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Abstract. We develop an algorithm to test whether a non-CM elliptic curve E/Q gives rise to
an isolated point of any degree on any modular curve of the form X1(N). This builds on prior
work of Zywina which gives a method for computing the image of the adelic Galois representation
associated to E. Running this algorithm on all elliptic curves presently in the L-functions and
Modular Forms Database and the Stein–Watkins Database gives strong evidence for the conjecture
that E gives rise to an isolated point on X1(N) if and only if j(E) = −140625/8,−9317, 351/4, or
−162677523113838677.

1. Introduction

The modular curve X1(N) is an algebraic curve over Q whose non-cuspidal points parametrize
elliptic curves with a distinguished point of order N . We are interested in studying isolated points
on X1(N), which are roughly those not belonging to an infinite family of points parametrized
by a geometric object. For example, if f : X1(N) → P1 is a rational map of degree d, then
f−1(P1(Q)) contains infinitely many closed points of degree d by Hilbert’s irreducibility theorem
[Ser97, Chapter 9]. We say a degree d point not arising from such a map is P1-isolated. Other
infinite families of degree d points correspond to positive rank abelian subvarieties of the curve’s
Jacobian; see Section 2 for details. A point which is not thus parametrized is AV-isolated. If a
closed point x ∈ X1(N) is both P1- and AV-isolated, then we say x is isolated. One special class
of isolated points is sporadic points, which are points x ∈ X1(N) such that there are only finitely
many points on X1(N) of degree at most deg(x). While every sporadic point is isolated [BEL+19,
Theorem 4.2], the converse need not hold.

Elliptic curves with complex multiplication (CM) provide many natural examples of isolated
points, since the extra endomorphisms of a CM elliptic curve constrain the size of the image of the
associated Galois representation. Indeed, as shown in [CGPS22, Theorem 8.2], there exist sporadic
CM points on X1(N) for all N ≥ 721. Non-CM isolated points on X1(N) remain much more
mysterious, and are tied to open uniformity problems of Balakrishnan and Mazur [BM, Conjecture
17] and Serre [Ser72, §4.3]; see Section 1.2 for details. One recent line of investigation has focused
on the class of isolated points associated to non-CM elliptic curves with j-invariant in Q. Prior to
this work, there were only three known examples of such elliptic curves, up to isomorphism over Q:

• The elliptic curve with j-invariant −140625/8 corresponds to two sporadic points of degree
3 on X1(21). This example was first discovered by Najman [Naj16]. In fact, this is the
unique elliptic curve giving a sporadic point of degree at most 3 on any modular curve
X1(N), as shown in [DEvH+21].

• The elliptic curve with j-invariant −9317 gives three points of degree 6 on X1(37), as in
work of van Hoeij [vH]. Since 6 is less than half the Q-gonality of X1(37), as computed in
[DvH14], the points are necessarily sporadic by work of Frey [Fre94].
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• The elliptic curve with j-invariant 351/4 gives an isolated point of degree 9 on X1(28); see
[BGRW, Theorem 2]. There are infinitely many points on X1(28) of degree 9, as shown in
[DvH14], so this point is isolated but not sporadic.

If x ∈ X1(N) is an isolated (resp. sporadic) point, we say j(x) ∈ X1(1) ∼= P1 is an isolated
(resp. sporadic) j-invariant. Thus the three j-invariants listed above are isolated j-invariants,
while only the first two, −140625/8 and −9317, are sporadic j-invariants. We have good reason to
believe that the set of all isolated j-invariants in Q is finite. Indeed, in [BEL+19, Corollary 1.7]
the authors show that this would follow from an affirmative answer to Serre’s Uniformity Question
[Ser72], which is now a conjecture of Sutherland [Sut16] and Zywina [Zywc]. Moreover, in [BEL+19,
§1.2], the authors pose the following question:

Question 1 (Bourdon, Ejder, Liu, Odumodu, Viray). Can one explicitly identify the (likely finite)
set of isolated j-invariants in Q?

This question serves as motivation for the present work. To this end, we develop an algorithm
which can be used to determine whether a given non-CM j-invariant in Q is isolated. Starting
with the image of the adelic Galois representation associated to E/Q with j(E) = j, as computed
by Zywina [Zywa], we apply various filters to determine whether there exists an isolated point
x ∈ X1(N) with j(x) = j for some N .

Algorithm: Main Algorithm

Input: A non-CM j-invariant j ∈ Q.
Output: A finite list {(a1, d1), . . . , (ak, dk)} of (level, degree) pairs such that j is isolated

(respectively, sporadic) if and only if there exists an isolated (respectively,
sporadic) point x ∈ X1(ai) of degree di with j(x) = j for some (ai, di) in the list.

In particular, if the output of Algorithm 1 is the empty set, then j is not an isolated j-invariant.
If the output is nonempty, one can try to use other techniques to determine whether each point of
degree di on X1(ai) associated to E is isolated, from which we can definitively say whether j(E) is
an isolated j-invariant.

We ran Algorithm 1 on all elliptic curves currently in the L-functions and Modular Forms Data-
base (LMFDB) [LMF23] and in the Stein–Watkins Database [SW02], which together contain over
36 million distinct non-CM j-invariants associated to elliptic curves over Q of conductor at most
108. The output shows that all but 6 of the non-CM j-invariants included in these databases are
not isolated. As noted above, half of these remaining j-invariants are known to be isolated; in
Section 9 we perform a case-by-case analysis on the remaining 3 candidates. In particular, these
findings imply the following result.

Theorem 2. Let x = [E,P ] ∈ X1(N) be a non-CM isolated point with j(E) ∈ Q. Fix an equation
for E/Q and let NE denote its conductor. Suppose that one of the following holds:

• NE ≤ 500 000,
• NE is only divisible by primes p ≤ 7, or
• NE = p ≤ 300 000 000 for some prime number p.

Then j(E) ∈ {−140625/8,−9317, 351/4,−162677523113838677}. Moreover, each one of these j-
invariants corresponds to a P1-isolated point on X1(21), X1(37), X1(28), or X1(37), respectively.

Remark 3. Though we did not find a result in the literature showing the degree 18 point on
X1(37) associated to j = −162677523113838677 is P1-isolated, the point itself was well-known
prior to this work. Indeed, this j-invariant corresponds to one of two non-CM elliptic curves over
Q with a rational cyclic 37-isogeny (see, e.g., [LR13, Table 4]), and any elliptic curve with a Q-
rational cyclic N -isogeny will give a point on X1(N) in degree at most φ(N)/2. Theorem 48 in
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the appendix by Maarten Derickx and Mark van Hoeij shows that this point is AV-isolated as
well (answering a question of Ejder [Ejd22, Remark 1.3]). This allows us to conclude that the 4
j-invariants identified in Theorem 2 are in fact isolated.

We conjecture that the four non-CM j-invariants identified above are the only j-invariants in Q
associated to non-CM elliptic curves which give rise to isolated points on X1(N). Such a result has
already been established for points of odd degree: by [BGRW] we know that j = −140625/8 and
j = 351/4 are the only non-CM j-invariants in Q giving an isolated point of odd degree on X1(N),
even as N ranges over all positive integers. Moreover, [Ejd22] shows that if x ∈ X1(ℓ

n) is a non-CM
isolated point with ℓ > 7 prime and j(x) ∈ Q, then j = −9317 or j = −162677523113838677.

Conjecture 4. If x ∈ X1(N) is an isolated point with j(x) ∈ Q, then j(x) = −140625/8, −9317,
351/4, −162677523113838677, or one of the 13 CM j-invariants in Q.

Since any CM elliptic curve is known to produce sporadic points on infinitely many modular curves
of the form X1(N) by [BEL+19, Theorem 7.1], it follows conversely that every j-invariant in this
set is P1-isolated (and in fact isolated — see the appendix).

Remark 5. Let x ∈ X1(N) be an isolated point with j(x) ∈ Q. One expects that the square-free
part of the conductor of any E with j(E) = j(x) will be very small. The reason for this is that any
such isolated point will generally have small mod ℓ image for some ℓ dividing N . Unless ℓ is small,
we expect this to force potentially good reduction on E at all odd primes; see [Maz78, Corollary
4.4] and [BP11, Theorem 5.1] for examples of this phenomenon. Indeed this happens for all the
curves appearing in Conjecture 4: their conductors are either a square, or twice a square.

Heuristically one might except to find most or all of the isolated points among elliptic curves
with relatively small conductor (and hence in the LMFDB). One can also numerically observe
that elliptic curves with small Galois representations are over-represented among curves with small
conductor. Only 4 of the first 50 curves ordered by conductor have trivial torsion groups and
all of them have non-trivial isogenies, while one expects asymptotically almost all curves to have
surjective Galois representations when ordered by height; see [Duk97, Theorem 1].

These observations bolster the computational evidence supporting Conjecture 4.

It is natural to suspect a connection between isolated points on X1(N) and isolated points on
X0(N), the modular curve parametrizing elliptic curves with a rational cyclic N -isogeny. We say a
point x ∈ X0(N)(Q) is exceptional if X0(N)(Q) is finite and x corresponds to a non-CM elliptic
curve over Q. It is worth noting that the sporadic points on X1(21) associated to j = −140625/8
and the sporadic points on X1(37) associated to j = −9317 lie above exceptional rational points
on X0(21) and X0(37), respectively. One might wonder whether other sporadic j-invariants can
be obtained by a similar construction. Running Algorithm 1 on all 14 j-invariants corresponding
to exceptional rational points on X0(N) for any N (described, for example, in [LR13, Table 4])
shows that there are no additional sporadic j-invariants. In particular, our algorithm shows that
j = −162677523113838677 is not a sporadic j-invariant; see Example 45 for details.

Theorem 6. Let E be an elliptic curve corresponding to an exceptional rational point on X0(N)
for some positive integer N . If j(E) is sporadic, then j(E) = −140625/8 or −9317.

It is still an open problem to determine all sporadic points x ∈ ∪N∈Z+X1(N) with j(x) =
−140625/8 or −9317.

1.1. Key Components of Algorithm. The first step of our algorithm applies results of [BEL+19]
and [Zywa] to compute the finite set of primitive points associated to a non-CM elliptic curve
E/Q. The primitive points are characterized by the following theorem.
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Theorem 7. Let E/Q be a non-CM elliptic curve. There exists a finite set P = P(E) of primitive
points in ∪n∈Z+X1(n) associated to E which are characterized by the following properties:

(i) For each N ∈ Z+, a point x ∈ X1(N) with j(x) = j(E) corresponds to a unique element
x′ ∈ P under the natural projection map. Moreover, if x′ ∈ X1(a), then a | N and
deg(x) = deg(f) · deg(x′), where f : X1(N) → X1(a) is the natural map.

(ii) The rational number j(E) is isolated (respectively, sporadic) if and only if there exists an
isolated (respectively, sporadic) point in P.

Moreover, the set P is minimal with respect to condition (i).

By Theorem 7 (i), one can think of P(E) as the minimal set needed to reproduce the degrees
of all points x ∈ ∪n∈Z+X1(n) with j(x) = j(E). Moreover, any isolated point x ∈ X1(n) with
j(x) = j(E) will correspond to a unique primitive point of minimal level. See Section 5 for details.

The second part of Algorithm 1 works to show the primitive points corresponding to E are not
isolated. For example, if the Riemann–Roch space associated to x ∈ X1(N) has dimension at least
2, then x is not P1-isolated (and therefore not isolated). In other cases, we can show x ∈ X1(N) is
not isolated by applying the following result.

Theorem 8. Let E/Q be an elliptic curve, and let H ≤ GL2(Z/NZ) be the image of the mod N
Galois representation of E, after some choice of basis. If the modular curve XH has genus 0, then
there are no isolated points on X1(N) associated to E.

In particular, any elliptic curve with adelic image of genus 0 does not give rise to any isolated
points on X1(N), even as N ranges over all positive integers. However, Theorem 8 is more broadly
applicable. Even when the adelic image of E has positive genus, it can still be that for all primitive
points x ∈ X1(a) associated to E, the mod a Galois representation of E gives a genus 0 modular
curve. This occurs more often than one might expect: our preliminary computations identified at
least 89 distinct such non-CM elliptic curves (up to Q-isomorphism) just within those currently in
the LMFDB. See Example 40 for one such curve.

1.2. Connection to Open Uniformity Problems. Several well-known uniformity problems can
be tied to isolated points on X1(N). One of the most longstanding examples is Serre’s Uniformity
Problem [Ser72, § 4.3], which in modern formulations [Sut16, Zywc] asks whether the mod ℓ Galois
representation for any non-CM elliptic curve over Q is surjective for all ℓ > 37. In the proof of
[BN, Theorem 1.3], the authors show that a non-CM elliptic curve E/Q with non-surjective mod ℓ
Galois representation can be used to construct sporadic points on X1(ℓ

2) for all ℓ sufficiently large.
This approach allows one to phrase Serre’s Uniformity Problem to be about controlling isolated
points on X1(ℓ

2) within certain families of non-CM Q-curves.
A more recent example is [BM, Conjecture 17], where Balakrishnan and Mazur conjecture that

for sufficiently large N , any elliptic curve giving a quadratic point on X0(N) must have complex
multiplication. Since a quadratic point on X0(N) will give a sporadic point on X1(N) for N
sufficiently large, we can connect this conjecture to one about non-CM isolated points x ∈ X1(N)
with j(x) generating at most a quadratic extension.

1.3. Outline. After providing relevant background material in Section 2, we give an overview of
the main algorithm in Section 3. The sub-algorithms used to compute primitive points and related
mathematical results are discussed in Sections 4–6, with the proof of Theorem 7 appearing in
Section 5. Results on genus 0 adelic images, including the proof of Theorem 8, are in Section 7.
We address the validity of Algorithm 1 in Section 8. The output the main algorithm obtained after
running it on elliptic curves in the LMFDB and the Stein–Watkins database is discussed in Section
9, along with its final analysis.
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1.4. Code. We have implemented our algorithm in Magma [BCP97]. Code is available in the
GitHub repository at https://github.com/davidlowryduda/isolated_points.
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2. Background

2.1. Isolated Points on Curves. Let C be a curve, by which we will mean a smooth projective
geometrically integral 1-dimensional scheme defined over a number field k; we suppose all curves
satisfy these assumptions throughout the paper. To streamline our exposition, we assume there
exists a point P0 ∈ C(k), but this is not required; see [BEL+19, §4]. Throughout, we consider
closed points of the curve C, which correspond to Galk-orbits of points in C(k). The degree of x
is defined to be the degree of the residue field k(x) over k, or alternatively, to be the length of the
Galk-orbit of points in C(k) corresponding to x.

To any closed point x ∈ C of degree d we associate the k-rational effective divisor

P1 + · · ·+ Pd,

where P1, . . . , Pd are the points in the Galk-orbit associated to x. With this identification, we can
study the image of x under the natural map from the dth symmetric power of C to the curve’s
Jacobian

Φd : C
(d) → Jac(C)

which sends an effective divisor D of degree d to the class [D − dP0]. If Φd(x) = Φd(y) for some

other point y ∈ C(d)(k), then there exists a non-constant function f ∈ k(C)× with div(f) = x− y.
Since x is a degree d point and x ̸= y, the divisors associated to x and y have distinct support
so f : C → P1

k is a dominant morphism of degree d.1 By Hilbert’s irreducibility theorem [Ser97,
Chapter 9], f−1(P1(k)) will contain infinitely many closed points of degree d. On the other hand,
if Φd is injective on closed points of degree d, then Faltings’s Theorem [Fal94] implies that all but
finitely many such points are parametrized by translates of positive rank abelian subvarieties of
Jac(C). This inspires the following:

1In particular, this shows Φd is injective if d is less than the k-gonality of C, which is the least degree of a
non-constant rational map to P1.
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Definition 9. Let C be a curve defined over a number field k. Let Φd be the map in (2.1).

(i) A closed point x ∈ C of degree d is P1-parametrized if there exists a point x′ ∈ C(d)(k)
with x′ ̸= x such that Φd(x) = Φd(x

′). Otherwise, we say x is P1-isolated.
(ii) A closed point x ∈ C of degree d is AV-parametrized if there exists a positive rank

abelian subvariety A/k with A ⊂ Jac(C) such that Φd(x) + A ⊂ im (Φd). Otherwise, we
say x is AV-isolated.

(iii) A closed point x ∈ C of degree d is isolated if it is both P1-isolated and AV-isolated.
(iv) A closed point x ∈ C of degree d is sporadic if there are only finitely many closed points

of C of degree at most deg(x).

If C has genus g ≥ 2, then the collection of all points on C with coordinates in k is finite by
Faltings’s theorem [Fal83]. In general, the set C(k) sits inside a larger finite set of points, namely,
the set of all isolated points of C.

Theorem 10 (Bourdon, Ejder, Liu, Odumodu, Viray, [BEL+19, Theorem 4.2]). Let C be a curve
over a number field.

(i) There are infinitely many degree d points on C if and only if there is a degree d point on
C that is not isolated.

(ii) There are only finitely many isolated points on C.

It follows from Theorem 10 that every sporadic point is isolated, but the converse need not hold.

2.2. Modular Curves. For any subgroup H ≤ GL2(Z/NZ), we define the modular curve XH

to be the coarse space of the stack MH , as defined in Deligne–Rapoport [DR73]. The curve XH

is a scheme over Spec Z[1/N ] and parametrizes generalized elliptic curves with H-level structure.
In particular, its k-rational points roughly classify elliptic curves over k whose mod N image is
contained in H; see, for example, [RSZB22, §2.3] for details. If we take

B1(N) =

{︃(︃
1 ∗
0 ∗

)︃}︃
≤ GL2(Z/NZ),

then XB1(N) = X1(N), the modular curve whose noncuspidal points parametrize elliptic curves
with a distinguished point of order N . There is an analytic isomorphism between X1(N)(C) and
the Riemann surface constructed as a quotient of the extended upper-half plane by the congruence
subgroup

Γ1(N) :=

{︃(︃
a b
c d

)︃
∈ SL2(Z) : c ≡ 0 (mod N) and a ≡ d ≡ 1 (mod N)

}︃
,

with matrices acting via linear fractional transformations. If N ≥ 4, then MB1(N) is its own coarse
moduli space, and so noncuspidal k-rational points of X1(N) classify pairs (E,P ), where E/k is
an elliptic curve and P ∈ E(k), up to k-isomorphism.

We may also define a modular curve associated to an open subgroup G of GL2(ˆ︁Z). For any

N ∈ Z+, let π : GL2(ˆ︁Z) → GL2(Z/NZ) be the natural projection map, and define G(N) := π(G).
We say G has level N if G = π−1(G(N)) and N is minimal with respect to this property. If

det(G) = ˆ︁Z×, we define the modular curve XG := XG(N) where N is the level of G. If G = GL2(ˆ︁Z),
then we identify XG

∼= P1 with the j-line.

2.3. Closed Points on Modular Curves. To discuss isolated points on modular curves, we
must consider closed points on X1(N), viewed always as a scheme over Q. Let k be a field with
an embedding of k into Q. Given an elliptic curve E/k with P ∈ E(k) of order N , the pair (E,P )
induces a k-valued point on X1(N) via the moduli interpretation described above. We denote
this k-valued point by (E,P )k, and by definition it corresponds to a morphism of Q-schemes
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f : Spec k → X1(N). The map f sends the unique point of Spec k to a point x ∈ X1(N), and
we call x the closed point associated to (E,P ).2 We define the degree of x to be the degree of
the residue field Q(x) over Q. Since there are many scheme-valued points which induce the same
closed point, it is sometimes preferable to consider Galois orbits of points in X1(N)(Q), which
are in bijection with the set of closed points. Thus one could alternatively define the closed point
associated to (E,P ) as the GalQ-orbit of (E,P )Q.

Remark 11. Given a k-valued point (E,P )k, we note that the degree of the associated closed
point x may be strictly less than the degree of k. However, there always exists E′/Q(x) with
j(E′) = j(E) and P ′ ∈ E′(Q(x)), where the point P ′ ∈ E′ maps to P ∈ E under a Q-isomorphism
sending E′ to E. See [DR73, p. 274, Proposition VI.3.2]. The pair (E′, P ′) gives a Q(x)-valued
point, and it is the unique Q(x)-valued point such that (E,P )k = (E′, P ′)k.

Let E/k be an elliptic curve and let P ∈ E(k) a point of order N . For any ξ ∈ Aut(E), the
pair (E, ξP ) induces the same closed point x ∈ X1(N), since ξ provides the necessary isomorphism.
This can be used to obtain a more explicit description of the residue field Q(x).

Lemma 12. Let E be an elliptic curve defined over Q(j(E)), and let P ∈ E be a point of order
N . Then the residue field of the closed point x ∈ X1(N) associated to (E,P ) is given by

Q(x) ∼= Q(j(E), h(P )),

where h → E/Aut(E) ∼= P1 is a Weber function for E.

Proof. See, for example, [BN, Lemma 2.5]. □

Remark 13. At times, it can be useful to work with an explicit model-independent formulation
of a Weber function. For example, if E : y2 = 4x3 − c2x− c3 and j(E) ̸= 0, 1728, we can define

h((x, y)) =
c2c3
∆

x,

where ∆ = c32 − 27c23. One can verify:

(i) We have h(P ) = h(P ′) if and only if P = ξP ′ for some ξ ∈ Aut(E).
(ii) If η : E → E′ is an isomorphism, then hE = hE′ ◦ η.

See [Shi71, p. 107]. In particular, if E/Q(j(E)) does not have complex multiplication and P =
(x0, y0), then one can take Q(x) ∼= Q(j(E), x0).

Example 14 (Closed points versus geometric points I). Let E1 : y
2 + xy + y = x3 − x2 − 3x + 3

and P1 = (−1,−2) be a point of order 7. Then (E1, P1) gives a Q-valued point on X1(7)/Q and
also a closed point x ∈ X1(7) of degree 1. On the other hand, let E2 : y

2 = x3 − 43x − 166 and
P2 = (5,

√
−256) be a point of order 7. Then (E2, P2) gives a Q(

√
−256)-valued point on X1(7)/Q

and also a closed point x ∈ X1(7) of degree 1 by Remark 13. However, both (E1, P1) and (E2, P2)
induce the same geometric point on X1(7) since (E1, P1)Q = (E2, P2)Q.

In fact, (E1, P1)Q(
√
−256) = (E2, P2)Q(

√
−256). This association is made naturally via the Kubert–

Tate normal form associated to E2/Q(
√
−256), with P2 = (5,

√
−256):

E3 : y
2 − xy − 4y = x3 − 4x2, P3 = (0, 0).

We can check that (E1, P1)Q = (E3, P3)Q and (E2, P2)Q(
√
−256) = (E3, P3)Q(

√
−256). Thus it is fair

to say that (E2, P2) induces a Q-valued point, even though P2 is not defined over Q.

2Note x is indeed closed since Q(x)/Q is finite; see, for example, [Liu02, Exercise 5.9, p. 76].
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Example 15 (Closed points versus geometric points II). The distinction between closed points
and geometric points can be seen when counting the number of points of a particular degree. For
example, let E be the elliptic curve with LMFDB label 162.c3. Then E possesses a unique Q-
rational subgroup of order 21 with generator P . For each a ∈ (Z/21Z)×, we consider the geometric
point on X1(21) associated to (E, aP ). Since (E, aP )Q = (E,−aP )Q, we find that there are six

distinct geometric points corresponding to (E, aP ) for a ∈ (Z/21Z)×. However, these six Q-points
lie in two Galois orbits, each of size 3. Thus there are two closed points of degree 3, and the
cardinality of the Galois orbit equals the degree.

2.4. Maps Between Modular Curves.

Proposition 16. If G ⊆ G′ ⊆ GL2(ˆ︁Z) are two open subgroups with surjective determinant, then
there is a natural Q-rational morphism XG → XG′ of degree [±G′ : ±G]. Here, ±G denotes the
subgroup generated by G and −I2.

Proof. Let N be the level of G. For any subgroupH of GL2(Z/NZ), we haveQ(XH) = Q(X(N))H .
Now by Galois theory it follows thatQ(XG) ⊇ Q(XG′), so we conclude that there exists aQ-rational
morphism f : XG → XG′ .

To determine its degree, let Γ and Γ′ be the intersection with SL2(Z) of the inverse image of G
and G′ in GL2(Z). Over C, the morphism f is the quotient map Γ\H∗ → Γ′\H∗. Here, H∗ is the
extended complex upper half plane. Since the kernel of the action of SL2(Z) on H is ±I, the degree
of f is as claimed. □

Let a and b be positive integers. Taking G = π−1(B1(ab)) and G′ = π−1(B1(a)) gives the
following corollary, which under the moduli interpretation corresponds to sending (E,P ) to (E, bP ).

Corollary 17. For positive integers a and b, the natural Q-rational map f : X1(ab) → X1(a) has

deg(f) = cf · b2
∏︂

p|b, p∤a

(︃
1− 1

p2

)︃
,

where cf = 1
2 if a ≤ 2 and ab > 2, and cf = 1 otherwise.

2.5. Galois Representations. If E is an elliptic curve defined over a number field k, then Galk
acts naturally on the k-points of E. On torsion points, this action is described by the adelic Galois
representation associated to E/k,

ρE : Galk → Aut(E(k)tors) ∼= GL2(ˆ︁Z).
From this we can obtain two other Galois representations. On the one hand, fixing a positive
integer m, we can choose to record the action of Galk on points whose order is divisible only by
those primes dividing m. This is the m-adic Galois representation associated to E:

ρE,m∞ : Galk
ρE−−→ GL2(ˆ︁Z) ∼= ∏︂

p prime

GL2(Zp)
proj−−→

∏︂
p|m

GL2(Zp).

In particular, if m = ℓ is a prime number, we recover the standard ℓ-adic representation associated
to E. Alternatively, we may wish to record the Galois action only on points of order dividing
m. We use E[m] to denote the finite subgroup of such points. This gives the mod m Galois
representation associated to E,

ρE,m : Galk → Aut(E[m]) ∼= GL2(Z/mZ).

Note that ρE,m agrees with the reduction of ρE mod m.
If E/k is a non-CM elliptic curve, we define the level of ρE to be the smallest positive integer N

such that im ρE = π−1(im ρE,N ), where π : GL2(ˆ︁Z) → GL2(Z/NZ) is the natural reduction map;
8

https://www.lmfdb.org/EllipticCurve/Q/162/c/3


that such an N exists is a consequence of Serre’s Open Image Theorem [Ser72]. The level of ρE,m∞

may be defined in an analogous way. We take the convention that GL2(Z/1Z) denotes the trivial
group, so level 1 corresponds to the associated Galois representation being surjective. Though ρE is
never surjective when k = Q, this can occur for elliptic curves defined over number fields of higher
degree [Gre10, Theorem 1.2].

3. Overview of the Main Algorithm

The following algorithm is the main procedure for determining whether a given non-CM j-
invariant in Q is the image of an isolated point on X1(N) under the map to the j-line, based on
results in [BEL+19, Zywa]. We note that for any CM j-invariant j, there exist infinitely many
N ∈ Z+ for which there is a sporadic point x ∈ X1(N) with j(x) = j by [BEL+19, Theorem 7.1],
so it is not necessary to consider them in this algorithm. The outline below gives an overview of
the structure, while the algorithms to perform particular steps are described in detail in Sections
4, 6, and 7. We will prove a theorem on the validity of Algorithm 1 in Section 8.

Algorithm 1: Main Algorithm

Input: A non-CM j-invariant j ∈ Q.
Output: A finite list {(a1, d1), . . . , (ak, dk)} of (level, degree) pairs such that j is isolated

(respectively, sporadic) if and only if there exists an isolated (respectively,
sporadic) point x ∈ X1(ai) of degree di with j(x) = j for some (ai, di) in the list.

1 Construct an elliptic curve E/Q with j(E) = j.

2 Compute the adelic image G of E/Q as a subgroup of GL2(ˆ︁Z) using Zywina’s algorithm
[Zywa]. Represent the output as the level N and the subgroup G(N) of GL2(Z/NZ).

3 Apply Algorithm 2 to G(N) to obtain the level m0 of the m-adic Galois representation
associated to E, where m is the product of 2, 3, and all non-surjective primes.

4 Apply Algorithm 3 to im ρE,m0 . For each positive divisor n of m0 and each closed point
x ∈ X1(n) with j(x) = j, this gives the primitive point associated to x, say x′ ∈ X1(a) of
degree d. Return a multiset D with entries ⟨n, (a, d)⟩.

5 Construct the multiset D′ ⊆ D containing only those elements ⟨n, (a, d)⟩ for which
d ≤ genus(X1(a)).

6 Create the multiset M consisting of all pairs (a, d) with ⟨n, (a, d)⟩ appearing in D′. We
include (a, d) with multiplicity µ if and only if X1(a) has µ distinct closed points of degree
d associated to E.

7 Remove from M any pair (ai, di) where the mod ai Galois representation of E/Q
corresponds to a modular curve of genus 0.

8 return M

In particular, note that if Algorithm 1 outputs {}, then j is not the image of any isolated point
on X1(N), even as N ranges over all positive integers. See Corollary 44.

Example 18. If j = −9317, then Algorithm 1 returns {(37, 6)3}. This means that any isolated
point x ∈ X1(N) with j(x) = j and N ∈ Z+ maps down under the natural projection map to
one of the 3 closed points of degree 6 on X1(37). In fact, these points are all sporadic by [Fre94,
Proposition 2], since 6 < 1

2 gonQ(X1(37)) = 18. Here, the gonality computation is a result of
[DvH14]. Thus j is a sporadic — and hence isolated — j-invariant.

Example 19. If j = −121, then Algorithm 1 returns {}. This means that there are no isolated
points on X1(N) associated to this j-invariant.
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Example 20. If j = −882216989/131072, then Algorithm 1 returns {(17, 4)2}. This means that j
is associated to an isolated point on a modular curve of the form X1(N) if and only if there exists
a degree 4 isolated point x ∈ X1(17) with j(x) = j. In Section 9, we will see that no such isolated
point exists, from which we can conclude that j is not an isolated j-invariant.

4. Computing the level of the m-adic representation

Given a non-CM elliptic curve E/Q, we define the set

SE := {2, 3} ∪ {ℓ : ρE,ℓ∞(GalQ) ̸= GL2(Zℓ)}.

Here, we include 2 and 3 in SE to allow us to apply results of [BEL+19] in later steps of the
algorithm; see Section 5.2 for details. For m :=

∏︁
ℓ∈SE

ℓ, we want an algorithm to obtain the level
of the m-adic Galois representation associated to E from the image of the adelic representation of
E, where the latter can be computed by Zywina’s algorithm [Zywa]. If im ρE has level N , define

n =
∏︁

ℓ∈SE
ℓvℓ(N) and let m0 denote the level of ρE,m∞ . We will show in Proposition 22 that m0|n

and n|N . Each of these divisibilities can be proper, as the following examples illustrates.

Example 21. If E = 75072.bc2, we see that ρE has level N = 4692 = 22 · 3 · 17 · 23. Since 2 is
the only non-surjective prime, n = 22 · 3. However, the level of the 6-adic Galois representation
associated to E is 2. This reduction in level is due to the fact that, while there is entanglement
between the 4- and 1173-torsion point fields of E, there is no entanglement between the 4- and
3-torsion point fields of E.3 On the other hand, it can also happen that N = m0. For example, if
E = 54.b2, we see that ρE has level 72, and this is also the level of the m-adic Galois representation
associated to E.

Algorithm 2: Compute Reduced level

Input: G(N) ≤ GL2(Z/NZ) where im ρE = G and N is the level.
Output: m0 ∈ Z+, the level of ρE,m∞ for m =

∏︁
ℓ∈SE

ℓ.

1 Let n =
∏︁

ℓ∈SE
ℓvℓ(N).

2 Compute the smallest m0 dividing n such that

#G(n) = #G(m0) ·#ker (GL2(Z/nZ) → GL2(Z/m0Z)).

3 return m0

The validity of this algorithm is a consequence of the following proposition.

Proposition 22. Let E/Q be a non-CM elliptic curve, and let im ρE = G ≤ GL2(ˆ︁Z) be a subgroup

of level N . Define n :=
∏︁

ℓ∈SE
ℓvℓ(N) and m :=

∏︁
ℓ∈SE

ℓ. If m0 is the smallest positive integer
dividing n such that

#G(n) = #G(m0) ·#ker (GL2(Z/nZ) → GL2(Z/m0Z)),

then m0 is the level of the m-adic Galois representation associated to E.

Proof. First we will show that im ρE,m∞ = π−1
1 (G(n)), where π1 :

∏︁
ℓ∈SE

GL2(Zℓ) → GL2(Z/nZ)

is the natural reduction map. It suffices to show that kerπ1 ⊆ im ρE,m∞ . We write N = n ·n′ with
gcd(n, n′) = 1, and so we may identify G(N) as a subgroup of GL2(Z/nZ) ×GL2(Z/n

′Z). Under
this identification, let H be the intersection of G(N) with the subgroup {I} ×GL2(Z/n

′Z). Then
since G has level N ,

π−1(H) ⊆ im ρE ,

3Specifically, Q(E[4]) ∩Q(E[1173]) is a degree 4 extension of Q, while Q(E[4]) ∩Q(E[3]) = Q.
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where π : GL2(ˆ︁Z) → GL2(Z/NZ) is the natural reduction map. The image of this subset relation

under the natural projection map GL2(ˆ︁Z) ∼= ∏︁
ℓGL2(Zℓ) →

∏︁
ℓ∈SE

GL2(Zℓ) gives

ker (π1) ⊆ im ρE,m∞ ,

as desired.
Let π2 : GL2(Z/nZ) → GL2(Z/m0Z) be the natural reduction map. The assumption on m0

implies that ker (π2) ⊆ G(n), so it follows that G(n) = π−1
2 (G(m0)). Thus if π3 :

∏︁
ℓ∈SE

GL2(Zℓ) →
GL2(Z/m0Z) denotes the reduction map, we have

π−1
3 (G(m0)) = π−1

1 (π−1
2 (G(m0)))

= π−1
1 (G(n))

= im ρE,m∞ .

By construction m0 is the smallest positive integer with this property. □

Corollary 23. Algorithm 2 is correct.

5. Primitive Points on Modular Curves

Let E be a non-CM elliptic curve. In this section, we will reduce the question of determining
whether j(E) is isolated to the analysis of an associated finite set of primitive points on modular
curves. The primitive points are characterized by the following theorem.

Theorem 24. Let E/Q be a non-CM elliptic curve. There exists a finite set P = P(E) of primitive
points in ∪n∈Z+X1(n) associated to E which are characterized by the following properties:

(i) For each N ∈ Z+, a point x ∈ X1(N) with j(x) = j(E) corresponds to a unique element
x′ ∈ P under the natural projection map. Moreover, if x′ ∈ X1(a), then a | N and
deg(x) = deg(f) · deg(x′), where f : X1(N) → X1(a) is the natural map.

(ii) The rational number j(E) is isolated (respectively, sporadic) if and only if there exists an
isolated (respectively, sporadic) point in P.

Moreover, the set P is minimal with respect to conditions (i) and (ii).

Though in many ways this can be viewed as a refinement of results in [BEL+19], the uniqueness of
Theorem 24 (i) is new. In Section 6, we give an algorithm for enumerating P(E) given a non-CM
elliptic curve E/Q.

5.1. Construction of P(E) and minimality. Let E/Q be a non-CM elliptic curve, and letm ≥ 1
be an integer. We begin by defining a directed graph G(E,m) on the points of X1(n) corresponding
to E for all n|m. The vertices of G(E,m) are tuples (x, n, d) where:

(i) n|m,
(ii) x is a closed point on X1(n) of degree d, and
(iii) j(x) = j(E).

We connect (x, n, d) with a directed edge to (x′, n′, d′) if:

(i) n′ is a proper divisor of n,
(ii) x′ = f(x) where f : X1(n) → X1(n

′) is the natural map, and
(iii) d = d′ · deg f .

This is a directed acyclic graph. A sink in a directed acyclic graph is a vertex with no outgoing
edges, and a source is a vertex with no incoming edges.
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Definition 25. Let E be a non-CM elliptic curve over Q and let m ≥ 1 be an integer. The
m-primitive points of E are the sinks of G(E,m). The m-primitive degrees are the tuples
(n, d), where (x, n, d) is m-primitive for E. The union of all m-primitive points as m ranges over
all positive integers is the set of primitive points associated to E, denoted P(E). The union of
all m-primitive degrees is the set of primitive degrees associated to E.

By construction, for any (x, n, d) ∈ P(E), there does not exist a proper divisor n′ | n with
d = deg(f) · deg(f(x)), where f : X1(n) → X1(n

′) is the natural map. Thus P(E) is the minimal
set which can satisfy Theorem 24(i).

Remark 26. Suppose n′′|n′|n|m and that (x, n, d), (x′, n′, d′), (x′′, n′′, d′′) are vertices in G(E,m).
This graph is transitive, meaning that if there is an edge from (x, n, d) to (x′, n′, d′) and from
(x′, n′, d′) to (x′′, n′′, d′′), then there is also an edge from (x, n, d) to (x′′, n′′, d′′). Moreover, if there
is an edge from (x, n, d) to (x′′, n′′, d′′), then we claim there is an edge from (x, n, d) to (x′, n′, d′),
where x′ is the image of x on X1(n

′) and n′ is any multiple of n′′ which properly divides n.
Intuitively, if the degree grows as much as possible from level n′′ to level n then it also grows as
much as possible from level n′ to level n. Indeed, let f1 : X1(n) → X1(n

′) and f2 : X1(n
′) → X1(n

′′).
Suppose for the sake of contradiction that d < d′ · deg f1. Since d′ ≤ d′′ · deg f2, this would imply
d < d′′ · deg f1 · deg f2. This contradicts our assumption that there is an edge from (x, n, d) to
(x′′, n′′, d′′).

Definition 27. Let E/Q be a non-CM elliptic curve and m ∈ Z+. For a fixed vertex (x, n, d) in
G(E,m), consider the directed graph induced by (x, n, d) and its descendants, i.e., all vertices
(x′, n′, d′) reachable by a path from (x, n, d). This is a directed acyclic graph with a single source,
(x, n, d).

In Corollary 32 below, we will show the induced graph on the descendants of (x, n, d) has a single
sink as well; this is x′ ∈ P(E) associated to x, as in Theorem 24 (i).

5.2. Finiteness of P(E). Let E/Q be a non-CM elliptic curve, and let m be the product of 2,
3, and any primes ℓ such that the mod ℓ Galois representation of E is non-surjective. By Serre’s
Open Image Theorem [Ser72], it follows that m is a finite product, and there exists m0 ∈ Z+ which
is the level of the m-adic Galois representation of E. Suppose v = (x, n, d) ∈ P(E). Then v is a
sink of G(E,N) for some N ∈ Z+. By [BEL+19, Theorem 5.1], we have

deg(x) = deg(f) · deg(f(x)),
where f : X1(n) → X1(gcd(n,m0)) is the natural map. In particular, we are using the fact that
{2, 3} ⊆ SE here. If gcd(n,m0) properly divides n, this contradicts the fact that v is a sink. Thus
gcd(n,m0) = n and n | m0. In particular, v is a sink of G(E,m0). It follows that P(E) is the set
of sinks of G(E,m0), and P(E) is finite since m0 is a fixed positive integer depending only on E.
We note in particular that the level of any primitive point will divide m0, which in turn divides
the level of the adelic Galois representation associated to E (see §4). We record this observation in
the following proposition.

Proposition 28. Let E/Q be a non-CM elliptic curve, and let P(E) denote the set of associated
primitive points in ∪n∈Z+X1(n). If x ∈ X1(a) is in P(E), then a divides m0.

5.3. Preliminary Results. In this section, we establish two results concerning the residue fields
of points on modular curves.

Lemma 29. Let n1, n2 ∈ Z+ and n = lcm(n1, n2). For g = gcd(n1, n2), we define n′
1 := n1/g and

n′
2 := n2/g. Suppose E/F is an elliptic curve, and P ∈ E(F ) is a point of order n. If n′

2P ∈ E(F )
and n′

1P ∈ E(F ), then P ∈ E(F ).
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Proof. Note n′
2P ∈ E(F ) is a point of order n1, and n′

1P ∈ E(F ) is a point of order n2. Thus there
is an element Q of order n in

⟨n′
2P, n

′
1P ⟩ ⊆ E(F ).

Since ⟨n′
2P, n

′
1P ⟩ ⊆ ⟨P ⟩, it follows that the F -rational point Q is a generator of ⟨P ⟩. In particular,

P ∈ ⟨Q⟩, and so P ∈ E(F ), as desired. □

Lemma 30. Let n1, n2 ∈ Z+ and n = lcm(n1, n2). For g = gcd(n1, n2), we define n′
1 := n1/g

and n′
2 := n2/g. Let x = [E,P ] ∈ X1(n) for an elliptic curve E with j(E) ̸= 0, 1728, and define

x1 = [E,n′
2P ] ∈ X1(n1) and x2 = [E,n′

1P ] ∈ X1(n2). The residue field Q(x) is at most a quadratic
extension of the compositum Q(x1)Q(x2). Moreover:

(i) If g > 2, then Q(x1)Q(x2) = Q(x).
(ii) If n1 = 2 or if n2 = 2, then Q(x1)Q(x2) = Q(x).

Proof. Since F1 = Q(x1) and F2 = Q(x2) are both subfields of F = Q(x), it follows that F1F2 is
as well. We will show the degree of F/F1F2 is at most 2. If n1 = 2 or n2 = 2, we may assume
without loss of generality that n2 = 2. Fix a Weierstrass equation for E/Q(j(E)) so we may
identify F1 = Q(j(E), h(n′

2P )), F2 = Q(j(E), h(n′
1P )), and F = Q(j(E), h(P )) by Lemma 12.

There exists E′/F1 such that φ : E → E′ is an isomorphism and φ(n′
2P ) ∈ E′(F1); see, for

example, [DR73, p. 274, Proposition VI.3.2]. Moreover, we have

F2 = Q(j(E), h(n′
1P )) = Q(j(E), h(φ(n′

1P )))

by Remark 13, and the same remark shows that the x-coordinate of φ(n′
1P ) is rational over F1F2.

The y-coordinate of φ(n′
1P ) is defined over at worst a quadratic extension L/F1F2, and L = F1F2

if n2 = 2. Then φ(P ) ∈ E′(L) by Lemma 29. Since h(φ(P )) = h(P ), it follows that F ⊆ L.
Suppose that F/F1F2 is a quadratic extension. In particular, this means n1 ̸= 2 and n2 ̸= 2. Then

consider E′/F1F2, and let {φ(P ), Q} be a basis for E′[n]. Recall that if ρE′,n(σ) = M ∈ GL2(Z/nZ)
with respect to this basis, thenM (mod n1) gives ρE′,n1(σ) with respect to the basis {n′

2φ(P ), n′
2Q}.

Similarly, M (mod n2) gives ρE′,n2(σ) with respect to the basis {n′
1φ(P ), n′

1Q}. Since n′
2(φ(P )) is

F1F2-rational and only the x-coordinate of n′
1φ(P ) is defined over F1F2, there is σ ∈ GalF1F2 such

that σ(n′
1φ(P )) = −n′

1φ(P ) and σ(n′
2(φ(P )) = n′

2φ(P ). Thus σ(φ(P )) = αφ(P )+βQ where α ≡ 1
(mod n1) and α ≡ −1 (mod n2). Therefore g divides 2 = (α+ 1)− (α− 1), so g ≤ 2. □

5.4. Proof of Theorem 24 (i). Theorem 24 (i) is a consequence of a corollary to the following
result.

Proposition 31. Let m ≥ 1 be an integer and let E/Q be a non-CM elliptic curve. In the
graph G(E,m), suppose (x, n, d) is connected by a path to both (x1, n1, d1) and (x2, n2, d2), where
n = lcm(n1, n2). Then if gcd(n1, n2) ̸= n1, n2, it follows that both (x1, n1, d1) and (x2, n2, d2)
connect to (x3, gcd(n1, n2), d3), where x3 is the image of x on X1(gcd(n1, n2)) under the natural
projection map.

Proof. By assumption, the integer g = gcd(n1, n2) is a proper divisor of both n1 = gn′
1 and

n2 = gn′
2. Let f1 : X1(n) → X1(n1) and let f2 : X1(n) → X1(n2). We consider two cases.

(i) Suppose g > 2, or if g = 1, that there exists ni ≤ 2. In the latter case, our assumptions
imply that exactly one of n1 or n2 is equal to 2 and the other is greater than 2. So if
g = 1, without loss of generality we may assume n1 > 2 and n2 = 2. In either case, we
have Q(x1)Q(x2) = Q(x) by Lemma 30, and so by assumption

[Q(x1)Q(x2) : Q(x1)] = deg(f1),

[Q(x1)Q(x2) : Q(x2)] = deg(f2).
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Q(x)

Q(x1)Q(x2)

Q(x1) Q(x2)

Q(x3)

Q

deg(f1) or deg(f1)/2 deg(f2) or deg(f2)/2

d1/d3 d2/d3

1 or 2

d3

Figure 1. Degrees of Residue Fields

It follows from properties of composite fields that deg(f1) ≤ d2
d3

and deg(f2) ≤ d1
d3
; see

Figure 1. Note that for a prime p | n′
1, we have p ∤ g if and only if p ∤ n2. Similarly, for a

prime p | n′
2, we have p ∤ g if and only if p ∤ n1. Thus by Corollary 17, we have

d1
d3

≤ deg(X1(n1) → X1(g)) = deg(f2),

d2
d3

≤ deg(X1(n2) → X1(g)) = deg(f1).

Thus d1 = d3 ·deg(X1(n1) → X1(g)) and d2 = d3 ·deg(X1(n2) → X1(g)), so the conclusion
holds.

(ii) Suppose g = 2 or, if g = 1, that n1, n2 > 2. It follows from Lemma 30 and the same

argument as above that deg(f2)
2 ≤ d1

d3
and deg(f1)

2 ≤ d2
d3
; see Figure 1. However, since

n1, n2 > 2 by assumption, we have

d1
d3

≤ deg(X1(n1) → X1(g)) =
1

2
(deg(f2)),

d2
d3

≤ deg(X1(n2) → X1(g)) =
1

2
(deg(f1)).

Thus d1 = d3 ·deg(X1(n1) → X1(g)) and d2 = d3 ·deg(X1(n2) → X1(g)), so the conclusion
follows. □

Corollary 32. Let m ≥ 1 be an integer and let E/Q be a non-CM elliptic curve. For any fixed
vertex v = (x, n, d) in G(E,m), the induced subgraph on its descendants has a single sink.

Proof. Suppose the induced subgraph has two sinks, v1 = (x1, n1, d1) and v2 = (x2, n2, d2). We
will show that n1 = n2, which implies v1 = v2 since both v1 and v2 are descendants of the same
vertex (x, n, d). Let g = gcd(n1, n2). Since v1, v2 are sinks, we must have g = n1 or g = n2, by
Proposition 31, so let g = n1|n2. Remark 26 implies n1 does not properly divide n2 since v2 is a
sink. Therefore n1 = n2 and v1 = v2. □

5.5. Proof of Theorem 24 (ii). Let E/Q be a non-CM elliptic curve. If there exists an isolated
(respectively, sporadic) point in P(E), then j(E) is isolated (respectively, sporadic) by definition.
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To establish the other direction, suppose j(E) is isolated. Then there exists an isolated point
x ∈ X1(n) with j(x) = j(E). By Theorem 24 (i), we see that x corresponds to a unique element
(x′, n′, d′) ∈ P(E) under the natural projection map. By the definition of P(E),

deg(x) = deg(f) · d′,

where f : X1(n) → X1(n
′) is the natural projection map. By [BEL+19, Theorem 4.3], the point x′

is isolated. The same argument shows that if x ∈ X1(n) is sporadic, then x′ is sporadic.

6. Computing Primitive Degrees

Let E be a non-CM elliptic curve over Q and let m ≥ 1 be an integer. In this section, we discuss
an algorithm for computing the list of m-primitive degrees. At a high level, we are simply traversing
the graph G(E,m), always beginning at a source, until finding a sink. The sinks are the m-primitive
points, and we record the associated m-primitive degree. We only retain the level n and degree d
of a m-primitive point (x, n, d) since, in our main algorithm, we will often try to show that X1(n)
has no isolated points of degree d at all. The input to the algorithm is G = im ρE,m ≤ GL2(Z/mZ).
We represent m-primitive degrees as tuples (a, d) where a is the level of the point x ∈ X1(a) and
d = deg x.

Algorithm 3: Compute Primitive Degrees

Input: G ≤ GL2(Z/mZ) such that im ρE,m = G.
Output: The multiset of m-primitive degrees for E.

1 Let H := ⟨G,−I2⟩ ≤ GL2(Z/mZ).

2 Compute the orbits O of H acting on (Z/mZ)2. If v ∈ (Z/mZ)2 ∼= E[m] has order n, then v
corresponds to x ∈ X1(n) with j(x) = j(E). If n > 2, then deg(x) = #(Hv)/2, and
deg(x) = #(Hv) otherwise.

3 Let D = {}.
4 For each orbit Hv ∈ O with v of order n, let x ∈ X1(n) be the associated point. Find the

largest divisor d | n such that H(dv) associated to x′ ∈ X1(n/d) satisfies
deg(x) = deg(x′) · deg(X1(n) → X1(n/d)). Append ⟨n, (n/d,deg(x′))⟩ to D.

5 return D

Example 33. Let E/Q be the non-CM elliptic curve 147.b1, and let m be the product of 2, 3, and
all primes ℓ for which the mod ℓ Galois representation associated to E is not surjective. Zywina’s
algorithm [Zywa] gives the image of the adelic Galois representation as the complete preimage of
G ≤ GL2(Z/546Z), and applying Algorithm 2 to G shows them-adic Galois representation has level
78. By Proposition 28, the level of any primitive point in P(E) divides 78. Applying Algorithm 3
to im ρE,78 shows P(E) consists of 4 points: one point on X1(13) of degree 6, two points on X1(13)
of degree 39, and one point on X1(1) of degree 1. The points on X1(13) are expected, since the
mod 13 Galois representation of E is not surjective.

However, it is not necessarily the case that non-surjective primes must divide the level of some
primitive point. For example, let E/Q be the non-CM elliptic curve 232544.f1. Then the adelic
Galois representation of E has level 1892 and the m-adic level is 44. In particular, the mod 11
Galois representation associated to E is non-surjective. However, in this case P(E) consists of a
single point, namely, the degree one point on X1(1) associated to E.

We briefly discuss Algorithm 3. Conceptually, to compute the m-primitive degrees of E, we
compute for each closed point x ∈ X1(n) above E with n | m the unique (by Corollary 32) m-
primitive point induced by x and record its level a and degree d. In practice, instead of working
with points on X1(m) above E, we compute with the matrix group G = im ρE,m and the orbits of
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points in (Z/mZ)2 under the left-action of G. The following proposition allows us to calculate the
degrees of points on modular curves from their associated orbit data.

Proposition 34. Let E/Q be a non-CM elliptic curve and m ∈ Z+. Let im ρE,m
∼= G ≤

GL2(Z/mZ) and let H = ⟨G,−I⟩. Let v ∈ (Z/mZ)2 have order n|m and let (E,P ) be a rep-
resentative of the point x of X1(n) corresponding to Gv. If n > 2, the degree of x is #Hv/2. If
n ≤ 2, the degree of x is #Hv = #Gv.

Proof. We begin by noting that (E,P ) and (E,−P ) induce the same closed point x on X1(n).
Therefore, since E is defined overQ, the degree of x depends only on x(P ) and is equal to [Q(x(P )) :
Q]; see Remark 13. We next observe that [Q(P ) : Q] = #Gv. Assume that n > 2. When −I ∈ G,
the points P and −P are distinct and in the same Galois orbit so [Q(x(P )) : Q] = 1

2 [Q(P ) : Q]
and #Hv = #Gv. We conclude that

deg x = [Q(x(P )) : Q] =
1

2
[Q(P ) : Q] =

1

2
#Gv =

1

2
#Hv.

If −I /∈ G, then there exists a twist E′ of E/Q such that im ρE′,n = ⟨G,−I⟩ by [Sut16, Corollary
5.25]. The point (E,P ) is also represented by (E′, P ′) for some P ′ ∈ E′[n], and the same argument
from above implies

#Hv = [Q(P ′) : Q] = 2[Q(x(P ′)) : Q] = 2[Q(x(P )) : Q],

so we again have that the degree of the point represented by (E,P ) is 1
2#Hv.

Now assume n ≤ 2. Then −I = I in GL2(Z/nZ) so G = H, and Q(x(P )) = Q(P ). We conclude

deg x = [Q(x(P )) : Q] = [Q(P ) : Q] = #Gv = #Hv. □

7. Genus 0 adelic images do not produce isolated points

Let E/Q be an elliptic curve and G ≤ GL2(Ẑ) its adelic image. Let G(N) denote the image of
its mod N representation. Denote by B1(N) the subgroup of GL2(Z/NZ) consisting of the upper
triangular matrices with a 1 in the upper left entry. Note that XB1(N) = X1(N). We say that a
congruence group Γ is of genus g if XΓ is of genus g. We say that a point x corresponds to an
elliptic curve E if j(x) = j(E). In this section, we show that elliptic curves with genus 0 mod N
image do not correspond to P1-isolated points on X1(N).

Lemma 35. Let f : X → Y be a finite morphism of curves of degree d. Then f induces a non-
constant morphism f∗ : Y → X(d).

Proof. The point is to show that the natural map y ↦→ f−1(y) is a morphism of schemes. Note
that the composition of Γf : X → X × Y sending X to the graph of f with X × Y → Y is just
f , which is flat as a finite morphism of irreducible curves [Liu02, Proposition 4.3.9]. So the graph
of f defines a relative effective Cartier divisor in the sense of [Mil86b, Definition 3.4] on X × Y/Y
of degree d. Since all our schemes are regular, we can identify Cartier with Weil divisors. In the
hypothesis of the statement of [Mil86b, Theorem 3.13], we can thus take the effective divisor to be
the graph of f . This allows us to conclude that, as a map of sets, f∗ maps y ∈ Y to the degree-d
divisor f−1(y) := [{y} ×Y X] with the multiplicities of the reduced subscheme of the points in the
fiber product equal to the ramification indices (see [Ful98, § 1.5, § 1.7]).

The morphism f∗ is non-constant since fibers above different points are mapped to different
points by f∗. □

The following lemma rephrases the definition of a point being P1-parametrized of degree d.

Lemma 36 (Characterization of P1-parametrized points). Let X/k be a curve. Let x ∈ X(d)(k)
be an irreducible degree d divisor. The following are equivalent:
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(i) The point x is P1-parametrized.

(ii) There is a non-constant morphism P1 → X(d) containing x in its image.

Proof. (i) =⇒ (ii): If x is P1-parametrized, then there is an x′ ∈ X(d)(k) different from x such that
x− x′ = div(f) for a non-constant function f ∈ k(X). Here we treat x and x′ as effective divisors

of degree d on X. This gives a degree d map f : X → P1, which gives the copy of P1 inside X(d)

as the image under pullback of f as in Lemma 35.
(ii) =⇒ (i): Since every rational map from a unirational variety to an abelian variety is con-

stant [Mil86a, Corollary 3.8], the P1 is contracted to a point under Φd : X
(d) → Jac(X). □

Lemma 37. Let f : X → Y be a finite morphism of curves and x a closed point on X, and assume
deg x = deg f(x). If x is P1-parametrized, then so is f(x).

Proof. Let d = deg(x). The proof is diagram chasing using P1 → X(d) f (d)

→ Y (d), where f (d) is the

natural map fromX(d) to Y (d) induced by f . If x ∈ X is not P1-isolated (i.e., x is P1-parametrized),

then by Lemma 36, x can be viewed as a point on X(d) lying on the image of a non-constant map
from P1 to X(d). Furthermore, f(x) lies on the image of this P1 (which is again a P1 by Lemma 35

or because the induced morphism on the d-th symmetric power is again finite) inside of Y (d). Now
the conclusion follows by Lemma 36. □

Theorem 38. Let E/Q be an elliptic curve with mod N image G(N) of genus 0 and N a positive
integer. Then every x ∈ X1(N) with j(x) = j(E) is P1-parametrized.

Proof. Let x = [E,P ] ∈ X1(N). Replacing G(N) with an appropriate choice of conjugation if
necessary, we may assume G(N) is with respect to a basis having P as its first element. Let y
be a Q-rational point on XG(N) corresponding to E. Let B := B1(N) ∩ G(N) in G(N), and let
d := [±G(N) : ±B]. The proof is diagram chasing in the following two diagrams while keeping
track of the degree of the point. The situation is as follows:

XB

X1(N) XG(N)
∼= P1

fg
=⇒

X
(d)
B

X1(N)(d) XG(N)
∼= P1

g(d) f∗

Let f : XB → XG(N)
∼= P1 be the corresponding degree d map of modular curves. Lemma 35

yields a non-constant morphism f∗ : XG(N) → X
(d)
B such that f∗(y) lies on a P1 ∼= XG(N). Hence

the irreducible divisor represented by f∗(y) in XB is P1-parametrized by Lemma 36. Consider the
morphism g : XB → X1(N) corresponding to B ≤ B1(N). Let x′ ∈ XB be such that g(x′) = x and
f(x′) = y. We want to show that g(x′) has the same degree as x′. Note that deg(x′) is d and of
deg(x) = [±G(N) : ±B] as ±B is the stabilizer of x. Hence it satisfies deg(g(x′)) = deg(x′), so x
is P1-parametrized by Lemma 37. □

Corollary 39. Let E/Q be an elliptic curve with adelic image G of genus 0 and n a positive
integer. Then every x ∈ X1(n) with j(x) = j(E) is P1-parametrized.

Proof. Since G is by assumption of genus 0, it follows that so is G(n). The result then follows from
Theorem 38. □

Example 40. Consider the elliptic curve E with LMFDB label 15.a7, which has adelic image of
genus 13. We can show E has the following primitive points:

• X1(1) of degree 1,
• X1(2) of degrees 1 and 2,
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• X1(4) of degree 1,
• X1(8) of degree 2,
• X1(16) of degree 4, and
• X1(32) of degree 8.

By Theorem 24, it follows that j(E) = −1/15 is isolated if and only if one of these points is isolated.
Any point x ∈ X1(n) with deg(x) > genus(X1(n)) has Riemann–Roch space of dimension at least 2
and thus is P1-parametrized. It remains only to address the point on X1(32) of degree 8. However,
the mod 32 Galois representation of E has genus 0, so this point is P1-parametrized by Theorem
38. We may conclude that j(E) = −1/15 is not an isolated j-invariant.

8. Validity of Main Algorithm

In this section, we will prove that our Main Algorithm as stated in Section 3 is valid. The section
concludes with an additional example.

Theorem 41. Let j ∈ Q be a non-CM j-invariant. If Algorithm 1 returns {(a1, d1), . . . , (ak, dk)},
then any isolated (respectively, sporadic) point x ∈ X1(N) for N ∈ Z+ with j(x) = j maps under
the natural projection map to an isolated (respectively, sporadic) point of degree di on X1(ai) for
some 1 ≤ i ≤ k.

Remark 42. Since our algorithm builds on that of Zywina [Zywa], it is possible that our algorithm
will give an error if the adelic image cannot be computed. See Zywina [Zywb] for details. In
particular, he notes that “errors will always occur if E gives rise to an unknown exceptional rational
point on certain high genus modular curves.” There are no known examples where this error occurs,
and in particular it does not occur for any elliptic curves in the LMFDB or Stein–Watkins Database.
An algorithm to compute the adelic image does always exist (see work of Brau Avila [Avi]), though
it is not practical in general.

Remark 43. The range of the moduli to which PrimitiveDegreesOfPoints is applicable is re-
stricted by the amount of memory Magma can use. The input of very large matrix groups may
result in a runtime error. Because we take preliminary steps to reduce the modulus of the matrix
group (i.e., Section 4), this error did not occur when running our full algorithm on all elliptic curves
currently in the LMFDB.

Proof. Let E/Q be a non-CM elliptic curve with j(E) = j. We note that the choice of E will not
impact our result; see Section 2.3. We may compute im ρE = G via Zywina’s algorithm [Zywa],
and represent the output as G(N) ≤ GL2(Z/NZ) where N is the level. By Algorithm 2, we may
use G(N) to compute the level m0 of the m-adic Galois representation associated to E, where m
is the product of 2, 3, and all non-surjective primes. By Proposition 28, the level of any primitive
point in P(E) will divide m0, so applying Algorithm 3 to im ρE,m0 results in the complete set of
primitive degrees for E. In particular, for each closed point x ∈ X1(n) with j(x) = j and n | m0,
we have x mapping to the primitive point x′ ∈ X1(a) of degree d. We record the entry ⟨n, (a, d)⟩ in
the multiset D. By Theorem 24, we have deg(x) = deg(x′) · deg(X1(n) → X1(a)), and j is isolated
(respectively, sporadic) if and only if there is an isolated (respectively, sporadic) point on X1(ai)
of degree di for some ⟨ni, (ai, di)⟩ in D.

Next, we will rule out pairs (a, d) which cannot correspond to isolated points. If d > genus(X1(a)),
then the point is not P1-isolated since its associated Riemann–Roch space has dimension at least
2. Thus we need only consider the multiset D′ ⊆ D containing those elements ⟨n, (a, d)⟩ for which
d ≤ genus(X1(a)). The integer n is not relevant for our purposes, so we create a new multiset M
containing (a, d) from D′. We record (a, d) with multiplicity µ if and only if X1(a) has µ distinct
closed points of degree d which are associated to E.
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Finally, by Theorem 38, we may remove from M any pair (a, d) where im ρE,a corresponds to a
modular curve of genus 0. Since Algorithm 1 returns M , we are done. □

Corollary 44. If Algorithm 1 outputs an empty set on some non-CM j-invariant j ∈ Q, then j is
not the image of an isolated point on X1(N) for any positive integer N .

Example 45. We end this section with an extended example to illustrate the impact of each step in
Algorithm 1. Let E = 1225.b1, a non-CM elliptic curve over Q with j(E) = −162677523113838677,
and let m denote the product of 2, 3, and all non-surjective primes. Here, one can check that
m = 162.

(i) Zywina’s algorithm shows the adelic image of E is of level N = 5180. Let G(N) := im ρE,N .
(ii) Algorithm 2 shows that the level of the m-adic Galois representation of E is 148.
(iii) Algorithm 3 shows that it suffices to consider points on X1(n) where n | 37. In particular,

it is not necessary to consider points on X1(74) or X1(148) since any will map under the
natural projection map to a modular curve of lower level. There is a single point of degree
1 on X1(1) and 4 points on X1(37) — one of degree 18 and 3 of degree 222.

(iv) We compute that genus(X1(37)) = 40 and genus(X1(1)) = 0. Thus no point of degree 222
on X1(37) can be isolated, and neither is the rational point on X1(1).

(v) Since the modular curve associated to im ρE,37 has genus 4, the algorithm returns {(37, 18)}.
Since X1(37) has infinitely many degree 18 points by [DvH14], the point of degree 18 on X1(37) is
not sporadic. It follows that j(E) is not a sporadic j-invariant. In fact, the appendix shows that
j(E) is isolated; see Theorem 48.

9. Remaining Filters and Computational Results

Suppose E/Q is non-CM elliptic curve such that one of the following holds:

• NE ≤ 500 000,
• NE is only divisible by primes p ≤ 7, or
• NE = p ≤ 300 000 000 for some prime number p.

Then running Algorithm 1 on E results in the empty set, aside from the j-invariants listed in
Table 1; the output from elliptic curves in the Stein–Watkins database yields no additional j-
invariants. The final step in the main algorithm filters out curves with mod N genus 0; we also
list in the table the mod N genus. This genus is computed using code associated to the paper
[RSZB22].

j (N, d) genus mod N

−140625/8 {(21, 3)2} 1
−162677523113838677 {(37, 18)} 4
−882216989/131072 {(17, 4)2} 1
−9317 {(37, 6)3} 4
16778985534208729/81000 {(24, 4)2} 1
351/4 {(28, 9)2} 5

Table 1. Output of main algorithm

In this section we describe additional computations that prove that the only P1-isolated points
on X1(N) for a fixed N correspond to the four j-invariants j = −140625/8,−9317, 351/4, and
−16267752311383867, proving Theorem 2. Since j = −140625/8,−9317, and 351/4 are known to
be isolated (see Section 1), it suffices to consider only the remaining 3 j-invariants.
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9.0.1. Degree 18 point on X1(37) corresponding to j = −162677523113838677. We show that the
point x ∈ X1(37)(K), where K is a degree 18 number field, and j(x) = −162677523113838677 is
P1-isolated. We explicitly compute the coordinates of x on a model of X1(37) and define σi, for

i = 1, . . . , 18 to be the automorphisms of K and D =
∑︁18

i=1 σi(x). Reducing everything modulo

3 and denoting the reduction of D modulo 3 by D, we obtain ℓ(D) = 1, which shows that the
reduction x of x modulo 3 is P1-isolated. Hence it follows that x is P1-isolated.

9.0.2. Degree 4 point on X1(17) corresponding to j = −882216989/131072 and degree 4 point on
X1(24) corresponding to j = 16778985534208729/81000. To show that these points are not isolated
we compute the coordinates of a degree 4 point x corresponding to our curve on a model of X1(17)

and X1(24). Let σi, for i = 1, . . . , 4 be the automorphisms of K and D =
∑︁4

i=1 σi(x). In each case,
we compute ℓ(D) = 2, which implies that x is not P1-isolated.

The fact that the degree 4 point on X1(17) is not P1-isolated also follows from the results of
[DMK18, Proposition 6.7], where it is shown that there are no P1-isolated quartic points on X1(17).

9.1. Computations. We give some details on the implementation and runtime of the algorithm
in this section. We ran Algorithm 1 on two databases of j-invariants of elliptic curves over Q:

• The LMFDB [LMF23] contains all elliptic curves over Q of conductor up to 500 000 and
includes roughly 2 million j-invariants.

• The Stein–Watkins database [SW02] contains roughly 36 million unique j-invariants of
elliptic curves over Q of absolute discriminant at most 1012 that have conductor at most
108 or prime conductor at most 1010. However, it has been filtered to include just one
representative from each isogeny class and each class of quadratic twists.

All computations were run on a server with an AMD EPYC 7713 2GHz CPU and Magma V2.28-3
[BCP97]. For every elliptic curve E/Q in the LMFDB, the database contains the genus of XG

where G is the image of the adelic Galois represenation of E. Applying Corollary 39, we filtered
the roughly 2 million j-invariants of non-CM elliptic curves E/Q in the LMFDB to a set of 30 141,
such that the image of the adelic Galois representation of E is greater than 0. On this set, the
computation took 2 CPU hours and 1714 MB of memory. The Stein–Watkins database contains
35 788 699 unique j-invariants of non-CM elliptic curves over Q, with no information about the
image of the adelic Galois representation. Running Algorithm 1 on this database took 442 CPU
hours.

10. Appendix: The j = −162677523113838677 example is AV-isolated
by Maarten Derickx and Mark van Hoeij

Let X = X1(37) and D be the divisor for the degree 18 closed point in Section 9.0.1, which
also appeared in [Ejd22, Remark 1.3]. Through the maps X → X0(37) → X+

0 (37), we can view
the Jacobian of the latter, A := J0(37)

+, as an abelian subvariety of J1(37). In the isogeny
decomposition of J1(37) there is exactly one abelian variety of positive rank, namely A. This means
that the question of whether D is AV isolated is equivalent to Φd(D) + A not being contained in

W18(X), where Wd(X) := Φd(X
(d)) with Φd as in Section 2.1.

Lemma 46. Let A be an abelian subvariety of Jac(X) and let π : X(d) → J(X)/A be the composition

of Φd with the quotient map. Let D ∈ X(d) and suppose that Φd(D)+A ⊆ Wd(X). Then π, restricted
to the tangent space at D, is not injective.

Proof. Assume that Φd is injective on the tangent space at D, otherwise there is nothing to prove
as π factors through Φd. Then Φd induces an isomorphism between the tangent spaces of X(d) at
D, and Wd at Φd(D). The positive dimensional variety Φd(D) + A is contracted to a point under
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the quotient map J(X) → J(X)/A, in particular the entire tangent space of Φd(D) + A at Φd(D)
is sent to zero under the quotient map, and the result follows. □

Corollary 47. If the corresponding map π∗ : Cot0 J(X)/A → CotD X(d) on cotangent spaces is
surjective, then there is no translate of A contained in Wd(X) passing through Φd(D).

Proof. This is because a map on tangent spaces is injective if and only if the corresponding map
on cotangent spaces is surjective. □

Theorem 48. D is AV-isolated.

Proof. The corollary says that if π is a formal immersion [DKSS] at D then D is AV-isolated. To
prove that π is a formal immersion at D, we can use [DKSS, Proposition 3.7] if we have a basis of
the cotangent space of A viewed as a subspace of J(X).

Write D = y1 + · · · + y18 where the yi form the Galois orbit corresponding to the degree 18
closed point. These yi also form one orbit under the diamond operators (they map to the same
point in X0(37)). We order them in such a way that yi = ⟨2i⟩y1. Let q1 be a uniformizer at y1,
and let qi := q1 ◦ ⟨2−i⟩ be the corresponding uniformizer at yi. Note that since A is inside J0(37)
we have (⟨2⟩ − 1)(A) = 0, so ⟨2⟩ − 1 factors via J(X)/A. In particular all one-forms of the form
⟨2i⟩(⟨2⟩ − 1)w inside Cot0 J(X) come from Cot0 J(X)/A.

Next we show that there is a one-form w such that a(w, q1, 1) = 1 and a(w, qi, 1) = 0 for all
i > 1, with a(. . .) as in [DKSS, Proposition 3.7]. By Riemann–Roch,

dimH0(OX(y1 + . . .+ y18))− dimH0(Ω1(−y1 − . . .− y18)) = 18 + 1− 40

and
dimH0(OX(y2 + . . .+ y18))− dimH0(Ω1(−y2 − . . .− y18)) = 17 + 1− 40.

Now dimH0(OX(y1+ . . .+y18)) = 1 (equivalent to the degree 18 point being P1-isolated) and thus
is equal to dimH0(OX(y2 + . . .+ y18)). Then by Riemann–Roch,

dimH0(Ω1(−y2 − . . .− y18)) > dimH0(Ω1(−y1 − . . .− y18)).

So the wanted one-form w can be found by picking an element of H0(Ω1(−y2 − . . .− y18)) that is
not in H0(Ω1(−y1 − . . .− y18)) and scaling it to make a(w, q1, 1) = 1.

Now let wi = ⟨2i⟩(⟨2⟩ − 1)w. These one-forms all come from Cot0 J(X)/A as mentioned before.
The matrix in [DKSS, Proposition 3.7] now has the following form:⎛⎜⎜⎜⎜⎜⎝

1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
0 0 1 −1 . . . 0
...

...
...

. . .
. . .

...
0 0 0 . . . 1 −1

⎞⎟⎟⎟⎟⎟⎠
This matrix has rank 17, but for [DKSS, Proposition 3.7] we need rank 18. An additional one-

form w′ with a(w′, q1, 1) = . . . = a(w′, q18, 1) = 1 would increase the rank to 18. We can take w′

to be the pullback of a one-form on J0(37)
− to J(X). Indeed, J0(37)

− is a quotient of J0(37)/A
and thus of J(X)/A. Such a w′ is invariant under the diamond operators so a(w′, q1, 1) = . . . =
a(w′, q18, 1) automatically holds. It remains to show that it does not vanish at y1. Since J0(37)

− is
an elliptic curve, w′ does not vanish anywhere, and in particular not at the image of y1 in J0(37)

−.
The only possibility for w′ to vanish at y1 is then for X1(37) → J0(37)

− to be ramified at y1,
however, this is not the case since the ramification points correspond to elliptic curves whose j-
invariant is not equal to −162677523113838677. Indeed, X1(37) → X0(37) only ramifies at j = 0
and j = 1728, and a Magma computation shows that both ramification points of X0(37) → J0(37)

−

have j-invariant 287496. □
21



References

[Avi] Julio Brau Avila. Galois representations of elliptic curves and abelian entanglements.
Doctoral Thesis, Leiden University, 2015.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. volume 24, pages 235–265. 1997. Computational algebra and
number theory (London, 1993).
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