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Abstract— Backchanneling models, designed to enhance the
interactive capabilities of robots, have primarily been trained
on human-human interaction data. However, applying such data
directly to social robots raises concerns due to dissimilarities
in the way humans and robots exhibit verbal and nonverbal
behaviors, particularly in the domain of emotional backchannels.
This research aims to address this gap by conducting an
exploratory study on the differences in human backchanneling
behaviors during interactions with humans and social robots in
various emotional contexts (e.g., happy and sad). Our findings
reveal significant variations in emotionally specific backchannels
between human-human and human-robot interactions under
different emotional contexts. These results highlight the impor-
tance of designing backchanneling models that are tailored for
human-robot interactions.

I. INTRODUCTION

Backchanneling plays an essential role in a conversation
and contributes to the naturalness of social Human-Robot
Interaction (HRI). Backchanneling refers to the verbal phrases
and non-verbal behaviors that listeners use to indicate that they
are attending to a conversation, engaged, emotionally affected,
and following along with the speaker. Backchanneling can
include lexical phrases such as “’yes”, “okay”, "perfect”, and
“alright” as well as non-verbals such as nodding, eye gaze, or
non-lexical sounds such as "ha, ”oh”, "mm-hmm”, uh-huh”.
A combination of both verbals and non-verbals could also
be used such as saying “’yes” while nodding [1], [2].

These backchannels can be categorized into two types:
generic and specific. Generic backchannels (GBCs) refer to
feedback that is not specific to the context and is considered
as a standard response. Examples of generic backchannels
include nodding or verbal phrases such as “’yeah” and could
be classified as continuers since they help to maintain the
flow of the conversation by signaling to the speaker that the
listener is engaged and interested [3]. Specific backchannels
(SBCs) refer to feedback that is tailored to the context and
offers more information about the listener’s understanding
of the situation and emotion during the conversation. For
example, when people listen to a sad story, they often show
sadness through their facial expressions and utter sounds such
as “oh” or “ah”. Whereas, they may display excited facial
expressions and sounds like “yea” or ”ha-ha” to show their
happiness and empathy when they hear good news. These
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are known as emotionally specific backchannels and are used
to convey empathy and affective responses to a story [4].

Using the appropriate backchannel based on the emotional
context of the conversation can make a speaker feel more
comfortable, heard, and valued, which can lead to a more
empathetic and engaging conversation overall. On the other
hand, a lack of backchannels or inappropriate emotional
backchannels can negatively influence the conversation flow
and engagement because a speaker may feel disrespected,
bored, frustrated, or annoyed [5], [6]. As robots become more
integrated into various aspects of society, it’s also important
to consider the ethical implications of their use. For example,
if robots are used in healthcare settings, it’s important to
ensure that they are able to engage in empathetic and
supportive conversations with patients. Hence, it is necessary
that social robots are too capable of producing appropriate
backchanneling behaviors according to the emotional context
of HRIs [7].

One challenge with designing appropriate backchanneling
behaviors for human-robot interactions is that social robots
often produce verbal and non-verbal behaviors in different
ways then humans. For instance, some robots use LED
colors to communicate emotions [8]. In some cases, social
robots produce facial expressions by adjusting only their
eyebrows and lip shape (e.g., iCat, Cozmo) [9], [10]. While
some social robots are able to produce human-like facial
expressions they utilize different mechanisms to achieve these
expressions such as through projections or wire actuation
of a rubber skin (e.g., Furhat, Sophia, and Ameca) [11]-
[13]. Although social robots can produce emotionally-specific
verbal and non-verbal backchannels to exhibit emotional
responsiveness and engagement in human-robot interactions,
they may not be perceived in the same manner as when
they are produced in human-human interactions and this can
potentially reduce the overall effectiveness of these human-
robot social interactions [14].

Due to all the differences between social robots and humans
in performing verbal and nonverbal behaviors to communicate,
the way humans perceive, engage, and interact with social
robots may differ from their interactions with humans.
This can impact the performance of backchanneling models
designed for human-robot interactions because these models
are often trained on human-human interaction datasets [1],
[15]-[18]. Namely, if a machine learning model doesn’t
receive appropriate and authentic input behaviors from human
users (i.e., states), it may struggle to generate accurate outputs



(i.e., backchanneling behavior). Hence, shedding light on the
differences between social robots and humans in triggering
emotionally-specific backchanneling can lead to improved
backchanneling models in the future.

This research aims to investigate how human backchannel-
ing behavior differs when interacting with a robot compared
to interacting with a human in different emotional contexts. In
order to investigate these differences, an exploratory study was
conducted that compares the generic and emotionally-specific
backchanneling behaviors of humans while interacting with an
interactive social robot or human storyteller in two different
emotional contexts. The emotional contexts (happy and sad)
were designed to elicit emotionally-specific backchanneling
from the participants. The human-human and human-robot
interactions were then analyzed to investigate the differences
in participants’ backchanneling behavior.

II. RELATED WORKS

Social robotics researchers focus on training models on
human backchanneling behavior in order to improve the nat-
uralness of conversation in social HRIs. As a widespread ap-
proach, some studies used human-human interaction datasets
to train a social robot to produce human-like backchanneling
behaviors and evaluated the efficacy of their data-driven
backchanneling behavior through a HRI user study. For
example, [15] trained head-nodding generic backchanneling
behavior using data augmentation, and [16] presented smiling
and nodding backchanneling models that were trained using
batch reinforcement learning. They compared a data-driven
model against a rule-based model and a baseline model
that produced random behaviors. The results of both studies
indicated that participants showed a clear preference for the
backchannels produced under the data-driven model when
compared to the rule-based model or the baseline model.
However, it’s important to note that they did not explore how
the effectiveness of these backchanneling behaviors might be
influenced by the context of the interactions between humans
and robots.

In [19], researchers explored how using three non-lexical
backchannels in the Korean language (e.g., ne, eo, eum) by
a Mebot social robot in two conversational contexts (e.g.,
information-centric and emotion-centric) are rated by 96
online observers. The results of this study showed that the
conversational context of a non-lexical backchannel affects
the rater’s perception of a robot and is an important factor to
consider when evaluating the effectiveness of backchanneling
behaviors. Although this study compared the effects of using
non-lexical backchannels in information-centric to emotion-
centric conversational contexts, different emotional contexts
were not considered. Moreover, this study had only one
robot’s interactant and did not target different robot users’
backchanneling behavior to evaluate. People may not have the
same level of emotional reactions, empathy, or self-disclosure
while talking to a robot or human. Consequently, a human
may backchannel differently when interacting with a robot
rather than a human in different emotional contexts.

As seen in [15], [16], [19], HRI studies currently investigate
how a robot’s backchanneling behavior affects a speaker’s
engagement and perception towards a social robot. In contrast
with these studies, the research in [20] investigated a listener’s
backchanneling behaviors while they were interacting with
a Pepper social robot, which was capable of exhibiting
backchanneling-inviting cues such as pausing, gazing, and
gesturing. The results of this research found that a listener’s
backchanneling behavior differs significantly when interacting
with a robot than a human. However, the robot was unable
to adapt its backchannel feedback to the listener. Addressing
such limitations is important because studies have observed
that users are more engaged with a robot listener capable
of producing adaptive backchannels that express a robot’s
attentiveness to the speaker [21]. Additionally, in [20], the
social robot Pepper was limited to exhibiting backchanneling-
inviting cues such as pausing, gazing, and gesturing and
was not able to show human-like facial expressions, whereas
more advanced social robots can show specific emotions
and maintain human-like eye contact with a listener. For
example, the Furhat robot can produce many different facial
expressions depending on the emotional context, such as
smiling, frowning, and raising eyebrows. Facial expressions
of emotion can influence a human’s perception and trustwor-
thiness of a social robot, and therefore a human may feel
more invited to produce backchannels and engage with a robot
capable of human-like facial expressions. Thus, it may be
useful to explore a human’s backchanneling when interacting
with a social robot capable of producing human-like facial
expressions.

Current research in social robotics investigates both generic
and specific backchanneling behaviors in order to produce a
more engaging and natural human-robot interaction [15], [16],
[19]-[21]. Many of these studies tend to investigate the effi-
cacy of data-driven backchanneling behaviors on a human’s
engagement and perception of a social robot [15], [16]. To the
best of our knowledge, there has been a lack of investigation
on a human’s emotionally-specific backchanneling while they
interact with a social robot. Although [20] investigates a
human’s backchanneling behaviors when interacting with the
Pepper robot, the use of a non-facial expressive robot in this
study may influence a human’s perception and trustworthiness
of a social robot and production of backchannels. Additionally,
humans may not feel the same level of empathy towards a
robot as a human, and a human may backchannel differently
when interacting with a robot than a human in different
emotional contexts. The study presented in this paper aims to
explore how people’s backchanneling behavior differs when
interacting with a human and a social robot that is capable
of exhibiting natural human-like facial expressions.

III. EXPERIMENTAL DESIGN

This study employed a 2x2 mixed design to investigate
differences in listener generic and specific backchannels when
interacting with a robot or a human storyteller narrating stories
with different emotional contexts. The between-subjects
condition in this design was the robot or human storyteller.



The within-subjects condition was the emotional context of
the story being told which included happy or sad. Participants
were randomly assigned to conditions.

A. Interactive Story Telling

An interactive storytelling scenario was designed as it
provides opportunities for a participant to engage in the
interaction as both a listener and speaker as well as elicits
generic and specific backchannels from the participant.
This is accomplished by allowing the audience to actively
participate in a story and shape its flow through their choices.
Furthermore, an emotionally expressive social robot can elicit
different emotional responses in a listener during storytelling
[22], [23].

Two stories, sad and happy, were developed and interac-
tively presented by a robot and a human in this experiment.
The distinction between happy and sad stories rested on
the elements of the story. A happy story is typically one
that evokes positive emotions such as joy, contentment, and
satisfaction within the reader/listener. A sad story is one that
evokes negative emotions such as grief, sadness, or disgust
within the reader/listener. In both conditions, the participants
were given options to choose the actions of the character in
the story. Overall, the stories were 8-15 minutes in length
depending on the how participants responded.

In the sad interactive story condition, a dog named Lacy
was injured by a car, and the participant had to choose how
the professor of veterinary science (the main character) would
treat the dog. As the story progresses, the professor and Lacy
build a close bond as a result of rehabilitating her. As a turn
of events, despite the close relationship between the professor
and Lacy, the professor is unable to keep Lacy at the end of
the story.

The happy interactive story condition had the participant
decide how a linguistics professor would navigate through
teaching a language he did not know how to speak. The
professor was constantly faced with situations where he had
to keep lying about knowing the language. However, in the
end, his poor situation became positive despite not fluently
speaking the language that he taught.

To ensure participants’ were able to distinguish sad
from happy content and that their emotions reflected the
content of the stories, literary techniques were used in the
story formulation to help effectively elicit emotions at the
appropriate times while engaging the readers. This included
using emotional turning points as well as emotional climaxes
in order to shift the tone in the story and attempt to induce
specific emotional backchannels [24]. For example, a positive
turning point in the happy story was when the student pointed
out that the teacher was teaching the wrong language class.
This was strategically placed in order to evoke a Positive
Specific Backchannel (PSBC) to go along with the moment
of a happy surprise. Conversely, an emotional turning point
within the sad story was when Lacy was hit by a car for the
second time in order to evoke a Negative Specific Backchannel
(NSBC) to go along with the sad moment of shock. It should
be noted that researchers sought to increase the effectiveness

TABLE I: Backchannels used by the storytellers

Emotion | Level Backchannel

Happy High Smile, nod, and say “thanks”

Happy Medium | Smile, nod, and say “okay”

Happy Medium | Smile, nod, and say “nice”

Happy Low Smile and nod

Neutral - Nod and say “okay”

Neutral - Nod and say “umm”

Neutral - Nod

Neutral - Say “alright”

Sad Low Express sad and look down

Sad Medium | Say “that’s sad”, shake head, and look down
Sad Medium | Say "I can’t believe that”, shake head, and look down
Sad High Shake head, express sad, and say “oh no!”

of the emotional turning points by having the remaining
events in the story provide neutral emotional content. There
were 6 emotional turning points in the sad story and 7 for
the happy story.

The emotional climax strategy aimed to build up tension in
the story and increase the probability for specific emotional
backchannels. For example, In the happy story, the emotional
climax was when the professor was invited to a dinner party
with his colleagues who speak the language he doesn’t know
very well. The sad story’s climax was when Lacy bit one of
the other animals that the professor owned and was forced
to leave her on the doorstep of an animal shelter. While the
emotional climaxes are reaching their peak, it is also the point
in the story where the reader should be the most engaged.

Two more techniques used to evoke specific emotional
backchannels were varying the tone and specific emotional
backchannels of the speaker. This meant that in parts of the
story where an emotional turning point or climax occurred,
the speaker’s tone would change to make the situation more
dramatic (e.g., a sad story with a sad event would have
the speaker say that part in a sad or terrified tone). The
speaker also used 4 happy, 4 sad, and 4 neutralbackchannels.
The happy and sad backchannels had varying levels of
intensity (i.e., 1 low level, 2 medium level, and 1 high level).
Descriptions for the backchannels are presented in Table [I|
Lastly, in order to keep the reader engaged and equalize
turn-taking during the interaction, open-ended questions were
used during the interaction (e.g., "Why did you choose to do
that?”).

All in all, each story would be between 8-15 minutes in
length depending on how much the participant was willing to
speak. One thing that should be acknowledged is the reasoning
for uneven ratios of the open-ended and emotional turning
points. This was the case as our pilot experiments determined
that for the specifically written stories, these ratios would be
optimal for testing and achieving the desired results.

B. Measures and Hypotheses

To address the research question within this study, we
defined the measures and metrics as described in Table
While exploratory research aims to collect evidence to form
hypotheses, it can be further improved by initially proposing
a set of working hypotheses beforehand, which can be later
refined and modified based on the findings [25]. Our working
hypotheses are presented as follows:
WHI1: Participants will produce a significantly higher number
of generic backchannels and specific backchannels



TABLE 1II: Measures and metrics

Backchanneling

Metric Label Definition or Example Type
Generic Backchannel GBC Backchannels with a neutral emotion (e.g., nodding or saying "ok™) | Frequency
Specific Backchannel SBC Includes positive and negative emotional backchannels Frequency
Positive Specific Backchannel PSBC SBCs that are used in positive emotions like happinnes Frequency
Negative Specific Backchannel | NSBC SBCs that are used in negative emotions like sadness Frequency
Percentage of GBCs %GBCs | GBCs / (GBCs + SBCs) x 100 %
Percentage of SBCs %SBC SBCs / (GBCs + SBCs) x 100 %
Percentage of PSBCs %PSBC | PSBCs / (PSBCs + NSBCs) x 100 %
Percentage of NSBCs 9%NSBC | NSBCs / (PSBCs + NSBCs) x 100 %

Participant’s Evaluation of the Story’s Emotion
Evaluation of the Happy Story | EoH Participants rate the happy story from 1 to 9 Likert Scale
Eavaluation of the Sad Story EoS Participants rate the sad story from 1 to 9 Likert Scale

during interactions with humans compared to the robot
storytellers’ condition.

Participants’ evaluations of the emotions for the happy
story will be significantly higher than their evaluations
of the sad story.

The number of participants’ positive specific
backchannels and their percentage in the happy
condition will be significantly higher than the positive
specific backchannels and their percentage in the sad
condition.

Participants’ negative specific backchannels and their
percentage in the happy condition will be significantly
lower than the negative specific backchannels and their
percentage in the sad condition.

Participants’ negative specific backchannels and their
percentage in the sad condition will be significantly
higher than the negative specific backchannels and
their percentage in the happy condition.

Participants’ positive specific backchannels and their
percentage in the sad condition will be significantly
lower than the positive specific backchannels and their
percentage in the happy condition.

There is a significant difference in the number of
each specific backchannel (e.g., positive, negative)
between the robot and the human storytellers for both
emotional contexts.

WH2:

WH3:

WH4:

WHS:

WH6:

WH7:

C. Experimental Setup

In the human storyteller condition, the narrator was one of
the researchers. The researcher was a 20-year-old American
female that is a native English speaker. Figure [T] shows
the human storyteller on the right and the participant on
the left. For the robot storyteller condition, a Furhat social
robot (Figure [Z) was used and teleoperated by a researcher
utilizing a customized Wizard of Oz (WoZ) interface to narrate
the story. The teleoperator was able to observe the interaction

through a one-way mirror in a neighboring room (Figure [2).

1) Furhat Social Robot: The Furhat robot consists of
an animated human-like face projected on a physical mask
on the back of its head [11]. This approach is referred to
as “blended embodiment” [26] and produces more realistic

facial expressions, eye gaze, and human-like appearances.

The robot also has the ability to move its head in a natural

way, similar to a human, through its human-like neck design.
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Fig. 2: WoZ Setup and the Furhat Social Robot

It is also equipped with a 135-degree field-of-view camera,
2 microphones, and a speaker. The robot can also switch
between different projected faces and physical masks. For
the voices, a wide selection of options is available such as
Amazon Polly and Acapela Group. According to the ABOT
database, which measures human-like appearance, Furhat has
a score of 63.43, which includes scores for body manipulators
(0.025), facial features (1.0), and surface (0.727). This score
is higher than those of other similar robots like NAO (45.92)
and Pepper (42.17), even though Furhat does not have arms
and legs [27].

D. Procedure

The experiment procedures in this study were approved by
the Institutional Review Board (IRB) at Oakland University
(#IRB-FY2022-103). A total of 28 participants were recruited
and 14 participants were assigned to each storyteller condition.
There were 15 males and 13 females with an average age



of 30.

Prior to beginning the experiment, a researcher explained
all the procedures to participants in a separate room from
the storyteller and written informed consent was obtained.
The participant was then asked to fill out a questionnaire
regarding their demographic information, and their experience
with technology. The participant was then guided to the room
and seated in front of the storyteller. The first story was then
narrated by the storyteller. After the first story, the participant
was asked to fill out a questionnaire on rating the story’s
emotion on a Likert scale from 1-9 where 1 was very sad and
9 was very happy. The second story was then narrated by the
storyteller and participants were asked to rate the second story
as well. During the story narrations, the story was printed and
placed on a desk in front of the storytellers. Since the human
storyteller was unable to memorize the entire interactive story,
she was allowed to use the manuscript on an iPad to conduct
the narration. To keep both storyteller conditions consistent,
the robot was programmed to pretend to also read through
the story on paper at the same points as the human storyteller.

E. Data Collection

The interactive story interactions were all recorded. All
devices used for data collection are depicted in Figure [2| In
both conditions, an Orbbec Astra |'| and a Microsoft Azure
Kinecﬂ were used for collecting depth data from two different
perspectives during the interaction (shown in Figure [T). A
video camera (Canon R10) was also recording a closeup
view of the participant and another camera (Canon VIXIA)
was recording the storyteller. Two lapel microphones were
used to record the vocal data from the participants and
the storytellers. Moreover, audio data was recorded using
a Respeaker microphone array ﬂ

F. Data-Coding

The videos from the participants were used to code their
backchanneling behavior. Their backchanneling behavior was
coded by researchers based on the labels defined in Table
The session was divided into ten-second intervals and coded
for instances of GBCs, PSBCs, and NSBCs. Since all labels
could be displayed within a ten-second interval, it was
possible for an interval to be categorized as GBC, PSBC, or
NSPC.

Inter-Rater Reliability (IRR): 50% of the interaction
sessions were double-coded and rated by two researchers
(i.e., raters) to ensure that the IRR was over 70%. IRR was
scored using the interval-by-interval method for all the labels.
This method measures the percentage of matched intervals
with a label. IRR scores below 70% were corrected by the
two raters coming together to re-code the session [28].

Thttps://orbbec3d.com

Zhttps://azure.microsoft.com/en-us/products/kinect-dk

3Datasets will be available online upon request from the corresponding
author

TABLE III: Results of the Statistical Analysis

I o t p Result
WHI | GRCy o Haman | 496 01| |43 | 0078 | Refected
WHI gggz 12 1:1?1?:1);;1 é1,92 3:27 377 | <0.001 | Accepted
WH2 ES‘; g:?(z) %:g; 10.29 | <0.001 | Accepted
WH3 ggggz 12 ls_l:g " 481;; g;g 3.67 <0.001 | Accepted
WH3 | pSBC Sad | 057 03| 3% | <0001 | Accepied
wha [JOBCSIHappy | L8 L 933 | 58 | <0.001 | Accepted
WH4 Zzﬂgggf 12 g‘:gpy 812‘9‘ 8:;9 49 | <0001 | Accepted
WHS Eil‘igi 12 Is_f;%py Sjég f;; 380 | <0.001 | Accepted
WHS | RSBCS i Fagpy | 009 09| +9 | <0001 | Accepied
WH6 [ DoDC D f&‘:}py o2 L O0% 1 567 | <0001 | Accepted
WH e Isf;ipy O 1032 | 394 | <0001 | Accepted
WHT | pBC i Human | 389 | 63| 20 | 0003 | Accepied
WHT | RSBCS o Faman | 11017 2% | 001 | Accepied

IV. DATA ANALYSIS

We used paired sample t-tests to evaluate WH2, WH3,
WH4, WHS, and WH6. Independent sample t-tests were used
to evaluate WH1 and WH?7. The independent variables for
the t-tests were the stories’ emotions (happy and sad), and
the storytellers’ (robot and human). The dependent variables
for our statistical analysis are listed in Table

V. RESULTS AND DISCUSSION

The findings of our study, as summarized in Table have
provided valuable insights into the dynamics of human-robot
interactions and their impact on backchanneling behaviors.
One of the primary hypotheses explored in this research was
whether there existed a significant difference in participants’
GBCs (Generic Backchanneling Cues) between interactions
with humans and robots, irrespective of the emotional contexts.
Contrary to our initial expectations, the results led us to reject
this hypothesis, suggesting that the storytelling scenario was
well-balanced in terms of generic content delivery, resulting
in similar GBCs from participants across both human and
robot interactions.

However, the second hypothesis, which examined partici-
pants’ evaluations of the stories, was supported by the data.
Notably, participants perceived the emotional tone of the
stories differently, with the happy story evoking a genuinely
happy response and the sad story eliciting a sense of sadness.
This finding demonstrates that emotional storytelling can
indeed influence participants’ emotional engagement, even in
interactions with social robots.

Moving on to hypotheses 3, 4, 5, and 6, we aimed to
objectively evaluate the stories’ ability to induce emotionally
specific backchanneling cues in participants. The results of
the statistical analysis revealed a significant difference in
participants’ specific backchannels between the happy and
sad emotional contexts. This highlights the importance of
considering emotional factors when designing and delivering



stories in human-robot interactions, as these cues play a
crucial role in shaping users’ emotional responses.

With evidence now demonstrating both subjective and
objective differences in emotional contexts, hypothesis 7,
targeting the main research question of this paper, was
supported. The statistical analysis revealed that participants’
emotionally-specific backchannels were significantly different
across the human and robot interactions. This suggests that
social robots may indeed elicit distinct emotional responses
from users compared to human counterparts, and understand-
ing these differences is vital for developing more effective
and emotionally resonant human-robot interactions.

Given the implications of our results, it becomes evident
that training machine learning models for predicting and
generating backchanneling behaviors, particularly those that
are emotionally specific, based solely on human-human
interaction data may not be the optimal approach. Instead,
incorporating data from human-robot interactions may be cru-
cial to developing more contextually aware and emotionally
sensitive backchanneling models for social robots.

As we look to the future, our research will extend into
training backchanneling models specifically on human-robot
interaction data. By comparing the performance of these
models against the baseline model trained on human-human
interaction data, we aim to gain further insights into the
effectiveness and appropriateness of using human-robot
interaction data for such models. This endeavor will contribute
to refining the design and implementation of social robots,
ultimately enhancing their ability to engage users emotionally
and foster more natural and compelling interactions.
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