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ARTICLE INFO ABSTRACT

Keywords: With the increasing trend of greenhouse gases in the atmosphere, by 2052 the temperature is expected to rise by

ANN 1.5 °C from the Pre-industrial Period, affecting future extreme rainfall events. This necessitates quantifying

ghm}?te change extreme hydrologic events to plan and design hydrologic and hydraulic structures using rainfall Intensity-

tochastic . Duration-Frequency (IDF) curves to adapt to future climate scenarios. This study developed future projected

Rainfall disaggregation . . . .

Fre lvsi IDF curves for the Southeast United States using disaggregated sub-hourly (15-, 30-, and 45-min) monthly

quency analysis . . . . : :

IDF curves maximum rainfall from 2030 to 2059 using five climate models under the Representative Concentration Pathway
8.5 scenario. A computationally efficient feed-forward back-propagation Artificial Neural Network (ANN)-based
approach was found to be significantly superior for disaggregating rainfall to a stochastic model with an average
Nash-Sutcliffe efficiency (NSE) ranging from 0.67 to 0.84. The study found that there is an increasing rate of
future projected annual maximum rainfall intensities in the range of 7% to 36% with reference to the historical
period. The spatial variation in future projected extreme rainfall depths showed that the Gulf-Atlantic coast and

the Appalachian Mountains are expected to receive more extreme rainfalls.

1. Introduction

Extreme rainfall events pose a serious threat to the ecosystem and
economy by amplifying both the magnitude and frequency of floods
(Nerantzaki and Papalexiou, 2022; Rahaman et al., 2023; Zhao et al.,
2023). Therefore, rainfall Intensity-Duration-Frequency (IDF) curves are
used when planning and designing hydrologic and hydraulic structures
(Mirhosseini et al., 2014; Yan et al., 2018). However, the existing
structures for rainfall and floods designed are based on the stationarity
of the IDF curves which give a probability of rainfall intensity in a given
period, particularly National Oceanic and Atmospheric Administration
Atlas 14 (Perica et al., 2013; Soltani et al., 2020; Sun et al., 2019; Zhao
et al., 2022a, 2022b). In addition, the IDF curves are used in the design
of erosion control structures, storm, and sewer drainage designs, and
bridges (Amatya et al., 2021).

According to the IPCC (2018), by 2052 the temperature is expected
to rise by 1.5 °C from the Pre-industrial Period with the current emission
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rate of greenhouse gases such as carbon dioxide, which eventually will
affect future extreme rainfall events (Budhathoki et al., 2022; Takhel-
lambam et al., 2023). The increase in temperature has resulted in higher
water-holding capacity in the atmosphere, i.e., a 7% increase in water-
holding capacity per degree Celsius of temperature (Easterling et al.,
2017; Trenberth, 2011). The plausible effects include a change in rain-
fall amount, frequency, and intensities or probable maximum rainfalls
(Cheng and AghaKouchak, 2014). Under these conditions, extreme
rainfall events are expected to occur more frequently and with greater
intensity in most parts of the world, with urban areas being the most
vulnerable (Ghasemi Tousi et al., 2021). Therefore, to adapt or reduce
the vulnerability of water management structures, future rainfall char-
acteristics under the changing climate should be considered while
developing IDF curves (Mirhosseini et al., 2014; Noor et al., 2022). For
instance, the most critical component of cities’ structures includes
storm-water drainage and flood mitigation measured which are based on
the IDF curves (Crévolin et al., 2023; Ghasemi Tousi et al., 2021).
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Previous studies developed future projected IDF curves considering
the nonstationary rainfall characteristics under changing climate (Cheng
and AghaKouchak, 2014; Ganguli and Coulibaly, 2019; Ghasemi Tousi
et al., 2021; Mirhosseini et al., 2013, 2014; Zhao et al., 2021). These
studies employed Generalized Extreme Value (GEV) distribution for
developing rainfall IDF curves owing to the better modeling of extreme
rainfall events. Cheng and AghaKouchak (2014) reported an underes-
timation of extreme rainfall of up to 60% under the stationarity
assumption compared to nonstationary conditions using five locations in
the United States. Likewise, Ganguli and Coulibaly (2019) developed
IDF curves under a nonstationary model over eight locations in the
densely populated and major financial region of Southern Ontario,
Canada. Ghasemi Tousi et al. (2021) updated the IDF curves for the city
of Tucson, Arizona from 2020 to 2051 using eight global climate models.
The findings showed a significant increase in the future extreme rainfall
event which eventually needed to update IDF curves. In addition, the
extreme values are found significantly affected with climate model se-
lection and scenarios. For example, the stormwater culvert design could
double the design size and significantly increase the cost based on the
model selection and warming scenarios. Moreover, Noor et al. (2022)
proposed IDF curves along with the uncertainty for the ungauged loca-
tions over Peninsular Malaysia. The results found that the shorter
duration rainfall with a higher return period increased more than longer
duration rainfall with a lower return period. Similarly, Mirhosseini et al.
(2013) assessed future projected IDF curves using 15-min rainfall data in
Alabama, United States. The 15-min rainfall was developed with 3-h
rainfall data using a modified stochastic method of Socolofsky et al.
(2001). This 15-min rainfall dataset was further used to develop IDF
curves using the GEV distribution. The results demonstrated that less
severe rainfall was anticipated for short-duration occurrences. However,
the simulated rainfall intensities were under-predicted compared to the
observed data. Mirhosseini et al. (2014) reported consistent results of
underpredicted intensities. This was further improved by Mirhosseini
et al. (2014) introducing a feedforward ANN approach. Thus, the IDF
curves were further updated for future projected climate scenarios for
Alabama using the GEV distribution and compared with the stochasti-
cally generated rainfall of Mirhosseini et al. (2013). The ANN method
reported superior performances compared to the stochastic models in
developing maximum rainfall depths. Further, rainfall events with less
than a 2-h duration showed decreased intensities, and longer-duration
storms with higher uncertainties (Mirhosseini et al., 2014).

Zhao et al. (2021) improved the ANN approach for rainfall disag-
gregation of Mirhosseini et al. (2014) through a computationally effi-
cient and more accurate approach that was applied over two cities in
southern Vietnam. The advantages include computationally efficient
training data that used only extreme rainfall data points instead of the
whole series and improving accuracy through the inclusion of previously
simulated steps of rainfall. However, the Zhao et al. (2021) method
provided a limited assessment of the hourly and multi-hourly scales.

In this study, we aimed to further extend the approach of Zhao et al.
(2021) for disaggregating hourly to sub-hourly (15-, 30-, and 45-min)
monthly maximum rainfall datasets. This is because sub-hourly rain-
fall aggregates offer greater intensities than hourly rainfall aggregates
(Takhellambam et al., 2022a). McGehee and Srivastava (2018) reported
that maximum rainfall intensity occurred within 15 min of a storm. So,
aggregated datasets are underestimated due to the averaging of sub-
hourly data. In addition, McGehee and Srivastava (2018); Takhellam-
bam (2023); Takhellambam et al. (2022a,b) reported that the Southeast
region of the United States has the greatest potential for change in
rainfall characteristics under the changing climate. This necessitates
updating the future IDF curves required for adequate hydrologic and
hydraulic infrastructure designs, such as dams and culverts under the
changing climate. We hypothesize that a feed forward and back propa-
gation ANN model would perform better than the stochastic model in
the disaggregation of hourly rainfall to sub-hourly (15-, 30-, and 45-
min) rainfall datasets. Therefore, the objectives of this study were to:
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(1) generate sub-hourly (15-, 30-, and 45-min) monthly maximum
rainfall datasets under the RCP 8.5 scenario using the feed forward and
back propagation ANN model, and (2) develop the projected future
rainfall IDF curves using the GEV distribution for the Southeast United
States using improved sub-hourly rainfalls.

2. Material and methods
2.1. Study area and data

The average annual rainfall received in the Southeast United States
(Fig. 1) is greater than the country’s average of 856 mm. The annual
rainfall ranges from 1000 to 1250 mm inland and can go as high as 1500
mm along the Gulf-Atlantic coastal areas (Ingram et al., 2013; Kumar
etal., 2021, 2022a,b, 2023). The higher intensity rainfall is received on
the Gulf-Atlantic coast and decreases inland. At the same time, the Ap-
palachian Mountain region sees a greater rainfall intensity due to the
orographic effect (Takhellambam et al., 2022a, 2023). The major factor
for the distinctive climate in the region is due to the presence of both the
Gulf of Mexico and the Atlantic Ocean (Ingram et al., 2013; Kunkel et al.,
2013).

We obtained 44 years (1970-2013) of observed 15-min rainfall for
528 gauge data from the National Oceanic and Atmospheric Adminis-
tration, DSI-3260, archived at the National Climatic Data Center (NOAA
NCEI, 2014). McGehee et al. (2021) and Takhellambam et al. (2022a,b)
recommended using the 20.11 screening method to check the quality of
rainfall datasets and eventually found 187 stations that passed the
screening method based on the precipitation deficit and spatial varia-
tions. Passing the 20.11 screening method requires a station to have a
minimum of 20 years of complete observed precipitation for 11 or more
months per year where a month must have atleast one observed rainfall
event (McGehee and Srivastava, 2018; Takhellambam, 2023; Takhel-
lambam et al., 2023). For the future projected 15-min rainfall data for
the period 2030-59, we used five climate models for the future projected
period (2030-59) of 15-min rainfall obtained from the North American
Coordinated Regional Climate Downscaling Experiment (NA-CORDEX)
under the RCP8.5 scenario. The five models included CAN-
ESM2_CANRCM4, HadGEM2-ES.WRF, GFDL-ESM2M.WRF, MPI-ESM-
LR. RegCM4, and MPI-ESM-LR.WRF (Giorgi and Anyah, 2012; Sci-
nocca et al., 2016; Skamarock et al., 2005). Hereinafter, we will refer to
the climate model data as CANESM, HADGEM, GFDL, MPIREG, and
MPIWREF, respectively. The Regional Climate Model-Global Climate
Model (RCM-GCM) used GCM simulation of Coupled Model Intercom-
parison Project Phase 5 (CMIP5) archive. In addition, both temporal and
spatial scales of these models are 1 h and 0.44°, respectively (Mearns
et al., 2017; Scinocca et al., 2016).

2.2. Bias-correction

The use of climate model data in hydrological-related studies has
suffered from errors due to the simplified or limited representation at the
regional scale (Takhellambam, 2023; Takhellambam et al., 2023). For
instance, there are lower rainfall intensities with a large number of wet
days which do not represent the observed rainfall intensities. To solve
this problem, we used the quantile delta mapping method (Cannon et al.,
2015; Takhellambam et al., 2023) suggested by Takhellambam et al.
(2022a), whose performance were checked with annual average rainfall,
intensity and wet-hour frequency. This method incorporates the
non-stationarity of projected rainfall datasets which methods like
quantile mapping failed to do so. The bias correction was carried out on
a monthly scale to acquire intermittency of the rainfall while also pre-
serving the rainfall characteristics.

= __F (Funp (¥np) )
Xm.p.adjst. = xm.pm

@



B.S. Takhellambam et al. Atmospheric Research 297 (2024) 107122

. Stations
Precipitation (mm)

<900

900 - 1,000

1,000 - 1,100
' 1,100 - 1,200

1,200 - 1,300

1,300 - 1,400

>1,400

0 120240 480 720

S m— ]

Fig. 1. Study area and location of observed 187 rainfall stations over the Southeast United States.

where x is the rainfall data, and F represents the cumulative probability datasets and climate model historical datasets, respectively.

distribution function for either the observed (o) or model-based (m)
historical (h) and future projected (p) scenarios. From this onwards, we
used the terms observed and historical to represent only observed

Input Layer Hidden Layer Output Layer

Fig. 2. An overview of the disaggregation of hourly (c) monthly maximum rainfall datasets to sub-hourly (f) monthly maximum rainfall datasets using activation of
rectified linear unit function (R(x)). Here, P is the monthly maximum at a given time (t) step. t-1 and t + 1 are the preceding and subsequent hourly rainfall datasets,
respectively.
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2.3. Disaggregation of hourly rainfall to sub-hourly monthly maximum
rainfall using ANN

The ANN model of Zhao et al. (2021), which was originally devel-
oped for disaggregating daily rainfall to sub-daily monthly maximum
rainfall, was tested in this study for disaggregating hourly to sub-hourly
(i.e., 15-, 30-, and 45-min) monthly maximum rainfall. This ANN model
is a multi-layered perceptron neural network, where the output layer
gives the sub-hourly monthly-maximum rainfall information based on
the hourly information from the input layer. This has three layers of
input, hidden, and output layers, with 20 neurons in the hidden layers
which use the activation function of the rectified linear unit (ReLU).
ReLU enables the model to learn more quickly and perform better
(Brownlee, 2019). The loss function and optimizer are the mean squared
error and root mean squared propagation (RMSprop), respectively.

We briefly introduce the ANN model below. We refer the readers to
Zhao et al. (2021) for more details. To estimate the extreme rainfall
amount at finer resolutions (sub-hour), the ANN model uses the con-
current, preceding, and succeeding rainfall at coarser resolutions
(hourly) instead of the entire rainfall time series (Fig. 2). For instance, to
obtain the extreme rainfall at the 15-min resolution, the ANN model
extracts the total 1-h rainfall that occurs at the current time step as well
as at the previous and subsequent time step (hourly scale). While
developing the models, we used 70% and 30% of datasets for training
and testing, respectively. Overall, we estimated (3 resolutions x 187)
561 models in our study area owing to the different rainfall generation
mechanisms at different locations. For instance, the rainfall generation
mechanisms in the Gulf-Atlantic coast and Appalachian Mountain are
mainly due to the convective and orographic effects respectively.

2.4. Performance comparison in generating monthly maximum rainfall
intensities

The assessment of the ANN’s performance in disaggregating hourly
to sub-hourly monthly maximum rainfall was conducted using the gauge
observed rainfall data. We aggregated the observed 15-min rainfall into
1-h intervals. This rainfall data is then disaggregated to monthly
maximum rainfall of 15-min using the feed-forward back-propagation
ANN model. Similarly, we disaggregated the remaining temporal scales
of 30- and 45-min rainfall datasets.

We compared the ANN-disaggregated monthly maximum 15-, 30-,
and 45-min rainfall data with those of stochastically generated rainfall
data by Takhellambam et al. (2022a). Since the stochastic data were
available in continuous time series of rainfall at 15-min intervals, we
also aggregated the 15-min scale to the scales of 30- and 45-min.
Further, we extracted the monthly maximum rainfall from each of the
15-, 30-, and 45-min rainfall datasets. Thus, the performance of the
monthly maximum rainfall of each scale using both the ANN and sto-
chastically generated datasets was compared as discussed below.

More specifically, the statistical measures of Nash-Sutcliffe effi-
ciency (NSE), Pearson correlation coefficient and Perccent bias (PBIAS)
were used to assess the performance of rainfall disaggregation. These
measures were computed for each station using the observed and dis-
aggregated monthly maximum rainfall for the entire time series. These
performance measures are defined below, starting with the NSE given by

> (0, — mi)’
NSE=1-5" )
> (0 —o)
i=1
where, o = observed rainfall, 0 = average observed rainfall, m = model
rainfall, and n = number of observations.
The Pearson correlation coefficient, in this setting, is defined as
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where m = average simulated rainfall.
The Percent bias is defined as
Z(Oi - m;)
PBIAS =51 4
>-(0:)

i=1

We hypothesized that the stochastic approach would outperform the
ANN model in disaggregating the hourly to sub-hourly rainfall with the
null hypothesis, Ho: the stochastic model performed equally with the
ANN model. Subsequently, using a significance level of 5%, we used a
one-sided paired Student t-test as well as a non-parametric Wilcoxon
sign rank test (the latter to confirm that possible outliers do not impact
the conclusion of the t-test).

2.5. Developing IDF curves

The Type-1 GEV distribution has been employed extensively in past
studies owing to its simplicity and all useful moments are expressible
with the two parameters of location and scale (Phien, 1987). Previous
studies by Mirhosseini et al. (2013, 2014) reported that the GEV dis-
tribution well fitted developing rainfall IDF curves in the region,
particularly the Gumbel distribution. The GEV probability distribution
consists of three limiting forms i.e., Gumbel (é—0), Frechet (¢ > 0), and
Weibull (¢ < 0) (Coles, 2001) and is defined as follows.

G(x):exp{—{1+§(X7”)]71/5}forx:1+§(ﬂ) >0 (5)

o 4

where x is the rainfall intensity. i, 6, and £ are location, scale, and shape
parameters respectively. The Gumbel distribution with £—0 is defined as

G(x):exp[—exp{—(x_”>}]forx:l+§<x_”>>0 6)

o 4

In addition, the parameter estimation is performed using maximum
likelihood estimation since, if the model is correctly specified, it has
optimal statistical properties compared to other methods such as the
method of moments (Mahdi and Cenac, 2005). The Kolmogorov-
Smirnov (KS) test is used to test the goodness-of-fit at a significance
level of 5% assuming the parameters are known (Delignette-Muller and
Dutang, 2015), keeping in mind that, this test could be conservative i.e.,
not reject Hy when it should (Lilliefors, 1967). The following procedure
was used to obtain the IDF curves.

1) Obtain the annual maximum series of rainfall for a given duration (T)
of 15-, 30-, and 45-min.

2) Evaluate the rainfall depth, X7 for a given return period (2-, 5-, 25-,
50-, and 100-year) for the Gumbel distribution which is given by.

Xr =x+K7S 7)

where, X, Kr,and S are mean, frequency factor, and standard deviation,

respectively.
Kr = —ﬁ {0.5772 +In (ln( r ) ) } 8
T T—-1

3) The rainfall depths are plotted for each duration for different return
periods.
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3. Results and discussion

The performance of the ANN in disaggregating 1-h rainfall to
monthly maximum 15-, 30-, and 45-min rainfall is reported below. The
monthly maximum rainfall intensities are then compared between the
stochastic and the ANN models. Finally, using ANN, the results of the
generated future IDF curves are presented alongside historical and
projected future scenarios.

3.1. Performance of bias correction and ANN for rainfall disaggregation

Bias correction improved the output of the climate models, especially
the frequencies of wet days, annual average rainfall amount, and rainfall
intensity. A detailed explanation for the performance of bias correction
of hourly rainfall is given in Takhellambam et al. (2022a). The perfor-
mance of disaggregated rainfall using the ANN approach was assessed by
employing the Pearson correlation coefficient (r) and the Root mean
square error (RMSE) in both training and test data for the generation of
15-, 30-, and 45-min monthly maximum rainfall and reported for the
187 rainfall stations. The RMSE values are reported with normalization
of both training and testing datasets that removes the median and scales
using the interquartile range i.e., RMSE has no unit. The minimum and
maximum r values of the training datasets were 0.75 and 0.90, respec-
tively (Fig. 3). On the other hand, as expected, the r values on the test
datasets were found to be lower than those of the training datasets, with
minimum and maximum of 0.62 and 0.88, respectively. The average r
value for disaggregating to 15-min was found to be 0.84 and 0.77 for
training and test data, respectively. Likewise, the RMSE value has an
average value of 0.37 and 0.48 for training and test data, respectively.

The r value when disaggregating to 30-min rainfall was found to
have an average value of 0.92 in training and 0.90 in test data. The range
of values during training and testing were (0.89, 0.96) and (0.8, 0.97),
respectively. Furthermore, we found that the RMSE value in both
training and test data ranges from 0.21 to 0.4, and 0.22 to 0.58,
respectively (Fig. 3). Similarly, the disaggregation to 45-min rainfall was
found to have an average r value of 0.95 and 0.93 in training and test
data. The r values during training and test range from (0.92, 0.98) and
(0.87, 0.98, respectively. RMSE values showed ranges of (0.16, 0.36)
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and (0.19, 0.48) for training and test data, respectively. These results are
in line with the results of Zhao et al. (2021). As expected, the perfor-
mance of the ANN is satisfactory with r >0.60 in disaggregating to the
monthly maximum sub-hourly scale using the hourly rainfall datasets
(Mirhosseini et al., 2014). Moreover, we found a better performance for
longer periods of 30- and 45-min of rainfall datasets compared to the 15-
min disaggregating of monthly maximum rainfall data. This better
performance of the ANN with longer durations for disaggregating rain-
fall datasets is consistent with Mirhosseini et al. (2014). One of the main
reasons for this is mainly due to the fact that hourly rainfall provides less
information as the gaps in resolution become larger (Zhao et al., 2021),
i.e., there is the smoothing of rainfall intensities while aggregating the
15-min to 30- and 45-min rainfall datasets (Op de Hipt et al., 2018).

We further compared the performance of the ANN in disaggregating
hourly rainfall to the sub-hourly monthly maximum with a recently
developed stochastically-generated 15-min rainfall dataset of Takhel-
lambam et al. (2022a). We compared the stochastic and ANN methods in
generating the monthly maximum rainfall using the 1-h data (Figs. 4 and
5). The quantile-quantile plot shows that the performance of the sto-
chastic method is closely related to the observed rainfall for smaller
rainfall depths (the solid line represents the perfect model). However, as
the rainfall depth increases, the stochastic model shows an increase in
the variance in all the temporal scales of 15-, 30-, and 45-min. Takhel-
lambam et al. (2022a) concluded that the stochastic method under-
estimated the rainfall intensities compared to the observed datasets with
an average NSE and r ranging from 0.48 to 0.8 and 0.78 to 0.9,
respectively (Fig. 5).

The quantile-quantile plot of the ANN method shows a better per-
formance with smaller variance than the stochastic method (Fig. 4),
especially with higher rainfall intensities. The average NSE, r and PBIAS
values were found in the range of 0.67 to 0.85,0.83 to 0.92, and 0.05 to
0.07 respectively (Fig. 5). This indicated that the ANN has a satisfactory
performance when generating monthly maximum rainfall of 15-, 30-,
and 45-min from 1-h data since its NSE is >0.6 (Mirhosseini et al., 2014).

Moreover, we found the null hypothesis of better performance of
stochastic approach than the ANN model in disaggregating hourly data
to a monthly maximum of sub-hourly rainfall data is rejected (p-
value~0) using one-sided Student t-test and Wilcoxon sign rank test,
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Fig. 3. Boxplots showing the performance comparison of the ANN model for disaggregating hourly to sub-hourly monthly maximum rainfall data during training
(denoted by test) and testing (denoted by train) for 187 stations. Asterisk denotes the average value of coefficient of correlation and RMSE value.
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Fig. 4. Quantile-quantile plot for comparing ANN and stochastic model in temporal downscaling of hourly to sub-hourly monthly maximum of 15-, 30-, and 45-min

rainfall for all 187 stations.

favoring the alternate hypothesis (at a 5% significance level). Therefore,
we conclude that the ANN model’s performance is superior compared to
the stochastic model in generating 15-, 30-, and 45-min monthly
maximum rainfall from 1-h rainfall. Previous studies also found similar
results of superior performance by the ANN model over other disag-
gregation methods, especially compared to the stochastic method
(Mirhosseini et al., 2014; Zhao et al., 2021). This is because neural
networks can perform better in approximating complex relationships.
The unique structure of the ANN, which connects each hidden layer to
the output nodes provides a better approximation of complex non-linear
relationships with no major distributional assumptions (Dibike and
Coulibaly, 2006; Mirhosseini et al., 2014).

3.2. Rainfall intensity duration frequency curves

The future projected rainfall IDF curves were developed using du-
rations of 15-, 30-, and 45-min with return periods of 2-, 5-, 10-, 25-, 50-,
and 100-year using five climate models under the RCP8.5 scenario for
the Southeast United States. We used kriging interpolation to generate a
spatial variation of extreme rainfalls that provides an understanding and
identification of extreme rainfall areas. This resulted in 90 different
maps (5 RCMs per 6 Return Periods per 3 Durations). For brevity, we
provide maps for all durations with return periods of 25-, 50-, and 100-
year for the CANESM model (Fig. 6). The remaining models are pre-
sented in the supplementary file (Supplementary Figs. S1-S4). Fig. 6
shows the spatial variations of future projected annual maximum rain-
fall intensities of 15-, 30-, and 45-min with a return period of 25-, 50-,
and 100-year using the CANESM model. This provides information on
rainfall magnitude and recurrence of extreme rainfall intensities based
on frequency analysis (Ragno et al., 2018).

The maximum annual rainfall intensity using the duration of 15-min
under the CANESM model was found to range from 30 to 234 mm/h
under 2-, 5-, 10-, 25-, 50-, and 100- year return periods. Likewise, the

maximum annual rainfall intensity for the remaining duration of 30-,
and 45-min ranged from 22 to 193 mm/h and 15 to 148 mm/h,
respectively. We observed (Fig. 6) that the extreme rainfall intensities of
annual maximum of 15-, 30-, and 45-min with the return period of 25-,
50-, and 100-year are mostly found in both the Gulf-Atlantic coast and
the Appalachian Mountains. The remaining climate models also found
results consistent with this (see Supplementary Figs. S1-S4). This
demonstrates the similar higher and lower trend of both annual average
and maximum rainfall intensities over the region (Takhellambam et al.,
2023). Among these models, the MPIREG model found greater
maximum rainfall intensities. The remaining models of HADGEM, GFDL,
MPIREG, and MPIWREF for all durations showed maximum rainfall in-
tensities ranging from 20 to 227 mm/h, 16 to 168 mm/h, 16 to 259 mm/
h, and 16 to 239 mm/h, respectively, in given return periods of 2-, 5-,
10-, 25-, 50-, and 100-year. The differences among these models, among
others, are due to the different mechanisms for generating rainfall
(Mirhosseini et al., 2014). These multiple models enable us to quantify
the ranges of maximum rainfall intensities.

Convective rainfalls cause more rain to fall along the Gulf and
Atlantic coasts. This is due to the warm, humid, and subtropical air from
the coastal areas that result in a greater number of intense rainfall
events, especially from May to September (Kim et al., 2020; Perica et al.,
2013). This further brings intense rainfall inland and provides greater
rainfall in the flat regions (Takhellambam et al., 2022a). Moreover, the
Appalachian Mountains receive higher rainfalls due to the orographic
effect (Takhellambam et al., 2022a). In addition, the 15-min datasets
have greater intensities as compared to the aggregated datasets of 30
and 45-min which is due to the smoothing of rainfall intensities. For
instance, the peak rainfall intensity of smaller temporal scales is aver-
aged over the scale of 30-min or 45-min resulting in decreased intensity.

For better discussion, we selected five rain-gauge stations across the
region (Table 1), three of which are in urban areas, namely Venice, New
Orleans Audubon, and Mullins, while the other two are in sparsely
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inhabited areas which also considers the regions where convective and
orographic rainfalls in the region. Table 2 shows the comparison of
annual maximum rainfall intensities of 15- and 30-min duration with
return periods of 2-, 5-, 10-, 25-, 50-, and 100-year between our study
using the observed data (hereinafter referred to as OBS in Table 2) and
findings of NOAA’s National Weather Service (hereinafter referred to
NWS) Atlas 14, volume 9, version 2 (Perica et al., 2013). The NWS
findings of annual maximum rainfall intensities of 15-min with a 2-year
return period show a range from 82 to 120 mm/h. Moreover, the
extreme rainfall intensity of 100-year shows a minimum and maximum
of 162 mm/h and 238 mm/h respectively. Our study using the observed
annual maximum rainfall intensities of 15-min ranged from 65 to 103
mm/h with a recurring period of 2-year. In addition, a 100-year return
period of 15-min rainfall intensities shows in the range of 122 to 168
mm/h, respectively. Furthermore, the NWS’s annual maximum rainfall
intensities of 30-min in all return periods ranges from 60 to 187 mm/h,
while our study shows rainfall intensities was in the range of 43 to 125
mm/h.

All the annual maximum rainfall intensities in our study have been
underpredicted compared to the NWS findings that range from 10% to
41%. One of the primary reasons for the disparity in rainfall depths is the
parameter estimation approach used for the Gumbel distribution which
then allows to delivery of the IDF curves. For example, NWS used L-
moment-based regional frequency analysis, whereas our study used
maximum likelihood estimation.

For the same locations discussed above (Table 1), we compared
annual maximum rainfall intensities between the future projected and
historical scenarios. We combine all five climate model outputs as a
single ensemble. This allows the combining of various sources of infor-
mation from different models to minimize the uncertainty associated
with each model. We further show the ensemble annual maximum
rainfall intensities (Fig. 7) of 15-, 30-, and 45-min with return intervals

of 2-, 5-, 10-, 25-, 50-, and 100-year between the historical and future
periods using the ANN located at Unicoi State Park (34.72°N,
—83.72°W). The shaded area represents both future and historical IDF
curves with 95% confidence intervals. We refer the reader to the sup-
plementary file (Supplementary Figs. S5-S8) for the remaining four lo-
cations of Huntsville 1 SSW, Venice, New Orleans Audubon, and
Mullins. We found that the historical annual maximum rainfall in-
tensities at Unicoi State Park ranges from 26 to 54 mm/h with a return
period of 2-year. The rainfall intensities increase with larger recurring
intervals, with the greatest value in 100-year that ranges from 49 to 107
mm/h. Moreover, we found that the annual maximum rainfall in-
tensities under future scenarios increased compared to the historical
period for each duration and recurring interval. The rate of increase in
the future rainfall intensity ranges from 16% to 29% (Table 3).

Similarly, the historical annual maximum rainfall intensities of 15-,
30-, and 45-min with a return period of 2-, 5-, 10-, 25-, 50-, and 100-year
in the remaining locations has a minimum and maximum of 25 to 134
mm/h. Future scenarios show increasing rainfall intensities in all of the
locations as compared to the historical period ranging from 7% to 36%.
Overall, the minimum and maximum rainfall intensities under future
scenarios were found in the range of 28 to 169 mm/h. The aforemen-
tioned findings indicate that the future projected extreme rainfall depths
are significantly increased from the historical scenario for the Southeast
United States.

3.3. Uncertainty in the IDF curves

Large uncertainties are associated with developed IDF curves owing
to the variety of factors in both observed and model datasets. Most of the
observed rainfall measurement methods and products are associated
with inaccurate measurements due to the loss of rainfall characteristics i.
e., amount, frequency, and intensity. This includes human error,
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Fig. 6. Map showing the spatial variation of annual maximum rainfall intensities for 15-, 30-, and 45-min with a return period of 25-, 50-, and 100-year

under CANESM.

According to Mirhosseini et al. (2013), uncertainty may result from

Table‘ 1 . . the physical parametrization of climate models, such as the development
Descriptions of selected locations for the assessment of IDF curves. . . . .

of the rainfall process in various models, or the varied boundary con-

SL Name of station Latitude Longitude Elevation ditions of climate projections. In addition, the typical climate model bias

No. N W) (feet) is a consequence of many wet days with low rainfall intensities

1 Huntsville 1 SSW 36.07 —-93.75 1783 (Takhellambam et al., 2023). Therefore, we are using multiple climate

z E:‘;? state Park ;Z';z _:i';g ;3594 models to capture the various uncertainties associated with different

New Orleans ’ ' climate models. The uncertainty associated with each model for future

4 Audubon 29.92 —90.13 20 projected rainfall IDF curves was quantified with mean rainfall values

5 Mullins 34.19 —79.25 110 along with standard deviation using all stations (Fig. 8). Under the

measurement thresholds, evaporation, and wind effects. However, it is
challenging to verify these errors in our rainfall dataset of observed

events (Zhao et al., 2021).

Table 2

CANESM model, the mean rainfall intensities and standard deviation

range from 34 to 130 mm/h and 8 to 28 mm/h, respectively. Likewise,
the remaining models show both mean rainfall intensity and standard
deviation in the range of 34 to 135 mm/h and 7 to 28 mm/h,

Comparison of annual maximum rainfall intensities (in mm/h) of 15- and 30-min duration with return periods of 2-, 5-, 10-, 25-, 50-, and 100-year between our study
using the observed data (denoted by OBS) observed data and findings of NOAA’s National Weather Service (denoted by NWS).

Station Dur Return period (years)
2 5 10 25 50 100
NWS OBS NWS OBS NWS OBS NWS OBS NWS OBS NWS OBS
15-min 82 65 98 80 112 90 132 103 147 113 162 122
Huntsville 1 SSW 30-min 60 43 73 50 83 56 97 109 67 120 71
15-min 120 98 142 115 159 125 182 139 200 149 216 158
Venice 30-min 90 64 107 77 120 85 137 150 104 163 112
15-min 90 69 108 85 124 96 147 109 166 119 186 129
Unicoi State Park 30-min 64 44 77 54 89 61 105 119 76 133 82
15-min 114 103 138 120 159 132 189 147 213 157 238 168
New Orleans Audubon 30-min 88 69 107 84 124 94 148 107 167 116 187 125
15-min 109 76 128 94 143 106 161 175 132 188 144
Mullins 30-min 75 48 91 60 104 68 119 132 84 144 91
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Fig. 7. Ensemble IDF curves with 95% confidence interval for historical and future projected located at Unicoi State Park under the RCP8.5 scenario with 2-, 5-, 10-,

25-, 50-, and 100-year return periods using ANN.

Table 3
Comparison of relative change (in %) in annual maximum of rainfall between
future projected and historical rainfall IDF curves using ANN.

Station Dur Return period (years)
2 5 10 25 50 100
15-min 12 16 19 21 22 23
Huntsville 1 SSW 30-min 7 9 9 10 10 11
45-min 9 14 17 19 21 22

15-min 11 12 13 14 15 15
30-min 12 15 16 17 18 19
45-min 16 18 18 19 19 20
15-min 18 22 23 25 26 27
30-min 18 23 25 27 28 29
45-min 16 19 20 22 23 23
15-min 8 14 18 22 24 26
30-min 10 18 22 26 28 31
45-min 12 22 27 31 34 36
15-min 10 10 10 11 11 11
30-min 19 21 21 22 23 23
45-min 19 21 22 23 23 24

Venice

Unicoi State Park

New Orleans Audbon

Mullins

respectively. Among all of the models, the minimum and maximum
standard deviation were 7 mm/h and 28 mm/h under GFDL and CAN-
ESM, respectively.

The variability in rainfall IDF curves among different climate models
is due to the different boundary conditions used for precipitation gen-
eration. For instance, the annual maximum of 1-day rainfall (RX1day)
varies with each climate model. Supari et al. (2020) found that a climate
model shows greater rainfall as much as five times for the same location
than the remaining models. One of the main reasons is the inability of
the model to represent topography, vegetation, and atmospheric con-
ditions (Vizy and Cook, 2012), although, extreme rainfalls could be
represented with a finer resolution of climate models (Kitoh and Endo,
2016). Moreover, the projected rainfall characteristics may not always
be similar to that of observed rainfall datasets.

Therefore, Giorgi et al. (2013), Mirhosseini et al. (2013), Supari et al.
(2020), and Zhao et al. (2021) recommended using multiple climate
models for hydrological applications. Moreover, the superior

performance of the ANN over the stochastic model has resulted in reli-
able IDF curves. This has also been found in various previous studies
(Burian et al., 2001; Dibike and Coulibaly, 2006; Mirhosseini et al.,
2014; Zhao et al., 2021). Burian and Durrans (2002) found the ANN to
be a viable option for disaggregating hourly to sub-hourly rainfalls. On
the other hand, despite choosing a particular disaggregating method, we
found that most of the climate models show an increasing extreme
rainfall depth over the Southeast United States.

4. Conclusions

We developed future projected rainfall IDF curves using a monthly
maximum rainfall sub-hour (15-, 30-, and 45-min) scale of rainfall with
a return period of 2-, 5-, 10-, 25-, 50-, and 100-year. These maximum
values were obtained by developing 561 ANN models for the Southeast
United States. This study confirms the satisfactory performance of the
computationally-efficient feed-forward back-propagation ANN model in
disaggregating monthly maximum rainfalls to sub-hourly scales from
hourly scales. Moreover, the model also showed better performance
than the stochastic model for generating sub-hour monthly maximum
rainfall with an average NSE ranging from 0.67 to 0.84. The training and
test results of the ANN models were evaluated with two statistical
measures consisting of the coefficient of correlation and the root mean
squared error which highlighted its satisfactory performance in dis-
aggregating the monthly maximum rainfall depths. These results were
further supported by the quantile-quantile plot and boxplots of NSE. The
average NSE using the ANN model for 15-min is >0.6 indicating a
satisfactory performance. In addition, we also found that there is a
significantly better performance of the ANN over the stochastic model
by rejecting the null hypothesis at a 5% significant level. The null hy-
pothesis of better performance of stochastic approach than the ANN
model in disaggregating hourly data to a monthly maximum of sub-
hourly rainfall data is rejected (p-value~0) using a one-sided Student
t-test and Wilcoxon sign rank test. These findings also showed that the
ANN model is superior to the stochastic model in generating monthly
maximum rainfall. These results are further improved with larger tem-
poral scales of 30-min and 45-min. The KS test supports the assumption
that the annual maximum rainfalls come from Gumbel extreme
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Fig. 8. Bar plots showing mean annual maximum rainfall intensity with +1standard deviation of projected future rainfall IDF curves for five climate models with 2-,
5-, 10-, 25-, 50-, and 100-year return periods using ANN over southeastern United States.

distribution. A comparison of five selected locations showed that the
estimated observed annual maximum rainfall intensities of 15-min and
30-min with a recurring interval of 2-, 5-, 10-, 25-, 50-, and 100-year are
found to be closely related to reported rainfall values of NWS. The re-
sults show an increasing rate of future rainfall compared to the historical
period by 7% to 36%. The mean projected future rainfall intensities over
the southeast United States range from 34 to 135 mm/h for a duration of
15-, 30-, and 45-min with a return period of 2-, 5-, 10-, 25-, 50-, and 100-
year. In addition, the standard deviation ranges from 7 to 28 mm/h
between five climate models. The spatial variation of future projected
extreme rainfall depths showed that the Gulf-Atlantic coast and the
Appalachian Mountains are projected to receive more extreme rainfalls.
This finding confirms the need to update future IDF curves which can
better inform the design of water resource infrastructures.
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