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ABSTRACT

Palms play an outsized role in tropical forests and are important
resources for humans and wildlife. A central question in tropi-
cal ecosystems is understanding palm distribution and abundance.
However, accurately identifying and localizing palms in geospa-
tial imagery presents significant challenges due to dense vege-
tation, overlapping canopies, and variable lighting conditions in
mixed-forest landscapes. Addressing this, we introduce PalmProb-
Net, a probabilistic approach utilizing transfer learning to analyze
high-resolution UAV-derived orthomosaic imagery, enabling the
detection of palm trees within the dense canopy of the Ecuadorian
Rainforest. This approach represents a substantial advancement in
automated palm detection, effectively pinpointing palm presence
and locality in mixed tropical rainforests. Our process begins by
generating an orthomosaic image from UAV images, from which we
extract and label palm and non-palm image patches in two distinct
sizes. These patches are then used to train models with an identical
architecture, consisting of an unaltered pre-trained ResNet-18 and
a Multilayer Perceptron (MLP) with specifically trained parameters.
Subsequently, PalmProbNet employs a sliding window technique
on the landscape orthomosaic, using both small and large window
sizes to generate a probability heatmap. This heatmap effectively
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visualizes the distribution of palms, showcasing the scalability and
adaptability of our approach in various forest densities. Despite the
challenging terrain, our method demonstrated remarkable perfor-
mance, achieving an accuracy of 97.32% and a Cohen’s x of 94.59%
in testing.
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1 INTRODUCTION

Detecting palm trees in tropical forests is important in both bio-
logical and computational domains. Biologically, palms serve as
important ecological indicators, providing insights into biodiver-
sity, soil quality, and overall health of the forest ecosystem, support
human livelihoods in indigenous and rural communities, and are
keystone resources for tropical wildlife [4, 15]. Computationally,
particularly within image processing and machine learning, palm
detection is challenging due to issues such as noise and artifacts
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in image orthomosaics, variable illumination within forests, lack
of labeled data, and data imbalances [4, 13, 15]. Addressing these
challenges is essential not only for ecological studies that rely on
identification and localization of forest resources but also for ad-
vancing computer vision techniques for remote sensing in general.

In response to the outlined challenges, this study introduces
PalmProbNet, a deep learning approach tailored for palm tree de-
tection in Ecuador’s tropical forests, capitalizing on UAV-derived
orthomosaic imagery. We employ a strategy of training two models,
both with a consistent architecture, on image patches of varying
sizes, resulting in probability maps that depict palm distributions.
Experimental results highlight the robustness and efficacy of Palm-
ProbNet in classifying palm trees. Our contributions are threefold:
a data labeling process that categorizes two sets of image patches
containing palm and non-palm characteristics in different sizes, fea-
ture extraction via transfer learning integrated with deep learning-
based classification, and the application to the full UAV-derived
orthomosaic imagery. The results emphasize the promise of inte-
grating UAV technology with deep learning for efficient palm tree
detection within dense forest canopies.

The subsequent sections of the paper are structured as follows:
Section 2 provides a comprehensive review of related work in palm
detection and deep learning. Section 3 details our dataset, including
data collection, preprocessing, and labeling. Section 4 introduces
PalmProbNet, our approach covering feature extraction, classifica-
tion, and application to the landscape orthomosaic image. Section
5 showcases the experimental setup and its findings, succeeded by
a comprehensive discussion on these outcomes. Finally, Section 6
concludes the paper and outlines directions for future research.

2 RELATED WORK
2.1 Object Detection

Object detection, a pivotal task in computer vision, identifies and
classifies objects within images. Broadly, the methodologies can be
categorized into traditional and deep learning-based approaches
[5, 8, 23, 25, 26]. Traditional approaches follow a structured pipeline:
selecting informative regions, extracting hand-crafted features, and
classifying these features. Specifically, regions of interest (Rols)
within the image, which contains the targeted objects, are identified
using methods like sliding window or selective search [14, 23]. The
selected Rols are then subjected to feature extraction approaches
to describe specific features within the region, capturing object ap-
pearance, shape, and texture information [19, 23, 26]. The features
are then fed into classifiers to categorize the Rols and finalize the
object detection [8, 23]. Traditional classifiers tend to be computa-
tionally efficient due to their fewer tunable parameters, in contrast
to their deep learning counterparts [23, 26].

Deep learning-based techniques, on the other hand, offer an end-
to-end training and prediction process by integrating feature extrac-
tion and classification into a unified framework [3, 15, 20, 25]. No-
table deep learning algorithms include You Only Look Once (YOLO)
and Region-Based Convolutional Neural Networks (R-CNNs) [26].
YOLO adopts a single-shot architecture that enables it to sufficiently
perform object detection in real-time, while R-CNNs leverage a
two-step process that first identifies regions of interest and then
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classifies those regions, providing a more accurate but computation-
ally intensive approach [17, 20, 25, 26]. Despite their capabilities,
both traditional and deep learning methods encounter challenges in
real-world scenarios, especially in detecting palm trees. Factors like
dense canopies and diverse species in forests introduce complexities
such as overlapping objects and intricate backgrounds [9, 21].

2.2 Palm Detection

Modern remote sensing technologies have significantly advanced
palm tree detection by increasing the abundance, availability and
resolutions of both satellite and aerial imagery. Remote sensing
often leverages specialized sensors to capture distinct spectral
and structural characteristics [15, 21]. For example, thermal sen-
sors monitor surface temperature and can aid in irrigation design
for palm plantations, multispectral sensors produce NDVI images
which can help distinguish the presence, types, and organismal
qualities of vegetation, hyperspectral sensors yield detailed profiles
of spectral reflectance across large segments of the electromagnetic
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spectrum, and LiDAR sensors provide topographic and structural
data [13, 14]. These sensors are deployed on spaceborne platforms
(satellites), airborne platforms (drones or occupied aircrafts) or
ground-based platforms, with trade-offs of cost, scalability, and
observation scale depending on the platform and its deployment
[14, 15]. In this context, unoccupied aerial vehicles (UAVs) provide
a distinctly scalable, cost-effective opportunity for canopy moni-
toring with ultra-high image resolutions, achievable due to their
typically high-resolution sensors and ability to operate safely at
very low altitudes [13, 17]. UAVs enable efficient monitoring of
vast extents of terrain, catering especially to needs of small-scale
farmers monitoring diverse palm species [14, 23]. The integration
of automated palm detection techniques, whether conventional
or deep learning-based, further accentuates the potential of UAV
applications for mapping and monitoring vegetation land use and
land cover.

UAVs and machine learning approaches rapidly enhance veg-
etation analysis for agricultural and forestry management, with
methods like sliding window, histogram of oriented gradients, and
SVM effectively detecting palm trees in UAV imagery from Malaysia
and Saudi Arabia [13, 19, 19, 23, 23]. However, while effective, ma-
chine learning classifiers depend on feature quality. Introducing a
new dataset necessitates fresh feature extraction, which complicates
the training phase [10]. In contrast, deep learning approaches, par-
ticularly CNNs, inherently and adaptively extract relevant features
during training, remarkably simplifying the process. CNNs have
been applied to canopy monitoring with UAVs, effectively address-
ing complex object detection challenges [9, 12, 20, 21]. R-CNNs can
effectively identify Mauritia flexuosa palms in Amazonian forests
and oil palm trees in Malaysian plantations, demonstrating CNNs’
adaptability in both forest and agricultural settings [17, 20]. More-
over, other architectures like YOLO have been successfully utilized
to detect loose fruits of oil palms from UAV images, contributing a
major advance to precision agriculture [12].

Identifying palm trees from high-resolution aerial or satellite im-
agery presents several challenges. Conventional classifiers may not
capture hierarchical feature representations adequately, whereas
deep-learning methods demand extensive training datasets [14, 26].
Integrating CNN-based methods with conventional classifiers can
harness the strengths of both, offering a more robust solution for
palm tree detection [8, 26]. This has been demonstrated, using CNNs
to detect oil palm trees in satellite images using sliding window
and post-processing techniques [16].

3 DATASET

3.1 Raw and Orthomosaic Data

The raw data used in this study pertains to a natural reserve in
the Northwest region of Ecuador, known as the Ecuadorian Choco
forest (00°23/28"' N, 79°41’05”” W), see Figure 1. The reserve is a
high diversity humid tropical forest at 500m elevation, receiving ~
3000 mm precipitation per year. Precipitation is seasonal, with a
5-month minimum from July-November accompanied by persistent
fog (see [18] for detailed description). The forests contain 16 species
of palms that can have exposed crown [1, 18].

The data was collected in collaboration with the Fundacién para
la Conservacion de los Andes Tropicales (FCAT). The UAV imagery
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Figure 3: Comparison of Small Patches

was collected in two campaigns. The first in June 2022 covered 95
ha using a DJI Phantom 4 RTK drone with a 17 CMOS sensor and
controlled using UgCS mission planning software (CITS). Missions
were flown at 90 m/s with 70% sidelap and 80% endlap. A total of
387 photos were taken and an orthomosaic and 3D point cloud were
generated using Structure from Motion (SfM) in Agisoft Metashape
2.0 (Agisoft 2022). Flight plans, raw imagery, and orthomosaics are
available upon request.

An orthomosaic is a large photogrammetrically orthorectified
image product created from an image collection of a particular
geographical region. Orthomosaics generated from SfM can con-
tain considerable distortion due to the orthorectification process,
especially near the edges of the reconstruction. Typically, distorted
regions are removed to improve the visual consistency of the im-
agery, as shown in Figure 1.

3.2 Dual-Scale Manual Labels

A ground survey provided the exact location of 2,929 palms in the
study region. Upon observation, we found that many of these palms
are not visible in the orthomosaic image, due to severe occlusion
or overlap with surrounding trees, see e.g. Figure 2. The resulting
number of sufficiently visible palms in the orthomosaic was deemed
too small for supervised classification. Thus, the following strategy
was adopted to generate labeled data.

Fine-scale labeled data. We used the location of visible palms in
the orthomosaic to extract 6000 small image patches of 40 by 40
pixels, capturing as much palm leaf feature diversity as possible.
We endeavored to ensure that the extracted patches contain at least
90% of palm data within them. Similarly, we extracted 6000 40-by-
40-pixel patches of non-palm features, such as other types of tree
crowns, ground soil, roads, tree trunks, and other land cover types.

Sample images for the resulting palm and non-palm classes are
shown in Figure 3. The images on the left are patches containing
palm features, capturing the distinctive characteristics of a palm
tree. The images on the right, on the other hand, showcase patches
without palm features, highlighting variations that may help the
model to differentiate between palms and non-palms.

Coarse-scale labeled data. The second part of our labeling process
involved larger 100x100 pixel patches labeled as having high/low
probability of containing palms. This scheme not only captures
intricate leaf details but also broader tree crown contexts, crucial
for distinguishing partially occluded palms from other trees.

A semi-manual approach was employed for this purpose. We
used a portion of our fine-scale labeled data to train a network
and identify small palm patches throughout the entire orthomosaic
image. The locations of these patches reveals the presence of a palm
tree, even in areas where the palm is mostly occluded. We then
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explore 100x100 pixel areas around these patches, labeling them as
either palms or non-palms. This approach resulted in about 3367
palm and 4091 non-palm samples, as shown in Figure 4, with the
left four images showing palm patches and the right four showing
non-palm patches, including roads and other tree crowns. Notably,
some palms emerged within the low probability patches and some
non-palms within the high probability ones, underscoring the ef-
fectiveness of the large patch datasets in tree crown identification.

4 METHODOLOGY

In this section, we introduce the proposed PalmProbNet that fo-
cuses on generating a heatmap to show the probability distribution
of palm presence, aiding in biological applications. PalmProbNet
encompasses three pivotal stages: feature extraction, classification,
and application to the landscape orthomosaic image. The subse-
quent sections provide a detailed introduction of these stages and
Figure 5 shows the workflow of the proposed PalmProbNet.

4.1 Feature Extraction

Transfer learning is a potent technique that leverages pre-trained
models, reducing the need for extensive data collection and com-
putational resources [24]. Customization of these models is often
achieved by adding specialized layers tailored to the specific task.
Multi-Layer Perceptrons (MLPs), feedforward neural networks with
multiple layers, are commonly used for this purpose due to their ca-
pability to learn intricate patterns [22]. Residual Networks (ResNet)
address challenges in training deep neural networks by introducing
shortcut or "skip" connections, making them suitable for complex
tasks like palm tree detection [11]. In our study, given the limited
labeled data, we utilized the pre-trained ResNet-18 model, a vari-
ant with 18 layers. Originally trained on the ImageNet dataset [7],
ResNet-18 offers a robust feature hierarchy. We fine-tuned its final
layers to our dataset, ensuring a robust foundation for the PalmProb-
Net. Additionally, we incorporated data augmentation techniques
to enhance the diversity of our training data, addressing issues such
as variable illumination and occlusions [17].

4.2 Classification

To classify the palm images based on the extracted features from
ResNet layers, PalmProbNet employs an MLP that can capture com-
plex patterns in data by introducing non-linearity [22]. Our MLP
architecture, shown in Figure 5, incorporates a batch normalization
layer, enhancing the model’s ability to learn from ResNet’s feature
vectors and subsequently map them to the appropriate class labels.
The overall workflow is illustrated in Figure 5.

4.3 Application to the Orthomosaic Image

Applying the model trained by small/large patches to large land-
scape orthomosaic images in PalmProbNet involves several steps.
Depending on the training set, the model uses either 40 X 40 or
100 X 100 pixel patches. The process begins by loading the image,
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Figure 5: Workflow of The Proposed PalmProbNet

preprocessing, and capturing patches using a sliding window with
a stride of 10. Patches with 25% or more missing pixels are immedi-
ately categorized as ‘non-palm’. The ResNet layers then extracts
features from each patch, which are predicted by the trained MLP
layers. Probabilities from these predictions are aggregated into an
accumulator array, with overlapping regions being averaged to
ensure accurate probability estimates. Following the predictions,
the averaged probabilities are resized to generate a heatmap, which
is then overlaid onto the orthomosaic image to emphasize the areas
containing palms. The final results, including the highlighted im-
age indicating the palm regions and the heatmap of the landscape
orthomosaic, are saved for further analysis, capturing all computed
probabilities.

5 EXPERIMENT

5.1 Data Division and Augmentation

To ensure a fair evaluation of PalmProbNet, we divided our dataset
(for both small and large patches datasets) into two parts: 80% for
training and 20% for testing. The training set was further subjected
to 5-fold cross-validation, providing a more reliable assessment of
the model’s performance.

Data augmentation enhances model robustness and performance,
especially in image-based tasks with limited labeled datasets. For
the training set, we implemented several preprocessing and aug-
mentation techniques. The images were resized to 224 X 224 pixels
for compatibility with the pre-trained ResNet layers. Augmenta-
tions included random horizontal and vertical flips, which mirror
the image in different orientations, and color jittering to simulate
various lighting conditions. Lastly, normalization was applied to
scale pixel values to a standardized range, facilitating faster conver-
gence during training. For the test set, we avoided augmentations
that might alter the intrinsic characteristics of the images, preserv-
ing consistency with the model’s expectations.

5.2 Model Training and Evaluation

In the training of PalmProbNet, we fine-tuned the MLP layer pa-
rameters for task-specific adaptations, while keeping most ResNet
parameters frozen to guarantee robust feature extraction. The fi-
nal layer of ResNet was specifically fine-tuned to better align the
network’s output with the unique characteristics of our dataset.
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Table 1: Classification Results for Different Configurations

Patch Size | nnodes Acc  ROC AUC AA K Precision  Recall
64 0.9101 0.9642 0.9105  0.8203 0.9126 0.9101

Small 128 0.9041 0.9653 0.9047  0.8084 0.9099 0.9041
256 0.9110 0.9674 0.9114 0.8221 0.9132 0.9110

64 0.9698 0.9963 0.9694  0.9391 0.9698 0.9698

Large 128 0.9712 0.9949 0.9705  0.9418 0.9712 0.9712
256 0.9732 0.9959 0.9735 0.9459 0.9733 0.9733

During each fold of the cross-validation, the training data was aug-
mented using the described techniques, while the validation data
remained unchanged. We submitted SLURM jobs on Wake Forest
University’s cluster to accelerate the computation. The training
employed the Negative Log-Likelihood loss function to evaluate
prediction accuracy.

The core training phase consisted of 500 epochs for small patches
and 200 epoches for large patches, employing a batch size of 64. We
monitored the validation loss to select the best model, characterized
by the lowest loss across epochs and folds. This model was then
retrained on the entire training dataset with the same augmentation
techniques and evaluated on a non-augmented test set. This system-
atic training approach, integrating cross-validation and validation
loss monitoring, provided a robust evaluation framework, ensuring
optimal model performance and reliability.

We utilized several metrics to evaluate the performance of Palm-
ProbNet. Accuracy, given by Acc = W, mea-
sures the proportion of correct classifications. Average Accuracy
(AA) is the mean of individual class accuracies, offering a bal-
anced view, especially for imbalanced datasets. Cohen’s k coeffi-
cient gauges prediction reliability by assessing agreement between
predicted and actual classes beyond chance. For binary classifica-
tion, Precision, defined as Precision = 1— osiTtrisg SPfSFi;il‘;gSP Sves
evaluates the model’s exactness, while Recall, given by Recall =

True Positives
True Positives + False Negatives’

AUC represents the model’s discriminative power between classes.

measures its completeness. The ROC

5.3 Numerical Results and Discussions

In evaluating the numerical results, the trained models tailored for
both large and small patch sizes were tested on the testing patches
and deployed on the landscape orthomosaic image. A stride of 10
was employed during this process, which allowed for a comprehen-
sive and efficient scan of the entire image.

Our comparative analysis of patch classification, encompass-
ing both small and large patches, involved three configurations of
hidden layer nodes (nnodes): 64, 128, and 256. The performances,
shown in Table 1, reveal a uniform level of effectiveness across the
configurations for both patch sizes. For small patches, the 256-node
configuration showed a slight edge, although the overall stable met-
rics across all configurations indicate that additional fine-tuning
may be necessary for significant performance improvements. In
the realm of large patches, the 256-node setup similarly displayed
a marginal but noticeable enhancement in performance measures,
such as accuracy, average accuracy, and Cohen’s k coefficient. These
parallel findings across different patch sizes underscore the robust-
ness of the classification approach and suggest that the 256-node
configuration provides a subtle yet consistent advantage.

Figure 6(a-c) presents the probability heatmaps generated from
the landscape orthomosaic image using the PalmProbNet trained on

(a) With nnodes = 64, Small (b) With nnodes = 128, Small

(c) With nnodes = 256, Small (d) With nnodes = 64, Large

(e) With nnodes = 128, Large

(f) With nnodes = 256, Large

Figure 6: Probability Heatmaps Produced by PalmProbNet
Trained on Small & Large Patches

small patches. These heatmaps visually encode the model’s assessed
probability of palm presence, with brighter areas corresponding to
higher probabilities of palm features. The intensity within each 10 x
10 segment of the heatmap is indicative of the model’s confidence
in identifying palm elements within that specific area.
Considering three different hidden layer configurations (nnodes
= 64, 128, 256), the results, while broadly similar, exhibit subtle
differences upon closer inspection. Each configuration efficiently
detects a majority of the palm trees, though there are occasions
where non-palm tree crowns are erroneously classified as palms.
Such instances emphasize the necessity for more refined model
adjustments to reduce false positives. A visual evaluation suggests
that configurations with nnodes = 64 and nnodes = 256 marginally
surpass the performance of nnodes = 128. The consistent detection
patterns across diverse node configurations underline the reliability
of the feature extraction and classification phases, simultaneously
indicating areas where further tuning could elevate model accuracy.
Figure 6(d-f) displays the probability heatmaps derived from the
landscape orthomosaic image, utilizing PalmProbNet trained on
large patches. Each map is the result of a different hidden layer
node configuration (nnodes = 64, 128, 256), with the intensity of
the highlights indicating the likelihood of palm presence. The three
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configurations yield very similar results, making it challenging to
determine a clear superior performer. However, a common issue
across all configurations is the misclassification of certain areas. No-
tably, patches adjacent to blank areas—those that have been either
deleted due to poor image quality or are missing—are prone to be
inaccurately labeled as containing palms. Addressing these misclas-
sifications may require incorporating training samples that include
these edge cases or applying post-processing steps to exclude them,
thereby refining the model’s ability to discern true palm features
from artifacts introduced by image processing.

6 CONCLUSION AND FUTURE WORK

Identification of ecologically and economically important species
within tropical forests canopies expands the frontiers of research
and conservation. The paper details a thorough investigation into
identifying palm trees in Neotropical rain forest using PalmProb-
Net on UAV-captured images. In particular, it tackles challenges
commonly encountered in detection tropical palm canopies like
noise and uneven lighting, providing precise palm localization and
landscape spatial distributions. PalmProbNet employed two models
with the same architecture but trained on different-sized image
patches. The models, particularly with a 256-node configuration,
yielding robust results: for small patches, an accuracy of 0.9110,
ROC AUC of 0.9674, and a Cohen’s « coeflicient of 0.8221; for large
patches, an accuracy of 0.9732, ROC AUC of 0.9959, and a Cohen’s
coefficient of 0.9459. Probability heatmaps were introduced as a new
way to illustrate palm distributions, useful for both environmental
and economic research and computational tasks. The integration
of UAVs and deep learning has been validated for palm detection in
dense forests through high classification accuracy across various
model configurations.

Future enhancements to PalmProbNet will focus on refining the
heatmap by including training samples with edge cases and employ-
ing post-processing to filter out patches near blank areas. We plan
to include a fairer comparison of PalmProbNet with other classifiers,
and explore segmentation networks using the produced heatmap.
We also intend to involve superpixel-based methods for the fast
and precise localization of individual palms in orthomosaic images,
enhancing our understanding of their distribution [6]. Additionally,
we aim to augment our approach by integrating UAV imagery with
satellite data from platforms like Planet or WorldView, capitalizing
on the complementary strengths of local detail and broad-scale
context to improve detection accuracy [2].
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