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In this study, we aim to characterize synchronized global crop failures using remote sensing-based products,
analyze their predictability and relationships with agroclimatic conditions using machine learning, and identify
trends of the most influential agroclimatic indices revealed by machine learning over global croplands. We found
that global synchronous crop failures showed strong interannual variability during 1982 to 2016. The most

Predicti
T:m;c on extreme global synchronous crop failure events occurred over 40% of global croplands in the years 2002 (rice
Global and wheat) and 2012 (maize and soy), which had drier and warmer conditions compared to the normal years.

Crop failure events can be accurately predicted using machine learning with agroclimatic indices. Of the four
crops for both temperate and tropic regions, soy crop failure is most accurately predicted, with an Area Under the
Curve (AUC) score of 0.8991 for the temperate region and 0.7892 for the tropics. The AUC score of maize failure
in the temperate region is 0.8760, followed by wheat failure (0.8627) and rice failure (0.8025). In the tropics, the
remaining crops performed similarly, with AUC scores of 0.7298 (maize), 0.7313 (rice), and 0.7337 (wheat). The
machine learning model revealed that growing degree days, last spring frost, first fall frost, growing season
precipitation, and optimal field conditions (represented by soil moisture) are the most influential agroclimatic
indices, showing various nonlinear relationships with crop failure probabilities. The most influential agroclimatic
indices present significant trends on more than 25% of global croplands, showing increasing growing degree
days, earlier last spring frost, later first fall frost, while growing season precipitation and optimal field conditions
are increasing. Our findings may inform food security predictions, selections of weather index for crop insurance,
and climate adaptations.

1. Introduction locations are found in Asia, Africa, Latin America, and the Caribbean.

These regions would coincide with regions of increased agriculture

Global food security is affected by several factors, including conflict,
economic pressures, climate variability and extreme events experienced
during and outside of the growing season. Global studies have shown
that the growing season precipitation and temperature explain at least
one-third of crop yield variability (Lobell and Field, 2007; Ray et al.,
2015); extreme precipitation and temperature explain 18-43% of global
crop yield anomalies (Goulart et al., 2021; Vogel et al., 2019). According
to the FAO, countries that are sensitive to precipitation and temperature
extremes and not able to supplement with imports or are reliant on
exports from sensitive regions are more likely to become food insecure
due to insufficient crop yields, known as crop failures of staple crops
(Bren D’Amour et al., 2016; Puma et al., 2015). Currently, most of these

* Corresponding author.
E-mail address: tiandi@auburn.edu (D. Tian).

https://doi.org/10.1016/j.agrformet.2023.109620

vulnerabilities if they or a corresponding exporting country were to
experience a failure event (Bren D’Amour et al., 2016; Cottrell et al.,
2019). Global increases in connectivity allow for areas of surplus to
balance out with regions of major yield losses. Synchronized failure
events, crop failures occurring across multiple locations in a short time
frame, due to extreme events can deplete crop stores, and climate
change will result in reductions to crop yield, making it difficult to
compensate (Battisti and Naylor, 2009; Powell and Reinhard, 2016;
Tigchelaar et al., 2018). Due to climate change, there is an increasing
risk of synchronous failure of major crops across the global breadbaskets
(Gaupp et al., 2020) and decreased global agricultural productivity
growth rate over recent decades (Ortiz-Bobea et al., 2021). Government
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social programs can provide a safety net to reduce the impacts that
failure events have on a community allowing individuals to make efforts
to adapt to new technologies.

Many key agroecosystem processes take place daily at the local scale
as measured by agroclimatic conditions (Trnka et al., 2011), which have
strong agricultural significance (Jackson et al., 2021; Kukal and Irmak,
2018; Lobell and Field, 2007) and interests for stakeholders (Matthews
et al., 2008). Regional studies using historical observations from Europe,
Scotland, and the congenital United States have been performed for
growing degree days, frost dates, growing season length, and agro-
climate zones (Ceglar et al., 2019; Hatfield et al., 2020; Kukal and
Irmak, 2018; Matthews et al., 2008; Trnka et al., 2011) and studies using
future projections (Monier et al., 2016; Terando et al., 2012). In the
United States, Kukal and Irmak (2018) found a lengthening of the
growing season, an increase in growing degree days, and decreases in
frost occurrence from 1900 to 2014 for five crops. Similarly, in Europe,

Table 1

Description of agroclimatic indices and acronyms. *Denote indices are calcu-

lated during the period between planting and harvesting dates.

Agroclimatic Description Units Reference
Indices (Acronym)
Last Spring Frost Northern Hemisphere: Day of (Kukal and Irmak,
(SpFrost) Last frost before July 15  Year 2018; Matthews
Southern Hemisphere: (DOY) et al., 2008)
Last frost before Jan 15
First Fall Frost Northern Hemisphere: DOY (Kukal and Irmak,
(FallFrost) First frost after July 15 2018; Matthews
Southern Hemisphere: et al., 2008)
First frost after Jan 15
Accumulated Frost Count of days when Days (Anandhi et al., 2013;
(FrostDays) Tmin < 0°C between the Monier et al., 2016)
FallFrost and SpFrost
Climatological Number of days Days (Matthews et al.,
Growing Season between the SpFrost 2008; Monier et al.,
(GrowSeason) and FallFrost; can be a 2016)
year if frost free
Start of Field The day when sum of DOY (Matthews et al.,
Operations Tavg from Jan 1 (July 2008; Monier et al.,
(StFieldOp) 1Y) is greater 200°C 2016)
Precipitation Pt = Y P >1mm mm (Monier et al., 2016)
(Precip)*
Dry Days (DryDays) DD = > P <1mm Days (Monier et al., 2016)
%
Growing Degree Tinax + Tmin T °c (Bollero et al., 1996;
Day (GDD)* 2 base Kukal and Irmak,
Tpase = 10°C (maize, 2018; Zhu and Troy,
rice, soy) 2018)
Tpase = 1°C (wheat)
Tupper = 30°C (maize,
rice, soy)
Tupper = 25°C (wheat)
Heat Stress Days Tmax > 42°C (corn) Days (Monier et al., 2016;
(HeatDay)* Tmax > 35.4°C (rice) Schlenker and
Tmax > 39.4°C (soy) Roberts, 2009)(
Tmax > 28.5°C (wheat) Jackson et al., 2021;
Sanchez et al., 2014;
Schlenker and
Roberts, 2009)
Optimal Field Days when surface soil Days (Cooper et al., 1997;

Conditions water is between 10 to Trnka et al., 2011)
during: 70% of the maximum

- Planting water holding capacity

(FieldCondP) & P; < 1mm & P;; <

- Mid-season 5mm during:

(FieldCondM) - Planting: Start of

- Harvest planting to the end of

(FieldCondH) planting range

- Mid-Season: Middle of
planting to the middle
of harvest

- Harvest: Start of
harvest to the end of
harvest range
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Ceglar et al., (2019) found a lengthening of the growing season and
increases in temperature-derived indices. Constructed agroclimate
zones have decreased in suitability and will continue to do so under
future climates. However, these studies only provide regional glimpses
and are limited to temperature-based indices, and thresholds in some
cases, are not crop-dependent. Globally, Zhu and Troy (2018) analyzed
the change in several different agroclimate indices for maize, rice, soy,
and wheat growing seasons. In their trends, they find an inflection point
occurring around 1980, where temperature-based indices began to in-
crease rapidly globally, while precipitation-based trends showed
regional distributions.

Future conditions and climate extremes are expected to deteriorate
growing season conditions increasing yield volatility (Mangani et al.,
2018; Noia Junior et al., 2021; Powell and Reinhard, 2016); however,
yield declines may occur earlier than expected (Jagermeyr et al., 2021).
Monthly precipitation and temperature are among the most common
climate variables to be considered when estimating climate impacts on
crop yields. Other climate variables like solar radiation, soil moisture,
evaporative demand, and diurnal temperature range have regional
relevance in determining crop yields (Brown, 2013; Gaupp et al., 2020;
Goulart et al., 2021; Lobell et al., 2013). Using monthly temperature and
precipitation information, both Lobell and Field (2007) and Ray et al.
(2015) suggested that globally at least one-third of yield variability is
due to the weather experienced during the growing season. Using
aggregated climate information at the monthly level, Ortiz-Bobea et al.
(2021) showed that agriculture productivity has slowed due to anthro-
pogenic climate change in recent decades. Regionally in the United
States, Li et al. (2019) showed that extreme temperature and precipi-
tation values could affect maize yield. Using high precipitation as an
example, they also discussed how some crop models might be unable to
capture the complete non-linear response of yield to precipitation. More
recent studies (Goulart et al., 2021; Vogel et al., 2019) have used ma-
chine learning to explore daily and monthly climate data impacts on
yield regionally and globally. Vogel et al. (2019) found a stronger as-
sociation with temperature and yield anomalies at the national level
over the globe, while Goulart et al. (2021) indicated that temperature,
precipitation, and the diurnal temperature range contributed to crop
failure in the United States Midwest. Gaupp et al. (2020) found an
increased risk of high-production regions, breadbaskets, failing of
maize, soy, and wheat when comparing two time periods from 1967 to
2012 using a vine copula approach. A staple crop failure event in a
high-production region may result in unrest and food insecurity in
another that depends on imports (Battisti and Naylor, 2009; Cottrell
et al., 2019; FAO et al., 2021; Lau et al., 2012; Néia Junior et al., 2021;
Wegren, 2011), suggesting that a global assessment of crop failures and
their predictability using agroclimate indices is needed beyond the
regional or national level.

In this study, we aim to characterize synchronized global crop fail-
ures using remote sensing-based products, analyze their predictability
and relationships with agroclimatic conditions using machine learning,
and identify trends of the most significant agroclimatic indices over
global croplands. The key questions posed were: over the past decades,
from 1982 to 2016, what is the spatiotemporal distribution of syn-
chronized maize, rice, soy, and wheat crop failures over global croplands
revealed by remote sensing-based products? How well can crop failures
be predicted by machine learning with agroclimatic indices? What are
the responsive relationships of remote sensing-characterized crop fail-
ures to changes in agroclimatic indices as revealed by machine learning?
How have the impactful agroclimatic indices changed over the past
decades? We chose four crops because maize, rice, and wheat are the
three main cereal crops accounting for 90% of the production (Erenstein
etal., 2021; FAO, 2021; FAO et al., 2021), and soy accounts for 60% and
70% of oilseed and meal protein (USDA Foreign Agricultural Service,
2021). Our study considers 11 agroclimatic indices that have strong
agricultural significance and stakeholder interests, many of which have
been neglected in previous global-scale studies. In addition, developing
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Fig. 1. (A-D) The annual percentage of global cropland experiencing synchronous crop failure with contributions from temperate and tropical regions. (E-H) In-
dividual region’s contribution to global synchronous failure during 1982-2016. (I-L) The contribution of regional crop failure to global crop failure versus the
contribution of regional cropland to global cropland. For each row, from left to right, maize (A, E, 1), rice (B, F, J), soy (C, G, K), and wheat (D, H, L).

a machine learning-based approach to predicting and analyzing the crop
failure is rarely investigated in previous work. This work can potentially
inform food security predictions, selections of weather index for crop
insurance, and global climate adaptations.

2. Data & methods
2.1. Climate and crop data

Daily maximum and minimum temperature and precipitation during
1981-2017 were retrieved from the National Aeronautics and Space
Administration (NASA) Langley Research Center (LaRC) POWER Project
(https://power.larc.nasa.gov/), which is available at a 0.5° by 0.5°
resolution. Daily surface (0-10cm) soil moisture from 1981-2017 was
obtained from GLEAM v3.3a (Martens et al., 2017; Miralles et al., 2011)
at 0.25° resolution and aggregated into 0.5°, to be consistent with the
other datasets used in this study. Annual yield data for four staple crops
(maize, rice, soy, and wheat) was obtained from the Global Dataset of
Historic Yield (lizumi, 2019; lizumi and Sakai, 2020) during 1981-2016
at a 0.5° resolution, which is a hybrid data by combining agricultural
census statistics and satellite remote sensing. (Sacks et al., 2010) pro-
vided 0.5° resolution of planting and harvesting dates for several crops,
which has been widely utilized in crop yield analysis (Iizumi and Sakai,
2020; Ray et al., 2015; Vogel et al., 2019). Main season planting and
harvesting dates of maize, rice, soy, spring, and winter wheat were used
to calculate crop-dependent agroclimatic conditions at each grid point
and growing season congruent with regional agricultural calendars.
Cropland masks are created using planting, harvesting, and EarthStat
crop production data (Monfreda et al., 2008) to limit analysis to crop-
land regions devoted to maize, rice, soy, or wheat. EarthStat production
data provides locations of high and low crop production globally circa
2000. Cropland weights were created for the aggregated cells using
EarthStat fractional harvested area. Give more value to cells with larger
production areas devoted to crop production than regions with smaller
production amounts, reducing the impact of large land masses with less

dense agriculture production. Regions with smaller weights and
dependent on imports may be more sensitive to teleconnection supply
shocks (Bren D’Amour et al., 2016; Cottrell et al., 2019). Global crop-
land was divided into ten regions (Supplementary Fig. 1). Yield data is
linearly detrended using the M estimator, which is robust against ver-
tical outliers and performs similarly to ordinary least squares in heter-
oscedasticity and skewed distributions (Finger, 2013). Detrending
minimizes the effects of advances in management practices and tech-
nologies. Detrended yields were then divided into quartiles, in which the
lowest quartile was defined as crop failure (Gaupp et al., 2020; Schil-
lerberg and Tian, 2020).

2.2. Agroclimatic indices

Twelve agroclimatic indices (Table 1) were calculated for each
growing season during 1982-2016 to characterize agroclimatic condi-
tions for their significance in agriculture (Kukal and Irmak, 2018;
Monier et al., 2016; Trnka et al., 2011) and salience among stakeholders
(Gowda et al., 2018; Matthews et al., 2008). The agroclimatic indices
were calculated at each grid point over global croplands except for
several unique instances, such as tropics where frost occurrences are
rare. Planting and harvesting dates determine crop-specific growing
seasons. For example, Precip, DryDays, GDD, and HeatDay were calcu-
lated from the planting season to the end of the harvest season as
specified in (Sacks et al., 2010) for each grid cell. FieldCondP (Field-
CondH) is calculated from the start of planting (harvest) to the end of
planting (harvest) and FieldCondM from the middle of planting to the
middle of harvest, allowing the capture of early and late-season crop
planting. In addition, time series of the impactful agroclimatic indices
from 1982-2016 were analyzed using the Mann-Kendall trend test for
each grid point over global croplands. Grid cells with more than 50%
missing data were removed before the analysis. Mann-Kendall is a
non-parametric test to determine if a monatomic increasing or
decreasing trend is present (Wilks, 2011). A trend is considered as sig-
nificant when the p-value is smaller than 0.10.
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Fig. 2. Performance of the random forest models for predicting crop failure occurrence based on agroclimatic indices for the 10 individual regions, and temperate
and tropic regions. (A-D) ROC curves for Maize, rice, soy, and wheat, (E) AUC scores. “—” indicate the data is not available for that region.

2.3. Random forest

Random forest is a non-parametric classification and regression tree
analysis method based on ensemble machine learning algorithms.
Random forest constructs multiple decision trees composed of boot-
strapped resamples of the training data (Breiman, 2001; Liaw and
Wiener, 2018). The random forest has been utilized in recent studies of
climate impacts on agriculture in different regions (Goulart et al., 2021;
Schierhorn et al., 2021; Schillerberg et al., 2019; Schillerberg and Tian,
2020; Vogel et al., 2019) and found to be more effective than commonly
used multiple linear regression for predicting crop yields (Jeong et al.,
2016; Leng and Hall, 2020). We construct random forest models for each
of the ten crop production regions as well as two additional models, one
for the temperate regions (the areas experiencing more than one frost a
year) and the second for the tropics (regions not experiencing frost)
(Supplementary Fig. 1). We performed cross-validation using a random
70/30% split of the data for training and testing with 500 runs. Spe-
cifically, we withheld 30% of the data randomly sampled from all the
pixels and years in a region for model testing and used the rest 70% for
model training. The large spatial extent of each region provides a large
sample size covering a variety of agroclimate conditions and crop failure
or non-failure conditions. Since the training and testing data are

randomly sampled in space and time, it eliminated spatial and temporal
correlations between the training and testing datasets. The performance
of the random forest models was evaluated using the relative operating
characteristic (ROC) curves. ROC curves represent the relationship be-
tween true- and false-positive rates at different thresholds. A ROC curve
is assigned a score by integrating the area under the curve (AUC) and
considers all possible threshold values. An AUC score of 0.5 represents a
model with the same true- and false-positive rate for every threshold,
providing no more information than a coin flip, and an AUC score of 1
represents a model of perfect predictors. Partial Dependency plots (PDP)
show the marginal effect of one or two features on the predicted
outcome of the random forest model. We constructed PDP for each
random forest model to visualize dependence relations between agro-
climatic conditions (predictors) and crop failures (response variable).
PDP is a global method that considers all instances between the response
variable and predictors while all remaining predictor variables are held
constant (Molnar, 2019). A 95% confidence interval was computed for
PDPs based on the 500 cross-validation runs to quantify the uncertainty
associated with the estimation. Since thousands of samples are used for
constructing each random forest model, the 95% confidence interval are
generally very small, suggesting robust model estimations.
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Fig. 3. Agroclimate variable importance ranking of 500 cross validation runs (grey) and the average (red) to determine crop failure of different crops, from left to
right: maize (A, E), rice (B, F), soy (C, G), and wheat (D, H) for the temperate (top row) and tropic (bottom row) region. Darker lines indicate more agreement
between model runs. Distance from the center indicates variable importance, more important variables are further away from the center with the least important

variables closer to the center.

3. Results
3.1. Distributions of synchronous global crop failures

Here we refer crop failures occurring across different locations in the
same year as synchronous crop failures. We present distributions of
synchronous crop failures for maize, rice, soy, and wheat over the globe
from 1982 to 2016 and over each region (Fig. 1). The results indicate no
clear trend in synchronous global crop failures for either tropic or
temperature regions, while the interannual variability is very strong,
ranging from less than 5% to 60% globally (Fig. 1A-D). The most
extensive synchronous crop failure events occurred in the years 2002
(rice and wheat) and 2012 (maize and soy), with over 40% of weighted
global cropland experiencing failures over those years. We further
examine the contribution of regional cropland to global cropland
experiencing failure in each of the ten individual regions (Fig. 1E-H).
There are a few regions where the contributions are particularly large in
most of the years, including North America for maize and soy failures,
South and Southeast Asia for rice failures, East Asia for rice and wheat
failures, temperate South America for soy failures. On average, the
contributions of different regions to global crop failures are generally
proportional to their contributions to global croplands (Fig. 1I-L).
However, there are a few exceptions where the regions contribute less to
global cropland but more to global crop failures (Fig. 1I-L), which
include East Asia and Sub-Sahara Africa for maize (Fig. 1I), Temperate
South America and East Asia for soy (Fig. 1K), and Europe and the
Mediterranean for wheat (Fig. 1L). These regions tend to be more sus-
ceptible to failures of specific crops than the other regions.

3.2. Predicting crop failure occurrence using agroclimatic indices

We constructed random forest models to predict crop failure occur-
rence for each crop using the agroclimatic indices (Table 1) over the
temperate region, the tropics region, and each of the ten crop production
regions. The models were cross validated, meaning the data used for
model validation was excluded from model training. On average, the
random forest models with agroclimatic indices can accurately predict
crop failures on the validation data, with an AUC score of 0.7460 for the
tropic region and 0.8601 for the temperate region (Fig. 2). Of the four

crops for both regions, soy crop failure is most accurately predicted, with
an AUC score of 0.8991 for the temperate region and 0.7892 for the
tropics. The AUC score of maize failure in the temperate region is
0.8760, followed by wheat failure (0.8627) and rice failure (0.8025). In
the tropics, the remaining crops models performed similarly, with AUC
scores of 0.7298 (maize), 0.7313 (rice), and 0.7337 (wheat).

Regarding the regional patterns, the North American region has the
highest AUC values for maize (0.9267) and soy (0.9271). The AUC
values for rice (0.8444) and wheat (0.8894) in North America are close
to those in Temperate South America (rice, AUC value 0.8351) and
Europe and Mediterranean (wheat, AUC value 0.8987) regions. Central
America and the Caribbean is the lowest-performing region, with an
AUC value of 0.6842 for rice and 0.6908 for wheat. Across crops, rice has
the lowest performance, possibly due to its varied management practices
and heavy reliance on irrigation, which counteracts the effects of low
precipitation, heat stress, and dry days (Ceglar et al., 2017; Tack et al.,
2017; Zaveri and Lobell, 2019). These results suggested that agro-
climatic indices can accurately predict crop failures, suggesting that
crop failures have been strongly influenced by agroclimatic changes,
and the models based on the agroclimatic indices can be potentially
useful for crop failure early warning.

3.3. The relative importance of agroclimatic indices

The random forest models with cross-validation run for each region
allow us to quantify the relative importance of agroclimatic indices in
estimating crop failure occurrences. Fig. 3 shows several influential
variables ranked consistently high in almost all the 500 cross-validation
runs. In the temperate region, these variables include the growing sea-
son precipitation (Precip), fall frost (FallFrost) for maize failures, Precip,
growing degree days (GDD) and spring frost (SpFrost) for rice failures,
Precip, GDD and the number of dry days (DryDays) for soy failures, and
Precip and days of optimal field conditions during harvest (FieldCondH)
for wheat failures. In the tropics, they include GDD, FieldCondH and
optimal field conditions during planting (FieldCondP) for maize failures,
GDD, FieldCondP, and optimal field conditions during mid-season
(FieldCondM) for rice failures, GDD and FieldCondH for soy failures,
and GDD for wheat failures. While the ranking of variable importance
from regional models shows variations among different regions and
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Fig. 4. Partial dependency plot showing the response of crop failure probability to the most influential agroclimatic indices identified by the random forest models in
the temperature region. Rows represent each crop, from top to bottom: maize (A-B), rice (C-E), soy (F-H), and wheat (I-J). The dot and text in the figure represent the
optimal agroclimatic condition with minimum crop failure probability. The optimal conditions for each of the ten individual regions are presented in the Supple-

mentary Fig. 3.

crops (Supplementary Fig. 2), it identifies similar influential agro-
climatic indices as the global analysis by temperate region and tropics.

3.4. Response of crop failure to changes in agroclimatic conditions

Here we present the Partial Dependency Plots (PDP) of the random
forest models to examine the response of crop failures to the changes of
the influential agroclimatic indices identified in the last section for each
crop in the temperate region (Fig. 4) and tropics (Fig. 5), respectively,
with conditions for minimum crop failures probabilities noted in the
plots. In the temperate region, crop failures of all four crops are
responsive to the Precip changes. The increase in crop failure probability

due to excessive Precip is almost the same as due to deficient Precip and
reaches the maximum when Precip exceeds approximately 2000mm,
despite the higher reoccurrence of deficient Precip in the historical re-
cord. For rice and soy, the probability of crop failures gradually
increased with the addition or reduction of GDD, higher GDD is associ-
ated with higher failure risks. For rice failures, late SpFrost (>85 day of
year, DOY) or early FallFrost (<291 DOY) dramatically increases the
failure probabilities. As an influential variable for soy failure, shifting
from optimum DryDays (120 days) gradually increases the probability of
soy failures. Greater or smaller than 8-day FieldCondH increased wheat
failure probabilities, while higher FieldCondH is associated with much
higher risks than lower ones. In the tropics, crop failures of all four crops
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are very responsive to the changes in GDD. Either increasing or
decreasing GDD can gradually increase the probability of crop failures
up to 0.45. The increasing or decreasing of FieldCondH and FieldCondP is
associated with increased maize failure risks, with increased values
associated with more dramatically increased failure probability
compared to the decreased values. The response of rice failures to
FieldCondP is similar to maize failures. While FieldCondM shows a similar
responsive relationship as FieldCondP for rice failures. For soy failures,
the responsive relationship with FieldCondH is similar to maize or rice
failures.

It is worth noting that the optimal GDDs with minimum failure
probability are maize 2487°C, rice 3404°C, soy 2793°C, wheat 3230°C

for the tropics, which are much higher than temperate region, while the
Precip associated with the minimum crop failure probability are maize
494mm, rice 547mm, soy 602mm, and wheat 402mm for the temperate
region, much lower than the tropics. The agroclimatic conditions with
minimum crop failure probabilities identified for each of the individual
regions are presented in Supplementary Fig. 3.

3.5. Trends of agroclimatic conditions of significance to crop failures

We examined the percentage of regional cropland experiencing sig-
nificant trends (p-value < 0.10) in the identified influential agroclimatic
indices (Fig. 6) and whether they are increasing or decreasing
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(Supplementary Figs. 4 and 5). We can see that more than 25% of
tropical croplands are experiencing significant trends in GDD, HeatDay,
Precip, DryDays, FieldCondP, FieldCondM, or FieldCondH for almost all
crops, while more than 25% of temperate croplands are experiencing
significant trends in FrostDays, GDD, Precip, and DryDays for maize and
rice, FrostDays, GDD, and Precip for soy, and FrostDays, GDD, HeatDay,
and Precip for wheat. Quite a few regions are experiencing significant
agroclimatic trends in more than 50% of their croplands, including
decreasing FrostDays in 100% East Asia and North America for all four
crops, increasing GDD in almost all regions for all crops, decreasing
HeatDay in Europe and the Mediterranean and Tropic South America for
both rice and wheat, Precip in Sub-Saharan Africa for maize, rice, and
wheat and in Temperature South America for soy, and DryDays in
Central America and Caribbean. All these indices with significant trends
are among the most influential indices identified in the last sections.

Globally, GDD trends are consistently increasing, while Precip trends
show strong variations with increasing and decreasing trends mostly
occurring in the temperate and tropic regions, respectively (Supple-
mentary Fig. 4). These increasing warming trends are similar for all the
temperature-based indices, as reflected in increasing GDD and HeatDay,
decreasing FrostDays, earlier SpFrost, and later FallFrost, and moisture-
based indices, as reflected in increasing or decreasing Precip, DryDays,
FieldCondP, FieldCondM, or FieldCondH, while the percentage of signif-
icant increasing or decreasing trends varied by regions (Supplementary
Fig. 5).

We examined the conditions of the most influential agroclimatic
indices on the failure croplands during the years with extreme global
crop failure events, including maize 2012, rice 2002, soy 2012, and
wheat 2002 (Figs. 7 and 8). While there are slight spatial variations, the
results generally show dryer and warmer conditions during those

extreme years compared to the optimal conditions in both tropics and
temperate region. Given the increasing trends, the temperature-based
indices are generally shifting towards the conditions of extreme crop
failure years for both temperature and tropic regions. While the mois-
ture trends are increasing, not changing towards the conditions of
extreme years, regions experiencing significant trends (Supplementary
Fig. 5) may face increasing risks of crop failures through excessive
moisture or dryness (Fig. 4) compared with the regions with no signif-
icant moisture trends. In Figs. 9 and 10, we further show that, at each
location, whether the trends point toward more detrimental or benefi-
cial conditions by finding the difference between the average agro-
climate indices over 1982 to 2016 and the average value of the
agroclimate indices when crop failure occurs considering the direction
of the significant trend at that location. Specifically, the current trends
are trending toward more detrimental conditions if decreasing the dis-
tance between the agroclimate mean and the agroclimate condition
when failures occurred, while are trending toward more beneficial
conditions if increasing the distance between the agroclimate mean and
the agroclimate condition when failures occurred. There are varied
beneficial and detrimental trends in the temperate and tropics region
throughout the regions when looking at the agroclimate indices. Precip
and precipitation-derived agroclimate indices have strong spatial vari-
ation present. Increases in Precip (Supplemental Fig. 5) increase bene-
ficial conditions for maize in temperate regions of northern North
America but harmful conditions in Midwest North America and China
(Fig. 9). Temperature-derived variables, like GDD, FallFrost, and SpFrost,
have mostly showed consistent trends in space, while also experiencing
regions of beneficial and detrimental condition trends (Figs. 9 and 10).
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4. Discussion

In the previous studies, Gaupp et al. (2020) have found an increase in
synchronous breadbasket failure, while Mehrabi and Ramankutty
(2019) have found trends in synchronized crop production have
declined. Globally across temporal and tropical regions, we find no
significant global synchronized crop failure trends from 1982 to 2016
for the four staple crops. We also identify several years of high (>40%
global cropland) synchronous global crop failures (2002 for rice and
wheat, 2012 for maize and soy), consistent with previous literature
(Gaupp et al., 2020; Goulart et al., 2021; Mehrabi and Ramankutty,
2019). Synchronous crop failure events are influenced by large-scale
oscillations such as ENSO, affecting nearly 20% of maize production
(Anderson et al., 2019), which may have influenced crop failure of rice
and wheat in 2002, the year experiencing moderate El Nino. We note
several regions which are identified as contributing more to global crop
failure than their contributions to global cropland after accounting for
cropland weight, including East Asia and Sub-Sahara Africa for maize,
Temperate South America for soy, and Europe and the Mediterranean
for wheat. Several of these regions coincide with regions of higher yield
variability (lizumi and Ramankutty, 2016). For example, southeast Asia
is a known breadbasket for rice but faces high production shocks (Cot-
trell et al., 2019) and results in food supply shocks in regions, western
Africa and Malaysia, dependent on rice from this region (Bren D’Amour
et al., 2016). Future climatic warming will increase crop variability,

increasing the probability of synchronous failure globally (Gaupp et al.,
2019; Tigchelaar et al., 2018), which may result in more countries
relying more heavily on stressed grain stores and exports, challenging
countries to balance increased import costs and feeding their
populations.

Consistent with Schlenker and Roberts (2009), we find non-linear
effects from temperature; however, we also find that these non-linear
effects exist in the other agroclimate indices and are influential on
crop failure probabilities beyond temperature. This study identified GDD
and Precip (acronyms and shortened agroclimate indices can be found in
Table 1) as influential on crop failures, confirming previous findings that
Precip and GDD are the most common climate variables to explain crop
yield variations, explaining up to 60% of variability regionally and
one-third of global variability (Lobell et al., 2012; Lobell and Field,
2007; Ray et al., 2015; Tigchelaar et al., 2018). Growing season tem-
perature has long been used to predict yields (Lobell and Field, 2007;
Tigchelaar et al., 2018) as it is an indicator of the thermal time required
for growth and the effects of temperature explored in depth to the
vegetative and reproductive periods (Asseng et al., 2015; Muchow et al.,
1990; Peltonen-Sainio et al., 2011). Too much or too little Precip can
negatively affect yield since precipitation deficit during the reproductive
period impacts tasseling and ear formation in maize, leading to reduced
yield (Cakir, 2004; Kamara et al., 2003; Song et al., 2018). Excessive
rainfall can reduce yields through waterlogging, ponding, and flooding,
causing root damage and nitrogen deficiency, comparable to the
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damages due to extreme drought (Li et al., 2019; Mangani et al., 2018).
However, this study provides regional thresholds for GDD and Precip
that can be used to inform stakeholders and may act as the foundations
for index-based programs in regional markets where such analysis did
not exist prior. It is also worth noting that HeatDay, as an extreme
temperature index, is of relatively lower importance compared to GDD
(Fig. 4). This is potentially a result of high thresholds (Table 1; reflecting
heat tolerance) not being exceeded for extended periods in the growing
season or during the vital reproductive period (Challinor et al., 2016;
Hatfield and Prueger, 2015; Lobell et al., 2012; Luo, 2011). Research on
future climate impacts of warming shows an increasing risk of increased
production shocks reducing yield resulting in crop failure (Gaupp et al.,
2019; Tigchelaar et al., 2018), and regions will become unfavorable for
crop growth (Battisti and Naylor, 2009; Ceglar et al., 2019). Increasing
temperature trends may result in more frequently surpassed current crop
temperature thresholds, elevating the importance of HeatDay.

Besides GDD and Precip, this study also identified several influential
indices that have been neglected in previous studies, including FallFrost,
SpFrost, and optimal field conditions. Spring and fall frost dates are
important in temperate regions. A SpFrost can harm sensitive young
vegetation affecting its growth through the season (Pulatov et al., 2015;
Sanchez et al., 2014; Wolfe et al., 2018). A severe FallFrost can prevent
grain from reaching maturity, affecting seed quality and viability
(DeVries et al., 2007). Optimal field conditions reflect the number of
suitable workdays during different seasons. More days of optimal field
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conditions indicate drier soils, while fewer days indicate wet soils
(Trnka et al., 2011). Too few days of optimal field conditions may
suggest damp and warm conditions that can accelerate the likeliness of
seed germination and fungal infections, reducing yield (Powell and
Reinhard, 2016). It can also result in crop lodging; some crops may be
harvested with the return of favorable field conditions with added cost
inputs, reducing yield (Peltonen-Sainio et al., 2018). On the other
extreme, too many days of field conditions suggest drought conditions
resulting in increased probabilities of crop failures (Figs. 4 and 5). These
impacts could be very different during planting (FieldCondP),
mid-season (FieldCondM), or harvesting seasons (FieldCondH).
Agroclimatic trends are salient for understanding the changing risk
of crop failure. We find varying degrees of Precip within regions and
globally, largely agreeing with the previous findings of decreasing Precip
trends in warm regions and increasing Precip trends in cool regions
(Nguyen et al., 2018). Increasing trends of GDD are consistent with
previous research highlighting an increasing trend in global temperature
(Lobell et al., 2011). Increase and decreases in GDD affect the phenology
of crops. Increases in GDD hasten crop development leading to maturity
being reached earlier resulting in less yield, while lower GDD slows
growth making the crop more susceptible to pests, frost, and other fac-
tors (Alexandrov and Hoogenboom, 2000; Asseng et al., 2013). Our
results also suggest that FrostDays are decreasing, earlier SpFrost, later
FallFrost, and lengthening the GrowSeason. Our global analysis results
are consistent with previous regional studies in North America (Kukal
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Fig. 9. The trending tendencies of the selected agroclimatic indices (identified as the most influential in the temperate region) over global croplands for maize (A-B),
rice (C-E), soy (F-H), and wheat (I-J) (from top row to bottom row). The red color signifies that the current trends are trending toward more detrimental conditions
(decreasing the distance between the agroclimate mean and the agroclimate condition when failures occurred), the bule color signifies that the current trends are
trending toward more beneficial conditions (increasing, the distance between the agroclimate mean and the agroclimate condition when failures occurred) the grey

color indicates regions where the agroclimate indices trend was not significant.

and Irmak, 2018) and Europe (Trnka et al., 2011). A lengthening of the
growing season can result in more pest generations per season and
northward migration, while warming of winter temperatures can result
in pest overwintering (Wolfe et al., 2018). Together these impacts will
result in the need for novel pest and disease control to reduce the impact
to crop yields. Few studies have examined suitable field conditions
regionally or globally. In East-Southeast Scotland, (Matthews et al.,
2008), find an increase in dry soils; however, we find no significant
trends at the same locations. We do find field conditions in tropical re-
gions experience significant increasing or decreasing trends on nearly
30% of the cropland (Fig. 6). While optimal field conditions are
commonly used to determine when producers can get into the field and
prevent soil compaction and degradation, changes in field conditions
may increase crop failure probabilities through delayed planting and
harvesting due to wet conditions decreasing favorable field days (Pel-
tonen-Sainio et al., 2018; Trnka et al., 2011). Delayed planting may
result in unfavorable heat stress during the reproductive period, and
delayed harvest can leave crops in the fields, decreasing the quality of
the seed (Powell and Reinhard, 2016). Increases in favorable field
condition days indicate drier conditions, increasing crop failure proba-
bility affecting crops similarly as decrease in Precip. Besides that, field
conditions may be confounded with other factors such as previous
growing season conditions, monsoons, and dry seasons that frequent
tropical regions (Asharaf et al., 2012; Bapuji Rao et al., 2014; Swami
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et al., 2018; Zachariah et al., 2020). Continual trends in either direction
can result in increases to crop failure probability and agroclimate indices
that may be toward beneficial conditions (Fig. 9 and 10) currently, they
may or may not provide the same benefit in the future.

The findings from this study may inform climate adaptations in
agriculture, such as crop failure early warning, breeding, and strategic
planning of agricultural infrastructure and best management practices.
We recognize that several agroclimatic variables are not included in this
study, such as evapotranspiration and solar radiation, which may play
an important role in determining crop failures. While our analysis is
based on state-of-the-art datasets, it is subject to uncertainties from the
crop, and climate data originating from satellite remote sensing, ob-
servations, and model approximations, particularly for regions with
sparse ground observations. We also recognize that seasonal averaged
variables can reduce apparent contributions of indices at various times
in the growing season such, as Precip and HeatDay.

5. Conclusions

In this study, we characterize synchronized global crop failures using
remote sensing-based products, analyze their predictability and re-
lationships with agroclimatic conditions using machine learning, and
identify trends of the most significant agroclimatic indices over global
croplands. To our knowledge, this work is the first global-scale study
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that considers 11 agroclimatic indices with strong agricultural signifi-
cance and stakeholder interests, many of which were neglected in pre-
vious global studies. In addition, developing a machine learning-based
approach to predicting and analyzing the crop failure is rarely investi-
gated in previous studies. By analyzing the remote sensing-based crop
yield data from 1981 to 2016, we found that the most extensive syn-
chronous global crop failure events occurred in 2002 for maize and
wheat, 2007 for soy, and 2004 for rice, when around 40% of global
cropland experienced synchronous failures. Several regions were iden-
tified as contributing more to global crop failures than their contribu-
tions to global croplands, including East Asia and Sub-Sahara Africa for
maize, East Asia and South and Southeast Asia for rice, Temperate South
America for soy, and Europe and the Mediterranean and Sub-Sahara
Africa for wheat. Machine learning models accurately predicted the
occurrence of crop failures in different regions using agroclimatic
indices, which are potentially useful for crop failure early warning. The
models also reveal the most influential agroclimatic indices, including
Precip, FallFrost, GDD, SpFrost, DryDays, and FieldCondH in the temperate
region, and GDD, FieldCondH, FieldCondP, FieldCondM in the tropics.
They show notable, non-linear responsive relationships with crop fail-
ures, with favorable conditions related to lowest failure probability
differed by crops and regions, while deficient or excessive conditions
both lead to dramatic increase in crop failures. These indices have
mostly been experiencing significant trends on more than one-fourth of
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the temperate or tropical croplands from 1982 to 2016, with the trends
in the temperature-based indices being more pronounced than in the
moisture-based indices. The moisture-based trends are mostly increasing
towards wetter conditions while relatively variable in space. The
temperature-based indices are consistently increasing, shifting towards
the conditions of extreme crop failure years for both temperature and
tropic regions. Understanding what has the most influence on crop
failure in a region has several advantages. The knowledge from this
research can help develop early warning systems of crop failures,
improving early distributions and allocations of food security aid before
conditions worsen. Using thresholds of the most influential agroclimatic
indices will improve index-based crop insurance in regions not currently
implementing insurance, thus allowing producers to improve and grow
their cropping practices and prepare and adapt to future climates with
fewer livelihood concerns.
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