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A B S T R A C T   

With the increasing trend of greenhouse gases in the atmosphere, by 2052 the temperature is expected to rise by 
1.5 ◦C from the Pre-industrial Period, affecting future extreme rainfall events. This necessitates quantifying 
extreme hydrologic events to plan and design hydrologic and hydraulic structures using rainfall Intensity- 
Duration-Frequency (IDF) curves to adapt to future climate scenarios. This study developed future projected 
IDF curves for the Southeast United States using disaggregated sub-hourly (15-, 30-, and 45-min) monthly 
maximum rainfall from 2030 to 2059 using five climate models under the Representative Concentration Pathway 
8.5 scenario. A computationally efficient feed-forward back-propagation Artificial Neural Network (ANN)-based 
approach was found to be significantly superior for disaggregating rainfall to a stochastic model with an average 
Nash–Sutcliffe efficiency (NSE) ranging from 0.67 to 0.84. The study found that there is an increasing rate of 
future projected annual maximum rainfall intensities in the range of 7% to 36% with reference to the historical 
period. The spatial variation in future projected extreme rainfall depths showed that the Gulf-Atlantic coast and 
the Appalachian Mountains are expected to receive more extreme rainfalls.   

1. Introduction 

Extreme rainfall events pose a serious threat to the ecosystem and 
economy by amplifying both the magnitude and frequency of floods 
(Nerantzaki and Papalexiou, 2022; Rahaman et al., 2023; Zhao et al., 
2023). Therefore, rainfall Intensity-Duration-Frequency (IDF) curves are 
used when planning and designing hydrologic and hydraulic structures 
(Mirhosseini et al., 2014; Yan et al., 2018). However, the existing 
structures for rainfall and floods designed are based on the stationarity 
of the IDF curves which give a probability of rainfall intensity in a given 
period, particularly National Oceanic and Atmospheric Administration 
Atlas 14 (Perica et al., 2013; Soltani et al., 2020; Sun et al., 2019; Zhao 
et al., 2022a, 2022b). In addition, the IDF curves are used in the design 
of erosion control structures, storm, and sewer drainage designs, and 
bridges (Amatya et al., 2021). 

According to the IPCC (2018), by 2052 the temperature is expected 
to rise by 1.5 ◦C from the Pre-industrial Period with the current emission 

rate of greenhouse gases such as carbon dioxide, which eventually will 
affect future extreme rainfall events (Budhathoki et al., 2022; Takhel
lambam et al., 2023). The increase in temperature has resulted in higher 
water-holding capacity in the atmosphere, i.e., a 7% increase in water- 
holding capacity per degree Celsius of temperature (Easterling et al., 
2017; Trenberth, 2011). The plausible effects include a change in rain
fall amount, frequency, and intensities or probable maximum rainfalls 
(Cheng and AghaKouchak, 2014). Under these conditions, extreme 
rainfall events are expected to occur more frequently and with greater 
intensity in most parts of the world, with urban areas being the most 
vulnerable (Ghasemi Tousi et al., 2021). Therefore, to adapt or reduce 
the vulnerability of water management structures, future rainfall char
acteristics under the changing climate should be considered while 
developing IDF curves (Mirhosseini et al., 2014; Noor et al., 2022). For 
instance, the most critical component of cities’ structures includes 
storm-water drainage and flood mitigation measured which are based on 
the IDF curves (Crévolin et al., 2023; Ghasemi Tousi et al., 2021). 
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Previous studies developed future projected IDF curves considering 
the nonstationary rainfall characteristics under changing climate (Cheng 
and AghaKouchak, 2014; Ganguli and Coulibaly, 2019; Ghasemi Tousi 
et al., 2021; Mirhosseini et al., 2013, 2014; Zhao et al., 2021). These 
studies employed Generalized Extreme Value (GEV) distribution for 
developing rainfall IDF curves owing to the better modeling of extreme 
rainfall events. Cheng and AghaKouchak (2014) reported an underes
timation of extreme rainfall of up to 60% under the stationarity 
assumption compared to nonstationary conditions using five locations in 
the United States. Likewise, Ganguli and Coulibaly (2019) developed 
IDF curves under a nonstationary model over eight locations in the 
densely populated and major financial region of Southern Ontario, 
Canada. Ghasemi Tousi et al. (2021) updated the IDF curves for the city 
of Tucson, Arizona from 2020 to 2051 using eight global climate models. 
The findings showed a significant increase in the future extreme rainfall 
event which eventually needed to update IDF curves. In addition, the 
extreme values are found significantly affected with climate model se
lection and scenarios. For example, the stormwater culvert design could 
double the design size and significantly increase the cost based on the 
model selection and warming scenarios. Moreover, Noor et al. (2022) 
proposed IDF curves along with the uncertainty for the ungauged loca
tions over Peninsular Malaysia. The results found that the shorter 
duration rainfall with a higher return period increased more than longer 
duration rainfall with a lower return period. Similarly, Mirhosseini et al. 
(2013) assessed future projected IDF curves using 15-min rainfall data in 
Alabama, United States. The 15-min rainfall was developed with 3-h 
rainfall data using a modified stochastic method of Socolofsky et al. 
(2001). This 15-min rainfall dataset was further used to develop IDF 
curves using the GEV distribution. The results demonstrated that less 
severe rainfall was anticipated for short-duration occurrences. However, 
the simulated rainfall intensities were under-predicted compared to the 
observed data. Mirhosseini et al. (2014) reported consistent results of 
underpredicted intensities. This was further improved by Mirhosseini 
et al. (2014) introducing a feedforward ANN approach. Thus, the IDF 
curves were further updated for future projected climate scenarios for 
Alabama using the GEV distribution and compared with the stochasti
cally generated rainfall of Mirhosseini et al. (2013). The ANN method 
reported superior performances compared to the stochastic models in 
developing maximum rainfall depths. Further, rainfall events with less 
than a 2-h duration showed decreased intensities, and longer-duration 
storms with higher uncertainties (Mirhosseini et al., 2014). 

Zhao et al. (2021) improved the ANN approach for rainfall disag
gregation of Mirhosseini et al. (2014) through a computationally effi
cient and more accurate approach that was applied over two cities in 
southern Vietnam. The advantages include computationally efficient 
training data that used only extreme rainfall data points instead of the 
whole series and improving accuracy through the inclusion of previously 
simulated steps of rainfall. However, the Zhao et al. (2021) method 
provided a limited assessment of the hourly and multi-hourly scales. 

In this study, we aimed to further extend the approach of Zhao et al. 
(2021) for disaggregating hourly to sub-hourly (15-, 30-, and 45-min) 
monthly maximum rainfall datasets. This is because sub-hourly rain
fall aggregates offer greater intensities than hourly rainfall aggregates 
(Takhellambam et al., 2022a). McGehee and Srivastava (2018) reported 
that maximum rainfall intensity occurred within 15 min of a storm. So, 
aggregated datasets are underestimated due to the averaging of sub- 
hourly data. In addition, McGehee and Srivastava (2018); Takhellam
bam (2023); Takhellambam et al. (2022a,b) reported that the Southeast 
region of the United States has the greatest potential for change in 
rainfall characteristics under the changing climate. This necessitates 
updating the future IDF curves required for adequate hydrologic and 
hydraulic infrastructure designs, such as dams and culverts under the 
changing climate. We hypothesize that a feed forward and back propa
gation ANN model would perform better than the stochastic model in 
the disaggregation of hourly rainfall to sub-hourly (15-, 30-, and 45- 
min) rainfall datasets. Therefore, the objectives of this study were to: 

(1) generate sub-hourly (15-, 30-, and 45-min) monthly maximum 
rainfall datasets under the RCP 8.5 scenario using the feed forward and 
back propagation ANN model, and (2) develop the projected future 
rainfall IDF curves using the GEV distribution for the Southeast United 
States using improved sub-hourly rainfalls. 

2. Material and methods 

2.1. Study area and data 

The average annual rainfall received in the Southeast United States 
(Fig. 1) is greater than the country’s average of 856 mm. The annual 
rainfall ranges from 1000 to 1250 mm inland and can go as high as 1500 
mm along the Gulf-Atlantic coastal areas (Ingram et al., 2013; Kumar 
et al., 2021, 2022a,b, 2023). The higher intensity rainfall is received on 
the Gulf-Atlantic coast and decreases inland. At the same time, the Ap
palachian Mountain region sees a greater rainfall intensity due to the 
orographic effect (Takhellambam et al., 2022a, 2023). The major factor 
for the distinctive climate in the region is due to the presence of both the 
Gulf of Mexico and the Atlantic Ocean (Ingram et al., 2013; Kunkel et al., 
2013). 

We obtained 44 years (1970–2013) of observed 15-min rainfall for 
528 gauge data from the National Oceanic and Atmospheric Adminis
tration, DSI-3260, archived at the National Climatic Data Center (NOAA 
NCEI, 2014). McGehee et al. (2021) and Takhellambam et al. (2022a,b) 
recommended using the 20.11 screening method to check the quality of 
rainfall datasets and eventually found 187 stations that passed the 
screening method based on the precipitation deficit and spatial varia
tions. Passing the 20.11 screening method requires a station to have a 
minimum of 20 years of complete observed precipitation for 11 or more 
months per year where a month must have atleast one observed rainfall 
event (McGehee and Srivastava, 2018; Takhellambam, 2023; Takhel
lambam et al., 2023). For the future projected 15-min rainfall data for 
the period 2030–59, we used five climate models for the future projected 
period (2030–59) of 15-min rainfall obtained from the North American 
Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) 
under the RCP8.5 scenario. The five models included CAN
ESM2_CANRCM4, HadGEM2-ES.WRF, GFDL-ESM2M.WRF, MPI-ESM- 
LR. RegCM4, and MPI-ESM-LR.WRF (Giorgi and Anyah, 2012; Sci
nocca et al., 2016; Skamarock et al., 2005). Hereinafter, we will refer to 
the climate model data as CANESM, HADGEM, GFDL, MPIREG, and 
MPIWRF, respectively. The Regional Climate Model-Global Climate 
Model (RCM-GCM) used GCM simulation of Coupled Model Intercom
parison Project Phase 5 (CMIP5) archive. In addition, both temporal and 
spatial scales of these models are 1 h and 0.44o, respectively (Mearns 
et al., 2017; Scinocca et al., 2016). 

2.2. Bias-correction 

The use of climate model data in hydrological-related studies has 
suffered from errors due to the simplified or limited representation at the 
regional scale (Takhellambam, 2023; Takhellambam et al., 2023). For 
instance, there are lower rainfall intensities with a large number of wet 
days which do not represent the observed rainfall intensities. To solve 
this problem, we used the quantile delta mapping method (Cannon et al., 
2015; Takhellambam et al., 2023) suggested by Takhellambam et al. 
(2022a), whose performance were checked with annual average rainfall, 
intensity and wet-hour frequency. This method incorporates the 
non-stationarity of projected rainfall datasets which methods like 
quantile mapping failed to do so. The bias correction was carried out on 
a monthly scale to acquire intermittency of the rainfall while also pre
serving the rainfall characteristics. 

x̂m,p.adjst. = xm,p
F−1

o

(
Fm,p

(
xm,p

) )

F−1
m,h

(
Fm,p

(
xm,p

) ) (1) 
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where x is the rainfall data, and F represents the cumulative probability 
distribution function for either the observed (o) or model-based (m) 
historical (h) and future projected (p) scenarios. From this onwards, we 
used the terms observed and historical to represent only observed 

datasets and climate model historical datasets, respectively. 

Fig. 1. Study area and location of observed 187 rainfall stations over the Southeast United States.  

Fig. 2. An overview of the disaggregation of hourly (c) monthly maximum rainfall datasets to sub-hourly (f) monthly maximum rainfall datasets using activation of 
rectified linear unit function (R(x)). Here, P is the monthly maximum at a given time (t) step. t-1 and t + 1 are the preceding and subsequent hourly rainfall datasets, 
respectively. 
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2.3. Disaggregation of hourly rainfall to sub-hourly monthly maximum 
rainfall using ANN 

The ANN model of Zhao et al. (2021), which was originally devel
oped for disaggregating daily rainfall to sub-daily monthly maximum 
rainfall, was tested in this study for disaggregating hourly to sub-hourly 
(i.e., 15-, 30-, and 45-min) monthly maximum rainfall. This ANN model 
is a multi-layered perceptron neural network, where the output layer 
gives the sub-hourly monthly-maximum rainfall information based on 
the hourly information from the input layer. This has three layers of 
input, hidden, and output layers, with 20 neurons in the hidden layers 
which use the activation function of the rectified linear unit (ReLU). 
ReLU enables the model to learn more quickly and perform better 
(Brownlee, 2019). The loss function and optimizer are the mean squared 
error and root mean squared propagation (RMSprop), respectively. 

We briefly introduce the ANN model below. We refer the readers to 
Zhao et al. (2021) for more details. To estimate the extreme rainfall 
amount at finer resolutions (sub-hour), the ANN model uses the con
current, preceding, and succeeding rainfall at coarser resolutions 
(hourly) instead of the entire rainfall time series (Fig. 2). For instance, to 
obtain the extreme rainfall at the 15-min resolution, the ANN model 
extracts the total 1-h rainfall that occurs at the current time step as well 
as at the previous and subsequent time step (hourly scale). While 
developing the models, we used 70% and 30% of datasets for training 
and testing, respectively. Overall, we estimated (3 resolutions × 187) 
561 models in our study area owing to the different rainfall generation 
mechanisms at different locations. For instance, the rainfall generation 
mechanisms in the Gulf-Atlantic coast and Appalachian Mountain are 
mainly due to the convective and orographic effects respectively. 

2.4. Performance comparison in generating monthly maximum rainfall 
intensities 

The assessment of the ANN’s performance in disaggregating hourly 
to sub-hourly monthly maximum rainfall was conducted using the gauge 
observed rainfall data. We aggregated the observed 15-min rainfall into 
1-h intervals. This rainfall data is then disaggregated to monthly 
maximum rainfall of 15-min using the feed-forward back-propagation 
ANN model. Similarly, we disaggregated the remaining temporal scales 
of 30- and 45-min rainfall datasets. 

We compared the ANN-disaggregated monthly maximum 15-, 30-, 
and 45-min rainfall data with those of stochastically generated rainfall 
data by Takhellambam et al. (2022a). Since the stochastic data were 
available in continuous time series of rainfall at 15-min intervals, we 
also aggregated the 15-min scale to the scales of 30- and 45-min. 
Further, we extracted the monthly maximum rainfall from each of the 
15-, 30-, and 45-min rainfall datasets. Thus, the performance of the 
monthly maximum rainfall of each scale using both the ANN and sto
chastically generated datasets was compared as discussed below. 

More specifically, the statistical measures of Nash–Sutcliffe effi
ciency (NSE), Pearson correlation coefficient and Perccent bias (PBIAS) 
were used to assess the performance of rainfall disaggregation. These 
measures were computed for each station using the observed and dis
aggregated monthly maximum rainfall for the entire time series. These 
performance measures are defined below, starting with the NSE given by 

NSE = 1 −

∑n

i=1
(oi − mi)

2

∑n

i=1
(oi − oi)

2
(2)  

where, o = observed rainfall, o = average observed rainfall, m = model 
rainfall, and n = number of observations. 

The Pearson correlation coefficient, in this setting, is defined as 

r =

∑n

i=1
(oi − oi)(mi − mi)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑n

i=1
(oi − oi)

2
]√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

∑n

i=1
(mi − mi)

2
]√ (3)  

where m = average simulated rainfall. 
The Percent bias is defined as 

PBIAS =

∑n

i=1
(oi − mi)

∑n

i=1
(oi)

(4) 

We hypothesized that the stochastic approach would outperform the 
ANN model in disaggregating the hourly to sub-hourly rainfall with the 
null hypothesis, H0: the stochastic model performed equally with the 
ANN model. Subsequently, using a significance level of 5%, we used a 
one-sided paired Student t-test as well as a non-parametric Wilcoxon 
sign rank test (the latter to confirm that possible outliers do not impact 
the conclusion of the t-test). 

2.5. Developing IDF curves 

The Type-1 GEV distribution has been employed extensively in past 
studies owing to its simplicity and all useful moments are expressible 
with the two parameters of location and scale (Phien, 1987). Previous 
studies by Mirhosseini et al. (2013, 2014) reported that the GEV dis
tribution well fitted developing rainfall IDF curves in the region, 
particularly the Gumbel distribution. The GEV probability distribution 
consists of three limiting forms i.e., Gumbel (ξ→0), Frechet (ξ > 0), and 
Weibull (ξ < 0) (Coles, 2001) and is defined as follows. 

G(x) = exp
{

−
[
1 + ξ

(x − μ
σ

) ]−1/ξ
}

for x : 1 + ξ
(x − μ

σ

)
> 0 (5)  

where x is the rainfall intensity. μ, σ, and ξ are location, scale, and shape 
parameters respectively. The Gumbel distribution with ξ→0 is defined as 

G(x) = exp
[

− exp
{

−
(x − μ

σ

) } ]
for x : 1 + ξ

(x − μ
σ

)
> 0 (6) 

In addition, the parameter estimation is performed using maximum 
likelihood estimation since, if the model is correctly specified, it has 
optimal statistical properties compared to other methods such as the 
method of moments (Mahdi and Cenac, 2005). The Kolmogorov- 
Smirnov (KS) test is used to test the goodness-of-fit at a significance 
level of 5% assuming the parameters are known (Delignette-Muller and 
Dutang, 2015), keeping in mind that, this test could be conservative i.e., 
not reject H0 when it should (Lilliefors, 1967). The following procedure 
was used to obtain the IDF curves.  

1) Obtain the annual maximum series of rainfall for a given duration (T) 
of 15-, 30-, and 45-min.  

2) Evaluate the rainfall depth, XT for a given return period (2-, 5-, 25-, 
50-, and 100-year) for the Gumbel distribution which is given by. 

XT = x + KT S (7)  

where, x, KT,and S are mean, frequency factor, and standard deviation, 
respectively. 

KT = −

̅̅̅
6

√

π

[

0.5772 + ln
(

ln
(

T
T − 1

) ) ]

(8)    

3) The rainfall depths are plotted for each duration for different return 
periods. 
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3. Results and discussion 

The performance of the ANN in disaggregating 1-h rainfall to 
monthly maximum 15-, 30-, and 45-min rainfall is reported below. The 
monthly maximum rainfall intensities are then compared between the 
stochastic and the ANN models. Finally, using ANN, the results of the 
generated future IDF curves are presented alongside historical and 
projected future scenarios. 

3.1. Performance of bias correction and ANN for rainfall disaggregation 

Bias correction improved the output of the climate models, especially 
the frequencies of wet days, annual average rainfall amount, and rainfall 
intensity. A detailed explanation for the performance of bias correction 
of hourly rainfall is given in Takhellambam et al. (2022a). The perfor
mance of disaggregated rainfall using the ANN approach was assessed by 
employing the Pearson correlation coefficient (r) and the Root mean 
square error (RMSE) in both training and test data for the generation of 
15-, 30-, and 45-min monthly maximum rainfall and reported for the 
187 rainfall stations. The RMSE values are reported with normalization 
of both training and testing datasets that removes the median and scales 
using the interquartile range i.e., RMSE has no unit. The minimum and 
maximum r values of the training datasets were 0.75 and 0.90, respec
tively (Fig. 3). On the other hand, as expected, the r values on the test 
datasets were found to be lower than those of the training datasets, with 
minimum and maximum of 0.62 and 0.88, respectively. The average r 
value for disaggregating to 15-min was found to be 0.84 and 0.77 for 
training and test data, respectively. Likewise, the RMSE value has an 
average value of 0.37 and 0.48 for training and test data, respectively. 

The r value when disaggregating to 30-min rainfall was found to 
have an average value of 0.92 in training and 0.90 in test data. The range 
of values during training and testing were (0.89, 0.96) and (0.8, 0.97), 
respectively. Furthermore, we found that the RMSE value in both 
training and test data ranges from 0.21 to 0.4, and 0.22 to 0.58, 
respectively (Fig. 3). Similarly, the disaggregation to 45-min rainfall was 
found to have an average r value of 0.95 and 0.93 in training and test 
data. The r values during training and test range from (0.92, 0.98) and 
(0.87, 0.98, respectively. RMSE values showed ranges of (0.16, 0.36) 

and (0.19, 0.48) for training and test data, respectively. These results are 
in line with the results of Zhao et al. (2021). As expected, the perfor
mance of the ANN is satisfactory with r >0.60 in disaggregating to the 
monthly maximum sub-hourly scale using the hourly rainfall datasets 
(Mirhosseini et al., 2014). Moreover, we found a better performance for 
longer periods of 30- and 45-min of rainfall datasets compared to the 15- 
min disaggregating of monthly maximum rainfall data. This better 
performance of the ANN with longer durations for disaggregating rain
fall datasets is consistent with Mirhosseini et al. (2014). One of the main 
reasons for this is mainly due to the fact that hourly rainfall provides less 
information as the gaps in resolution become larger (Zhao et al., 2021), 
i.e., there is the smoothing of rainfall intensities while aggregating the 
15-min to 30- and 45-min rainfall datasets (Op de Hipt et al., 2018). 

We further compared the performance of the ANN in disaggregating 
hourly rainfall to the sub-hourly monthly maximum with a recently 
developed stochastically-generated 15-min rainfall dataset of Takhel
lambam et al. (2022a). We compared the stochastic and ANN methods in 
generating the monthly maximum rainfall using the 1-h data (Figs. 4 and 
5). The quantile-quantile plot shows that the performance of the sto
chastic method is closely related to the observed rainfall for smaller 
rainfall depths (the solid line represents the perfect model). However, as 
the rainfall depth increases, the stochastic model shows an increase in 
the variance in all the temporal scales of 15-, 30-, and 45-min. Takhel
lambam et al. (2022a) concluded that the stochastic method under
estimated the rainfall intensities compared to the observed datasets with 
an average NSE and r ranging from 0.48 to 0.8 and 0.78 to 0.9, 
respectively (Fig. 5). 

The quantile-quantile plot of the ANN method shows a better per
formance with smaller variance than the stochastic method (Fig. 4), 
especially with higher rainfall intensities. The average NSE, r and PBIAS 
values were found in the range of 0.67 to 0.85,0.83 to 0.92, and 0.05 to 
0.07 respectively (Fig. 5). This indicated that the ANN has a satisfactory 
performance when generating monthly maximum rainfall of 15-, 30-, 
and 45-min from 1-h data since its NSE is >0.6 (Mirhosseini et al., 2014). 

Moreover, we found the null hypothesis of better performance of 
stochastic approach than the ANN model in disaggregating hourly data 
to a monthly maximum of sub-hourly rainfall data is rejected (p- 
value~0) using one-sided Student t-test and Wilcoxon sign rank test, 

Fig. 3. Boxplots showing the performance comparison of the ANN model for disaggregating hourly to sub-hourly monthly maximum rainfall data during training 
(denoted by test) and testing (denoted by train) for 187 stations. Asterisk denotes the average value of coefficient of correlation and RMSE value. 
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favoring the alternate hypothesis (at a 5% significance level). Therefore, 
we conclude that the ANN model’s performance is superior compared to 
the stochastic model in generating 15-, 30-, and 45-min monthly 
maximum rainfall from 1-h rainfall. Previous studies also found similar 
results of superior performance by the ANN model over other disag
gregation methods, especially compared to the stochastic method 
(Mirhosseini et al., 2014; Zhao et al., 2021). This is because neural 
networks can perform better in approximating complex relationships. 
The unique structure of the ANN, which connects each hidden layer to 
the output nodes provides a better approximation of complex non-linear 
relationships with no major distributional assumptions (Dibike and 
Coulibaly, 2006; Mirhosseini et al., 2014). 

3.2. Rainfall intensity duration frequency curves 

The future projected rainfall IDF curves were developed using du
rations of 15-, 30-, and 45-min with return periods of 2-, 5-, 10-, 25-, 50-, 
and 100-year using five climate models under the RCP8.5 scenario for 
the Southeast United States. We used kriging interpolation to generate a 
spatial variation of extreme rainfalls that provides an understanding and 
identification of extreme rainfall areas. This resulted in 90 different 
maps (5 RCMs per 6 Return Periods per 3 Durations). For brevity, we 
provide maps for all durations with return periods of 25-, 50-, and 100- 
year for the CANESM model (Fig. 6). The remaining models are pre
sented in the supplementary file (Supplementary Figs. S1–S4). Fig. 6 
shows the spatial variations of future projected annual maximum rain
fall intensities of 15-, 30-, and 45-min with a return period of 25-, 50-, 
and 100-year using the CANESM model. This provides information on 
rainfall magnitude and recurrence of extreme rainfall intensities based 
on frequency analysis (Ragno et al., 2018). 

The maximum annual rainfall intensity using the duration of 15-min 
under the CANESM model was found to range from 30 to 234 mm/h 
under 2-, 5-, 10-, 25-, 50-, and 100- year return periods. Likewise, the 

maximum annual rainfall intensity for the remaining duration of 30-, 
and 45-min ranged from 22 to 193 mm/h and 15 to 148 mm/h, 
respectively. We observed (Fig. 6) that the extreme rainfall intensities of 
annual maximum of 15-, 30-, and 45-min with the return period of 25-, 
50-, and 100-year are mostly found in both the Gulf-Atlantic coast and 
the Appalachian Mountains. The remaining climate models also found 
results consistent with this (see Supplementary Figs. S1–S4). This 
demonstrates the similar higher and lower trend of both annual average 
and maximum rainfall intensities over the region (Takhellambam et al., 
2023). Among these models, the MPIREG model found greater 
maximum rainfall intensities. The remaining models of HADGEM, GFDL, 
MPIREG, and MPIWRF for all durations showed maximum rainfall in
tensities ranging from 20 to 227 mm/h, 16 to 168 mm/h, 16 to 259 mm/ 
h, and 16 to 239 mm/h, respectively, in given return periods of 2-, 5-, 
10-, 25-, 50-, and 100-year. The differences among these models, among 
others, are due to the different mechanisms for generating rainfall 
(Mirhosseini et al., 2014). These multiple models enable us to quantify 
the ranges of maximum rainfall intensities. 

Convective rainfalls cause more rain to fall along the Gulf and 
Atlantic coasts. This is due to the warm, humid, and subtropical air from 
the coastal areas that result in a greater number of intense rainfall 
events, especially from May to September (Kim et al., 2020; Perica et al., 
2013). This further brings intense rainfall inland and provides greater 
rainfall in the flat regions (Takhellambam et al., 2022a). Moreover, the 
Appalachian Mountains receive higher rainfalls due to the orographic 
effect (Takhellambam et al., 2022a). In addition, the 15-min datasets 
have greater intensities as compared to the aggregated datasets of 30 
and 45-min which is due to the smoothing of rainfall intensities. For 
instance, the peak rainfall intensity of smaller temporal scales is aver
aged over the scale of 30-min or 45-min resulting in decreased intensity. 

For better discussion, we selected five rain-gauge stations across the 
region (Table 1), three of which are in urban areas, namely Venice, New 
Orleans Audubon, and Mullins, while the other two are in sparsely 

Fig. 4. Quantile-quantile plot for comparing ANN and stochastic model in temporal downscaling of hourly to sub-hourly monthly maximum of 15-, 30-, and 45-min 
rainfall for all 187 stations. 
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inhabited areas which also considers the regions where convective and 
orographic rainfalls in the region. Table 2 shows the comparison of 
annual maximum rainfall intensities of 15- and 30-min duration with 
return periods of 2-, 5-, 10-, 25-, 50-, and 100-year between our study 
using the observed data (hereinafter referred to as OBS in Table 2) and 
findings of NOAA’s National Weather Service (hereinafter referred to 
NWS) Atlas 14, volume 9, version 2 (Perica et al., 2013). The NWS 
findings of annual maximum rainfall intensities of 15-min with a 2-year 
return period show a range from 82 to 120 mm/h. Moreover, the 
extreme rainfall intensity of 100-year shows a minimum and maximum 
of 162 mm/h and 238 mm/h respectively. Our study using the observed 
annual maximum rainfall intensities of 15-min ranged from 65 to 103 
mm/h with a recurring period of 2-year. In addition, a 100-year return 
period of 15-min rainfall intensities shows in the range of 122 to 168 
mm/h, respectively. Furthermore, the NWS’s annual maximum rainfall 
intensities of 30-min in all return periods ranges from 60 to 187 mm/h, 
while our study shows rainfall intensities was in the range of 43 to 125 
mm/h. 

All the annual maximum rainfall intensities in our study have been 
underpredicted compared to the NWS findings that range from 10% to 
41%. One of the primary reasons for the disparity in rainfall depths is the 
parameter estimation approach used for the Gumbel distribution which 
then allows to delivery of the IDF curves. For example, NWS used L- 
moment-based regional frequency analysis, whereas our study used 
maximum likelihood estimation. 

For the same locations discussed above (Table 1), we compared 
annual maximum rainfall intensities between the future projected and 
historical scenarios. We combine all five climate model outputs as a 
single ensemble. This allows the combining of various sources of infor
mation from different models to minimize the uncertainty associated 
with each model. We further show the ensemble annual maximum 
rainfall intensities (Fig. 7) of 15-, 30-, and 45-min with return intervals 

of 2-, 5-, 10-, 25-, 50-, and 100-year between the historical and future 
periods using the ANN located at Unicoi State Park (34.72◦N, 
−83.72◦W). The shaded area represents both future and historical IDF 
curves with 95% confidence intervals. We refer the reader to the sup
plementary file (Supplementary Figs. S5–S8) for the remaining four lo
cations of Huntsville 1 SSW, Venice, New Orleans Audubon, and 
Mullins. We found that the historical annual maximum rainfall in
tensities at Unicoi State Park ranges from 26 to 54 mm/h with a return 
period of 2-year. The rainfall intensities increase with larger recurring 
intervals, with the greatest value in 100-year that ranges from 49 to 107 
mm/h. Moreover, we found that the annual maximum rainfall in
tensities under future scenarios increased compared to the historical 
period for each duration and recurring interval. The rate of increase in 
the future rainfall intensity ranges from 16% to 29% (Table 3). 

Similarly, the historical annual maximum rainfall intensities of 15-, 
30-, and 45-min with a return period of 2-, 5-, 10-, 25-, 50-, and 100-year 
in the remaining locations has a minimum and maximum of 25 to 134 
mm/h. Future scenarios show increasing rainfall intensities in all of the 
locations as compared to the historical period ranging from 7% to 36%. 
Overall, the minimum and maximum rainfall intensities under future 
scenarios were found in the range of 28 to 169 mm/h. The aforemen
tioned findings indicate that the future projected extreme rainfall depths 
are significantly increased from the historical scenario for the Southeast 
United States. 

3.3. Uncertainty in the IDF curves 

Large uncertainties are associated with developed IDF curves owing 
to the variety of factors in both observed and model datasets. Most of the 
observed rainfall measurement methods and products are associated 
with inaccurate measurements due to the loss of rainfall characteristics i. 
e., amount, frequency, and intensity. This includes human error, 

Fig. 5. Boxplots showing the statistical comparison between ANN (denoted by ANN) and stochastic (denoted by Stoch) model for disaggregating hourly to sub-hourly 
monthly maximum rainfall for 187 stations. The asterisk denotes the average value of the coefficient of correlation, NSE and PBIAS value. 
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measurement thresholds, evaporation, and wind effects. However, it is 
challenging to verify these errors in our rainfall dataset of observed 
events (Zhao et al., 2021). 

According to Mirhosseini et al. (2013), uncertainty may result from 
the physical parametrization of climate models, such as the development 
of the rainfall process in various models, or the varied boundary con
ditions of climate projections. In addition, the typical climate model bias 
is a consequence of many wet days with low rainfall intensities 
(Takhellambam et al., 2023). Therefore, we are using multiple climate 
models to capture the various uncertainties associated with different 
climate models. The uncertainty associated with each model for future 
projected rainfall IDF curves was quantified with mean rainfall values 
along with standard deviation using all stations (Fig. 8). Under the 
CANESM model, the mean rainfall intensities and standard deviation 
range from 34 to 130 mm/h and 8 to 28 mm/h, respectively. Likewise, 
the remaining models show both mean rainfall intensity and standard 
deviation in the range of 34 to 135 mm/h and 7 to 28 mm/h, 

Fig. 6. Map showing the spatial variation of annual maximum rainfall intensities for 15-, 30-, and 45-min with a return period of 25-, 50-, and 100-year 
under CANESM. 

Table 1 
Descriptions of selected locations for the assessment of IDF curves.  

Sl. 
No. 

Name of station Latitude 
(◦N) 

Longitude 
(◦W) 

Elevation 
(feet) 

1 Huntsville 1 SSW 36.07 −93.75 1783 
2 Venice 27.1 −82.44 8 
3 Unicoi State Park 34.72 −83.72 1594 

4 
New Orleans 
Audubon 29.92 −90.13 20 

5 Mullins 34.19 −79.25 110  

Table 2 
Comparison of annual maximum rainfall intensities (in mm/h) of 15- and 30-min duration with return periods of 2-, 5-, 10-, 25-, 50-, and 100-year between our study 
using the observed data (denoted by OBS) observed data and findings of NOAA’s National Weather Service (denoted by NWS).  

Station Dur Return period (years) 

2 5 10 25 50 100 

NWS OBS NWS OBS NWS OBS NWS OBS NWS OBS NWS OBS 

Huntsville 1 SSW 
15-min 82 65 98 80 112 90 132 103 147 113 162 122 
30-min 60 43 73 50 83 56 97 62 109 67 120 71 

Venice 
15-min 120 98 142 115 159 125 182 139 200 149 216 158 
30-min 90 64 107 77 120 85 137 96 150 104 163 112 

Unicoi State Park 
15-min 90 69 108 85 124 96 147 109 166 119 186 129 
30-min 64 44 77 54 89 61 105 70 119 76 133 82 

New Orleans Audubon 
15-min 114 103 138 120 159 132 189 147 213 157 238 168 
30-min 88 69 107 84 124 94 148 107 167 116 187 125 

Mullins 
15-min 109 76 128 94 143 106 161 121 175 132 188 144 
30-min 75 48 91 60 104 68 119 77 132 84 144 91  
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respectively. Among all of the models, the minimum and maximum 
standard deviation were 7 mm/h and 28 mm/h under GFDL and CAN
ESM, respectively. 

The variability in rainfall IDF curves among different climate models 
is due to the different boundary conditions used for precipitation gen
eration. For instance, the annual maximum of 1-day rainfall (RX1day) 
varies with each climate model. Supari et al. (2020) found that a climate 
model shows greater rainfall as much as five times for the same location 
than the remaining models. One of the main reasons is the inability of 
the model to represent topography, vegetation, and atmospheric con
ditions (Vizy and Cook, 2012), although, extreme rainfalls could be 
represented with a finer resolution of climate models (Kitoh and Endo, 
2016). Moreover, the projected rainfall characteristics may not always 
be similar to that of observed rainfall datasets. 

Therefore, Giorgi et al. (2013), Mirhosseini et al. (2013), Supari et al. 
(2020), and Zhao et al. (2021) recommended using multiple climate 
models for hydrological applications. Moreover, the superior 

performance of the ANN over the stochastic model has resulted in reli
able IDF curves. This has also been found in various previous studies 
(Burian et al., 2001; Dibike and Coulibaly, 2006; Mirhosseini et al., 
2014; Zhao et al., 2021). Burian and Durrans (2002) found the ANN to 
be a viable option for disaggregating hourly to sub-hourly rainfalls. On 
the other hand, despite choosing a particular disaggregating method, we 
found that most of the climate models show an increasing extreme 
rainfall depth over the Southeast United States. 

4. Conclusions 

We developed future projected rainfall IDF curves using a monthly 
maximum rainfall sub-hour (15-, 30-, and 45-min) scale of rainfall with 
a return period of 2-, 5-, 10-, 25-, 50-, and 100-year. These maximum 
values were obtained by developing 561 ANN models for the Southeast 
United States. This study confirms the satisfactory performance of the 
computationally-efficient feed-forward back-propagation ANN model in 
disaggregating monthly maximum rainfalls to sub-hourly scales from 
hourly scales. Moreover, the model also showed better performance 
than the stochastic model for generating sub-hour monthly maximum 
rainfall with an average NSE ranging from 0.67 to 0.84. The training and 
test results of the ANN models were evaluated with two statistical 
measures consisting of the coefficient of correlation and the root mean 
squared error which highlighted its satisfactory performance in dis
aggregating the monthly maximum rainfall depths. These results were 
further supported by the quantile-quantile plot and boxplots of NSE. The 
average NSE using the ANN model for 15-min is >0.6 indicating a 
satisfactory performance. In addition, we also found that there is a 
significantly better performance of the ANN over the stochastic model 
by rejecting the null hypothesis at a 5% significant level. The null hy
pothesis of better performance of stochastic approach than the ANN 
model in disaggregating hourly data to a monthly maximum of sub- 
hourly rainfall data is rejected (p-value~0) using a one-sided Student 
t-test and Wilcoxon sign rank test. These findings also showed that the 
ANN model is superior to the stochastic model in generating monthly 
maximum rainfall. These results are further improved with larger tem
poral scales of 30-min and 45-min. The KS test supports the assumption 
that the annual maximum rainfalls come from Gumbel extreme 

Fig. 7. Ensemble IDF curves with 95% confidence interval for historical and future projected located at Unicoi State Park under the RCP8.5 scenario with 2-, 5-, 10-, 
25-, 50-, and 100-year return periods using ANN. 

Table 3 
Comparison of relative change (in %) in annual maximum of rainfall between 
future projected and historical rainfall IDF curves using ANN.  

Station Dur Return period (years) 

2 5 10 25 50 100 

Huntsville 1 SSW 
15-min 12 16 19 21 22 23 
30-min 7 9 9 10 10 11 
45-min 9 14 17 19 21 22 

Venice 
15-min 11 12 13 14 15 15 
30-min 12 15 16 17 18 19 
45-min 16 18 18 19 19 20 

Unicoi State Park 
15-min 18 22 23 25 26 27 
30-min 18 23 25 27 28 29 
45-min 16 19 20 22 23 23 

New Orleans Audbon 
15-min 8 14 18 22 24 26 
30-min 10 18 22 26 28 31 
45-min 12 22 27 31 34 36 

Mullins 
15-min 10 10 10 11 11 11 
30-min 19 21 21 22 23 23 
45-min 19 21 22 23 23 24  
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distribution. A comparison of five selected locations showed that the 
estimated observed annual maximum rainfall intensities of 15-min and 
30-min with a recurring interval of 2-, 5-, 10-, 25-, 50-, and 100-year are 
found to be closely related to reported rainfall values of NWS. The re
sults show an increasing rate of future rainfall compared to the historical 
period by 7% to 36%. The mean projected future rainfall intensities over 
the southeast United States range from 34 to 135 mm/h for a duration of 
15-, 30-, and 45-min with a return period of 2-, 5-, 10-, 25-, 50-, and 100- 
year. In addition, the standard deviation ranges from 7 to 28 mm/h 
between five climate models. The spatial variation of future projected 
extreme rainfall depths showed that the Gulf-Atlantic coast and the 
Appalachian Mountains are projected to receive more extreme rainfalls. 
This finding confirms the need to update future IDF curves which can 
better inform the design of water resource infrastructures. 
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