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ABSTRACT 

 

The conformation of macromolecules attached to a surface is influenced by both their 

excluded volume and steric forces. Here I use self-avoiding random walk simulations to 

evaluate the occurrence of various conformations as a function of the number of 

monomeric units to estimate the effect of conformational entropy of a tethered chain. 

Then, a more realistic scenario is assessed, which can more accurately reproduce the 

shape of a tethered macromolecule. The simulations presented here confirm that it is 

more likely for a polymer to undergo a collapse conformation rather than a stretched one, 

as a collapse conformation can be realized in more different ways. Also, they confirm the 

‘mushroom’ shape of polymers close to a surface. From this simple approach, we can 
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estimate how conformation entropy changes with the size of the molecule. These results 

predict that for a model 100-units polymer close to a surface, the conformation entropy 

contributes with over 129 𝑘"𝑇 toward its collapse. This conformation entropy is higher 

than that of typical hydrogen bonds and even barriers that keep proteins folded. As such, 

entropic collapse of macromolecules plays an important role in realizing the mushroom 

shape of attached polymers and can be the driving force in protein folding, while the 

polypeptide chain emerges from the ribosome. 
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INTRODUCTION 

Polymers are macromolecules with many repeating units, which are frequently adsorbed to 

surfaces. While linked to a surface, it is well known that polymers form mushroom like structures, 

when not densely spaced (Figure 1A), and brush-like structures when the surface density is high 

(due to steric repulsive forces) [1]. However, polymers do not tend to be fully stretched, nor do 

they lie flat on an inert surface, and their conformation dynamics is driven by thermal motion [2]. 

Seen as a particular kind of polymers, proteins are synthesized by the ribosome machinery as a 

sequence of 20 amino acids, following the genetic code (Figure 1B). The backbone of any protein 

is the peptide bond, formed between the carboxyl terminus of one amino acid and the amine 

terminus of the next. The functional groups that are not part of the peptide bond interact with each 

other and the water environment, to guide somehow this newly expressed polypeptide chain into 

a well-defined 3-dimensional (3D) structure [3]. The final conformation, known as the native fold 

of a protein, is formed by secondary structure elements, such as alpha helices and beta strands, 

encompassed by unstructured regions, and arranged in a specific order. As the polypeptide chain 

emerges from the ribosome channel, this system can be also seen as a macromolecule attached 

to a surface at one if its ends. This polypeptide chain will also not be fully stretched, nor will it lie 

flat on the surface of the ribosome. Also, an interesting question was first formulated by Levinthal, 

who realized that an algorithmic search for an typical polypeptide chain (over 100 amino acids) to 

find the native protein structure would take an enormous time, much longer than the time it takes 

the process in vivo (typically less than a second for a protein domain) [4]. However, this search 

ignores the effect of the conformational entropy on a tethered chain. 
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Figure 1. Polymers attached to a surface at one end. A) Schematics of a polymer attached to a hard 

surface and taking a mushroom-like shape. B) Schematics of a polypeptide emerging from the ribosome in 

its track to becoming a protein. 

 

Entropy is introduced through the second law of thermodynamics, and is typically seen as 

a measure of the disorder of a system. As a system advances toward thermodynamic equilibrium, 

entropy increases to its highest value. In general, we can describe entropy of a system as a 

probability distribution among a discrete set of microstates which lead to a well-defined 

macrostate. The entropy	𝑆(𝑁) for 𝑁 microstates of a given extension is then given by: 

𝑆(𝑁) = 𝑘(ln	(𝑁) 

where 𝑘( is the Boltzmann constant. As any observed macrostate i at a given extension is realized 

from a specific number of microstates occurring with equal likelihood, the probability of each 

macrostate to occur is proportional to the number of microstates forming that macrostate 𝑃, =

𝑁/𝑁./.01, where 𝑁./.01 is the total number of possible unique states forming all macrostates.  From 

this perspective, conformational entropy can be viewed as a thermodynamic potential, as a chain 

will collapse in parallel to its synthesis [5]. Indeed, for tethered macromolecules, single molecule 

force spectroscopy techniques such as the Atomic Force Microscopy (AFM), have given us a 

glimpse into better understanding the forces related to the entropically-driven polymeric collapse. 

AFM tethers a single molecule between a surface and a cantilever and can apply forces ranging 

from pN to nN while changing the tether length over nm distances [6]. For example, a 
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macromolecule made from ~100 units requires forces of several hundred pN to extend to less 

than 90% its contour length [7]. AFM also measured the strength of the covalent bonds holding 

the polymeric backbone together, which ranged between 2 to 4 nN [8]. Interestingly, these forces 

are smaller than the theoretical force needed to fully extend a 100-unit polymer to its contour 

length [7]. Another interesting finding from single molecule measurements comes from the 

entropic collapse, which can contract a polypeptide chain for tens of nanometers against forces 

as high as 10 pN, to form the native state of a protein and generate a barrier of ~6 𝑘(𝑇 at 12 pN 

[9]. It was proposed that this collapse represents a force-induced barrier, as typically the end-to-

end difference between a folded and unfolded protein is less than 1 nm [9]. Obviously, the single 

molecule measurements represent systems out-of-equilibrium, where the probability of each state 

𝑃, changes with force and time. 

Here I analyze from an entropic perspective the behavior of a macromolecule attached at 

one of its ends, which is representative for polymers on a surface or proteins emerging from the 

ribosome (Figure 1). I use a simple self-avoiding random-walk approach to simulate and 

determine the number of equivalent conformations that a molecule can take when diffusing on a 

2D and 3D lattice along Cartesian (or rectangular) coordinates. I find that entropy increases 

rapidly with the number of monomeric units and estimate that for a 100-units polymer to be of ~ 

85.5 𝑘(𝑇 , and ~ 129 𝑘(𝑇 respectively. I then use a realistic chain model to determine the most 

likely conformation of a polymer and find that the conformation with the lowest entropy is in close 

proximity to the surface, in a collapsed state. Taken together, this study aims to improve our 

understanding on how entropic effects can be the driving force for the collapse of polymers close 

to a surface and how this collapse can play a crucial role in reducing the number of conformations 

during protein folding. 
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METHODS 

Simulations were done using Igor Pro (Wavemetrics), where a chain was first randomly grown in 

2D to have a desired number of units, or nodes, one step at a time. The chain was grown starting 

from point (0,0) in (z,x) and using a random value taken from a uniform distribution to determine 

the direction of the following step as either +z, -z, +x or -x. After each step, the algorithm checked 

(1) the hard-wall assumption: that the value along the z axis is positive, as a molecule cannot 

pass through the surface to which it is attached;  (2) excluded volume assumption: that the 

position of the node generated does not overlap with any other previously generated nodes, as 

two nodes cannot occupy the same position in space. The conformations satisfying the hard-wall 

and excluded volume conditions were then analyzed against previously simulated paths and were 

collected if the generated conformation (microstate) did not appear previously. The simulation 

was run until no new conformations were generated. A similar approach was employed for the 3D 

simulations over Cartesian coordinates, where the simulation was started in (0,0,0) for (x,y,z) and 

the chain was grown with equal probability of one step along each of the three possible directions. 

Following data collection, the randomly generated paths were analyzed based on either the 

separation between the surface and the free end of the molecule (the value reached along the z 

coordinate), or the distance between the two ends, evaluated as √𝑥5 + 𝑧5 for 2D search, and as 

8𝑥5 + 𝑦5 + 𝑧5 for the 3D search. The entropy was evaluated as 𝑘(ln	(𝑁:0; − 𝑁:,=), where 𝑁:0; 

is the highest number of equivalent microstates for a given number of units n, and 𝑁:,= is the 

occurrences in the state with the lowest occupancy.  

 

For realistic molecular simulations, 1,000,000 traces were generated having 100 

nodes/units and a maximum bending angle between segments of 𝜃 =	0.96 rad (equivalent to 𝜃 =

	-0.96), where: 
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〈cos 𝜃〉 = 	
〈𝑙, ∙ 𝑙,GH〉	
𝑙I
5  

with 𝑙, and 𝑙,GH being two adjacent segments and 𝑙I being the bond length. This stiffness 

parameter can be related to contour length 𝑙J	as [10]: 

 

𝑙J = 	
−𝑙I

ln	(〈cos 𝜃〉)
 

 

The value for the bending angle was chosen to match the persistence length of a 

polypeptide chain [11]. During simulations, the molecules were not allowed to have coordinates 

with negative values in z. Following these simulations, the generated trajectories (molecular 

conformations) were used to estimate the separation between the free end and the surface, as 

well as the molecular end-to-end length, following the same procedure, as described above.  

 

RESULTS 

To visualize how entropy shapes the conformation of a polymer chain, we commence our journey 

with the simple example of a 2D random walk along the x-z coordinates (Figure 2). In this case, 

the walk starts from (x,z) = (0,0) and proceeds in steps of one increment along either the x 

coordinate (𝑥+= 1 or 𝑥−= 1) or along the z coordinate (𝑧+= 1 or 𝑧−= 1). Due to the 

hard/impenetrable surface assumption, the first step cannot be -z, and the pathways that led to a 

negative value in z were discarded as well. Furthermore, the same position can only be occupied 

by a single node. Figure 2A shows the possible conformations for a chain made of five nodes 

(𝑛 = 5) separated over their extension in respect to the surface, 𝑙N (which is also the final value in 

z). For any given number of nodes (monomers), the chain can only have a single fully extended 

conformation (𝑙N = 𝑛 − 1), but can follow up many collapsed paths. In the case considered here 
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for 	𝑛 = 5 nodes, there are 𝑁 = 8 possible conformations that reach an extension from the surface 

of 3 units, 32 microstates that have the free end 2 units away from the surface, and only 8 

conformations where the final node lies on the surface (Figure 2A). This simple experiment 

reveals several interesting subtilities about a polymeric chain: 1. a molecule has a lower free 

energy in a collapsed state than in an extended state, as there are more equivalent conformations 

(microstates) closer to the surface versus a single extended state; 2. while an untethered 

molecule will obviously have the most populated state at an average extension of zero, due to 

steric effects coming from the surface, the most likely state has an extension larger than zero. 

Hence, the macrostate with the highest probability will be close to the surface, but not on the 

surface.  

 

 

 

Figure 2. Diffusion of a polymer on a 2D lattice. All possible conformations of a n = 5 nodes chain 

arranged as a function of its extension from the surface. The highest number of equivalent states is N = 32 

at an extension ls = 2 units. The blue node shows the (0,0) position.  

 

To better understand how the chain collapse changes with the number of units forming a 

molecule, we performed the same experiment for paths ranging from 𝑛 = 2 to 𝑛 = 12 nodes. 
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When the states are counted based on their final separation from the surface, 𝑙N, a few things 

become apparent (Figure 3A): 1. the number of possible microstates 𝑁 increases dramatically 

with the number of monomers 𝑛; 2. the location of the most populated macrostate slowly increases 

with the number of nodes, away from the surface (dotted line in Figure 3A). To quantify how this 

change in number of microstates, 𝑁, evolves with the number of steps, we can track the number 

of conformations of the most populated macrostate as conformational entropy, 𝑆 (Figure 3B). In 

this case, the entropy change can be simply defined as ∆𝑆 = 𝑘(ln	(𝑁:0; − 1)	, since there is a 

single fully stretched state for any given number of nodes, 𝑛. The change in conformational 

entropy with the number of nodes is linear, evolving with  ∆𝑆5R = −1.5 + 0.87 ∙ 𝑛 over the 

investigated range, in units of 𝑘(.  
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Figure 3. Entropy change of a polymer on a 2D lattice. A) Number of states as a function of extension 

from the surface, calculated for a chain with changing number of units, from n = 2 to n = 12. B) Calculated 

entropy increase from a fully stretched state to the most populated state, assuming surface-to-free-

molecular-end extension equivalency. C) Number of states arranged by molecular length. D) Calculated 

entropy increase from fully stretched states to the most populated state, assuming end-to-end extension 

equivalency. The dotted line in panels A and C shows the most populate state. The continuous lines in 

panels B and D show linear the fit. 
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So far, we considered the microstates equivalency from the perspective of the free end in 

respect to the surface. However, the same exercise can be done from the perspective of the end-

to-end separation, or molecular length 𝑙: (Figure 3C). While, for example, a 2-node path will 

have two microstates with 𝑙N = 0, which are (𝑥, 𝑧) = (+1,0) and (𝑥, 𝑧) = (−1,0), and one with 𝑙N =

1, (𝑥, 𝑧) = (0,1), from the molecular length perspective all possible three microstates are 

equivalent and equal to one unit, 𝑙: = 1. Similarly, for higher number of units, 𝑙N will always have 

integer values, while 𝑙:, which is given by √𝑥5 + 𝑧5, will not. Interestingly, from a molecular 

microstate perspective, the number of equivalent microstates also increases rapidly with the 

number of monomeric units, while the location of the most populated macrostate slowly evolves 

with n. When following the same approach as for the surface-molecular end, the change in 

conformational entropy with the number of units can be determined (Figure 3D). In this case, a 

dependency is seen that follows the formula: ∆𝑆5R = −2 + 0.89 ∙ 𝑛, also in units of 𝑘(. 
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Figure 4. Diffusion of a polymer on a 3D lattice. All possible conformation of a n = 4 nodes chain arranged 

as a function of its extension from the surface. The highest number of equivalent microstates is N = 40 at 

an extension ls = 1 and ls = 0 units.  

 

 Next, we will follow a similar analysis in 3-dimensions (3D). In this case, the random path 

was generated on a lattice along Cartesian coordinates starting from (𝑥, 𝑦, 𝑧) = (0,0,0) and 

collecting all the states that follow both the exclusion volume and hard-surface conditions (see 

Methods for more detail). As seen in Figure 4, a chain made of four nodes (𝑛 = 4) can reach a 

single stretch conformation (𝑁 = 1) in respect to the surface, 𝑙N = 1. However, the number of 

conformations rapidly increases to 𝑁 = 12 for 𝑙N = 2, and to 𝑁 = 40 for both 𝑙N = 1 and 𝑙N = 0. 
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Figure 5. Entropy change of a polymer on a 3D lattice. A) Number of microstates as a function of 

extension from the surface, calculated for a chain with changing number of units, from n = 2 to n = 8. B) 

Calculated entropy increase from fully stretched state to the most populated state, assuming surface-to-

free-molecular-end microstate equivalency. C) Number of microstates arranged by molecular length. D) 

Calculated entropy increase from fully stretched state to the most populated state, assuming end-to-end 

extension microstate equivalency. The dotted line in panels A and C shows the most populate state. The 

continuous lines in panels B and D show linear the fit. 
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 As it was the case with the 2D search, the number of possible conformations increases 

rapidly with the number of monomers, n (Figure 5A). Interestingly, the location of the most likely 

macrostate increases much slower (dotted lines in Figure 5A versus Figure 3A). From the 

number of states of the most populated surface-molecule separation, one can estimate how 

conformation entropy changes (Figure 5B). In this case, the change follows ∆𝑆YR = −1.7 + 1.4 ∙ 𝑛 

in units of 𝑘(. 

 A similar analysis can be done from a molecular perspective (Figure 5C and Figure 5D). 

As it was the case with the 2D search, a one-step path will have now four conformations for 𝑙N =

0, which are (𝑥, 𝑦, 𝑧) = (±1,0,0) and (0, ±1,0) and one with 𝑙N = 1, given by (0,0, +1). The same 

𝑛 = 2 will generate five paths with molecular length of 1 unit, 𝑙: = 5. Hence, when the 

conformation entropy is computed from a molecular perspective, it will be given by 

∆𝑆YR = 𝑘(ln	(𝑁:0; − 5). As seen in Figure 5C, the location of the most probable state evolves 

only slightly with the number of monomeric units, n. The change in conformation entropy is given 

in this case by: ∆𝑆YR = −1.4 + 1.3 ∙ 𝑛 in units of 𝑘( (Figure 5D). 

 

 

Figure 6. Freely diffusing polymer attached to a hard surface. A) Gizmo showing 1000 randomly-picked 

traces (from total of 1,000,000 simulated) of a polymer with 100 units, color coded based on their surface-

to-free-molecular-end separation. The thick black line represents the average over these traces. B) Change 

in the number of states as a function of extension from the surface. The most populated state is at molecular 

extension of 1 unit, and the average at ~11.6 units (dotted vertical line). C) Change in the number of states 
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as a function of molecular extension. The most populated state is at molecular extension of 13 units, and 

the average at ~16.4 units (dotted vertical line). 

 

 Next, we will follow the random walk approach for a search which is not restricted to a 

lattice (Figure 6). This search better resembles a realistic chain and a persistence length close 

to that of a polypeptide was chosen (see Methods for more details). In this case, for a molecule 

made of 100 monomers, the generated trajectories can be plotted and color-coded based on their 

separation from the surface (Figure 6A). As can be seen in this figure panel, representing only 

1000 of the total generated traces, most of the molecules are in close proximity to the surface 

(red vs purple when following a rainbow color scheme for 𝑙N). If we bin the separation from the 

surface of the free molecular end in increments of one unit, the most likely state has an occupancy 

of only 1 unit away from the surface, while the average state is ~11.6 bond-length away (Figure 

6B). From the molecular end-to-end length, the most likely state is 13 bond-length away, while 

the average is ~16.4 units (Figure 6C). From both perspectives, the macrostate with the highest 

population (and hence the lowest entropic energy) is close to the surface. This result agrees 

qualitatively with the predictions arising from the lattice simulations (dotted lines in Figures 3 and 

5).  These results further strengthen the concept that a macromolecule has the natural tendency 

to collapse, in order to minimize its conformational energy. Furthermore, it was shown 

experimentally for an unfolded peptide chain has a gyration radius of 𝑅]~2.5 nm [12], which is 

equivalent to an end-to-end distance of ~18 units (considering the size of an amino acid as 0.34 

nm and that 𝑙: = 𝑅]√6).  

 

DISCUSSION 

There are many instances where macromolecules are bound at one end to a surface, while having 

the other end either freely diffusing, or tethered to a measuring probe (such as an AFM cantilever 
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or a trapped micrometer-sized bead). In the introduction, we looked at two examples, a polymer 

attached to a flat surface and a polyprotein being produced by the ribosome, in the process of 

becoming a protein (Figure 1).  

Estimating the number of microstates leading to a certain macrostate represents a 

straightforward way to find the most-likely polymeric conformations and to estimate the entropic 

energy gain when a molecule collapses close to a surface. Computationally it is not possible to 

determine all the possible equivalent conformations (microstates) producing a certain extension. 

Due to this limitation, we focus on diffusion over a lattice, which will provide the lower bounds for 

the contribution of conformation entropy to chain collapse. Polymer elasticity models, such as the 

freely-jointed chain [2] and worm-like chain [13] predict that infinite force/energy is required to fully 

stretch a polymer chain, and hence cannot be used to estimate the entropy from a fully stretched 

to a collapsed state. Due to the self-avoiding condition, there is no straightforward formula to 

estimate the number of unique states that correspond to a given extension. Hence, here a 

random-walk search approach over a lattice was used to determine the number of possible 

microstates for molecular diffusion, leading to a specific macrostate. In the present case, 

macrostates can be defined as either from the perspective of the separation of the free molecular 

end from the surface, or from the end-to-end separation between the first and last nodes of a 

molecule. At high enough monomeric units, the two perspectives produce similar entropy values. 

In both cases, the entropy can be then calculated as the logarithm of the number of microstates. 

Interestingly, for both the 2D and 3D lattice searches, and for both reference points, the entropy 

increases linearly with the number of monomeric units. This relation allowed us to estimate the 

conformation entropy for larger polymers. Furthermore, the most occupied state, and hence the 

state with the lowest conformational entropy, was found to be close, but not directly lying on the 

surface. This result neatly explains the mushroom-like conformation that polymers take close to 

an inert surface, where they are neither extended, not fully attached to the surface. However, the 

stem of the mushroom shape is surprisingly short, and the cap surprisingly compact.  
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Diffusion of a more realistic chain was then followed. Finding all the possible states for a 

randomly diffusing polymer is currently an unsurmountable task, given that the total possible 

number of conformations must be achieved. Hence, this approach is better suited to determine 

the most likely polymer shape, and not to evaluate the conformational entropy difference between 

an equilibrium state and the highest energy/lowest entropy state (which is the fully stretched state, 

with zero entropy). A more relevant result here is the insight that these simulations provide a 

window into the probability distribution between macrostates. Here we find that the most stable 

conformation is only one monomeric unit away from the surface when considering surface-free 

end interaction, with an occupancy of ~5.6% and the average state is at ~11.6 units away. When 

considering the end-to-end interaction, the most energetically favorable conformation has a 

separation of ~13 units with an occupancy of also ~5.6% and an average state of ~16.4 units. To 

put things in perspective, for 100-amino acids protein, where the unit size is ~0.34 nm/amino acid, 

the entropic collapse alone would bring the ends of the polypeptide chain to ~4.4 nm and ~4 nm 

away from the surface of the ribosome. Considering that the average size of a protein is ~4 nm, 

the path from the collapsed state to the folded structure is relatively short. 

In the approach taken here, we looked only at the free energy change arising from entropic 

contributions of the polymeric chain, and disregarded other interactions such as solvation effects 

[14], steric forces [2], attractive van der Waals, attractive and repulsive electrostatic interactions 

[15, 16], electronic structure [17] and crowding-induced interactions [18]. To quantify the effect of 

conformation entropy on the overall polymeric collapse, and rather the energetic cost for a 

polymer to be maintained fully extended, a direct approach is to analyze the energies associated 

with it. Here we use as units 𝑘(𝑇, as typically one such unit is considered at the boundary between 

an interaction and a randomly driven process [19]. To put things in perspective, a hydrogen bond 

has an average energy of 2-7  𝑘(𝑇, a protein requires between 8-25 𝑘(𝑇 to cross its folding 

barrier, while a covalent bond, which typically forms the backbone of a polymer, is > 100 𝑘(𝑇 

(Table 1). Relations were obtained on how conformational entropies vary with the size of a 
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molecule while using simulated 2D and 3D trajectories along Cartesian coordinates. We can now 

use these relations to estimate the entropic conformational energies for a typical 100-units 

polymer. For our most simple considered case - diffusion along a 2D Cartesian lattice - we find 

that the entropic energy difference is ∆𝐸5R = ∆𝑆5R ∙ 𝑇 = 85.5	𝑘(𝑇 from a surface to free molecular 

end equivalency, and ∆𝐸5R = 87	𝑘(𝑇 from an end-to-end molecular correspondence (Figure 3). 

For the same 100-units chain, these energies are even greater when considering a 3D diffusion 

along Cartesian coordinates, at ∆𝐸YR = ∆𝑆YR ∙ 𝑇 = 138	𝑘(𝑇 from a surface-molecule analysis and 

∆𝐸YR = 129	𝑘(𝑇 for an end-to-end interaction (Figure 5). As can be seen from the comparison 

with other types of energies, these values already exceed the energy separating the folded and 

transition states of a protein and are comparable with the bond energies of the covalent 

interactions that form the backbone of a polymer or polypeptide (Table 1). Hence entropic 

collapse contributes significantly the free energy, effectively preventing polymers from stretching 

far away from a surface. 

 

Table 1 – Typical energy for various interactions involving polymers and proteins. 

Type of interaction Energy (𝒌𝑩𝑻) 
Van der Waals bonds (per interaction) [19, 

20] 

 0.1 - 1 

Hydrophobic effect (per -CH2- group) [21] ~2 	

Rotation along C-C bond [20] ~ 4 

Trans-gauche barrier alkanes [20] ~ 6 

Hydrogen bond [20, 22] 2 - 7 

Solvation polypeptide [23] 6 - 18  

Folded protein [24, 25] 8 - 25 

Covalent bonds [8, 20] 100 - 200 

Chain entropy (100 units) > 129 
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Levinthal proposed his apparent paradox more than 90 years ago [4]. From this 

perspective, a random 100-amino acids polypeptide chain is not able to sample all its possible 

conformations in a timely manner, to become a protein. This realization led to the proposal of a 

funnel energy landscape [3], where the free energy ∆𝐺 decreases as the conformational entropy 

decreases as well (since ∆𝐺 = 	∆𝐻 − 𝑇∆𝑆, with ∆𝐻 representing the enthalpic contribution that 

must decrease faster than the entropic increase to maintain an overall negative value for ∆𝐺). The 

high values associated with entropic collapse make it very tempting to consider that 

conformational entropy might be the main driver behind dimensionality reduction in protein folding. 

Indeed, we recently proposed such an idea, without having an accurate estimate of the values of 

the entropic energies [24]. Here we determined the lower bounds for these values. Obviously, as 

a peptide chain is being produced by the ribosome, it continuously undergoes an entropic 

collapse, and would not stay as a straight stick that suddenly contracts. Hence, the conformational 

entropy associated with the polymeric collapse is better viewed as a potential free energy of the 

folding process, or as an energetic cost, if such a process would not take place. Nevertheless, 

this view adds an additional component to the funnel view describing the folding energy landscape 

of a protein [24]: one that starts from a high-free-energy / low-entropy extended state, passes 

through a collapsed state (with maximum conformation entropy), and ends up in a well-defined 

folded 3D structure, with low entropy.   

 

CONCLUSIONS 

Conformational entropy must be of great importance for polymeric collapse and protein folding. 

When considering a macromolecule, a subtle thing is that the probability that a polymeric chain 

extends fully is the same as the probability of any other conformation. But estimates of the entropic 

energy driving polymeric collapse are lacking and how this phenomenon might play a significant 

role in the behavior of tethered biomolecules is poorly understood. Here, through iterative search, 

I provide an estimate of the minimum conformational entropy gained through macromolecular 
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collapse. Given the energy cost that an average polypeptide chain would encounter to be fully 

stretched, which is larger than the free energy separating the folded and unfolded states, the 

conformational entropy seems to have a decisive role in determining the mushroom-like shape of 

polymers and in the protein-folding process. Interestingly, at the two extremes of the protein 

folding are states with low entropy, at one end is the fully stretched polymeric state that would 

have an energy too high to be ever achieved, and at the other is the highly ordered native state 

of the protein, which is conformationally restricted by the hydrogen bonds that hold together the 

secondary structure elements of the molecule. 
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