
Available online at www.sciencedirect.com

The self as part of the sensory ecology: how behavior 
affects sensation from the inside out
Kevin C Daly and Andrew Dacks 

Insects exhibit remarkable sensory and motor capabilities to 

successfully navigate their environment. As insects move, they 

activate sensory afferents. Hence, insects are inextricably part 

of their sensory ecology. Insects must correctly attribute self- 

versus external sources of sensory activation to make adaptive 

behavioral choices. This is achieved via corollary discharge 

circuits (CDCs), motor-to-sensory neuronal pathways providing 

predictive motor signals to sensory networks to coordinate 

sensory processing within the context of ongoing behavior. 

While CDCs provide predictive motor signals, their underlying 

mechanisms of action and functional consequences are 

diverse. Here, we describe inferred CDCs and identified 

corollary discharge interneurons (CDIs) in insects, highlighting 

their anatomical commonalities and our limited understanding 

of their synaptic integration into the nervous system. By using 

connectomics information, we demonstrate that the complexity 

with which identified CDIs integrate into the central nervous 

system (CNS) can be revealed.
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Introduction
Animals including insects create elaborate and choreo-
graphed patterns of behavior. Consider the courtship 
behaviors of silkworm moths [1,2], pheromone plume- 
tracking in flighted insects [3,4], prey capture in dragon 
flies [5] and predator escape responses in fruit flies [6,7], 
or flight stabilization in bees [8]. All these behaviors 
require coordination of several muscle groups spanning 
the limbs, neck, and body. As behavior progresses, 
sensory systems must maintain active and accurate sen-
sory processing to allow for modification of behavior 

based on existing goals and updated sensory information. 
However, all behaving animals are inextricably a part of 
their own sensory ecology. That is, as behaviors are 
committed, they necessarily activate sensory neu-
rons, this is the effect of reafference. For example, visual 
saccades, rapid counterturning behavior in flying flies 
[9,10], create a behavior-induced panning visual scene 
that is similar to what is experienced by a gust of wind 
that pushes the fly about its horizontal axis. Sensory 
reafference was first described by von Holst and Mit-
telstaedt more than 70 years ago [11]. Reafference arises 
because motor acts activate sensory neurons, but they 
alone are unable to disambiguate the source of their 
activation, rather, they provide stimulus magnitude and 
timing information. Without intervention, sensory net-
works cannot attribute incoming signals to external 
sources such as wind gusts (exafference) or intentional 
saccades (reafference).

Reafference is accounted for in the nervous system 
through a broad class of neural circuits referred to as 
corollary discharge circuits (CDCs, Box 1). There are 
several excellent reviews of CDCs across broad taxa that 
highlight their universality and the diversity of their 
functional mechanisms of action [12–14]. We build on 
these discussions by exploring CDCs in insects, with 
examples that highlight how insect behaviors contribute 
to their own sensory ecology and how CDCs impact 
sensory function. All CDCs can be structurally and 
functionally defined as a neuron or neurons with den-
dritic processes in motor control networks that project to 
sensory and/or other motor networks to provide a pre-
dictive motor signal [13,15]. This internal representation 
of the motor plan, which CDCs provide, can function in 
a broad variety of ways to inhibit, excite, or otherwise 
modulate their downstream targets. Physiologically, the 
CDC must be reliably active in advance of and/or during 
implementation of the motor plan, which drives both 
behavior and reafference. That is, the activity of the 
CDC must faithfully correlate to motor output to be 
exploited downstream.

Inferred presence of corollary discharge 
circuits
The consequences of activating CDCs are often ob-
served in behavioral assays, and/or, in physiological re-
sponses of neurons within sensory or motor pathways 
downstream of the CDC that reliably correlate to be-
havior. However, the neurons providing the CD signal 
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are not always evident. For example, the cricket cercal 
sensory system consists of hundreds of wind-sensitive 
mechanosensory sensilla located on the cerci [16]. The 
cercal system detects airflow disturbances associated 
with approaching predators. When the sensory cells are 
activated, this drives reflexive escape behaviors [17]
mediated by excitation of the bilaterally paired median 
giant interneuron (MGI) escape circuit [16,18,19]. 
However, male crickets also stridulate their wings (i.e. 
scissor) to produce acoustic communications for con-
specifics to attract female mates and discourage male 
competitors. Stridulation displaces air proximal to the 
cerci and this drives responses in individual cercal sen-
sory cells [20]. However, the male cricket’s escape be-
haviors are not triggered by cercal sensory activation in 

this motor context, suggesting active mechanisms that 
help it discern airflow induced by predators versus his 
singing. Physiological recordings of MGI demonstrate 
that they are actively inhibited during fictive stridulation 
[20]. While the neurons representing the CDC substrate 
have not been identified, physiological results establish 
their presence and that they provide postsynaptic in-
hibition in MGI only during stridulation and not when 
the cricket is quiet.

Another example of an inferred CDC is found in the 
visual system of Drosophila. Flies experience rapid hor-
izontal panning of the visual scene across their visual 
field when their flight path is disturbed by wind. This 
rapid visual panning drives a corrective optomotor 

Box 1  
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Schematic representation of how CDCs are situated in the nervous system to shuttle information from motor pathways to sensory pathways. (a) As 

descending motor commands from the brain are patterned and implemented as muscle contractions (cyan), this drives changes in the sensory field 

(black), which are detected by sensory transduction mechanisms that convert physical energy from the environment into neural signals. Both 

reafferent and exafferent sensory information are passed through the sensory pathway (magenta), so to account for this, the CNS relies upon 

CDC interneuron/s, which receive signals from the motor pathway (orange). These motor signals correlate in some way to the motor action and are 

forwarded to affected sensory pathways. This information is used by the sensory pathway to modify sensory processing in one of several ways (b–d). 

Note: all sensory-to-motor transitions are collectively represented (green). In insects, there are currently three identified CDC substrates, each 

represented by neuron pairs. (b) In the cricket, wing motor information arises from the VNC during stridulation (singing), which suppresses auditory 

afferents and second-order neurons within the VNC, resulting in no reafference arriving to auditory centers in the brain. (c) In the fruit fly, information 

about walking stride is received by a pair of ascending neurons in the VNC that forward walking information from the leg neuropil to higher-order visual 

processing neurons in the brain, which detect wide-field visual motion across the retina in the horizontal plane. In this case, the CDC neurons positively 

summate with walking-induced visual flow from the eye. (d) In the moth, information about wing beating during flight is forwarded from the VNC to the 

AL in the brain where they inhibit inhibitory local interneurons resulting in a net disinhibition of the AL network. In all three cases, the cellular basis for 

activation of the CDC interneurons remains unknown, however, EM-based CNS volume reconstructions promise to facilitate the identification of both 

up- and downstream synaptic targets of these CDCs.  
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response to maintain visual stability in turbulence. 
However, flies also perform body saccades, an inflight 
behavior where the direction of flight is rapidly altered in 
the horizontal plane. This too causes a rapid horizontal 
panning of the visual scene across the fly’s visual field, 
yet flies do not elicit a corrective optomotor response to 
spontaneous intentional saccades. By independently 
controlling the visual scene of the fly during actual body 
saccade behavior in restrained flies, Heisenberg and 
Wolf [9] demonstrated that optomotor responses to be-
haviorally induced visual panning must be suppressed, 
implying the presence of a CDC. Physiological evidence 
for suppression of visual responses to body saccade-in-
duced optic flow has been observed in horizontal system 
(HS) cells [21]. HS cells are a subset of motion-sensitive 
lobula plate tangential cells, part of the visual flow pro-
cessing system of the fly brain. When the nonspiking HS 
cells depolarize, they drive the optomotor response. 
However, HS cells are actively suppressed during both 
spontaneous body saccades [21,22] and saccades induced 
by a visual looming stimulus [23]. Thus, the visual 
system responds to a panning visual scene appropriately 
by driving an optomotor response when hit by a gust of 
wind but not when induced by reafference. Thus, while 
the CDC substrate has yet to be identified, the physio-
logical and behavioral evidence implies a CDC that 
compensates for the induction of reafference by the fly’s 
own behavior.

Anatomically identified corollary discharge 
interneurons
While the above examples infer the presence of a CDC, 
the underlying neuron or neurons providing the pathway 
for predictive motor signals have not been identified. 
Thus, determining how the circuit functions mechan-
istically is challenging. However, there are at least three 
examples in insects where corollary discharge inter-
neurons (CDIs) have been identified and interrogated 
physiologically and/or behaviorally to gain a deeper 
cellular-level understanding of the mechanisms by 
which they modify sensory function and behavioral 
performance. Common to all are that the CD signal is 
carried by single bilateral pairs of identified CDIs [15]. 
Furthermore, all are ascending neurons originating 
within the ventral nerve cord (VNC), where they receive 
motor command information, and project it to sensory- 
processing neuropil in the VNC and/or brain. However, 
CDIs differ in their morphology, mechanisms of action, 
and functional consequences on sensory-motor co-
ordination.

For example, crickets have ears located on the posterior 
side of the forelegs [24], which are tuned to transduce 
acoustic signals of conspecifics, and the neural circuitry 

for species-specific song recognition is well characterized 
[25]. Stridulation produces ∼100-db reafferent acoustic 
signals to the ears, which could potentially desensitize 
the auditory pathway [15], or be misinterpreted by the 
singer as another nearby male. In either case, it is im-
portant for male crickets to disambiguate acoustic re-
afference within the auditory pathway. The neural 
circuitry underlying recognition of conspecific song, 
lacks a mechanism for disambiguating reafference from 
exafference [25], however, the auditory signals driven by 
stridulation-induced reafference specifically, are actively 
blocked [26]. This is accomplished by a bilateral pair of 
CDIs, which receive input from wing motor control 
centers of the mesothoracic neuromere, and reliably 
produce bursts of action potentials in precise temporal 
lockstep with stridulation behavior. The cricket CDIs 
ascend to the auditory pathway in the prothoracic neu-
romere of the VNC, where they provide presynaptic 
afferent depolarizing inhibition, which attenuates in-
coming auditory signaling by sensory afferents, and by 
directly inhibiting Omega neurons, which represent the 
first synaptic relay for auditory processing [15]. However, 
while CDIs clearly filter acoustic reafference attributable 
to stridulation early in auditory processing, they do not 
provide inhibition to the MGI escape circuit (described 
above) [20]. While the CDI neurons are identified, their 
overall morphology suggests that they likely receive 
more than wing motor information and affect more than 
auditory processing. That is, in addition to wing motor 
and auditory processing centers of the VNC, CDIs also 
project throughout the central nervous system (CNS), 
from the terminal abdominal ganglia, up to the brain 
[15]. The CDIs may integrate information about a 
variety of behaviors that also produce auditory re-
afference, or they may target sensorimotor networks that 
process auditory information in other contexts, but it is 
known that CDI is not the source of the inhibition of 
MGI [20]. Thus, as with visually guided flight in Dro-

sophila, the CDIs cancel reafference before processing. 
However, without a comprehensive understanding of 
the connectivity of the CDIs, the totality of their func-
tion remains unclear.

As with visually guided flight, flies experience walking- 
dependent visual flow, which covaries with the fly’s 
stride. Visual flow indicating a drifting trajectory during 
high-speed walking also depolarizes HS cells [27,28]. 
During walking, HS cells encode the fly’s angular and 
forward velocities by integrating independent internal 
motor-related signals with incoming visual stimuli. 
These internal representations are predictive motor 
signals since they are present in the HS cells even in 
genetically blind flies or in no-light walking conditions 
and correlate to stride [27,29]. Targeted optogenetic 
activation of the left- or right-side HS cells causes 
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reflexive ipsilateral turning responses. Importantly, the 
HS cells integrate both a hyperpolarizing-predictive 
motor signal and walking-induced depolarization caused 
by visual flow information from the eye. These pre-
dictive motor signals are phase-locked with the fly’s 
stride. At least one identified ascending neuron, LAL- 
PS-ANcontra, receives input from the front and middle 
leg neuropils within the VNC and projects con-
tralaterally to the posterior slope of the brain [30], where 
the HS cells also project [27]. While LAL-PS-ANcontra 

do not directly synapse upon HS cells, they nevertheless 
provide a predictive motor signal because optogenetic 
activation of LAL-PS-ANscontra depolarizes HS cells 
[27]. However, while the inactivation of the LAL-PS- 
ANcontra reduced HS cell response, they did not sig-
nificantly affect behavior, suggesting LAL-PS-ANcontra is 
one of multiple CDC pathways forwarding motor con-
text information.

Insect wing beating during flight can generate an oscil-
lating inflow of air over the antennae that structures ol-
factory input [31–36]. Wing beat-induced oscillating 
airflows are necessary for odor plume-tracking [2] and 
periodically enhance odor penetration through the brush- 
like sensilla of the antennae [32]. Wing beating generally 
drives oscillating forces that act upon the antennae [37], 
causing both olfactory and mechanosensory-mediated 
reafference. In the hawkmoth Manduca sexta, odors pulsed 
to simulate wing beating are more easily detected [38]
and produce more distinctive neural representations in 
the antennal lobe (AL) [39]. Principal output neurons 
(PNs) of the AL faithfully entrain to odor stimulus pulse 
trains to ∼30 Hz, Manduca’s maximum wing beat fre-
quency [35,40]. Their ALs each contain ∼230 primarily 
GABAergic local interneurons (LNs, [41]). Broad phar-
macological disruption of Gamma-aminobutyric acid 
(GABA) receptor function within the AL of Manduca 

abolishes the ability of PNs to represent the stimulus 
temporal structure of olfactory stimuli, indicating that 
GABA mediates this ability [40,42,43]. However, if the 
neck connective of Manduca is severed, PN’s maximum 
entrainment drops to ∼10 Hz [42,44], implying that as-
cending neurons from the VNC modulate the ability of 
PNs to represent the temporal structure of olfactory sti-
muli. Among neurons within the neck connective in 
Manduca are two pairs of ascending histamine-im-
munoreactive neurons (AHNs), which originate in the 
VNC and project to several brain neuropils including the 
AL [45,46]. Somata from one pair reside within the me-
sothoracic neuromere (MsAHNs), the other within the 
metathoracic neuromere (MtAHNs). Only the MsAHNs 
project to the AL and are the sole source of histamine 
therein. Severing the neck connective to axotomize the 
MsAHNs or pharmacological blockade of histamine re-
ceptors lowers the ability of AL PNs to track the temporal   

patterning of olfactory stimuli, whereas histamine re-
ceptor activation enhances this ability. Within the AL, 16 
LNs express the histamine-gated ionotropic Cl– channel 
HisCl1 [47], and project throughout all AL glomeruli [45], 
implying that suppression of this select group of LNs 
enhances the temporal fidelity with which the AL net-
work tracks odor stimuli. Simultaneous recording from 
individual MsAHNs and a wing motor nerve, indicates 
that MsAHNs increase spiking rate with wing motor 
output [48] and hence reflect the wing motor state of the 
moth. As the moth flies, the MsAHNs polysynaptically 
enhance the ability of PNs to accurately represent the 
stimulus temporal structure. Thus, the MsAHNs do not 
filter or gate reafference, rather, they modulate the AL 
function in a way, which enhances behavioral measures of 
sensory acuity.

Importantly, AHNs have homologs in all insects thus far 
studied, suggesting an ancient origin. However, the 
sensory networks innervated by the AHNs differ based 
on ecological need [48] (Figure 1). For example, al-
though MsAHN homologs innervate the ALs of cad-
disflies, silkworm moths, and nocturnal moths, they do 
not enter the ALs of other insects, including butterflies 
and other sphinx moths that are closely related to Man-

duca but are day-flying. This implies that the reliance on 
the olfactory system at night, for finding mates and food, 
has driven co-option of the MsAHN into an olfactory 
role, that was subsequently lost among diurnal moths 
and butterflies [49].

The AHN homologs innervate a variety of sensory 
structures within the brain, and several VNC neuropils. 
Thus, like the cricket CDI, AHN morphology suggests a 
more diverse and complex functional role in sensory- 
motor coordination [50]. One major gap in understanding 
of CDC function more broadly is the dearth of in-
formation about how CDIs, such as the three described 
herein, integrate wholistically throughout the CNS in 
terms of the information they receive and the down-
stream synaptic targets to which they forward this in-
formation. Electron microscopy (EM) volume 
reconstructions of the brain [51,52] and VNC [53] of 
Drosophila melanogaster, provide a unique and unbiased 
opportunity to identify and near-comprehensively map 
the connectivity of individual neurons of interest, to 
better understand the nature of their integration into the 
CNS. Connectomics analysis of the AHN homologs in 
Drosophila reveals that AHNs do in fact receive wing 
motor command signals from the brain and target this 
information to several sensory and motor networks 
throughout the CNS. Figure 2 displays the left MsAHN 
from the female adult nerve cord (FANC) EM volume, 
which is available to the scientific community [53]. The 
left MsAHN from this volume is displayed as an 
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autosegmented subvolume (Figure 2a) and as a manually 
traced skeleton with coordinates of all observed pre- and 
postsynaptic surfaces (Figure 2b). By back-tracing from 
the AHNs, their synaptic partners can be identified, this 
represents a launch point for subsequent functional 
studies of their relationships. Publicly available tools that 
match morphologies across EM and light microscopy 
datasets, facilitate identification of driver lines [54–57], 
which can then be used in molecular genetic, physiolo-
gical, and behavioral studies of their cellular mechanisms 
of function.

Connectomics holds the promise of providing a more 
comprehensive perspective of the structure of CDIs, 
leading to mechanistic studies of function. Ultimately, 

the careful study of insect CDIs will likely reveal that 
they integrate far more information to affect far more 
sensory and motor networks than previously thought. 
Furthermore, the FANC EM volume contains hundreds 
of pairs of ascending neurons from the VNC, which are 
ideally positioned to serve a CDC function. When con-
sidering the body-wide involvement in elaborate beha-
viors, it is likely that ensembles of these ascending 
neurons act in concert to create nuanced motor re-
presentations based on the specifics of the state of the 
sensory-motor ecology. Future studies of this ascending 
neuron population hold the promise of revealing con-
served and complex features of network architectures 
that enable sensory-motor coordination across the ner-
vous system.

Figure 1  
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The differential co-option of AHNs to serve an olfactory function across insects. (a) Schematic representation of the evolutionary history of the AHNs. 

(b) Diagram of a generic insect CNS highlighting the major regions that the two pairs of AHNs (green) project. Red lines indicate presumed loss of 

AHNs to that region. (c) Individual insect species for which we evaluated histamine distribution in the CNS. Here, we show that the AHNs project into 

the subesophageal zone (SEZ) and antennal mechanosensory and motor area (AMMC) of all insects previously investigated [49]. (d,e) Two previously 

unreported sphinx moths, (d) the clear winged hummingbird moth Hemaris sp., and (e) the white-lined sphinx moth Hyles sp. Histamine 

immunolabeling for Hemaris (di) adapted from Ref. [58], and Hyles (ei) indicates positive labeling for histamine (arrowheads) but no labeling in the AL 

(inset dashed ovals); protocols were the same as in Ref. [49]. In the last common ancestor of the Lepidoptera and Trichoptera, the AHNs were co- 

opted to innervate the ALs and serve an olfactory function. The innervation of the ALs was subsequently lost in butterflies and in the diurnal moths, but 

maintained in the night-flying, plume-tracking macrolepidopteran moth Manduca. Copyright permissions for insect images pending.  
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