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A B S T R A C T   

In this study, we aim to characterize synchronized global crop failures using remote sensing-based products, 
analyze their predictability and relationships with agroclimatic conditions using machine learning, and identify 
trends of the most influential agroclimatic indices revealed by machine learning over global croplands. We found 
that global synchronous crop failures showed strong interannual variability during 1982 to 2016. The most 
extreme global synchronous crop failure events occurred over 40% of global croplands in the years 2002 (rice 
and wheat) and 2012 (maize and soy), which had drier and warmer conditions compared to the normal years. 
Crop failure events can be accurately predicted using machine learning with agroclimatic indices. Of the four 
crops for both temperate and tropic regions, soy crop failure is most accurately predicted, with an Area Under the 
Curve (AUC) score of 0.8991 for the temperate region and 0.7892 for the tropics. The AUC score of maize failure 
in the temperate region is 0.8760, followed by wheat failure (0.8627) and rice failure (0.8025). In the tropics, the 
remaining crops performed similarly, with AUC scores of 0.7298 (maize), 0.7313 (rice), and 0.7337 (wheat). The 
machine learning model revealed that growing degree days, last spring frost, first fall frost, growing season 
precipitation, and optimal field conditions (represented by soil moisture) are the most influential agroclimatic 
indices, showing various nonlinear relationships with crop failure probabilities. The most influential agroclimatic 
indices present significant trends on more than 25% of global croplands, showing increasing growing degree 
days, earlier last spring frost, later first fall frost, while growing season precipitation and optimal field conditions 
are increasing. Our findings may inform food security predictions, selections of weather index for crop insurance, 
and climate adaptations.   

1. Introduction 

Global food security is affected by several factors, including conflict, 
economic pressures, climate variability and extreme events experienced 
during and outside of the growing season. Global studies have shown 
that the growing season precipitation and temperature explain at least 
one-third of crop yield variability (Lobell and Field, 2007; Ray et al., 
2015); extreme precipitation and temperature explain 18-43% of global 
crop yield anomalies (Goulart et al., 2021; Vogel et al., 2019). According 
to the FAO, countries that are sensitive to precipitation and temperature 
extremes and not able to supplement with imports or are reliant on 
exports from sensitive regions are more likely to become food insecure 
due to insufficient crop yields, known as crop failures of staple crops 
(Bren D’Amour et al., 2016; Puma et al., 2015). Currently, most of these 

locations are found in Asia, Africa, Latin America, and the Caribbean. 
These regions would coincide with regions of increased agriculture 
vulnerabilities if they or a corresponding exporting country were to 
experience a failure event (Bren D’Amour et al., 2016; Cottrell et al., 
2019). Global increases in connectivity allow for areas of surplus to 
balance out with regions of major yield losses. Synchronized failure 
events, crop failures occurring across multiple locations in a short time 
frame, due to extreme events can deplete crop stores, and climate 
change will result in reductions to crop yield, making it difficult to 
compensate (Battisti and Naylor, 2009; Powell and Reinhard, 2016; 
Tigchelaar et al., 2018). Due to climate change, there is an increasing 
risk of synchronous failure of major crops across the global breadbaskets 
(Gaupp et al., 2020) and decreased global agricultural productivity 
growth rate over recent decades (Ortiz-Bobea et al., 2021). Government 
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social programs can provide a safety net to reduce the impacts that 
failure events have on a community allowing individuals to make efforts 
to adapt to new technologies. 

Many key agroecosystem processes take place daily at the local scale 
as measured by agroclimatic conditions (Trnka et al., 2011), which have 
strong agricultural significance (Jackson et al., 2021; Kukal and Irmak, 
2018; Lobell and Field, 2007) and interests for stakeholders (Matthews 
et al., 2008). Regional studies using historical observations from Europe, 
Scotland, and the congenital United States have been performed for 
growing degree days, frost dates, growing season length, and agro
climate zones (Ceglar et al., 2019; Hatfield et al., 2020; Kukal and 
Irmak, 2018; Matthews et al., 2008; Trnka et al., 2011) and studies using 
future projections (Monier et al., 2016; Terando et al., 2012). In the 
United States, Kukal and Irmak (2018) found a lengthening of the 
growing season, an increase in growing degree days, and decreases in 
frost occurrence from 1900 to 2014 for five crops. Similarly, in Europe, 

Ceglar et al., (2019) found a lengthening of the growing season and 
increases in temperature-derived indices. Constructed agroclimate 
zones have decreased in suitability and will continue to do so under 
future climates. However, these studies only provide regional glimpses 
and are limited to temperature-based indices, and thresholds in some 
cases, are not crop-dependent. Globally, Zhu and Troy (2018) analyzed 
the change in several different agroclimate indices for maize, rice, soy, 
and wheat growing seasons. In their trends, they find an inflection point 
occurring around 1980, where temperature-based indices began to in
crease rapidly globally, while precipitation-based trends showed 
regional distributions. 

Future conditions and climate extremes are expected to deteriorate 
growing season conditions increasing yield volatility (Mangani et al., 
2018; Nóia Júnior et al., 2021; Powell and Reinhard, 2016); however, 
yield declines may occur earlier than expected (Jägermeyr et al., 2021). 
Monthly precipitation and temperature are among the most common 
climate variables to be considered when estimating climate impacts on 
crop yields. Other climate variables like solar radiation, soil moisture, 
evaporative demand, and diurnal temperature range have regional 
relevance in determining crop yields (Brown, 2013; Gaupp et al., 2020; 
Goulart et al., 2021; Lobell et al., 2013). Using monthly temperature and 
precipitation information, both Lobell and Field (2007) and Ray et al. 
(2015) suggested that globally at least one-third of yield variability is 
due to the weather experienced during the growing season. Using 
aggregated climate information at the monthly level, Ortiz-Bobea et al. 
(2021) showed that agriculture productivity has slowed due to anthro
pogenic climate change in recent decades. Regionally in the United 
States, Li et al. (2019) showed that extreme temperature and precipi
tation values could affect maize yield. Using high precipitation as an 
example, they also discussed how some crop models might be unable to 
capture the complete non-linear response of yield to precipitation. More 
recent studies (Goulart et al., 2021; Vogel et al., 2019) have used ma
chine learning to explore daily and monthly climate data impacts on 
yield regionally and globally. Vogel et al. (2019) found a stronger as
sociation with temperature and yield anomalies at the national level 
over the globe, while Goulart et al. (2021) indicated that temperature, 
precipitation, and the diurnal temperature range contributed to crop 
failure in the United States Midwest. Gaupp et al. (2020) found an 
increased risk of high-production regions, breadbaskets, failing of 
maize, soy, and wheat when comparing two time periods from 1967 to 
2012 using a vine copula approach. A staple crop failure event in a 
high-production region may result in unrest and food insecurity in 
another that depends on imports (Battisti and Naylor, 2009; Cottrell 
et al., 2019; FAO et al., 2021; Lau et al., 2012; Nóia Júnior et al., 2021; 
Wegren, 2011), suggesting that a global assessment of crop failures and 
their predictability using agroclimate indices is needed beyond the 
regional or national level. 

In this study, we aim to characterize synchronized global crop fail
ures using remote sensing-based products, analyze their predictability 
and relationships with agroclimatic conditions using machine learning, 
and identify trends of the most significant agroclimatic indices over 
global croplands. The key questions posed were: over the past decades, 
from 1982 to 2016, what is the spatiotemporal distribution of syn
chronized maize, rice, soy, and wheat crop failures over global croplands 
revealed by remote sensing-based products? How well can crop failures 
be predicted by machine learning with agroclimatic indices? What are 
the responsive relationships of remote sensing-characterized crop fail
ures to changes in agroclimatic indices as revealed by machine learning? 
How have the impactful agroclimatic indices changed over the past 
decades? We chose four crops because maize, rice, and wheat are the 
three main cereal crops accounting for 90% of the production (Erenstein 
et al., 2021; FAO, 2021; FAO et al., 2021), and soy accounts for 60% and 
70% of oilseed and meal protein (USDA Foreign Agricultural Service, 
2021). Our study considers 11 agroclimatic indices that have strong 
agricultural significance and stakeholder interests, many of which have 
been neglected in previous global-scale studies. In addition, developing 

Table 1 
Description of agroclimatic indices and acronyms. *Denote indices are calcu
lated during the period between planting and harvesting dates.  

Agroclimatic 
Indices (Acronym) 

Description Units Reference 

Last Spring Frost 
(SpFrost) 

Northern Hemisphere: 
Last frost before July 15 
Southern Hemisphere: 
Last frost before Jan 15 

Day of 
Year 
(DOY) 

(Kukal and Irmak, 
2018; Matthews 
et al., 2008) 

First Fall Frost 
(FallFrost) 

Northern Hemisphere: 
First frost after July 15 
Southern Hemisphere: 
First frost after Jan 15 

DOY (Kukal and Irmak, 
2018; Matthews 
et al., 2008) 

Accumulated Frost 
(FrostDays) 

Count of days when 
Tmin < 0◦C between the 
FallFrost and SpFrost 

Days (Anandhi et al., 2013; 
Monier et al., 2016) 

Climatological 
Growing Season 
(GrowSeason) 

Number of days 
between the SpFrost 
and FallFrost; can be a 
year if frost free 

Days (Matthews et al., 
2008; Monier et al., 
2016) 

Start of Field 
Operations 
(StFieldOp) 

The day when sum of 
Tavg from Jan 1st (July 
1st) is greater 200◦C 

DOY (Matthews et al., 
2008; Monier et al., 
2016) 

Precipitation 
(Precip)* 

Ptotal =
∑

P > 1mm mm (Monier et al., 2016) 

Dry Days (DryDays) 
* 

DD =
∑

P ≤ 1mm Days (Monier et al., 2016) 

Growing Degree 
Day (GDD)* 

Tmax + Tmin

2
− Tbase 

Tbase = 10◦C (maize, 
rice, soy) 
Tbase = 1◦C (wheat) 
Tupper = 30◦C (maize, 
rice, soy) 
Tupper = 25◦C (wheat) 

oC (Bollero et al., 1996;  
Kukal and Irmak, 
2018; Zhu and Troy, 
2018) 

Heat Stress Days 
(HeatDay)* 

Tmax > 42◦C (corn) 
Tmax > 35.4◦C (rice) 
Tmax > 39.4◦C (soy) 
Tmax > 28.5◦C (wheat) 

Days (Monier et al., 2016;  
Schlenker and 
Roberts, 2009)( 
Jackson et al., 2021;  
Sánchez et al., 2014;  
Schlenker and 
Roberts, 2009) 

Optimal Field 
Conditions 
during: 
- Planting 
(FieldCondP) 
- Mid-season 
(FieldCondM) 
- Harvest 
(FieldCondH) 

Days when surface soil 
water is between 10 to 
70% of the maximum 
water holding capacity 
& Pi ≤ 1mm & Pi-1 ≤

5mm during: 
- Planting: Start of 
planting to the end of 
planting range 
- Mid-Season: Middle of 
planting to the middle 
of harvest 
- Harvest: Start of 
harvest to the end of 
harvest range 

Days (Cooper et al., 1997;  
Trnka et al., 2011)  
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a machine learning-based approach to predicting and analyzing the crop 
failure is rarely investigated in previous work. This work can potentially 
inform food security predictions, selections of weather index for crop 
insurance, and global climate adaptations. 

2. Data & methods 

2.1. Climate and crop data 

Daily maximum and minimum temperature and precipitation during 
1981-2017 were retrieved from the National Aeronautics and Space 
Administration (NASA) Langley Research Center (LaRC) POWER Project 
(https://power.larc.nasa.gov/), which is available at a 0.5◦ by 0.5◦

resolution. Daily surface (0-10cm) soil moisture from 1981-2017 was 
obtained from GLEAM v3.3a (Martens et al., 2017; Miralles et al., 2011) 
at 0.25◦ resolution and aggregated into 0.5◦, to be consistent with the 
other datasets used in this study. Annual yield data for four staple crops 
(maize, rice, soy, and wheat) was obtained from the Global Dataset of 
Historic Yield (Iizumi, 2019; Iizumi and Sakai, 2020) during 1981-2016 
at a 0.5◦ resolution, which is a hybrid data by combining agricultural 
census statistics and satellite remote sensing. (Sacks et al., 2010) pro
vided 0.5◦ resolution of planting and harvesting dates for several crops, 
which has been widely utilized in crop yield analysis (Iizumi and Sakai, 
2020; Ray et al., 2015; Vogel et al., 2019). Main season planting and 
harvesting dates of maize, rice, soy, spring, and winter wheat were used 
to calculate crop-dependent agroclimatic conditions at each grid point 
and growing season congruent with regional agricultural calendars. 
Cropland masks are created using planting, harvesting, and EarthStat 
crop production data (Monfreda et al., 2008) to limit analysis to crop
land regions devoted to maize, rice, soy, or wheat. EarthStat production 
data provides locations of high and low crop production globally circa 
2000. Cropland weights were created for the aggregated cells using 
EarthStat fractional harvested area. Give more value to cells with larger 
production areas devoted to crop production than regions with smaller 
production amounts, reducing the impact of large land masses with less 

dense agriculture production. Regions with smaller weights and 
dependent on imports may be more sensitive to teleconnection supply 
shocks (Bren D’Amour et al., 2016; Cottrell et al., 2019). Global crop
land was divided into ten regions (Supplementary Fig. 1). Yield data is 
linearly detrended using the M estimator, which is robust against ver
tical outliers and performs similarly to ordinary least squares in heter
oscedasticity and skewed distributions (Finger, 2013). Detrending 
minimizes the effects of advances in management practices and tech
nologies. Detrended yields were then divided into quartiles, in which the 
lowest quartile was defined as crop failure (Gaupp et al., 2020; Schil
lerberg and Tian, 2020). 

2.2. Agroclimatic indices 

Twelve agroclimatic indices (Table 1) were calculated for each 
growing season during 1982-2016 to characterize agroclimatic condi
tions for their significance in agriculture (Kukal and Irmak, 2018; 
Monier et al., 2016; Trnka et al., 2011) and salience among stakeholders 
(Gowda et al., 2018; Matthews et al., 2008). The agroclimatic indices 
were calculated at each grid point over global croplands except for 
several unique instances, such as tropics where frost occurrences are 
rare. Planting and harvesting dates determine crop-specific growing 
seasons. For example, Precip, DryDays, GDD, and HeatDay were calcu
lated from the planting season to the end of the harvest season as 
specified in (Sacks et al., 2010) for each grid cell. FieldCondP (Field
CondH) is calculated from the start of planting (harvest) to the end of 
planting (harvest) and FieldCondM from the middle of planting to the 
middle of harvest, allowing the capture of early and late-season crop 
planting. In addition, time series of the impactful agroclimatic indices 
from 1982-2016 were analyzed using the Mann-Kendall trend test for 
each grid point over global croplands. Grid cells with more than 50% 
missing data were removed before the analysis. Mann-Kendall is a 
non-parametric test to determine if a monatomic increasing or 
decreasing trend is present (Wilks, 2011). A trend is considered as sig
nificant when the p-value is smaller than 0.10. 

Fig. 1. (A-D) The annual percentage of global cropland experiencing synchronous crop failure with contributions from temperate and tropical regions. (E-H) In
dividual region’s contribution to global synchronous failure during 1982-2016. (I-L) The contribution of regional crop failure to global crop failure versus the 
contribution of regional cropland to global cropland. For each row, from left to right, maize (A, E, I), rice (B, F, J), soy (C, G, K), and wheat (D, H, L). 
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2.3. Random forest 

Random forest is a non-parametric classification and regression tree 
analysis method based on ensemble machine learning algorithms. 
Random forest constructs multiple decision trees composed of boot
strapped resamples of the training data (Breiman, 2001; Liaw and 
Wiener, 2018). The random forest has been utilized in recent studies of 
climate impacts on agriculture in different regions (Goulart et al., 2021; 
Schierhorn et al., 2021; Schillerberg et al., 2019; Schillerberg and Tian, 
2020; Vogel et al., 2019) and found to be more effective than commonly 
used multiple linear regression for predicting crop yields (Jeong et al., 
2016; Leng and Hall, 2020). We construct random forest models for each 
of the ten crop production regions as well as two additional models, one 
for the temperate regions (the areas experiencing more than one frost a 
year) and the second for the tropics (regions not experiencing frost) 
(Supplementary Fig. 1). We performed cross-validation using a random 
70/30% split of the data for training and testing with 500 runs. Spe
cifically, we withheld 30% of the data randomly sampled from all the 
pixels and years in a region for model testing and used the rest 70% for 
model training. The large spatial extent of each region provides a large 
sample size covering a variety of agroclimate conditions and crop failure 
or non-failure conditions. Since the training and testing data are 

randomly sampled in space and time, it eliminated spatial and temporal 
correlations between the training and testing datasets. The performance 
of the random forest models was evaluated using the relative operating 
characteristic (ROC) curves. ROC curves represent the relationship be
tween true- and false-positive rates at different thresholds. A ROC curve 
is assigned a score by integrating the area under the curve (AUC) and 
considers all possible threshold values. An AUC score of 0.5 represents a 
model with the same true- and false-positive rate for every threshold, 
providing no more information than a coin flip, and an AUC score of 1 
represents a model of perfect predictors. Partial Dependency plots (PDP) 
show the marginal effect of one or two features on the predicted 
outcome of the random forest model. We constructed PDP for each 
random forest model to visualize dependence relations between agro
climatic conditions (predictors) and crop failures (response variable). 
PDP is a global method that considers all instances between the response 
variable and predictors while all remaining predictor variables are held 
constant (Molnar, 2019). A 95% confidence interval was computed for 
PDPs based on the 500 cross-validation runs to quantify the uncertainty 
associated with the estimation. Since thousands of samples are used for 
constructing each random forest model, the 95% confidence interval are 
generally very small, suggesting robust model estimations. 

Fig. 2. Performance of the random forest models for predicting crop failure occurrence based on agroclimatic indices for the 10 individual regions, and temperate 
and tropic regions. (A-D) ROC curves for Maize, rice, soy, and wheat, (E) AUC scores. “−” indicate the data is not available for that region. 
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3. Results 

3.1. Distributions of synchronous global crop failures 

Here we refer crop failures occurring across different locations in the 
same year as synchronous crop failures. We present distributions of 
synchronous crop failures for maize, rice, soy, and wheat over the globe 
from 1982 to 2016 and over each region (Fig. 1). The results indicate no 
clear trend in synchronous global crop failures for either tropic or 
temperature regions, while the interannual variability is very strong, 
ranging from less than 5% to 60% globally (Fig. 1A-D). The most 
extensive synchronous crop failure events occurred in the years 2002 
(rice and wheat) and 2012 (maize and soy), with over 40% of weighted 
global cropland experiencing failures over those years. We further 
examine the contribution of regional cropland to global cropland 
experiencing failure in each of the ten individual regions (Fig. 1E-H). 
There are a few regions where the contributions are particularly large in 
most of the years, including North America for maize and soy failures, 
South and Southeast Asia for rice failures, East Asia for rice and wheat 
failures, temperate South America for soy failures. On average, the 
contributions of different regions to global crop failures are generally 
proportional to their contributions to global croplands (Fig. 1I-L). 
However, there are a few exceptions where the regions contribute less to 
global cropland but more to global crop failures (Fig. 1I-L), which 
include East Asia and Sub-Sahara Africa for maize (Fig. 1I), Temperate 
South America and East Asia for soy (Fig. 1K), and Europe and the 
Mediterranean for wheat (Fig. 1L). These regions tend to be more sus
ceptible to failures of specific crops than the other regions. 

3.2. Predicting crop failure occurrence using agroclimatic indices 

We constructed random forest models to predict crop failure occur
rence for each crop using the agroclimatic indices (Table 1) over the 
temperate region, the tropics region, and each of the ten crop production 
regions. The models were cross validated, meaning the data used for 
model validation was excluded from model training. On average, the 
random forest models with agroclimatic indices can accurately predict 
crop failures on the validation data, with an AUC score of 0.7460 for the 
tropic region and 0.8601 for the temperate region (Fig. 2). Of the four 

crops for both regions, soy crop failure is most accurately predicted, with 
an AUC score of 0.8991 for the temperate region and 0.7892 for the 
tropics. The AUC score of maize failure in the temperate region is 
0.8760, followed by wheat failure (0.8627) and rice failure (0.8025). In 
the tropics, the remaining crops models performed similarly, with AUC 
scores of 0.7298 (maize), 0.7313 (rice), and 0.7337 (wheat). 

Regarding the regional patterns, the North American region has the 
highest AUC values for maize (0.9267) and soy (0.9271). The AUC 
values for rice (0.8444) and wheat (0.8894) in North America are close 
to those in Temperate South America (rice, AUC value 0.8351) and 
Europe and Mediterranean (wheat, AUC value 0.8987) regions. Central 
America and the Caribbean is the lowest-performing region, with an 
AUC value of 0.6842 for rice and 0.6908 for wheat. Across crops, rice has 
the lowest performance, possibly due to its varied management practices 
and heavy reliance on irrigation, which counteracts the effects of low 
precipitation, heat stress, and dry days (Ceglar et al., 2017; Tack et al., 
2017; Zaveri and Lobell, 2019). These results suggested that agro
climatic indices can accurately predict crop failures, suggesting that 
crop failures have been strongly influenced by agroclimatic changes, 
and the models based on the agroclimatic indices can be potentially 
useful for crop failure early warning. 

3.3. The relative importance of agroclimatic indices 

The random forest models with cross-validation run for each region 
allow us to quantify the relative importance of agroclimatic indices in 
estimating crop failure occurrences. Fig. 3 shows several influential 
variables ranked consistently high in almost all the 500 cross-validation 
runs. In the temperate region, these variables include the growing sea
son precipitation (Precip), fall frost (FallFrost) for maize failures, Precip, 
growing degree days (GDD) and spring frost (SpFrost) for rice failures, 
Precip, GDD and the number of dry days (DryDays) for soy failures, and 
Precip and days of optimal field conditions during harvest (FieldCondH) 
for wheat failures. In the tropics, they include GDD, FieldCondH and 
optimal field conditions during planting (FieldCondP) for maize failures, 
GDD, FieldCondP, and optimal field conditions during mid-season 
(FieldCondM) for rice failures, GDD and FieldCondH for soy failures, 
and GDD for wheat failures. While the ranking of variable importance 
from regional models shows variations among different regions and 

Fig. 3. Agroclimate variable importance ranking of 500 cross validation runs (grey) and the average (red) to determine crop failure of different crops, from left to 
right: maize (A, E), rice (B, F), soy (C, G), and wheat (D, H) for the temperate (top row) and tropic (bottom row) region. Darker lines indicate more agreement 
between model runs. Distance from the center indicates variable importance, more important variables are further away from the center with the least important 
variables closer to the center. 
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crops (Supplementary Fig. 2), it identifies similar influential agro
climatic indices as the global analysis by temperate region and tropics. 

3.4. Response of crop failure to changes in agroclimatic conditions 

Here we present the Partial Dependency Plots (PDP) of the random 
forest models to examine the response of crop failures to the changes of 
the influential agroclimatic indices identified in the last section for each 
crop in the temperate region (Fig. 4) and tropics (Fig. 5), respectively, 
with conditions for minimum crop failures probabilities noted in the 
plots. In the temperate region, crop failures of all four crops are 
responsive to the Precip changes. The increase in crop failure probability 

due to excessive Precip is almost the same as due to deficient Precip and 
reaches the maximum when Precip exceeds approximately 2000mm, 
despite the higher reoccurrence of deficient Precip in the historical re
cord. For rice and soy, the probability of crop failures gradually 
increased with the addition or reduction of GDD, higher GDD is associ
ated with higher failure risks. For rice failures, late SpFrost (>85 day of 
year, DOY) or early FallFrost (<291 DOY) dramatically increases the 
failure probabilities. As an influential variable for soy failure, shifting 
from optimum DryDays (120 days) gradually increases the probability of 
soy failures. Greater or smaller than 8-day FieldCondH increased wheat 
failure probabilities, while higher FieldCondH is associated with much 
higher risks than lower ones. In the tropics, crop failures of all four crops 

Fig. 4. Partial dependency plot showing the response of crop failure probability to the most influential agroclimatic indices identified by the random forest models in 
the temperature region. Rows represent each crop, from top to bottom: maize (A-B), rice (C-E), soy (F-H), and wheat (I-J). The dot and text in the figure represent the 
optimal agroclimatic condition with minimum crop failure probability. The optimal conditions for each of the ten individual regions are presented in the Supple
mentary Fig. 3. 
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are very responsive to the changes in GDD. Either increasing or 
decreasing GDD can gradually increase the probability of crop failures 
up to 0.45. The increasing or decreasing of FieldCondH and FieldCondP is 
associated with increased maize failure risks, with increased values 
associated with more dramatically increased failure probability 
compared to the decreased values. The response of rice failures to 
FieldCondP is similar to maize failures. While FieldCondM shows a similar 
responsive relationship as FieldCondP for rice failures. For soy failures, 
the responsive relationship with FieldCondH is similar to maize or rice 
failures. 

It is worth noting that the optimal GDDs with minimum failure 
probability are maize 2487◦C, rice 3404◦C, soy 2793◦C, wheat 3230◦C 

for the tropics, which are much higher than temperate region, while the 
Precip associated with the minimum crop failure probability are maize 
494mm, rice 547mm, soy 602mm, and wheat 402mm for the temperate 
region, much lower than the tropics. The agroclimatic conditions with 
minimum crop failure probabilities identified for each of the individual 
regions are presented in Supplementary Fig. 3. 

3.5. Trends of agroclimatic conditions of significance to crop failures 

We examined the percentage of regional cropland experiencing sig
nificant trends (p-value < 0.10) in the identified influential agroclimatic 
indices (Fig. 6) and whether they are increasing or decreasing 

Fig. 5. Partial dependency plot showing the response of crop failure probability to the most influential agroclimatic indices identified by the random forest models in 
the tropic region. Rows represent each crop, from top to bottom: maize (A-C), rice (D-F), soy (G-H), and wheat (I). The dot and text in the figure represent the optimal 
agroclimatic condition with minimum crop failure probability. The optimal conditions for each of the ten individual regions are presented in the Supplemen
tary Fig. 3. 
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(Supplementary Figs. 4 and 5). We can see that more than 25% of 
tropical croplands are experiencing significant trends in GDD, HeatDay, 
Precip, DryDays, FieldCondP, FieldCondM, or FieldCondH for almost all 
crops, while more than 25% of temperate croplands are experiencing 
significant trends in FrostDays, GDD, Precip, and DryDays for maize and 
rice, FrostDays, GDD, and Precip for soy, and FrostDays, GDD, HeatDay, 
and Precip for wheat. Quite a few regions are experiencing significant 
agroclimatic trends in more than 50% of their croplands, including 
decreasing FrostDays in 100% East Asia and North America for all four 
crops, increasing GDD in almost all regions for all crops, decreasing 
HeatDay in Europe and the Mediterranean and Tropic South America for 
both rice and wheat, Precip in Sub-Saharan Africa for maize, rice, and 
wheat and in Temperature South America for soy, and DryDays in 
Central America and Caribbean. All these indices with significant trends 
are among the most influential indices identified in the last sections. 

Globally, GDD trends are consistently increasing, while Precip trends 
show strong variations with increasing and decreasing trends mostly 
occurring in the temperate and tropic regions, respectively (Supple
mentary Fig. 4). These increasing warming trends are similar for all the 
temperature-based indices, as reflected in increasing GDD and HeatDay, 
decreasing FrostDays, earlier SpFrost, and later FallFrost, and moisture- 
based indices, as reflected in increasing or decreasing Precip, DryDays, 
FieldCondP, FieldCondM, or FieldCondH, while the percentage of signif
icant increasing or decreasing trends varied by regions (Supplementary 
Fig. 5). 

We examined the conditions of the most influential agroclimatic 
indices on the failure croplands during the years with extreme global 
crop failure events, including maize 2012, rice 2002, soy 2012, and 
wheat 2002 (Figs. 7 and 8). While there are slight spatial variations, the 
results generally show dryer and warmer conditions during those 

extreme years compared to the optimal conditions in both tropics and 
temperate region. Given the increasing trends, the temperature-based 
indices are generally shifting towards the conditions of extreme crop 
failure years for both temperature and tropic regions. While the mois
ture trends are increasing, not changing towards the conditions of 
extreme years, regions experiencing significant trends (Supplementary 
Fig. 5) may face increasing risks of crop failures through excessive 
moisture or dryness (Fig. 4) compared with the regions with no signif
icant moisture trends. In Figs. 9 and 10, we further show that, at each 
location, whether the trends point toward more detrimental or benefi
cial conditions by finding the difference between the average agro
climate indices over 1982 to 2016 and the average value of the 
agroclimate indices when crop failure occurs considering the direction 
of the significant trend at that location. Specifically, the current trends 
are trending toward more detrimental conditions if decreasing the dis
tance between the agroclimate mean and the agroclimate condition 
when failures occurred, while are trending toward more beneficial 
conditions if increasing the distance between the agroclimate mean and 
the agroclimate condition when failures occurred. There are varied 
beneficial and detrimental trends in the temperate and tropics region 
throughout the regions when looking at the agroclimate indices. Precip 
and precipitation-derived agroclimate indices have strong spatial vari
ation present. Increases in Precip (Supplemental Fig. 5) increase bene
ficial conditions for maize in temperate regions of northern North 
America but harmful conditions in Midwest North America and China 
(Fig. 9). Temperature-derived variables, like GDD, FallFrost, and SpFrost, 
have mostly showed consistent trends in space, while also experiencing 
regions of beneficial and detrimental condition trends (Figs. 9 and 10). 

Fig. 6. Percentage of regional cropland experiencing significant (p-value < 0.10) trends for important agroclimatic indices for (A) maize, (B) rice, (C) soy, (D) wheat. 
Percentage of area showing increasing or decreasing trends are presented in the supplementary Fig. 4. 
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4. Discussion 

In the previous studies, Gaupp et al. (2020) have found an increase in 
synchronous breadbasket failure, while Mehrabi and Ramankutty 
(2019) have found trends in synchronized crop production have 
declined. Globally across temporal and tropical regions, we find no 
significant global synchronized crop failure trends from 1982 to 2016 
for the four staple crops. We also identify several years of high (>40% 
global cropland) synchronous global crop failures (2002 for rice and 
wheat, 2012 for maize and soy), consistent with previous literature 
(Gaupp et al., 2020; Goulart et al., 2021; Mehrabi and Ramankutty, 
2019). Synchronous crop failure events are influenced by large-scale 
oscillations such as ENSO, affecting nearly 20% of maize production 
(Anderson et al., 2019), which may have influenced crop failure of rice 
and wheat in 2002, the year experiencing moderate El Nino. We note 
several regions which are identified as contributing more to global crop 
failure than their contributions to global cropland after accounting for 
cropland weight, including East Asia and Sub-Sahara Africa for maize, 
Temperate South America for soy, and Europe and the Mediterranean 
for wheat. Several of these regions coincide with regions of higher yield 
variability (Iizumi and Ramankutty, 2016). For example, southeast Asia 
is a known breadbasket for rice but faces high production shocks (Cot
trell et al., 2019) and results in food supply shocks in regions, western 
Africa and Malaysia, dependent on rice from this region (Bren D’Amour 
et al., 2016). Future climatic warming will increase crop variability, 

increasing the probability of synchronous failure globally (Gaupp et al., 
2019; Tigchelaar et al., 2018), which may result in more countries 
relying more heavily on stressed grain stores and exports, challenging 
countries to balance increased import costs and feeding their 
populations. 

Consistent with Schlenker and Roberts (2009), we find non-linear 
effects from temperature; however, we also find that these non-linear 
effects exist in the other agroclimate indices and are influential on 
crop failure probabilities beyond temperature. This study identified GDD 
and Precip (acronyms and shortened agroclimate indices can be found in 
Table 1) as influential on crop failures, confirming previous findings that 
Precip and GDD are the most common climate variables to explain crop 
yield variations, explaining up to 60% of variability regionally and 
one-third of global variability (Lobell et al., 2012; Lobell and Field, 
2007; Ray et al., 2015; Tigchelaar et al., 2018). Growing season tem
perature has long been used to predict yields (Lobell and Field, 2007; 
Tigchelaar et al., 2018) as it is an indicator of the thermal time required 
for growth and the effects of temperature explored in depth to the 
vegetative and reproductive periods (Asseng et al., 2015; Muchow et al., 
1990; Peltonen-Sainio et al., 2011). Too much or too little Precip can 
negatively affect yield since precipitation deficit during the reproductive 
period impacts tasseling and ear formation in maize, leading to reduced 
yield (Çakir, 2004; Kamara et al., 2003; Song et al., 2018). Excessive 
rainfall can reduce yields through waterlogging, ponding, and flooding, 
causing root damage and nitrogen deficiency, comparable to the 

Fig. 7. The most influential agroclimatic indices in the temperate region on global croplands experiencing failures during extreme years for maize 2012 (A-B), rice 
2002 (C-E), soy 2012 (F-H), and wheat 2002 (I-J) (from top row to bottom row). The color shows the percentile value for each pixel; the text shows the average of 
actual value. Grey areas are the tropic region. 
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damages due to extreme drought (Li et al., 2019; Mangani et al., 2018). 
However, this study provides regional thresholds for GDD and Precip 
that can be used to inform stakeholders and may act as the foundations 
for index-based programs in regional markets where such analysis did 
not exist prior. It is also worth noting that HeatDay, as an extreme 
temperature index, is of relatively lower importance compared to GDD 
(Fig. 4). This is potentially a result of high thresholds (Table 1; reflecting 
heat tolerance) not being exceeded for extended periods in the growing 
season or during the vital reproductive period (Challinor et al., 2016; 
Hatfield and Prueger, 2015; Lobell et al., 2012; Luo, 2011). Research on 
future climate impacts of warming shows an increasing risk of increased 
production shocks reducing yield resulting in crop failure (Gaupp et al., 
2019; Tigchelaar et al., 2018), and regions will become unfavorable for 
crop growth (Battisti and Naylor, 2009; Ceglar et al., 2019). Increasing 
temperature trends may result in more frequently surpassed current crop 
temperature thresholds, elevating the importance of HeatDay. 

Besides GDD and Precip, this study also identified several influential 
indices that have been neglected in previous studies, including FallFrost, 
SpFrost, and optimal field conditions. Spring and fall frost dates are 
important in temperate regions. A SpFrost can harm sensitive young 
vegetation affecting its growth through the season (Pulatov et al., 2015; 
Sánchez et al., 2014; Wolfe et al., 2018). A severe FallFrost can prevent 
grain from reaching maturity, affecting seed quality and viability 
(DeVries et al., 2007). Optimal field conditions reflect the number of 
suitable workdays during different seasons. More days of optimal field 

conditions indicate drier soils, while fewer days indicate wet soils 
(Trnka et al., 2011). Too few days of optimal field conditions may 
suggest damp and warm conditions that can accelerate the likeliness of 
seed germination and fungal infections, reducing yield (Powell and 
Reinhard, 2016). It can also result in crop lodging; some crops may be 
harvested with the return of favorable field conditions with added cost 
inputs, reducing yield (Peltonen-Sainio et al., 2018). On the other 
extreme, too many days of field conditions suggest drought conditions 
resulting in increased probabilities of crop failures (Figs. 4 and 5). These 
impacts could be very different during planting (FieldCondP), 
mid-season (FieldCondM), or harvesting seasons (FieldCondH). 

Agroclimatic trends are salient for understanding the changing risk 
of crop failure. We find varying degrees of Precip within regions and 
globally, largely agreeing with the previous findings of decreasing Precip 
trends in warm regions and increasing Precip trends in cool regions 
(Nguyen et al., 2018). Increasing trends of GDD are consistent with 
previous research highlighting an increasing trend in global temperature 
(Lobell et al., 2011). Increase and decreases in GDD affect the phenology 
of crops. Increases in GDD hasten crop development leading to maturity 
being reached earlier resulting in less yield, while lower GDD slows 
growth making the crop more susceptible to pests, frost, and other fac
tors (Alexandrov and Hoogenboom, 2000; Asseng et al., 2013). Our 
results also suggest that FrostDays are decreasing, earlier SpFrost, later 
FallFrost, and lengthening the GrowSeason. Our global analysis results 
are consistent with previous regional studies in North America (Kukal 

Fig. 8. The most influential agroclimatic indices in the tropic region on global croplands experiencing failures during extreme years for maize 2012 (A-C), rice 2002 
(D-F), soy 2012 (G-H), and wheat 2002 (I) (from top row to bottom row). The color shows the percentile value for each pixel; the text shows the spatial average of 
actual values. Grey areas are the temperate region. 
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and Irmak, 2018) and Europe (Trnka et al., 2011). A lengthening of the 
growing season can result in more pest generations per season and 
northward migration, while warming of winter temperatures can result 
in pest overwintering (Wolfe et al., 2018). Together these impacts will 
result in the need for novel pest and disease control to reduce the impact 
to crop yields. Few studies have examined suitable field conditions 
regionally or globally. In East-Southeast Scotland, (Matthews et al., 
2008), find an increase in dry soils; however, we find no significant 
trends at the same locations. We do find field conditions in tropical re
gions experience significant increasing or decreasing trends on nearly 
30% of the cropland (Fig. 6). While optimal field conditions are 
commonly used to determine when producers can get into the field and 
prevent soil compaction and degradation, changes in field conditions 
may increase crop failure probabilities through delayed planting and 
harvesting due to wet conditions decreasing favorable field days (Pel
tonen-Sainio et al., 2018; Trnka et al., 2011). Delayed planting may 
result in unfavorable heat stress during the reproductive period, and 
delayed harvest can leave crops in the fields, decreasing the quality of 
the seed (Powell and Reinhard, 2016). Increases in favorable field 
condition days indicate drier conditions, increasing crop failure proba
bility affecting crops similarly as decrease in Precip. Besides that, field 
conditions may be confounded with other factors such as previous 
growing season conditions, monsoons, and dry seasons that frequent 
tropical regions (Asharaf et al., 2012; Bapuji Rao et al., 2014; Swami 

et al., 2018; Zachariah et al., 2020). Continual trends in either direction 
can result in increases to crop failure probability and agroclimate indices 
that may be toward beneficial conditions (Fig. 9 and 10) currently, they 
may or may not provide the same benefit in the future. 

The findings from this study may inform climate adaptations in 
agriculture, such as crop failure early warning, breeding, and strategic 
planning of agricultural infrastructure and best management practices. 
We recognize that several agroclimatic variables are not included in this 
study, such as evapotranspiration and solar radiation, which may play 
an important role in determining crop failures. While our analysis is 
based on state-of-the-art datasets, it is subject to uncertainties from the 
crop, and climate data originating from satellite remote sensing, ob
servations, and model approximations, particularly for regions with 
sparse ground observations. We also recognize that seasonal averaged 
variables can reduce apparent contributions of indices at various times 
in the growing season such, as Precip and HeatDay. 

5. Conclusions 

In this study, we characterize synchronized global crop failures using 
remote sensing-based products, analyze their predictability and re
lationships with agroclimatic conditions using machine learning, and 
identify trends of the most significant agroclimatic indices over global 
croplands. To our knowledge, this work is the first global-scale study 

Fig. 9. The trending tendencies of the selected agroclimatic indices (identified as the most influential in the temperate region) over global croplands for maize (A-B), 
rice (C-E), soy (F-H), and wheat (I-J) (from top row to bottom row). The red color signifies that the current trends are trending toward more detrimental conditions 
(decreasing the distance between the agroclimate mean and the agroclimate condition when failures occurred), the bule color signifies that the current trends are 
trending toward more beneficial conditions (increasing, the distance between the agroclimate mean and the agroclimate condition when failures occurred) the grey 
color indicates regions where the agroclimate indices trend was not significant. 
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that considers 11 agroclimatic indices with strong agricultural signifi
cance and stakeholder interests, many of which were neglected in pre
vious global studies. In addition, developing a machine learning-based 
approach to predicting and analyzing the crop failure is rarely investi
gated in previous studies. By analyzing the remote sensing-based crop 
yield data from 1981 to 2016, we found that the most extensive syn
chronous global crop failure events occurred in 2002 for maize and 
wheat, 2007 for soy, and 2004 for rice, when around 40% of global 
cropland experienced synchronous failures. Several regions were iden
tified as contributing more to global crop failures than their contribu
tions to global croplands, including East Asia and Sub-Sahara Africa for 
maize, East Asia and South and Southeast Asia for rice, Temperate South 
America for soy, and Europe and the Mediterranean and Sub-Sahara 
Africa for wheat. Machine learning models accurately predicted the 
occurrence of crop failures in different regions using agroclimatic 
indices, which are potentially useful for crop failure early warning. The 
models also reveal the most influential agroclimatic indices, including 
Precip, FallFrost, GDD, SpFrost, DryDays, and FieldCondH in the temperate 
region, and GDD, FieldCondH, FieldCondP, FieldCondM in the tropics. 
They show notable, non-linear responsive relationships with crop fail
ures, with favorable conditions related to lowest failure probability 
differed by crops and regions, while deficient or excessive conditions 
both lead to dramatic increase in crop failures. These indices have 
mostly been experiencing significant trends on more than one-fourth of 

the temperate or tropical croplands from 1982 to 2016, with the trends 
in the temperature-based indices being more pronounced than in the 
moisture-based indices. The moisture-based trends are mostly increasing 
towards wetter conditions while relatively variable in space. The 
temperature-based indices are consistently increasing, shifting towards 
the conditions of extreme crop failure years for both temperature and 
tropic regions. Understanding what has the most influence on crop 
failure in a region has several advantages. The knowledge from this 
research can help develop early warning systems of crop failures, 
improving early distributions and allocations of food security aid before 
conditions worsen. Using thresholds of the most influential agroclimatic 
indices will improve index-based crop insurance in regions not currently 
implementing insurance, thus allowing producers to improve and grow 
their cropping practices and prepare and adapt to future climates with 
fewer livelihood concerns. 
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Fig. 10. The trending tendencies of the selected agroclimatic indices (identified as the most influential in the temperate region) over global croplands for maize (A- 
C), rice (D-G), soy (G-H), and wheat (I) (from top row to bottom row). The red color signifies that the current trends are trending toward more detrimental conditions 
(decreasing the distance between the agroclimate mean and the agroclimate condition when failures occurred), the bule color signifies that the current trends are 
trending toward more beneficial conditions (increasing, the distance between the agroclimate mean and the agroclimate condition when failures occurred) the grey 
color indicates regions where the agroclimate indices trend was not significant. 
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