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Abstract— For socially assistive robots to achieve widespread
adoption, the ability to learn new tasks in the wild is critical.
Learning from Demonstration (LfD) approaches are a popular
method for learning in the wild, but current methods require
significant amounts of data and can be difficult to interpret. In-
teractive Task Learning (ITL) is an emerging learning paradigm
that aims to teach tasks in a structured manner, minimizing
the need for data and increasing transparency. However, to date
ITL has only been explored for physical robotics applications.
Additionally, minimal research has explored how usable existing
ITL systems are for non-expert users. In this work, we propose
a novel approach to learn social tasks via ITL. This system
utilizes recent advances in Natural Language Understanding
(NLU) to learn from natural dialogue. We conducted a pilot
study to compare the ITL system against an LfD approach
to investigate differences in teaching performance as well as
teachers’ perceptions of trust and workload towards these
systems. Additionally, we analyzed the teaching behavior of
participants to identify successful and unsuccessful teaching
strategies. Our findings suggest ITL can provide more trans-
parency to users and improve performance by correcting speech
recognition errors. However, participants generally preferred
LfD and found it an easier teaching method. From the observed
teaching behavior, we identify existing challenges in ITL for
non-experts to teach social tasks. Using this, we propose areas
of improvement toward future ITL learning paradigms that are
intuitive, transparent, and performant.

I. INTRODUCTION

Socially assistive robots (SARs) have tremendous potential
to improve our society, yet in order to do so these robots
require a means of learning how to interact with humans
in different tasks and settings. Given the infeasibility of
designing a fully general robot, current research is focusing
on how to teach robots specific tasks such as performing
household chores [1], leading group activities [2], or deliv-
ering therapeutic interventions [3]. However, the number of
social tasks for robots to perform is far beyond the range of
tasks that can be trained in a lab by experts. For SARs to
adapt to a wide range of applications, it is imperative that
non-expert users can teach and adapt robots in the wild.

A popular approach for this is learning from demonstration
(LfD), where a human demonstrates how to perform a task
and the robot forms a model that can be used to execute the
task independently. LfD has shown promising results in phys-
ical domains such as object manipulation as well as social
domains such as therapy for Autism Spectrum Disorder [4]
and group activities for older adults [2]. However, it can be
difficult to teach tasks to SARs because while these robots
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may look human they do not have human-level cognition.
Teachers may overestimate the reasoning or common-sense
knowledge of the robot based on its humanoid appearance.
This is referred to as the perceptual belief problem [5],
[6]. Perceptual belief can significantly impair human robot
teaching because if the teacher does not understand what
concepts the robot already knows and what it needs to learn,
the teacher cannot teach the robot effectively. For SARs to
achieve a higher level of autonomy, it is necessary that they
be able to rapidly acquire new concepts and be able to convey
the extent of their knowledge to their teachers.

Interactive task learning (ITL) is a new learning paradigm
that seeks to address this problem [7]. ITL expands LfD
to include natural language as well as demonstration, with
the aim of mimicking human learning and more closely
integrating the teacher. We rarely utilize demonstration only
when teaching other humans. Rather, we verbally describe
the task and supplement this with demonstration. While LfD
treats the human as an actor or an expert, ITL treats the
human as a teacher who explains the nature of the task and
breaks it down into learnable components. By using natural
language, the teacher can convey knowledge more efficiently
as well as provide a grounding for learned concepts that the
robot can then use to explain its knowledge [8].

Recent works have predominantly explored the use of
ITL in physical manipulation tasks [7], [9]-[12] but this
approach has significant potential to address open challenges
in social robotics. Data-efficiency is one such challenge
for SARs because while physical manipulation robots can
easily gather data in simulation, social interactions are not
easily simulated and require real world data. In a rich social
environment, robots must learn what features to focus on.
This requires either crafting feature sets ahead of time (re-
ducing generalization capability) or learning from raw data
using deep neural networks (DNNs), which can struggle on
limited training data. Using natural language to teach social
robots has the potential to significantly reduce the amount
of demonstration data needed because concepts, rules, and
constraints of the task can be directly described rather than
implicitly inferred from patterns in a large dataset.

However, existing approaches to ITL designed for teaching
robot-object interaction are not readily applicable for teach-
ing social human-robot interactions. In a physical manipu-
lation task, learned concepts usually correlate a word with
a physical object, attribute, or action. In ITL these concepts
are often taught by focusing the robot’s attention on objects
through gestures [13] or physically demonstrating actions.
In most physical manipulation experiments (e.g. [9], [13]),
the environment has a finite set of objects present in the



experiment or simulation, which has the practical effect of
constraining the vocabulary used. In contrast to physical
manipulation scenarios, social tasks are more abstract in
nature and difficult to ground. States and actions are based on
the dialogue and not the physical environment. This means
that concepts must be learned verbally and without the aid
of physical and/or environmental teaching cues. Additionally,
without a physical environment constraining the vocabulary,
a teacher could say almost anything when teaching a social
robot. To provide a reasonable response, a social ITL system
must have a robust parsing system that can understand a wide
range of commands and vocabulary, which the handcrafted
parsers typically used in ITL may struggle with. Finally,
social tasks may be more difficult for humans to teach to
robots than physical tasks. While physical tasks or games
are often intuitive to break down into rules, steps, and sub-
tasks, social tasks can be much less structured and rely on
human intuition as well as common sense. If ITL is to be
used for these tasks, it must address this challenge and induce
computational thinking in the human during the learning
process.

Additionally, there is a current research gap of understand-
ing how end-users utilize and perceive existing ITL systems.
Questions have yet to be answered on how intuitive the teach-
ing process is, what mental models teachers form about the
robot, and whether they prefer this learning paradigm over
other techniques like LfD. Some research has investigated
human teaching behavior in Wizard-of-Oz studies [14] as
well as virtual studies identifying failure cases [15], but to
the best of our knowledge no existing HRI studies investigate
fully autonomous ITL systems with non-expert users. To
realize the full potential of ITL for social robots, we must
evaluate such systems with non-expert users to investigate
how performant, intuitive, and transparent these systems are
in real-world use cases.

In this work, we present a preliminary algorithmic ap-
proach for a SAR to learn social tasks via ITL and evaluate
user perceptions of this system with an HRI study. This
approach leverages recent advances in natural language pro-
cessing to adapt to a wide range of unstructured language
without the need for extensive handcrafted rules. A learning
agent guides the human teacher through the process of
ITL, while attempting to induce computational thinking. We
share the source code of this system for reproducibility and
future wor]ﬂ Our HRI study compares this system against
a pure LfD baseline on the post-teaching robot performance
as well as participant trust and perceived workload. Using
feedback from participants and observations from both LfD
and ITL teaching sessions, we identify areas for improving
the intuitiveness and transparency of learning systems for
SARs.

II. RELATED WORKS

Given the wide range in applications, LfD has been used in
many works for teaching novel social interactions to robots

Thttps://github.com/Intelligent-Robotics-Lab/multimodal-learning. git

[2], [3], [16]. However, demonstration can take significant
time to teach tasks to robots, especially in complex envi-
ronments where much data is required to separate patterns
from noise. Language-conditioned learning seeks to address
this problem by generating novel robot behavior from a
verbal command. It has shown great success in physical
manipulation areas [17], [18], enabling robots to execute
complex action sequences in real and simulated environments
from language commands.

While LfD and language-conditioned learning have been
successfully utilized in numerous robotics tasks, many ap-
proaches use an end-to-end neural network design that can
inhibit interpretability and generalization to new tasks. How-
ever, interpretability is especially important for social robots,
where inappropriate behavior can be particularly detrimental.
Global interpretability can help teachers understand what
has been learned, and local interpretability can improve
accuracy and user trust by rationalizing individual decisions
[19]. While a number of works [20], [21] have explored
interpretability techniques for LfD, a fundamental conflict
arises between generalization and explanation quality. High-
level, natural language explanations, as used in [1], are the
kind most suitable for non-expert users. However, these
approaches are frequently generated by end-to-end neural
networks, meaning they require thousands of labeled expla-
nations of a task. The end-to-end design also prevents knowl-
edge from being transferred from one model to another,
as there is no explicit modeling of concepts, only a latent
space. Additionally, because these explanations are labeled
after the robot has learned the task, such methods cannot
provide interpretability while a person is teaching the robot.
Alternative approaches [20] leverage inherently-interpretable
models, but these cannot explain in natural language and
high-level concepts, and therefore are more oriented towards
model transparency for expert users [22].

Given the weaknesses of purely neural methods for in-situ
learning, hybrid approaches combining machine learning and
structured models provide a promising alternative. Walker
et al. [23] present an approach to language-conditioned
learning that parses an intermediate representation in logical
grammar, which provides an interpretable model and en-
ables generalization to some unseen tasks. A neuro-symbolic
approach to learning object relations is presented in [24].
This hybrid design maintains the convenience of end-to-end
training while learning a structured and interpretable model
of object concepts. Language-grounded learning is another
hybrid approach that seeks to learn discrete concepts (e.g.
colors, shapes, and actions) during the process of learning
from demonstration. Instead of relying on an extensive pre-
existing knowledge base, robots can learn common sense
knowledge in-situ, improving generalization to new tasks
and reducing initial development effort. Language-grounded
learning has been utilized to provide labels for components
of a task [25], learn object and action words [26], and learn
multi-modal concepts through clarification dialogue [13].

Another hybrid approach, interactive task learning [8],
aims to learn tasks as a systematic hierarchy of rules and



concepts, rather than simply input-output black boxes. Where
LfD only observes what a person did, ITL intends to also
extract why the person performed that action. By learning
rules explicitly rather than inferring them from patterns, ITL
aims to learn tasks faster, with less susceptibility to noise,
and with greater transparency. ITL accomplishes this by
fusing LfD, language-grounded learning, and active learning.
Several works [9]-[12] have utilized ITL, but these have all
focused on learning physical tasks and concepts. By adapting
ITL for SARs, these robots will not simply mimic human
behavior, but rather understand the social rules of the tasks
they perform and convey their reasoning back to humans.

III. METHODOLOGY

Our approach for learning social tasks via ITL consists of
three components: a behavior tree-based learning agent that
generates dialogue, a natural language understanding (NLU)
system, and a synthetic dataset for training the NLU system.
When learning a new task, the learning agent prompts the
teacher with questions about the task. The teacher’s answers
to these questions will be processed by the NLU system,
which generates a sub-tree to append to the behavior tree.
This process repeats until the teacher indicates teaching is
complete.

A. Learning Agent

The learning agent generates dialogue to interact with the
human teacher and learn a behavior tree model of the social
task. The behavior tree for a task can contain sequences
and conditionals as interior nodes of the tree, while the leaf
nodes can consist of robot speech or listening behaviors.
Sequences can be associated with the name of an action such
as “greeting the customer”. The behavior tree starts with
an initially empty sequence. The learning agent performs
a recursive search on the behavior tree for sequences or
conditionals that have not been finalized, and prompts the
teacher for further information until the teacher indicates
this sub-tree is finalized. This process repeats until the
entire tree is finalized and the robot is ready to perform the
task. Given the goal of learning from non-experts, it cannot
be assumed that teachers will be skilled in computational
thinking (i.e., the ability to break a complex task down
into simple components and logic). Accordingly, the learning
agent uses guided prompts to induce computational thinking
in the human teacher. These prompts include context about
the subtree that is currently being learned, such the name of
the sequence being learned, the current conditional statement,
or the previous learned action, and ask for the next step. If the
NLU system is unable to understand the teacher’s response,
the learning agent indicates the failure and re-delivers the
prompt. If the NLU system misunderstands the teacher, the
teacher can indicate the misunderstanding and the learning
agent will apologize and backtrack in the learning process
appropriately.

B. Natural Language Understanding

The NLU system is responsible for parsing speech re-
ceived from the teacher into a computational representation

the learning agent can use to build behavior trees. All input
utterances are first classified based on the intent. We consider
6 possible intents: confirmation, denial, uncertainty, indica-
tion of speech misrecognition, task-relevant instructions, and
completion of the task. We utilize SimCSE [27] to vectorize
the input utterances and fit a weighted K-Nearest Neighbor
classifier (k=5) on a set of sample utterances.

For any utterances that are classified as task-relevant in-
structions, the system parses a computational representation
that can be returned as a sub-tree to the Learning Agent.
In order to do this, we utilize a semantic parser based
on a combination of the BERT and TS5 language models.
Inspired by the anonymization technique from [23], a BERT
model with a token classification head masks out portions
of the teacher utterance referring to quotes that the robot
should say or might expect a customer to say. This technique
significantly reduces the variance in input utterances, making
it easier for the parser to learn and generalize. The masked
utterance is then fed to a TS sequence-to-sequence model,
which converts the utterance to a computational parse. The
parser is trained to parse the following constructs:

o if{x, y): if x condition, do y

e heard(x): return True if person says x (or something

similar) to the robot

e say(x): say x to the person (x is a direct quote)

o ftell(x): tell the person x (similar to say, but requires

rephrasing to the robot perspective)

e ask(x): ask x to the person

o resolve(x): perform the action x

To mitigate the potential for the T5 model to generate
unpredictable results, the decoding vocabulary is restricted
to tokens present in either the input sequence or the set of
constructs listed above. Next, the masked portions of the
parse are substituted with their original utterance segments
to obtain a complete parse. However, some instructions
can contain language that must be converted to the robot’s
perspective for a live interaction (e.g. rell(“that they can
leave their key on the desk”) should be converted to say( “you
can leave your key on the desk”)). We utilize a GPT-J
model with a prompt to rephrase all utterances to the robot’s
perspective. Once the parse has been finalized, the NLU
system converts the parse text to a sub-tree of behaviors that
is returned to the Learning Agent.

C. Synthetic Dataset

Given the difficulty of collecting and labelling a large
dataset for mapping teacher instructions to parses, we utilize
a synthetic dataset for training the NLU system. To generate
such data, we form sets of primitive phrases corresponding
to the constructs in [[II-Bl We source names of actions for
resolve() from a WikiHow dataset and sample dialogue for
heard(), say(), tell(), and ask() from the DailyDialog corpus.
Full sentences and parses are generated by recursively sub-
stituting these primitive phrases. The full list of primitive
phrases can be found in the source code. In total, 10,000
pairs of sentences and parses are generated for training the
NLU system.
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What should | do after a person approaches me?

you should say hi my name is Alpha how can | help you

What should | do after | say, "hi my name is alpha how can i help
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How do | check them in?

you should say | cannot give you the room key because | have no
hands but my friend Brian to the left can provide you with your
key

After | say, "i cannot give you the room key because i have no

hands but my friend brian to the left can provide you with your
key" what is the next step of checking them in?

Fig. 2. Example Prompts from the Learning Agent: after prompt 1 a speech
behavior is added, after prompt 2 a conditional is added with a new “check
in” sequence as a child, after prompt 3 the “check in” sequence is filled in
with a speech behavior.

D. Task Execution

To perform the task after teaching, the robot ticks through
the behavior tree. When arriving at a heard(x) behavior, the
robot listens for a customer response and utilizes the sentence
vector cosine distance to determine if the distance from
phrase = is > 0.4 (an empirically determined threshold),
and returns Success if true and Failure otherwise. If heard(x)
fails, subsequent heard(x) behaviors will not stop to listen to
the customer until either a heard(x) behavior returns Success
or an else statement is reached. This design enables a fallback

Instruction parsing system

Fig. 3.

Teaching the Furhat robot with ITL

flow where a single robot listen can be matched against
multiple phrases z;, 2, etc. When the end of the behavior
tree is reached, execution repeats from the beginning.

IV. EXPERIMENTS
A. Study Design

To evaluate the performance of our system, we designed
an HRI study where participants teach a Furhat social robot
(named Alpha) to be a hotel concierge. We utilize a within-
subjects design where participants taught the hotel concierge
task to the robot with the proposed ITL system (Figure[3) and
again with LfD. The presentation of conditions was balanced.

1) Participants: We recruited 16 native English speakers
as participants for our study. Two participants were excluded
due to system errors. Of the remaining 14, there were 6
females and 8 males, with a mean age of 32.1 years (0 =
15.56).

2) Procedures: Before beginning LfD or ITL, a brief
demonstration was provided where the researcher taught the
robot a separate sub-task (assisting the guest with towels).
This demonstration included showing how to correct a mis-
understanding. Participants could request that the demonstra-



tion be repeated at any point in the experiment. Participants
received no further guidance on how to teach the robot
with ITL, as we wanted to investigate how intuitive this
learning system is without external help. Participants were
then provided with a task description for a hotel concierage
job, which consisted of 6 main sub-tasks:

o Greeting the guest

o Checking in the guest

o Assisting the guest with luggage

o Checking out the guest

o Providing information on hotel amenities

o Providing information on local restaurants
The participants were then asked to teach the robot this task.
During the teaching process for both conditions, participants
had access to a touchscreen displaying the conversation
history, enabling them to better detect automatic speech
recognition (ASR) errors and review what was already
taught. While teaching under both conditions, participants
were instructed that the robot should perform these sub-tasks
based on the hotel guest’s needs and not simply one after
the other. This provides a hint to teachers that they should
include conditional logic when teaching the robot. After
teaching, they played a hotel guest to assess the performance
of the robot and based upon their impression of the robot’s
performance they could choose to re-teach the robot. In
the ITL condition, re-teaching involved starting from the
beginning, while in the LfD condition re-teaching consisted
of providing more demonstrations to the existing model.

B. LfD System

In the LfD scenario, the participant played the role of
the robot while a researcher acted as the hotel guest. The
concierge task was then taught by mock dialogue between
them. The participant was responsible for designing both
the hotel guest and concierge script to avoid the researcher
biasing the dialogue. Participants had the opportunity to act
out mock conversations with the researcher before recording
data for LfD. Participants were able to test the LfD model
by acting as the customer and interacting with the robot
concierge running the LfD policy. This allowed them to
identify undemonstrated states or corrupted actions and pro-
vide more demonstrations as needed. The microphone array
included with the robot allowed for separating the dialogue of
the two speakers; this worked well but occasionally attributed
utterances to the wrong speaker, especially short responses.
For learning a policy, we utilize a similar approach as [3],
[16], but our method is designed for one-shot learning from
demonstration so that it can be completed in the same amount
of time it takes to teach with ITL (~15 minutes for the
six sub-tasks). This one-shot approach omits the clustering
used in the previous approaches and uses a nearest-neighbor
approach to select the current robot action a; based upon the
last robot action a;—1 and the guest’s response to it, s;. We
define the distance d between such (a, s) pairs as:

d((a1, s1), (az,s2)) = 0.2 x [[v(a1) — v(az)||

1
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Fig. 4. Distributions of Trust, Workload, and Total Performance

where v() denotes the sentence vector computed by SimCSE.

C. Evaluation Procedure

In this experiment we evaluate the performance of both
learning models and use questionnaires to compare partic-
ipants’ trust in the robot and perceived workload between
ITL and LfD conditions.

1) Performance Evaluation: To quantitatively measure
performance of the models, we had participants play a cus-
tomer while interacting with the robot in the hotel scenario.
Participants tested the LfD and ITL models that the previous
participant trained. The final participant’s trained models
were not evaluated. Two human coders labeled each robot
action as either appropriate or inappropriate based on the
customer’s responses. Additionally, the coders labeled the
category of action the robot should perform, either one of
the six sub-tasks or an “other” category for general dialogue
such as “you’re welcome”. Neither the participant nor coder
knew whether LfD or ITL was used to train the model. Robot
actions where the robot repeats back ASR errors from the
training procedure (e.g. would you like to check it vs. would
you like to check in) were coded as “appropriate w/ ASR
error” because they could be eliminated with improved ASR.
Sections with low agreement were cooperatively re-coded.
The final Cohen’s kappa agreement for was 0.91 for category
and 0.90 for action appropriateness.

2) Participant Attitudes: In addition to evaluating the
model performance, we investigated participants’ trust to-
wards the robot and perceived workload in both teaching
scenarios. Trust was measured using the abbreviated 14-
item version of the Trust Perception Scale-HRI questionnaire
[28]. Perceived workload was measured using the NASA-
TLX scale [29]. Both questionnaires were administered im-
mediately after the participant taught the robot and tested
their own model under the respective LfD/ITL condition, but
before evaluating the previous participant’s models. We also
directly asked participants to select which teaching style they
preferred and describe their reasons why. Finally, we asked
participants to rank their computer programming experience
on a 5 point scale.



TABLE I
QUESTIONNAIRE RESULTS

Trust % Workload % Preferred Teaching Method

W o m o
LfD 704 14.9 46.8 15.1
ITL 64.3 14.7 55.5 9.9

V. RESULTS
A. Questionnaire

The results of our HRI questionnaires are illustrated in
Table [[] and Figure [ Trust in the LfD condition (70.4%)
was higher than in the ITL condition (64.3%), but using
a paired r-test we found this effect was not significant
(t(13)=1.70, p=0.11). Perceived workload was found to be
non-normal, so we utilized a Wilcoxon signed-rank test
to analyze the difference. Workload was higher under the
ITL condition (55.5%) than the LfD condition (46.8%), but
this effect was also not significant (Z=-1.02, p=0.15). More
participants indicated a preference for LfD (9) than ITL
(5). To analyze whether computational thinking correlated
with these metrics, we compared the relative difference
of trust and workload between the two conditions against
participant’s self evaluated programming experience using a
Spearman correlation test. There was no correlation between
programming experience and trust differences (p=0.38) or
workload differences (p=0.45).

B. Performance Results

The results of our performance evaluation are shown in
Table [ and Figure [l For each participant, we compute
the percentage of appropriate actions and appropriate actions
ignoring ASR errors for each of the 7 action categories.
The category scores of each coder are averaged for each
participant. A participant’s total performance score (as shown
in Figure 4)) is defined as the mean of these 7 categories. The
categorical and total scores in Table [[I] represent the mean
of each participant’s categorical and total scores. This mean-
of-means design ensures even weighting among participants
with varying amounts of evaluation dialogue.

In total, our performance data consists of 372 actions.
ITL performance (4.76%) is higher the LfD performance
(39.3%). However, disregarding ASR errors the LfD system
slightly outperforms the ITL system (60.8% vs. 54.5%).
Amenities is a task with complex vocabulary, this category
illustrates how ITL provides greater ability to correct ASR
errors. Meanwhile, simple tasks such as Greeting (where
ASR errors are uncommon) do not show as much difference
between the two teaching methods. Sub-tasks appear in
Table |lI| in the same order as the task description provided
to participants, and many participants chose to teach the
tasks in this order. The decreased accuracy for later tasks
such as Amenities and Restaurants illustrates the problem of
unintended temporal dependency, discussed in section[V-D.2]
As shown in Figure 4] there is significant variance with both
teaching styles, with some participants achieving near-perfect

TABLE I
PERFORMANCE RESULTS

% of Appropriate Actions % of Appropriate Actions

ignoring ASR Errors

ITL LD ITL LfD
Greeting 72.9 60.0 72.3 66.2
Check In 51.0 34.6 57.3 69.6
Luggage 38.5 45.0 38.5 54.0
Check Out 45.8 51.8 46.3 56.9
Amenities 25.0 4.2 44.4 62.5
Restaurants 333 55.1 54.2 82.1
Other 67.3 9.5 67.3 9.5
Total 47.6 39.3 54.5 60.8

performance while others had zero performance. Again,
we ran Spearman tests to determine whether programming
experience correlated with IT1 or LfD performance (ignoring
ASR errors). Correlation was not observed with ITL (p=0.84)
or LfD (p=0.72) performance.

C. PFarticipant Feedback

As indicated in Table I, participants predominantly pre-
ferred LfD over ITL. Analyzing the open-ended questions,
those favoring LfD largely cited ease of use (n=8) and
better post-teaching task performance (n=>5) as their reasons.
Among those who favored ITL, most indicated that ITL
provided greater transparency in what was learned (n=3) and
enabled them to improve performance by correcting ASR
errors (n=3). Individuals from both groups said that ITL had
a higher learning curve (n=9), but for some the potential for
increased performance outweighed this. As one participant
shared, “[with ITL] I feel like even though I was unsuccessful
in training the robot, it would be more likely to perform
appropriately when trained successfully.”

D. Teaching Analysis

We reviewed the transcripts of participants teaching the
robot to identify successes and challenges in each condition.

1) Successful Teaching: With LfD, the most successful
teachers designed conversations that reflected a reasonable
range of hotel guest intents and responses. These teachers
were careful to avoid ASR errors by speaking clearly and
leaving pauses between conversational turns. They also uti-
lized the tablet interface to identify ASR errors immediately
and provide more demonstrations to correct them.

With ITL, successful teachers used conditional statements
well to model different conversational branches. They cor-
rectly followed the robot’s prompts to understand when a
conditional statement should end, meaning the underlying
behavior tree was wide and only had nested behaviors where
necessary. They also developed a model of what phrases the
robot could and could not understand (sometimes remarking
out loud) and phrased commands accordingly. If the robot
failed to understand, the teacher explored different phrasing
styles rather than persisting with the same phrase. Patience



also contributed to successful teaching: several participants
did not achieve optimal performance on their first attempt
but significantly improved with another teaching session.

2) Failure Modes: When participants struggled to teach
the robot, we identified the following patterns:

Technical Challenges: A common challenge was un-
corrected ASR errors. In both conditions the robot some-
times heard incorrectly, but in LfD there was the additional
difficulty of the robot assigning utterances to the wrong
person. Teachers corrected ASR performance more often
with ITL than LfD, likely because misunderstandings were
more immediately apparent in ITL as the robot would always
repeat back its understanding of the teacher’s instructions.
While some participants achieved better performance through
ITL by resolving ASR errors, if participants focused too
much on ASR errors it could also lead to participants getting
stuck in failure loops. Some phrases were simply unable
to be understood correctly by the robot even with perfect
enunciation, but teachers made repeated attempts (as many as
7) to notify the robot it misunderstood and retry, rather than
simply continuing with teaching. Teachers tried to also tell
the robot to replace an individual word, (e.g., “Replace robot
lead exercise with robot led exercise”) but the learning agent
could only replace full utterances. One participant suggested
typing as a much less frustrating alternative. Such failure
loops seemed to increase frustration and wasted time that
could otherwise be spent improving the robot’s task model.

Computational Thinking Challenges: Several partici-
pants failed to teach the robot to respond based upon the
customer’s needs, so the robot simply listed off information
without first identifying a customer’s needs by listening. This
failure occurred in both LfD and ITL, but more frequently
in ITL. One common difficulty with LfD was forgetting
about undemonstrated states. For example, many participants
started by asking “would you like to check in?” and acting
out the scenario where the hotel guest said yes, but forgot
to demonstrate a scenario where the guest said no. Such
difficulties were not present under ITL, as the robot explicitly
asks about else conditions.

Mental Model Mismatches: The most common struggle
with ITL was failure to understand the temporal constraints
of the behavior tree that was being generated. Despite the
design of the learning agent prompts to induce computational
thinking, many teachers accidentally created temporal de-
pendencies where there should not have been. For example,
when taught this way the robot would only provide informa-
tion on hotel amenities immediately after a guest asks about
check in; if the guest does not ask about check in that part of
the behavior tree remains inaccessible. In several participants
this was so prevalent that the robot could only perform
the initial behavior (check in) successfully. Another type of
failure loop occurred when participants over-simplified the
task to an extent the ITL algorithm could not understand. For
example, ““What should I do next?’, ‘Listen for a response’,
‘How do I listen for a response?’, ‘Wait for the guest to say
something’, ‘How do I wait for the guest to say something?’,
...” In some cases, the frustration was high enough for the

participant to give up on teaching before all 6 sub-tasks had
been taught, causing low performance. Some teachers also
attempted to teach slot-filling behaviors to the robot, such
as asking for the guest’s name and reusing that information
later in the dialogue, but currently the learning agent and
NLU were only capable of rote memorization.

VI. DISCUSSION

In this work, we present a novel approach to learning
social interactions via interactive task learning and conduct
an exploratory study to compare the performance and teacher
perceptions of the system against an LfD approach. Overall,
the strengths of the ITL system include better performance
without ASR errors and greater transparency in what was
learned. This result is promising given the inevitability of
ASR errors with current technology. Meanwhile, the simpler
LfD system was considered easier to use by participants and
outperformed ITL when disregarding ASR errors. We also
did not observe correlations between computer programming
experience and participant attitudes or performance in either
condition. This finding could suggest that computational
thinking is not the main obstacle for effective ITL teaching.
Rather, faulty mental models of the robot’s knowledge may
be a limiting factor for programmers and non-programmers
alike.

The HRI study performed in this work sheds light on
how humans attempt to teach social tasks via ITL and areas
for improvement. From an algorithmic standpoint, the NLU
system could be improved in several ways to make the
robot more capable and reduce teaching difficulties. The
task scenario was simplified to static behaviors for this
study, but for real-world interactions a robot must be able
to store information from an interaction, such as names,
and adapt phrases accordingly. We leave such learnable slot-
filling NLU features for future work. Features such as word-
level (rather than sentence-level) ASR correction could also
reduce frustration and time spent while increasing system
performance. Similar sentiments pertaining to ASR frustra-
tions have been observed with ASR-based conversational
computer programming systems [30]. Additionally, if the
NLU system were trained to detect mismatches in the mental
model, these miscommunications could be addressed by the
learning agent rather than triggering a failure loop.

However, other improvements could be investigated for
improving teachers’ mental model of the robot. The common
issue of unintentional temporal dependencies could likely be
resolved by better prompting language. For example, adding
“Should I do behavior x only as part of behavior y, or
any time z happens?” to the learning agent prompts might
eliminate many occurrences of this failure. The use of a
visual aid beyond the simple tablet transcript provided in this
study could also assist the participant in understanding the
robot’s model of the task [30]. This could be an illustration
of the model/behavior tree itself or a simpler interface.
Regardless, designing it for those without computer science
experience would be essential [31].



Finally, a hybrid approach involving LfD and ITL could
combine the best qualities of both methods. LfD could
present a simple way of initially teaching, and ITL could be
used to clarify temporal dependencies and fix ASR errors.
Humans naturally utilize such a multi-modal teaching ap-
proach with each other, which could make a hybrid learning
approach a more natural and intuitive way to teach social
robots.
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