, the outcome realization, and
subsequent inference by the principal. A central implication is that a signal may be
“good” — even in the sense of generating high payoffs for the principal today — while
it also serves as a cautionary indicator for excessive risk-taking by the agent. That may
sound contradictory, but as long as we properly separate the current payoff-relevance
of a signal realization from its role as a signal, there is no inconsistency here.

The potential relevance of our model should be assessed by the following consider-
ations: (a) whether the choice of action by the agent corresponds, at least in part, to
obscure or clarify his ability, (b) whether the resulting choice of noise cannot be ob-
served ex ante by the principal, at least in part, and (c) whether the outcome, apart
from being intrinsically good or bad, serves ex post as an indicator for the extent of
risk-taking, thereby leading to some form of inference about the agent’s competence.
It is important to appreciate the emphasized phrase in part (b). It is only necessary that
there be some significant unobserved component to the choice of risk, not that every
aspect of that choice be unobserved.

The discussion that follows is only suggestive of some useful directions, and is not
intended to serve as a formal empirical investigation of our model.

7.1. Risk-Taking in Delegated Portfolio Management. A risk-neutral investor is
looking for a good money manager who will help her invest her money. But even
though there are persistent differences in managerial skill across funds (Chevalier and
Ellison, 1999; Berk and van Binsbergen, 2015), assessing them ex-ante is no trivial
task. In large part this is because noise or “luck” appears to dominate skill, at least
in the short term (Kritzman, 1987; Fama and French, 2010), and because differences
in managerial skills arise from differences in the acquisition and use of specialized
knowledge (Coval and Moskowitz, 2001; Kacperczyk et al., 2005; Cohen et al., 2008;
Shumway et al., 2011).

Moreover, it is well known that underperforming funds inject additional risk into their
portfolios in the hope of catching up with the winners (Brown et al., 1996; Chevalier
and Ellison, 1997; Koski and Pontiff, 1999; Dasgupta and Prat, 2006) — a strategy
colorfully referred to as “gambling for resurrection.” For instance, the New York Times
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article (March 7, 2014) that we refer to in the Introduction, urges the reader to “look
beyond [immediate] results” when evaluating a fund manager. It recommends instead
that managerial returns are best studied over an entire business cycle, so as to better
assess the extent of risk-taking. The article observes that “someone who took very
little risk to get to an 8 percent return is better off than someone who made 8 percent
but should have made 12 percent given the amount of risk in the investments.” Of
course, that’s easier said than done. 60% percent of the approximately 7500 mutual
funds in the United States in 2014 — the year of the article — were launched in the
preceding 10-year period; a third in the preceding 5-year period. Often, there is not
enough history to make this assessment.

But even if there is history, the assessments are perforce limited. Some smoking guns
should be obvious (or perhaps not even these), such as a self-declared large-cap man-
ager who might gamble with small-cap stocks in his portfolio, or a bond fund holding
equities. Indeed, investors may not have easy access to direct measures of just how
much risk is being taken on, even if they can see the choice of portfolio. After all, if
they could fully assess such attributes in real time, they would presumably not need a
money manager to begin with. As Palomino and Prat (2003) observe, “most smaller
investors do not have the time or the knowledge to perform the monitoring and do not
observe the distribution of the portfolio the agent chooses but only the realized return
on the portfolio.” This is also true of specialized actors; witness the subprime crisis of
2008.14 It is generally hard for investors to infer the level of risk in a given portfolio
both ex-ante and ex-post (for other references, see Kritzman, 1987; Sirri and Tufano,
1998; Fama and French, 2010), and ex-post performance must be used for evaluation.

One might respond that it is always possible to trim or cap large positive returns ex
ante or ex post, so that the results of our paper do not apply even if risk is unobserved.
From the ex ante perspective, a manager could sell call options at judiciously chosen
strike prices to offset large positive swings, or simply hold cash. But the point is that
he cannot remove or cap his risk for free; it will need to happen at the expense of
a lower average rate of return. A risk-cutting strategy might statistically reveal that
he is unable to generate the same average return as a top-flight manager. In his need

14The U.S. Financial Crisis Inquiry Commission determined that no one involved understood the risks
they were taking: “The captains of finance and the public stewards of our financial system ignored
warnings and failed to question, understand and manage evolving risks within a system essential to the
well-being of the American public” (Financial Crisis Inquiry Commission, 2010, emphasis added).
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to imitate a high type, a low-type manager might willingly load on risk even if it is
feasible for him not to do so. The feasibility of ex ante risk-capping does not imply its
optimality under equilibrium interaction — or at least, that is what the model predicts.

From an ex post perspective, it might be argued that a manager can always dispose
of excess positive returns that might arouse suspicion. Indeed, there is evidence that
fund managers move to safer assets during their portfolio disclosure period to sug-
gest that they are taking on less risk than they are. Haugen and Lakonishok (1988)
view this as a component of the so-called “January effect,” and argue that both riskier
and losing stocks and bonds are undervalued at year-end because they are shed from
portfolios during disclosure periods. Musto (1999) studies the specific case of such
“window dressing for safety” in the case of retail money funds: allocations to govern-
ment assets are larger during disclosure periods than in other weeks.15 In short, money
managers attempt to project the image of a safe portfolio during a disclosure period,
while loading up on risk at other times of the year. But such attempts do not come
for free. The outcomes of many investments are hard to micro-manage, depending as
they do on market conditions that are well beyond the manager’s control. Some risk-
taking choices are irreversible. Moreover, one can look not just at overall behavior but
patterns of that behavior over time — just as we have been doing here. A protracted
attempt to cover up excessive risk-taking may be quite visible to the careful investor.

In summary, some good outcomes could, or should, be viewed as a priori suspects
for excessive risk taking. As Chevalier and Ellison (1997) observe: “The one clear
regularity in the data that is somewhat puzzling in contrast with our earlier results is
that higher excess returns are clearly correlated with larger risk increases.” While those
high returns are a current positive, our investor’s goal is to find a manager who will
also deliver high expected returns in the future. If the current return is also a signal for
excessive risk-taking, the manager’s competence could be questioned.

Taken literally, our bounded retention equilibrium implies a novel prediction for the lit-
erature on mutual funds and investors’ behavior: the probability of assets flowing out
of a mutual fund as a function of excess current return should eventually increase. In
Hvide (2002), the CEO of Skandia Fund Management confesses to the author that the

15Though weekly data on fund allocations are obtained in the Money Fund Report newsletter, the sub-
scription price is high enough that most retail investors lack access to this information. Or at least, fund
managers appear to bet on that fact.
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Fund “first selects an initial pool of fund managers and then gradually terminates the
relationship with the managers whose return are too high or too low as compared with
an index return.” To our knowledge, this question has not been systematically studied,
especially for younger money managers for whom reputation-building is presumably
a serious concern. What we do have is evidence of a positive flow-performance cor-
relation at the aggregate level (Ippolito, 1992; Chevalier and Ellison, 1997; Sirri and
Tufano, 1998),16 which appears to go in favor of “monotone retention regimes.” Our
theory does not rule out such regimes, especially in the mutual fund industry, where
the natural level of risk is large relative to the differences in expected returns that bad
and good mutual funds can deliver. There is, in fact, some evidence that the latter
differences are “small” (see Fama and French, 2010).

7.2. Risky Politics. The unobservability of risk is a salient feature of situations when
the observer either does not fully know or cannot judge the full set of consequences
(and associated likelihoods) of an observed action. This is true, for instance, of risky
political actions. An observer might be able to estimate the risk that political actors of
different competencies are likely to be taking, just as an agent computes equilibrium
play from her beliefs about opponent strategies, but at the same time not actually ob-
serve that risk. Perhaps voters can not fully comprehend (or are under-informed about)
the implications of a given policy, much as our investor in the previous example.

This last argument is part of the seminal work of Arnold (1990), who analyzes con-
gressional action. For instance, most citizens prefer less inflation to more, but at the
same time support price controls to fight high inflation, a position that stems from sim-
plistic or even erroneous views of the underlying mechanics (or causal relationships)
of the problem. To add to this, there is substantial empirical evidence (see, for ex-
ample, Delli Carpini and Keeter, 1996; Somin, 2013; Baum and Kernell, 1999; Prior,
2007), typically collected through surveys, that shows public unawareness of policy,
even around local issues could affect their everyday life. Perhaps the acquisition of
information is costly, and the benefits are perceived to be distant or indirect. In effect,
and in the language of this paper, a voter may not fully observe the risk of a policy.

16Given that persistence in performance is rather weak (Gruber, 1996; Zheng, 1999; Bollen and Busse,
2001), except for the worst performing funds (Hendricks et al., 1993; Carhart, 1997; Berk and van
Binsbergen, 2015), it is unclear that such behavior is rational, though see Berk and Green (2004).



31

Now think of a political leader, the assessment of whose competence is currently im-
portant, and who seeks to be “retained” by the median voter (who plays here the role of
the principal). If that leader is competent, he can attempt to play it safe by implement-
ing reliable but unspectacular policies, and so the sharper will be the estimate that the
public obtains about his true type after a policy outcome is realized — though conver-
gence to that understanding may be far from total. In contrast, the incompetent leader
can entertain an alternative policy which he knows to be riskier than the unambitious
policy of the competent leader. For instance — and only speaking hypothetically —
he might attempt to conduct a denuclearization summit with the authoritarian leader
of a rogue state. When observing this policy choice, the median voter is not aware of
all the risks entailed, but she can evaluate the policy ex-post in terms of its success (or
lack thereof).

To the extent that the implications of the policies can be observed ex-ante, both types
of leader must pool on those observable risks — with binary types, separation cannot
occur before the realization of the policy. We would therefore have monotone retention
pf necessity. However, when observabilty is imperfect, and especially when the voter
feels optimistic about future political candidates, and the difference in competence of
the two leaders is large enough, the incompetent leader will choose the policy that he
knows to be riskier — in the language of our example, he will pursue the denucle-
arization summit. Then, a striking success from such a policy — if, continuing the
hypothetical streak, such a success were to occur — should be treated with a certain
degree of reticence by the median voter. It could be a sign of extreme competence.
It could also be sign of a desperate move by a largely incompetent individual, which
happened to pay off. That outcome, if it occurs, may be good for society. But it may
not be a good signal on which to base re-election.

8. SUMMARY

We’ve studied a model in which an agent who seeks to be retained by a principal
might deliberately inject noise into a process that signals his type. Possible equilib-
rium regimes include monotone retention, in which a principal retains if an agent’s
signal is high enough, and various non-monotone regimes. Of these, we argue that
bounded retention is the salient equilibrium regime. In it, different types of agents
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choose different degrees of noise, with worse agents behaving more noisily. The re-
sulting equilibrium has a “double-threshold” property: the principal retains the agent
if the signal is good, but neither too good nor too bad. We discuss extensions to a vari-
ant with costly noise, to a dynamic version with agent term limits, and to non-normal
signal structures.

At the heart of our argument is a fundamental failure of “single-crossing.” In our set-
ting, we know that with any reasonable assumptions on the signal distribution, higher
means are stochastically associated with better signals, in the sense that the likelihood
ratio of the high mean (relative to the low mean) rises with the emitted signal. But
once the choice of noise enters the picture, single-crossing is irretrievably damaged.
Types with lower means are more likely to choose higher noise, and the likelihood ratio
behave in more complex, non-monotone ways as a function of the signal realization.
Such a failure is a feature that generally renders a full analysis intractably hard. In our
setting, it leads to a simple yet rich model in which equilibria can be described — and
have interesting properties.

We believe that the deliberate injection of ambiguity or noise is a central feature of
many principal-agent interactions. Throughout, we make the central assumption that
the extent of noise cannot be fully observed by the principal, and must be inferred, at
least to some degree. We believe this assumption holds in many settings, in which the
receiver does not fully understand, ex ante, the full range of possible options available
to the agent. In this paper, we have discussed two such applications — risky portfolio
management, and the choice of risky political strategy. But there is a plethora of other
situations that our analysis could fit: a non-governmental organization of unknown
competence seeking funding from donors, risky versus safe strategies in the deliberate
generation of leaks, a government under pressure which might inject noise into official
statistics, an individual taking risky steps to bolster a cv for an upcoming promotion
or interview, a less-than-competent lawyer calling a high-risk witness (who could de-
stroy the case or win it), an athlete who might engage in doping, a news media outlet
using sensationalist headlines to get readership, and so on. In all these situations, full
observability of strategic risk would restore single-crossing, and generate standard re-
sults. However, when there are constraints on the observability of risk, our framework
makes a new contribution towards the understanding of such environments.
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APPENDIX: MAIN PROOFS

Proof of Proposition 1. The proof of this proposition is long and contains several steps,
with many technical details relegated to the Supplementary Appendix. Recall that the
discussion in Section 5.1 eliminates all bounded replacement equilibria. With that out
of the way, we focus on monotone and bounded retention regimes, and agent responses
to them.

Lemma 1. With bounded retention, σb > σg, and X = [x−, x+], where θg <
x−+x+

2
<

x+.

Proof. When σb 6= σg, and x− and x+ are both finite and given by (4), one can check
that

x+ + x−
2

=
σ2
bθg − σ2

gθb

σ2
b − σ2

g

.

So if σb > σg then x+ > x++x−
2

> θg.

Lemma 2. In a bounded retention equilibrium with thresholds x− and x+, and for
each k,

(23) φ

(
x− − θk
σk

)
> φ

(
x+ − θk
σk

)
.

Proof. With bounded retention, σb > σg and (x+ + x−)/2 > θk by Lemma 1, and so

x+ − θk
σk

>
θk − x−
σk

,

which implies, using single-peakedness and symmetry of φ around 0, along with x+ >

x−, that

φ

(
x+ − θk
σk

)
< φ

(
θk − x−
σk

)
= φ

(
x− − θk
σk

)
,

which establishes (23).

Lemma 3. (i) If X = [x∗,∞) and θk > x∗, the agent chooses σk = σ; if θk < x∗,
the problem has no solution, in particular, the agent always wants to inject additional
noise; if θk = x∗, the agent is indifferent across all choices of σ.

(ii) Assume a retention zone of the form [x−, x+] with x− < x+. If x− ≤ θk, then
σk = σ.
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(iii) Assume a retention zone of the form [x−, x+] with x− < x+. If x− > θk, then for
each k define

(24) dk(σk) := φ

(
x− − θk
σk

)
(x− − θk)− φ

(
x+ − θk
σk

)
(x+ − θk) for all σk > 0.

Then dk is continuous, initially positive then negative, with a unique root to dk(σk) =

0, given by

(25) σ∗k =

√
(x+ − x−)(x−+x+

2
− θk)

ln(x+ − θk)− ln(x− − θk)
∈ (x− − θk, x+ − θk) ,

and agent k sets σk = max{σ, σ∗k}.

Proof. (i) In the case of monotone retention, the first-order derivative with respect to
σk is

φ

(
x∗ − θk
σk

)
x∗ − θk
σ2
k

.

It is always negative if x∗ < θk, so σk = σ; always positive if x∗ > θk, so the agent
always wants to increase the noise and the problem has no solution; and always equal
to 0 if x∗ = θk, so the agent is indifferent across all choices of σ.

(ii) A type-k agent wishes to maximize the probability of being in the retention zone
[x−, x+], so he chooses σk ≥ σ, to maximize

(26) Φ

(
x+ − θk
σk

)
− Φ

(
x− − θk
σk

)
,

where Φ is the cdf of the standard normal. The first-order derivative of the objective
function with respect to σk is

dk(σk)

σ2
k

=
1

σ2
k

[
φ

(
x− − θk
σk

)
(x− − θk)− φ

(
x+ − θk
σk

)
(x+ − θk)

]
,

where dk is defined in (24). By Lemma 1, x+ > θg ≥ θk for any k. If in addition,
x− ≤ θk, then the sign of the derivative is always negative, so σk = σ.

(iii) When θk < x− < x+, the sign of the derivative depends on the value of σk. After
some elementary manipulation, we see that

dk(σk) = φ

(
x+ − θk
σk

)
(x+ − θk)

{
exp

[
x+ − x−
σ2
k

(
x− + x+

2
− θk

)](
x− − θk
x+ − θk

)
− 1

}
.
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The term inside the curly brackets is the only one that can change sign. Moreover,
this term is continuous and strictly decreasing in σk, with limit x−−θk

x+−θk
− 1 < 0 when

σk →∞, and with limit∞ as σk → 0. So dk has all the claimed properties, and there
exists a unique σ∗k that solves (26), given by setting the term within curly brackets
equal to zero, which yields:

σ∗k =

√
(x+ − x−)

(
x−+x+

2
− θk

)
ln (x+ − θk)− ln (x− − θk)

Therefore, the agent will optimally choose σk = max {σ, σ∗k}.

To show that σ∗k ∈ (x− − θk, x+ − θk), first define x̂k := [(x+ − θk)/(x− − θk)]2 ∈
(1,∞). Provided x− > θk, we will have θk + σ∗k > x− if and only if x̂k − 1 > ln (x̂k),
which is always true because equality holds at x̂k = 1 and then the left-hand side
increases at a rate of 1, whereas the right-hand side increases at a rate of 1/x̂k < 1.
Similarly, θk + σ∗k < x+ iff 1 − (1/x̂k) < ln (x̂k). The condition holds with equality
for x̂k = 1, and the derivatives of the left and right-hand sides are 1/x̂2

k and 1/x̂k,
respectively, making the condition valid for any x̂k ∈ (1,∞).

We will use part (iii) of Lemma 3 to construct our fixed point map. But first we note:

Lemma 4. In any non-trivial equilibrium, σg = σ.

Proof. From (4) it is clear that the principal employs a monotone retention regime if
and only if both agent types choose the same level of noise, σg = σb = σ. In fact, by
Lemma 3(i), σg = σb = σ. Otherwise, a non-trivial equilibrium must have bounded
retention, in which case σg < σb by Observation 1. Suppose, on the contrary, that
σ < σg. Then both choices of noise are interior, and so agent optimality requires

φ

(
x− − θb
σb

)
(x− − θb) = φ

(
x+ − θb
σb

)
(x+ − θb) ,

φ

(
x− − θg
σg

)
(x− − θg) = φ

(
x+ − θg
σg

)
(x+ − θg) .

Combining these equations with the principal’s indifference condition (6), we obtain

φ

(
x− − θg
σg

)
= φ

(
x+ − θg
σg

)
,

which contradicts Lemma 2.
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Lemmas 3 and 4 help us introduce a mapping, the fixed point(s) of which will be
interpreted as equilibrium; conditions (11) and (12) will enter the discussion here.
Consider a self-map Ψ on (σ,∞), with domain to be interpreted as the principal’s
conjecture about the noise used by the low type, and range as the subsequent optimal
choice of noise by the bad type, in response to the retention decision. (Throughout,
informed by Lemma 4, σg = σ.) Guided by part (iii) of Lemma 3, our self-map is:

(27) Ψ(σ) ≡ max


√

[x+(σ)− x−(σ)](x−(σ)+x+(σ)
2

− θb)
[ln(x+(σ)− θb)− ln(x−(σ)− θb)]

, σ

 ,

where for any σ > σ,

(28) x− (σ) :=
σ2θg − σ2θb − σσR (σ)

σ2 − σ2
and x+ (σ) :=

σ2θg − σ2θb + σσR (σ)

σ2 − σ2
,

with

(29) R (σ) := +

√
(θg − θb)2 + (σ2 − σ2) 2 ln

(
β
σ

σ

)
.

To interpret these objects, notice that x−(σ) and x+(σ) are the roots to

(30) β
1

σ
φ

(
x− θg
σ

)
=

1

σ
φ

(
x− θb
σ

)
,

so these bound the retention regime X when the principal expects (σb, σg) = (σ, σ).
(We will verify that these bounds are well-defined.) Given these thresholds, type b
reacts as in Lemma 3(iii). So Ψ(σ) can be interpreted as b’s reaction to a chain that
starts with a conjecture about b’s action (σ), travels via the principal’s thresholds, and
culminates in that type’s optimal reaction to those thresholds. Hence a fixed point of
Ψ must correspond to an equilibrium with bounded retention, and all such equilibria
can be described in this way.

Our first task is to make sure that x−(σ) and x+(σ) are well-defined and distinct for
σ > σ. The following lemma relates this to condition (11).

Lemma 5. If β ≥ 1, x−(σ) and x+(σ) are well-defined and distinct for σ > σ. If
β < 1, x−(σ) and x+(σ) are well-defined and distinct for σ > σ if and only if (11)
holds.
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Proof. When β ≥ 1, it is clear that the term within the square root in (29) is strictly
positive for all σ > σ. In the Supplementary Appendix we show that, when β < 1,
this term is strictly positive for all σ > σ if and only if (11) holds.

As already mentioned, we follow the lead of Lemma 4 in holding σg at σ throughout.
Nevertheless, when all is said and done, we must make sure that the good type willingly
chooses this value when confronted with the principal’s retention strategy. We get this
out of the way before proceeding any further.

Lemma 6. If σb = σ satisfies db (σ) = 0 and {x−(σ), x+(σ)} are the roots to (30),
then the good type optimally chooses σg = σ.

Proof. By Lemma 1, x+(σ) > θg. If, in addition, x−(σ) ≤ θg, then by Lemma 3 (ii),
type g chooses σg = σ, and we are done.

Otherwise, x−(σ) > θg. Then by Lemma 3 (iii), there is a unique σg (not worry-
ing about the lower bound σ) maximizing g’s probability of retention. This solves
dg(σg) = 0, where dg is defined in (24). We claim that this value is smaller than σ. By
Lemma 3 (iii), it will suffice to show that dg(σ) < 0.

Because db(σ) = 0, we see from (24) that

(31) φ

(
x+ − θb

σ

)
(x+ − θb) = φ

(
x− − θb

σ

)
(x− − θb) .

It follows that

dg(σ) = φ

(
x− − θg

σ

)
(x− − θg)− φ

(
x+ − θg

σ

)
(x+ − θg)

=
σ

β

[
φ

(
x− − θb

σ

)
x− − θg

σ
− φ

(
x+ − θb

σ

)
x+ − θg

σ

]
=
σ

β

x− − θb
σ

φ

(
x− − θb

σ

)[
x− − θg
x− − θb

− x+ − θg
x+ − θb

]
< 0,

where the second equality follows from (30), the third equality from (31), and the very
last inequality from θg > θb and x+(σ) > x−(σ).

With the good type dealt with, we return to the fixed point problem for the bad type.
In preparation for the steps ahead, the two retention thresholds x− (σ) and x+ (σ) are
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Figure 7. Principal’s best responses x− (σ) and x+ (σ) and type b’s counter-response.

shown as the lowest and highest curves in Figure 7. These mark the principal’s best-
response thresholds for every σb = σ > σ (remember that type-g is kept fixed at
σg = σ in line with Lemma 4). Now consider type b’s best response to these thresh-
olds. Lemma 3 (iii) tells us that this best response plus θb must lie strictly between the
x−(σ) and x+(σ) loci. This is shown as the thick intermediate curve. Our fixed point(s)
will be determined by the intersection(s) between this curve and the θb + σ line (de-
picted as a shifted diagonal line). The analysis below will tell us the conditions under
which these intersections will or will not be possible, and will also establish unique-
ness (conditional on existence). These observations together constitute the foundations
of the statement: “A nontrivial equilibrium exists if and only if (11) is satisfied, and it
is then unique.” We begin with a lemma that serves as formal description of the shapes
of x− (σ) and x+ (σ) in the figure.

Lemma 7. Assume that either β ≥ 1 or β < 1 and (11) holds. Then:

(i) limσ→σ x− (σ) = x∗ (σ) and limσ→σ x+ (σ) =∞, where x∗(σ) is defined in (5).

(ii) limσ→∞ x− (σ) = −∞ and limσ→∞ x+ (σ) =∞.

(iii) If β ≥ 1 and (12) fails, then x−(σ) < θb for all σ > σ.

Proof. See Supplementary Appendix.

With Lemmas 5 and 7 in hand, we can state:

Lemma 8. If β ≤ 1 and (11) holds, or β ≥ 1 and (12) holds, there is a unique
non-trivial equilibrium. It has bounded retention.
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Proof. By Lemma 7 (i), limσ→σ x− (σ) = x∗ (σ). Inspect the definition of x∗(σ) in
(5) and note that if β ≤ 1 or if β > 1 and (12) holds, then x∗ (σ) > θb. Also
by Lemma 7 (i), limσ→σ x+ (σ) = ∞. Using this information in (27), we see that
limσ→σ Ψ (σ) =∞.

Next, by Lemma 7 (ii), the interval (x− (σ) , x+ (σ)) must contain θb for all σ large, so
that by Lemma 3 (ii), Ψ (σ) = σ for all such σ.

Moreover, by Lemma 5, x−(σ) and x+(σ) are well-defined and distinct for every σ >
σ, and these values move continuously with σ. Consequently, so does Ψ(σ). The above
end-point verifications and continuity guarantee that Ψ has at least one fixed point.

At any such fixed point σ, we have σ < σ = Ψ(σ). Consequently, the first term on the
right hand side of (27) must bind. It follows that Ψ(σ) solves db(Ψ(σ)) = 0, where db
is defined in (24), so that

(32) φ

(
x+ (σ)− θb

Ψ (σ)

)
(x+ (σ)− θb) = φ

(
x− (σ)− θb

Ψ (σ)

)
(x− (σ)− θb) .

Equation (32) can be used to compute Ψ′(σ). The Supplementary Appendix indicates
the steps and shows that this derivative is strictly negative at any fixed point. So Ψ (σ)

is strictly decreasing at any fixed point, and therefore can have just one fixed point
σ† > σ, as asserted. At this fixed point, both the principal and the bad type are playing
best responses. That the good type is also playing a best response is guaranteed by
Lemma 6. Therefore σ† > σ is the only equilibrium with bounded retention.

It remains to eliminate the monotone equilibrium, which must involve σb = σg and
therefore (by Lemma 4) a common value of σ. Because both types must play a best
response, it follows from Lemma 3(i) that

x∗ (σ) =
θg + θb

2
− σ2

θg − θb
ln (β) ≤ θb

or

ln (β) ≥ ∆2

2σ2
,

which would contradict (12) when β ≥ 1, or is impossible under β ≤ 1. So only
bounded retention equilibria can exist.

Lemma 9. If β ≥ 1 and (12) fails, there is a unique non-trivial equilibrium. It has
monotone retention.
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Figure 8. x− (σ) and x+ (σ) are not always well-defined if (11) fails.

Proof. If β ≥ 1 and (12) fails, then x−(σ) < θb for all σ > σ by Lemma 7 (iii). At the
same time, by Lemma 1, θb < x+ (σ), so θb ∈ (x− (σ) , x+ (σ)) for all σ ≥ σ. So by
Lemma 3 (ii), Ψ(σ) = σ for all σ > σ and has no fixed point with σ > σ.

We separately verify that there is an equilibrium with monotone retention and both
types choosing σ. If (σb, σg) = (σ, σ), then the planner uses the monotone retention
strategy with threshold x∗(σ). Because β ≥ 1 and (12) fails, x−(σ) ≤ θb < θg. By
Lemma 3 (i), it is a best response for both types to choose σ.

To complete our characterization of equilibrium using Conditions (11) and (12), we
note:

Lemma 10. If β < 1 and (11) fails, a non-trivial equilibrium does not exist.

Proof. The details of this argument center around establishing the validity of Figure
8. When β < 1 and (11) fails, the roots to the principal’s indifference condition,
x−(σ) and x+(σ), are not always well-defined or distinct. But matters are more subtle
than that: for the values of σ at which they are well defined and distinct, a fixed
point is impossible. This happens because at any such value of σ we either have
that θb + σ < x−(σ) < x+(σ), or x−(σ) < x+(σ) < θb + σ (look at Figure 8
again). But type-b’s best response in a bounded retention equilibrium regime must
satisfy x−(σ) < θb + σb < x+(σ), as asserted by Lemma 3 (iii). Therefore, no
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bounded retention equilibrium is possible. See the Supplementary Appendix for the
formal details.

We can now complete the proof of Proposition 1. Part (i) is a direct consequence of
Lemmas 8 and 10. Part (ii) is proved immediately by Lemmas 8 and 9. The description
of bounded retention equilibria in Part (iii) is proved by combining Lemmas 1, 4 and
3 (iii).

Proof of Proposition 2. Recall (15); this is the equation that σ must satisfy if it com-
monly chosen by both types:

(33) φ(z1)z1 = φ(z2)z2 = −σc′(σ),

where z1 = (σ/∆) ln (β) − (∆/2σ) and z2 = (σ/∆) ln (β) + (∆/2σ). The function
φ (z) z has the shape shown in Figure 4, reaching maxima and minima at z = 1 and
z = −1 respectively, and exhibiting “negative symmetry” around 0. Using (15), this
tells us that there are two exclusive possibilities: (i) either β > 1 and σ < σ, or (ii)
either β < 1 and σ > σ. We study (i); Case (ii) is dealt with in the same way.

In Case (i), elementary computation shows that z2, viewed as a function of σ (holding
all other terms constant) starts from infinity as σ = 0, declines to a minimum of√

2 ln (β), and then climbs monotonically again to ∞ as σ → ∞. Meanwhile, z1 is
always increasing in σ, and is exactly zero when z2 reaches its minimum. From this
point on, φ(z1)z1 climbs from 0 to its maximum value of φ(1) and then falls, while
φ(z2)z2 falls monotonically from a positive value to zero. Finally, we note that in
the phase where φ(z1)z1 falls, we have φ(z1)z1 > φ(z2)z2 throughout. Putting these
observations together, we must conclude that there is a unique value of σ such that the
first equality in (33) holds, and it is independent of the cost function c.

Proof of Proposition 3. Recall that σ∗ < σ and σ∗ > σ are the two solutions to
c(σ) = 1. Let Σ := [σ∗, σ

∗]2, and define

Σ+ := {(σg, σb) ∈ Σ|σb ≥ σg}.

For each σ ∈ Σ+, define x− and x+ by the distinct lower and upper roots to (4) if
σb > σg; otherwise, if σb = σg = σ, set x− = x∗(σ) as defined in (5) and x+ =

∞. Interpret [x−, x+] as the retention zone. Call this map Ψ1. As discussed in the
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main text, this map is well-defined when σb = σg. To check that Ψ1 is also well-
defined when σb > σg, we must show that there are two distinct real roots to the
quadratic in (4), or equivalently, using the elementary formula for quadratic roots, that
the expression

∆2 +
(
σ2
b − σ2

g

)
2 ln

(
β
σb
σg

)
is strictly positive. But (17) tells us that ln(β) ≥ −[∆2]/2σ∗2, and so

∆2 +
(
σ2
b − σ2

g

)
2 ln

(
β
σb
σg

)
= ∆2 +

(
σ2
b − σ2

g

)
2 ln

(
β
σb
σg

)
≥ ∆2 +

(
σ2
b − σ2

g

)
2 ln (β)

≥ ∆2

[
1−

σ2
b − σ2

g

σ∗2

]
> 0,

where the very last inequality uses σ∗ ≥ σb > σg. So there are distinct roots x− < x+,
and by exactly the same logic as for Observation 1, the zone [x−, x+] must involve
retention.

Next, for each pair (x−, x+) with x+ > x− and with x+ possibly infinite, define
(σ′b, σ

′
g) to be the best-response choices of noise by the bad and good types who face the

retention zone [x−, x+]. By condition [U], these choices are well-defined and unique.
Call this map Ψ2.

Finally, define a map Ψ with domain Σ+ and range Σ by Ψ := Ψ2 ◦Ψ1. We claim that
Ψ is continuous. We first argue that Ψ1 is continuous in the extended reals. That is:

(i) if (σng , σ
n
b ) → (σg, σb) with σb > σg, then Ψ1(σg, σb) = (x−, x+) with x− < x+ <

∞, and it is obvious that Ψ1(σng , σ
n
b )→ Ψ1(σg, σb).

(ii) if (σng , σ
n
b ) → (σg, σb) with σb = σg, then Ψ1(σg, σb) = (x−,∞). In this case, an

inspection of the quadratic condition (4) (the roots of which yield x− and x+) reveals
that Ψ1(σng , σ

n
b ) = (xn−, x

n
+) must satisfy xn+ →∞.

Now we turn to the map Ψ2. As already mentioned, condition [U] guarantees that best-
response noise choices are unique, as long as x+ > x−. They are fully characterized
by the first-order condition (13), which we reproduce here for convenience:

(34) φ

(
x− − θk
σk

)(
x− − θk
σk

)
− φ

(
x+ − θk
σk

)(
x+ − θk
σk

)
= σkc

′ (σk)
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where we include the possibility that x+ =∞ by setting φ(z)z = 0 when z =∞.

Pick any sequence (xn−, x
n
+) that converges in the extended reals. That is, either the

sequence converges to (x−, x+) with x+ < ∞, or it converges to a limit of the form
(x−,∞). Let σnk be the best responses for an agent of type k, and let σk be the best
response at the limit value (x−, x+). When x+ <∞, it is obvious from (34) that σnk →
σk. In the latter case, the fact that σnk → σk follows from the additional observation
that φ(zn)zn → 0 for any sequence zn →∞.

We claim that Ψ is inward pointing; that is, for every (σg, σb) ∈ Σ+, there exists a > 0

such that

(35) (σg, σb) + a[Ψ(σg, σb)− (σg, σb)] ∈ Σ+.

First observe that for every (σg, σb) ∈ Σ+, we have (σ∗, σ∗) ≤ Ψ(σg, σb) ≤ (σ∗, σ∗).
Therefore, if (σg, σb) ∈ Σ+ with σb > σg, (35) is easily seen to hold: for a > 0 and
small, it must be that both components of the vector

(σg, σb) + a[Ψ(σg, σb)− (σg, σb)]

lie in [σ∗, σ
∗], and the second component is larger than the first. The remaining case

is one in which (σg, σb) ∈ Σ+ with σb = σg. In this case, we know from condition
(17) that Ψ1(σg, σb) is of the form (x−, x+) = (x∗,∞), where x∗ ∈ [θb, θg]. From
the first-order conditions that describe each type — see (14) — it is easy to see that
σk ≷ σ when x∗ ≷ θk. Therefore Ψ2(x∗,∞) = (σ′g, σ

′
b) must have the property that

σ′b > σ′g (and of course each component lies between σ∗ and σ∗). It follows that for
every a ∈ (0, 1), (35) holds, and the claim is proved.

To summarize, we have: Σ+ is a nonempty, compact, convex subset of Euclidean
space, and Ψ is continuous on Σ+. In general, however, Ψ will fail to map from
from Σ+ to Σ+. However, the map is inward pointing in the sense of Halpern (1968)
and Halpern and Bergman (1968); for an exposition, see Aliprantis and Border (2006,
Definition 17.53). By the Halpern-Bergman fixed point theorem (see Aliprantis and
Border, 2006, Theorem 17.54), there exists (σg, σb) ∈ Σ+ such that Ψ(σg, σb) =

(σg, σb). It is easy to see that (σg, σb), along with the associated bounded retention
zone Ψ1(σg, σb), forms an equilibrium.

For proving Proposition 4, we first state the following two results.
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Lemma 11. In a bounded replacement equilibrium with thresholds x− and x+, for
each k,

(36) φ

(
x− − θk
σk

)
> φ

(
x+ − θk
σk

)
.

Proof. When σb 6= σg, and x− and x+ are both finite and given by (4), we have that

x+ + x−
2

=
σ2
bθg − σ2

gθb

σ2
b − σ2

g

.

So if σb < σg then x+ < x++x−
2

< θb. Then,

x+ − θk
σk

<
θk − x−
σk

,

which implies, by single-peakedness and symmetry of φ around 0, and x+ < x−, that

φ

(
x+ − θk
σk

)
< φ

(
θk − x−
σk

)
= φ

(
x− − θk
σk

)
,

which establishes (36).

Lemma 12. Under (17) and (18), x+ < θb < x− < θg in bounded replacement
equilibrium.

Proof. Consider a bounded replacement equilibrium. Then σg > σb. Recall (4), which
states that retention is strictly optimal if

(37)
(
σ2
g − σ2

b

)
x2 + 2

(
σ2
bθg − σ2

gθb
)
x+

(
σ2
gθ

2
b − σ2

bθ
2
g + 2Aσ2

gσ
2
b

)
> 0,

(where A = ln (βσb/σg)), and replacement is strictly optimal if the opposite strict
inequality holds. Putting x = θb in (37) and simplifying, we see that replacement is
strictly optimal at θb if

β <
σg
σb

exp
∆2

2σ2
g

,

but this is guaranteed by the right hand inequality of (17), because σ∗ ≥ σg > σb.
Therefore θb lies in the interior of the replacement zone, or put another way, x+ <

θb < x−.
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Now putting x = θg in (37) and simplifying, we see that retention is strictly optimal at
θg if

(38)
∆2

2σ2
b

+ ln (σb)− ln(σg) > − ln(β).

The derivative of the left hand side of (38) with respect to σb is given by

1

σb

(
1− ∆2

σ2
b

)
which is strictly negative given (18) and σb ≤ σ∗, so it follows that the left hand side
of (38) is minimized by setting σb = σg = σ∗. To establish (38), then, it is sufficient to
have

∆2

2σ∗2
≥ − ln(β),

but this is guaranteed by the left hand inequality of (17). Consequently, the principal
strictly prefers to retain the agent if she observes x = θg. Given x+ < θb < x−, this
can only mean that x− < θg, and the proof is complete.

Proof of Proposition 4. In a bounded replacement equilibrium, σg > σb and x− > x+.
By Lemma 12, θg ≥ x− ≥ θb > x+. Define Bk (σ) to be type-k’s marginal benefit of
noise:

(39) Bk (σ) := φ

(
x− − θk

σ

)
x− − θk
σ2

− φ
(
x+ − θk

σ

)
x+ − θk
σ2

.

Observe that for every σ,

Bb (σ) = φ

(
x− − θb

σ

)
x− − θb
σ2

− φ
(
x+ − θb

σ

)
x+ − θb
σ2

≥ φ

(
x+ − θb

σ

)
x− − θb
σ2

− φ
(
x+ − θb

σ

)
x+ − θb
σ2

= φ

(
x+ − θb

σ

)
x− − x+

σ2

> φ

(
x+ − θg

σ

)
x− − x+

σ2

= φ

(
x+ − θg

σ

)
x− − θg
σ2

− φ
(
x+ − θg

σ

)
x+ − θg
σ2

≥ φ

(
x− − θg

σ

)
x− − θg
σ2

− φ
(
x+ − θg

σ

)
x+ − θg
σ2

= Bg (σ) ,(40)
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where the first inequality follows from x− ≥ θb and inequality (36) of Lemma 11, the
second inequality follows from φ single-peaked around zero and x+− θg < x+− θb <
0, and the last inequality follows from x− ≤ θg and (again) inequality (36) of Lemma
11.

But (40) leads to the following contradiction: if the marginal benefit of noise for the
bad type strictly exceeds that for the good type at every noise level, then by a simple
single-crossing argument, we must have σb > σg. But by Observation 1, this contra-
dicts the fact that we are in a bounded replacement equilibrium.

Proof of Proposition 8. (i) Suppose that q < p. We first claim that r(n) = 0. Suppose
not, so that r(n) = 1. Suppose first that κ > 1, where 1 is the normalized retention
value to the agent. Then neither type will want to willingly hide any signal (it is too
costly to do so). But that means that all non-transmitted signals are accidental, and the
principal must must retain her prior on the agent in any sequential equilibrium, which
is q. But q < p, so her optimal action must be to replace the agent, a contradiction.
On the other hand, if r(n) = 1 and κ < 1, then there must be universal retention in
equilibrium irrespective of signal — for if not, the agent could hide a signal and pick
up a surplus of 1− κ. However, universal retention requires the posterior on the agent
to exceed p in all events, which is impossible, given that q < p to begin with.

So the claim is true, and r(n) = 0. It follows that either type of agent must send
every realized signal, for nondisclosure results in both replacement and the penalty κ.
Therefore in this case, there is no deliberate withholding of signals. In short, all signals
are sent, and we have a perfect embedding of this case into our baseline model, with
the additional proviso that the principal replaces in case a signal accidentally fails to
arrive. There are no other equilibria with r(n) = 0.

(ii) Suppose that q > p. We claim that r(n) = 1. For suppose on the contrary that
r(n) = 0. Then no type would ever deliberately hide a signal — this results in a
penalty and in replacement. Therefore all non-disclosure events must be accidental,
forcing the principal to retain her prior in any sequential equilibrium, which is q. But
q > p, so her equilibrium action must be to set r(n) = 1, a contradiction.

(iia) q > p and κ > 1. Then intentional non-disclosure isn’t worth it, given the
high cost κ, so both types send all signals. Again, our baseline model describes all
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equilibria, with the principal retaining if a signal accidentally fails to arrive. There are
no other equilibria.

(iib) q > p and κ < 1. In this case all signal realizations x̃ with r (x̃) = 0 must be
hidden. So no agent type can ever replaced in this case: r(n) = 1 and r(x̃) = 1 for all
observed signals.

Moreover, observe that both types must transmit exactly the same set of signal real-
izations. For if only the bad type sends a particular x̃, then r(x̃) = 0, a contradiction.
And if x̃ is sent by only the good type, then r(x̃) = 1, but then the bad type would
want to send x̃ as well, since this saves the cost κ. We can conclude that, in any equi-
librium, each signal realization must be either hidden by both types or sent by both
types, leading to retention in any case.

(iii) Depending on how we break indifference for the principal, the balanced case can
fall into Cases (i) or (ii), and there is no other (pure-strategy) equilibrium.

Proof of Propositions 5, 6 and 7. See the Supplementary Appendix.

REFERENCES

ALESINA, A., AND A. CUKIERMAN (1990): “The Politics of Ambiguity,” The Quar-
terly Journal of Economics, 105, 829–850.

ALIPRANTIS, C., AND K. BORDER (2006): Infinite Dimensional Analysis: A Hitch-
hiker’s Guide: Springer, 3rd edition.

ARAGONES, E., AND Z. NEEMAN (2000): “Strategic Ambiguity in Electoral Com-
petition,” Journal of Theoretical Politics, 12, 183–204.

ARAGONES, E., T. PALFREY, AND A. POSTLEWAITE (2007): “Political Reputations
and Campaign Promises,” Journal of the European Economic Assosiation, 5, 846–
884.

ARAGONES, E., AND A. POSTLEWAITE (2002): “Ambiguity in Election Games,”
Review of Economic Design, 7, 233–255.

ARNOLD, R. D. (1990): The Logic of Congressional Action: Yale University Press.
BANKS, J., AND R. SUNDARAM (1998): “Optimal Retention in Agency Problems,”

Journal of Economic Theory, 82, 293–323.
BARRON, D., G. GIORGIADIS, AND J. SWINKELS (2017): “Optimal Contracts with

a Risk-Taking Agent,” mimeo.



48

BAUM, M. A., AND S. KERNELL (1999): “Has Cable Ended the Golden Age of
Presidential Television?” American Political Science Review, 93, 99–114.

BERK, J. B., AND J. H. VAN BINSBERGEN (2015): “Measuring Skill in the Mutual
Fund Industry,” Journal of Financial Economics, 118, 1–20.

BERK, J. B., AND R. C. GREEN (2004): “Mutual Fund Flows and Performance in
Rational Markets,” Journal of Political Economy, 112, 1269–1295.

BOLLEN, N. P. B., AND J. A. BUSSE (2001): “On the Timing Ability of Mutual Fund
Managers,” Journal of Finance, 56, 1075–1094.

BROWN, K. C., W. V. HARLOW, AND L. T. STARKS (1996): “Of Tournaments and
Temptations: An Analysis of Managerial Incentives in the Mutual Fund Industry,”
The Journal of Finance, 51, 85–110.

CAMPBELL, J. (1983): “Ambiguity in the Issue Positions of Presidential Candidates:
A Causal Analysis,” American Journal of Political Science, 27, 284–293.

CARHART, M. M. (1997): “On Persistence in Mutual Fund Performance,” Journal of
Finance, 52, 57–82.

(1999): “Are Some Mutual Fund Managers Better Than Others? Cross-
Sectional Patterns in Behavior and Performance,” The Journal of Finance, 54, 875–
899.

CHEVALIER, J., AND G. ELLISON (1997): “Risk Taking by Mutual Funds as a Re-
sponse to Incentives,” Journal of Political Economy, 105, 1167–1200.

COHEN, L., A. FRAZZINI, AND C. MALLOY (2008): “The Small World of Investing:
Board Connections and Mutual Fund Returns,” Journal of Political Economy, 116,
951–979.

COVAL, J. D., AND T. J. MOSKOWITZ (2001): “The Geography of Investment: In-
formed Trading and Asset Prices,” Journal of Political Economy, 109, 811–841.

CRAWFORD, V., AND J. SOBEL (1982): “Strategic Information Transmission,”
Econometrica, 50, 1431–1451.

DASGUPTA, A., AND A. PRAT (2006): “Financial Equilibrium with Career Con-
cerns,” Theoretical Economics, 1, 67–93.

DEGAN, A., AND M. LI (2016): “Persuasion with Costly Precision,” mimeo, Depart-
ment of Economics, Concordia University.

DELLI CARPINI, M. X., AND S. KEETER (1996): What Americans Know about Pol-
itics and Why It Matters: New Haven, CT: Yale University Press.



49

DEMARZO, P., I. KREMER, AND A. SKRZYPACZ (2019): “Test Design and Mini-
mum Standards,” American Economic Review, 109, 2173–2207.

DEWAN, T., AND D. MYATT (2008): “The Qualities of Leadership: Direction, Com-
munication and Obfuscation,” The American Political Science Review, 102, 352–
368.

DUTTA, B., D. RAY, AND K. SENGUPTA (1989): “Repeated Principal-Agent Games
with Eviction,” in The Economic Theory of Agrarian Institutions ed. by Bardhan, P.
Oxford: Clarendon Press, Chap. 5, 93–121.

EDMOND, C. (2013): “Information Manipulation, Coordination, and Regime
Change,” Review of Economic Studies, 80, 1422–1458.

FAMA, E. F., AND K. R. FRENCH (2010): “Luck versus Skill in the Cross Section of
Mutual Fund Returns,” Journal of Finance, 65, 1915–1947.

DE FIGUEIREDO, R., E. RAWLEY, AND O. SHELEF (2015): “Bad Bets: Excessive
Risk-Taking, Convex Incentives, and Performance,”Technical report, Unpublished
manuscript.

FINANCIAL CRISIS INQUIRY COMMISSION (2010): “The Financial Crisis Inquiry
Report: Final Report of the National Commission on the Causes of the Financial
and Economic Crisis in the United States,”Technical report, Financial Crisis Inquiry
Commission, Washington, DC.

GENAKOS, C., AND M. PAGLIERO (2012): “Interim Rank, Risk Taking, and Perfor-
mance in Dynamic Tournaments,” Journal of Political Economy, 120, 782–813.

GLAZER, A. (1990): “The Strategy of Candidate Ambiguity,” The American Political
Science Review, 84, 237–241.

GRUBER, M. J. (1996): “Another Puzzle: The Growth in Actively Managed Mutual
Funds,” Journal of Finance, 51, 783–810.

HALPERN, B. R. (1968): “A General Fixed-Point Theorem,” in Proceedings of the
American Mathematical Society Symposium on Non-Linear Functional Analysis,
Chicago.

HALPERN, B. R., AND G. M. BERGMAN (1968): “A Fixed-Point Theorem for Inward
and Outward Maps,” Transactions of the American Mathematical Society, 130, 353–
358.

HARBAUGH, R., J. MAXWELL, AND K. SHUE (2016): “Consistent Good News and
Inconsistent Bad News,” mimeo, Indiana University.



50

HAUGEN, R., AND J. LAKONISHOK (1988): The Incredible January Effect : The
Stock Market’s Unsolved Mystery: Homewood, IL: Dow Jones-Irwin, 3rd edition.

HENDRICKS, D., J. PATEL, AND R. ZECKHAUSER (1993): “Hot Hands in Mutual
Funds: Short-Run Persistence of Relative Performance, 1974-1988,” The Journal of
Finance, 48, 93–130.

HVIDE, H. (2002): “Tournament Rewards and Risk Taking,” Journal of Labor Eco-
nomics, 20, 877–898.

IPPOLITO, R. A. (1992): “Consumer Reaction to Measures of Poor Quality: Evidence
from the Mutual Fund Industry,” The Journal of Law & Economics, 35, 45–70.

KACPERCZYK, M., C. SIALM, AND L. ZHENG (2005): “On the Industry Concen-
tration of Actively Managed Equity Mutual Funds,” Journal of Finance, 60, 1983–
2011.

KAMENICA, E., AND M. GENTZKOW (2011): “Bayesian Persuasion,” American Eco-
nomic Review, 101, 2590–2615.

KOSKI, J. L., AND J. PONTIFF (1999): “How Are Derivatives Used? Evidence from
the Mutual Fund Industry,” The Journal of Finance, 54, 791–816.

KRITZMAN, M. P. (1987): “Incentive Fees: Some Problems and Some Solutions,”
Financial Analysts Journal, 43, 21–26.

MAKAROV, I., AND G. PLANTIN (2015): “Rewarding Trading Skills without Induc-
ing Gambling,” Journal of Finance, 70, 925–962.

MATTHEWS, A., AND L. MIRMAN (1983): “Equilibrium Limit Pricing: The Effects
of Private Information and Stochastic Demand,” Econometrica, 51, 981–996.

MUSTO, D. (1999): “Investment Decisions Depend on Portfolio Disclosures,” Journal
of Finance, 54, 935–952.

PALOMINO, F., AND A. PRAT (2003): “Risk Taking and Optimal Contracts for Money
Managers,” RAND Journal of Economics, 34, 113–137.

PRIOR, M. (2007): Post-Broadcast Democracy: How Media Choice Increases In-
equality in Political Involvement and Polarizes Elections: New York: Cambridge
University Press.

RAY, D., AND A. ROBSON (2012): “Status, Intertemporal Choice, and Risk-Taking,”
Econometrica, 80, 1505–1531.

RAY, D. r© R. VOHRA (2020): “Games of Love and Hate,” Journal of Political Econ-
omy, 128, 1789–1825.



51

SHEPSLE, K. (1972): “The Strategy of Ambiguity: Uncertainty and Electoral Compe-
tition,” American Journal of Political Science, 66, 555–568.

SHUMWAY, T., M. B. SZEFLER, AND K. YUAN (2011): “The Information Content of
Revealed Beliefs in Portfolio Holdings,” Unpublished working paper. University of
Michigan, Ann Arbor, MI.

SIRRI, E. R., AND P. TUFANO (1998): “Costly Search and Mutual Fund Flows,”
Journal of Finance, 53, 1589–1622.

SOMIN, I. (2013): Democracy and Political Ignorance: Why Smaller Government Is
Smarter: Stanford, CA: Stanford University Press.

SUBRAMANYAM, K. (1996): “Uncertain Precision and Price Reactions to Informa-
tion,” The Accounting Review, 71, 207–219.

TITMAN, S., AND B. TRUEMAN (1986): “Information Quality and the Valuation of
New Issues,” Journal of Accounting and Economics, 8, 159–172.

VOHRA, R. r© F. ESPINOSA r© D. RAY (2021): “A Principal-Agent Relationship
with No Advantage to Commitment,” Pure and Applied Functional Analysis, 6,
1043–1064.

ZHENG, L. (1999): “Is Money Mmart? A Study of Mutual Fund Investors’ Fund
Selection Ability,” Journal of Finance, 54, 901–933.

ZWIEBEL, J. (1995): “Corporate Conservatism and Relative Compensation,” Journal
of Political Economy, 103, 1–25.


	1. Introduction
	2. Related Literature
	3. A Baseline Model
	3.1. Setting
	3.2. Equilibrium
	3.3. A Remark on Interpretation

	4. Retention Regimes
	4.1. Trivial Retention Regimes
	4.2. Monotone Retention Regimes
	4.3. Non-Monotone Retention Regimes

	5. Bounded Retention Equilibrium
	5.1. No Bounded Replacement
	5.2. Small Ambient Noise
	5.3. The Salience of Bounded Retention

	6. Extensions
	6.1. Unobservable Noise
	6.2. Costly Noise
	6.3. Dynamics With Term Limits
	6.4. Beyond Normal Signals
	6.5. Signal-Contingent Disclosure
	6.6. Other Extensions

	7. Applications
	7.1. Risk-Taking in Delegated Portfolio Management
	7.2. Risky Politics

	8. Summary
	Appendix: Main Proofs
	References



