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Inspired by Aumann’s agreement theorem, Aaronson [2005] studied the amount of communication necessary
for two Bayesian experts to approximately agree on the expectation of a random variable. Aaronson showed
that, remarkably, the number of bits does not depend on the amount of information available to each expert.
However, in general the agreed-upon estimate may be inaccurate: far from the estimate they would settle on
if they were to share all of their information. We show that if the experts’ signals are substitutes—meaning
the experts’ information has diminishing marginal returns—then it is the case that if the experts are close to
agreement then they are close to the truth. We prove this result for a broad class of agreement and accuracy
measures that includes squared distance and KL divergence. Additionally, we show that although these
measures capture fundamentally di�erent kinds of agreement, Aaronson’s agreement result generalizes to
them as well.
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1 Introduction

Suppose that Alice and Bob are honest, rational Bayesians who wish to estimate some quantity—say,
the unemployment rate one year from now. Alice is an expert on historical macroeconomic trends,
while Bob is an expert on contemporary monetary policy. They convene to discuss and share their
knowledge with each other until they reach an agreement about the expected value of the future
unemployment rate. Alice and Bob could reach agreement by sharing everything they had ever
learned, at which point they would have the same information, but the process would take years.
How then should they proceed?
In the seminal work “Agreeing to Disagree," Aumann [Aumann, 1976] observed that Alice and

Bob can reach agreement simply by taking turns sharing their current expected value for the
quantity. In addition to modeling communication between Bayesian agents, protocols similar to
this one model �nancial markets: each trader shares partial information about their expected value
on their turn (discussed in Section 5). A remarkable result by Scott Aaronson [Aaronson, 2005]
shows that if Alice and Bob follow certain protocols of this form, they will agree to within n with
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probability 1 − X by communicating $
(

1
Xn2

)
bits.1 Notably, this bound only depends on the error

Alice and Bob are willing to tolerate, and not on the amount of information available to them.
Absent from Aaronson’s results, however, is what Alice and Bob agree on. In particular, there

is no guarantee that Alice and Bob will be accurate, meaning their agreed-upon estimate will be
close (in e.g. expected squared distance) to what they would believe if they shared all of their
information. In fact, they might agree on something highly inaccurate: suppose that Alice and
Bob have independent, uniformly random bits 1�, 1� , and wish to estimate the XOR 1� ⊕ 1� . Alice
and Bob agree from the onset, as from each of their perspectives, the expected value of 1� ⊕ 1�
is 1

2
. Yet this expectation is far from the best estimate given their collective knowledge, which

is either 0 or 1. So while agreement is fundamental to understanding communication between
Bayesians—in Aumann’s terms, they cannot “agree to disagree”—agreement is far from the whole
story. An important open problem is therefore what assumptions guarantee that Alice and Bob are
accurate once they agree.
We address this open problem by introducing a natural condition, called rectangle substitutes,

under which agreement implies accuracy. Rectangle substitutes is a notion of informational substi-
tutes: the property that additional information has diminishing marginal returns. The notion of
substitutes is ubiquitous in optimization problems, and informational substitutes conditions have
recently been used to analyze equilibria in markets [Chen and Waggoner, 2016]. In that context,
Kong and Schoenebeck [2023] showed for conditionally independent signals convergence of the
popular LMSR market implies full information aggregation, i.e. accuracy. We show that under
the rectangle substitutes condition, any protocol leading to agreement will also lead to accuracy.
We then extend these results beyond the case of squared error, to a broad family of measures of
agreement and accuracy including KL divergence.

1.1 Overview of approach and results

In Aaronson [2005], Alice and Bob are said to agree if the squared distance between their estimates
is small. Likewise, we can say that Alice and Bob are accurate if the squared distance between each
of their estimates and the truth is small. In Section 3 we present our �rst main result: under these
de�nitions, if the information structure satis�es rectangle substitutes, then agreement

implies accuracy. In other words, under this assumption, when two Bayesians agree—regardless
of how little information they have shared—they necessarily agree on the truth.

The proof involves carefully partitioning the space of posterior beliefs induced by the protocol.
Agreement is used to show that Alice and Bob usually fall into the same partition element, which
means that Bob would not learn much from learning the partition element of Alice’s expectation.
Then, the rectangle substitutes condition is used to show that if Bob were to learn Alice’s partition
element, then he would be very close to knowing the truth.

Aaronson measures agreement in terms of squared error, yet other measurements like KL
divergence may be better suited for some settings. For example, if Alice and Bob estimate the
probability of a catastrophic event as 10−10 and 10−2, respectively, then under squared error they are
said to agree closely, but arguably they disagree strongly, as re�ected by their large KL divergence.
Motivated these di�erent ways to measure agreement, we next ask:

(1) Can Aaronson’s protocols be generalized to other notions of agreement, such that the number
of bits communicated is independent of the amount of information available to Alice and
Bob?

(2) Do other notions of agreement necessarily imply accuracy under rectangle substitutes?

1To ensure that each message is short, Alice and Bob share discretized versions of their estimates; we discuss this in Section 2.
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In Section 4, we give our second and third main results: the answer to both questions is yes.

Speci�cally, the positive results apply when when measuring agreement and accuracy using Breg-
man divergences, a class of error measures that includes both squared distance and KL divergence.2

Aaronson’s proof of his agreement theorem turns out to be speci�c to squared distance. Our
agreement theorem (Theorem 4.11) modi�es Aaronson’s protocol to depend on the particular
Bregman divergence, i.e. the relevant error measure. It then proceeds in a manner inspired by
Aaronson but using several new ideas. Our proof that agreement implies accuracy under rectangle
substitutes for general Bregman divergences also involves some nontrivial changes to our proof for
squared distance. In particular, the fact that the length of an interval cannot be inferred from the
Bregman divergence between its endpoints necessitates a closer analysis of the partition of Alice’s
and Bob’s beliefs.
We conclude in Section 5 with a discussion of connections between agreement protocols and

information revelation in �nancial markets, and discuss an interesting potential avenue for future
work.

1.2 Related Work

[Geanakoplos and Polemarchakis, 1982] discussed the distinction between agreement and full
information revelation. One result shown is that under a natural probability measure on information
structures, full agreement and information revelation occur in a single round of communication
with probability one. However, conditions for accuracy and the concept of substitutes are not
discussed.
Our setting is related to but distinct from communication complexity. In that �eld (e.g. [Rao

and Yehudayo�, 2020]), the goal is for Alice and Bob to correctly compute a function of their
inputs while communicating as few bits as possible and using any protocol necessary. By contrast,
Aaronson [2005] considered a goal of agreement, not correctness, and focused on speci�c natural
protocols, which he showed achieve this goal in a constant number of bits. Our work focuses
on Aaronson’s setting. We discuss how our results might be framed in terms of communication
complexity in Appendix E.
Our introduction of the substitutes condition is inspired by its usefulness in prediction mar-

kets [Chen and Waggoner, 2016]. The “expectation-sharing” agreement protocols we study bear
a strong similarity to dynamics of market prices. Ostrovsky [2012] introduced a condition under
which convergence of prices in a market implies that all information is aggregated. This can be
viewed as an “agreement implies accuracy” condition. Similarly, Kong and Schoenebeck [2023] pre-
sented a result that, for the logarithmic market scoring rule (LMSR) and conditionally independent
signals, convergence of the market implies full information revelation. Our results are conceptually
similar, although they are technically quite di�erent as we rely on the novel condition of rectangle
substitutes. In the context of the LMSR, the rectangle substitutes notion includes conditionally
independent signals as a special case (see discussion in Section 4.1). We discuss the connection of
our work to markets in Section 5. Another similar de�nition of informational substitutes is used by
[Neyman and Roughgarden, 2021a] in the context of robust aggregation of forecasts.
Finally, we note that the “agreement protocols” we study are not related to key agreement

protocols in cryptography, where the goal is for two communicating parties to jointly construct a
shared string for cryptographic use.

2The third result holds under an “approximate triangle inequality" condition on the Bregman divergence, which is satis�ed
by most or all natural choices; indeed, it is nontrivial to construct a Bregman divergence that does not satisfy this property.
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2 Preliminaries

2.1 Information Structures

We consider a set Ω of states of the world, with a probability distribution P over the world states.
There are two experts, Alice and Bob. Alice learns the value of a random variable f : Ω → S;
we call f Alice’s signal and S her signal set. Correspondingly, Bob learns the value of a random
variable g : Ω → T . These signals each convey partial information about the true state l ∈ Ω.
Alice and Bob are interested in a third random variable . : Ω → [0, 1]. We use the term information
structure to refer to the tuple I := (Ω, P,S,T , . ).
We denote by `fg := E [. | f, g] the random variable that is equal to the expected value of

. conditioned on both Alice’s signal f and Bob’s signal g .3 We also de�ne `f := E [. | f] and
`g := E [. | g]. For a measurable set ( ⊆ S, we de�ne `( := E [. | f ∈ (]; we de�ne `) analogously
for ) ⊆ T . Additionally, for ) ⊆ T , we de�ne `f) := E [. | g ∈ ), f], i.e. the expected value of .
conditioned on the particular value of f and the knowledge that g ∈ ) . If Alice knows that Bob’s
signal belongs to ) (and nothing else about his signal), then the expected value of . conditional
on her information is `f) ; we refer to this as Alice’s expectation. Likewise, for ( ⊆ S, we de�ne
`(g := E [. | f ∈ (, g]. Finally, we de�ne `() := E [. | f ∈ (, g ∈ ) ]. This is the expectation of a
third party who only knows that f ∈ ( and g ∈ ) .

In general we often wish to take expectations conditioned on f ∈ (, g ∈ ) (for some ( ⊆ S,) ⊆
T ). We will use the shorthand E [· | (,) ] for E [· | f ∈ (, g ∈ ) ] in such cases.

2.2 Agreement Protocols

The notion of agreement between Alice and Bob is central to our work. We �rst de�ne agreement
in terms of squared error, and generalize to other error measures in Section 4.

Definition 2.1 (n-agree). Let 0 and 1 be Alice’s and Bob’s expectations, respectively (0 and 1 are
random variables on Ω). Alice and Bob n-agree if 1

4
E

[
(0 − 1)2

]
≤ n .

The constant 1
4
makes the left-hand side represent Alice’s and Bob’s distance to the average of their

expectations.
Our setting follows [Aaronson, 2005], which examined communication protocols that cause Alice

and Bob to agree. In a (deterministic) communication protocol, Alice and Bob take turns sending
each other messages (strings of bits). On Alice’s turns, Alice communicates a message that is a
deterministic function of her input (i.e. her signal f) and all previous communication, and likewise
for Bob on his turns. A rectangle is a set of the form ( ×) where ( ⊆ S and ) ⊆ T .
The communication transcript is the ordered tuple of all messages that have been sent. The

transcript at time step C refers to the tuple consisting of the �rst C messages. The transcript at
time step C partitions Ω into rectangles: for any given sequence of C messages, there are subsets
(C ⊆ S,)C ⊆ T such that the protocol transcript at time C is equal to this sequence if and only if
(f, g) ∈ (C ×)C .4
For a given communication protocol, we may think of (C and )C as random variables. Alice’s

expectation at time C (i.e. after the C-th message has been sent) is `f)C and Bob’s expectation at time
C is `(Cg . Finally, the protocol terminates at a certain time (which need not be known in advance of
the protocol). While typically in communication complexity a protocol is associated with a �nal

3The value of . need not be determined by f and g , although for our purposes the case in which it is determined is
essentially equivalent.
4We can see this inductively: suppose the transcript at time step C − 1 partitions Ω into rectangles, and (without loss of
generality) that the C -th turn is Alice’s. Consider one of these rectangles. Alice’s message can only depend on her input and
the transcript so far, which means that her message can only partition this rectangle into sub-rectangles.
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output, in this case we are interested in Alice’s and Bob’s expectations, so we do not require an
output.

It will be convenient to hypothesize a third party observer, whom we call Charlie, who observes
the protocol but has no other information. At time C , Charlie has expectation `(C)C . Charlie’s
expectation can also be interpreted as the expectation of . according to Alice and Bob’s common
knowledge. Note that Alice and Bob each know Charlie’s expectation at any given time.
The following de�nition formalizes the relationship between communication protocols and

agreement.

Definition 2.2 (n-agreement protocol). Given an information structure I, a communication
protocol causes Alice and Bob to n-agree on I if Alice and Bob n-agree at the end of the protocol, i.e.,
if 1

4
E

[
(`f)C − `(Cg )2

]
≤ n , where the expected value is over Alice’s and Bob’s inputs. We say that a

communication protocol is an n-agreement protocol if the protocol causes Alice and Bob to n-agree on
every information structure.

Aaronson de�nes and analyzes two n-agreement protocols.5 The �rst of these is the standard
protocol, in which Alice and Bob take turns stating their expectations for a number of time steps
that can be computed by Alice and Bob independently in advance of the protocol, and which is
guaranteed to be at most $ (1/n).
The fact that exchanging their expectations for $ (1/n) time steps results in n-agreement is

profound and compelling. However, the standard protocol may require an unbounded number of
bits of communication, since Alice and Bob are exchanging real numbers. To address this, Aaronson
de�nes another agreement protocol that is truly polynomial-communication (which we slightly
modify for our purposes):

Definition 2.3 (Discretized protocol, [Aaronson, 2005]). Choose n > 0. In the discretized
protocol with parameter n , on her turn (at time C ), Alice sends “low" if her expectation is smaller than
Charlie’s by more than n/4, i.e. if `(C−1g < `(C−1)C−1 − n/4; “high" if her expectation is larger than
Charlie’s by more than n/4; and “medium" otherwise. Bob acts analogously on his turn. At the start of
the protocol, Alice and Bob use the information structure to independently compute the time Cend ≤ 1000

n

that minimizes E
[
(`f)Cend − `(Cendg )

2
]
. The protocol ends at this time.

Theorem 2.4 ([Aaronson, 2005, Theorem 4]). The discretized protocol with parameter n is an
n-agreement protocol with transcript length $ (1/n) bits.

In general, we refer to Aaronson’s standard and discretized protocols as examples of expectation-
sharing protocols. We will de�ne other examples in Section 4, similar to Aaronson’s discretized
protocol but with di�erent cuto�s for low, medium, and high. We also interpret expectation-sharing
protocols in the context of markets in Section 5.

2.3 Accuracy and Informational Substitutes

Most of our main results give conditions such that if Alice and Bob n-agree, then Alice’s and Bob’s
estimates are accurate. By accurate, we mean that Alice’s and Bob’s expectations are close to `fg ,
i.e., what they would believe if they knew each other’s signals. (After all, they cannot hope to have
a better estimate of . than `fg ; for this reason we sometimes refer to `fg as the “truth.”) Formally:

5A minor di�erence to our framing is that Aaronson [2005] focuses on probable approximate agreement: protocols that cause
the absolute di�erence between Alice and Bob to be at most n with probability all but X . While the results as presented in
this section are stronger than those in [Aaronson, 2005] (the original results follow from these as a consequence of Markov’s
inequality), these results follow from a straightforward modi�cation of his proofs.
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Definition 2.5 (n-accurate). Let0 be Alice’s expectation. Alice is n-accurate ifE
[
(`fg − 0)2

]
≤ n .

We de�ne n-accuracy analogously for Bob.

One cannot hope for an unconditional result stating that if Alice and Bob agree, then they are
accurate. Consider for instance the XOR information structure from the introduction: Alice and Bob
each receive independent random bits as input, and . is the XOR of these bits. Then from the start
Alice and Bob agree that the expected value of . is exactly 1

2
, but this value is far from `fg , which

is either 0 or 1.
Intuitively, this situation arises because Alice’s and Bob’s signals are informational complements:

each signal is not informative by itself, but they are informative when taken together. On the
other hand, we say that signals are informational substitutes if learning one signal is less valuable
if you already know the other signal. An extreme example is if f = g = - for any random
variable - . Here f becomes useless upon learning g and vice versa. Chen and Waggoner [2016],6

discuss formalizations of several notions of informational substitutes. All of these notions capture
“diminishing marginal value," in the sense that, roughly speaking, the value of partial information
is a submodular set function. The various de�nitions proposed by Chen and Waggoner [2016] only
di�er in how �nely they allow decomposing f and g to obtain a marginal unit. Our de�nition has
the same format, but uses a decomposition inspired by information rectangles in communication
complexity. Recall that we write | (,) as shorthand for | f ∈ (, g ∈ ) .

Definition 2.6. An information structure I = (Ω, P,S,T , . ) satis�es rectangle substitutes if for
every ( ⊆ S,) ⊆ T such that P [f ∈ (, g ∈ ) ] > 0, we have

E
[
(. − `(g )2 | (,)

]
− E

[
(. − `fg )2 | (,)

]
≤ E

[
(. − `() )2 | (,)

]
− E

[
(. − `f) )2 | (,)

]
. (1)

This de�nition is a strengthening of Chen and Waggoner’s notion of weak substitutes for two
agents: an information structure satis�es weak substitutes if Equation 1 holds for ( = S and ) = T
[Chen and Waggoner, 2016].

We will show that under rectangle substitutes, if Alice and Bob approximately agree, then they
are approximately accurate.

Interpreting substitutes. Both sides of Equation 1 represent the “value” of learning f as measured
by a decrease in error. The left-hand side gives the decrease if one already knows g and that f ∈ ( ;
the right-hand side gives the decrease if one only knows that f ∈ (, g ∈ ) . Substitutes thus says: the
marginal value of learning f is smaller if one already knows g than if one does not. This statement
should hold for every sub-rectangle (,) . We remark that the inequality can be rearranged to focus
instead on the marginal value of g rather than f . We also note that in the XOR information structure,
the left-hand side of the inequality is 1

4
while the right-hand side is zero: a large violation of the

substitutes condition. In the example f = g = - , the left side is always zero.
Chen and Waggoner [2016] discusses three interpretations of substitutes, which motivate it as a

natural condition. (1) Each side of the inequality measures an improvement in prediction error, here
the squared loss, due to learning f . Under substitutes, the improvement is smaller if one already
knows g . (2) Each side measures a decrease in uncertainty (here, measured roughly by variance) due
to learning f . Under substitutes, f provides less information about . if one already knows g .7 (3)
Each side measures the decrease in distance of a posterior expectation from the truth when learning
f . The distance to . changes less if one already knows g .

6We recommend the ArXiv version for the most up-to-date introduction to informational substitutes.
7Here, uncertainty is measured by variance of one’s belief. Under the KL divergence analogue covered in Section 4.1,
uncertainty is measured in bits via Shannon entropy.
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Restrictiveness of substitutes. It is natural to ask about the strength of the rectangle substitutes
assumption. In the case that |S| = |T | = 2, the condition reduces to the well-established “weak
substitutes" condition of [Chen and Waggoner, 2016]. For larger signal sets, the set of information
structures satisfying rectangle substitutes remains nontrivial. For example, it is satis�ed by a
positive fraction of information structures (for a natural choice of measure). We show this fact in
Appendix A by exhibiting an information structure in which Equation 1 holds strictly for all (,)
with |( | , |) | ≥ 2 — meaning that all nearby information structures also satisfy rectangle substitutes.
Finally, we note that although the rectangle substitutes condition is strong due to the quanti�cation
over sub-rectangles, in Section 3.2 we prove that our main results decay gracefully for information
structures that are close to but do not quite satisfy the rectangle substitutes condition.

2.4 The Pythagorean Theorem

We will use the following fact throughout. We defer the proof to Appendix C, where we establish a
more general version of this statement.

Proposition 2.7 (Pythagorean theorem). Let � be a random variable, � = E [� | F ] where F
is a sigma-algebra, and � be a random variable de�ned on F . Then

E
[
(� −�)2

]
= E

[
(� − �)2

]
+ E

[
(� −�)2

]
.

We use the phrase Pythagorean theorem in part because of its form, and in part because it is
precisely the familiar Pythagorean theorem when the random variables are viewed as points in a
Hilbert space8 with inner product ⟨-,. ⟩ := E [-. ].
Informally, � is a random variable, � is the expected value of � conditional on some partial

information, and � is a random variable that only depends on this information. So the theorem
applies when � is a coarse estimate of� and� is at least as coarse as �, a scenario that often occurs
in our setting.
One application of the Pythagorean theorem in our context takes � = . , � = `fg (the expected

value of . conditioned on the experts’ signals), and � = `f) (Alice’s expected value, which only
depends on her signal and thus on the signal pair). This particular application, along with the
symmetric one taking � = `(g , allows us to rewrite the rectangle substitutes condition in a form
that we will �nd more convenient:

Remark 2.8. An information structure I satis�es rectangle substitutes if and only if

E
[
(`fg − `(g )2 | (,)

]
≤ E

[
(`f) − `() )2 | (,)

]
(2)

for all (,) such that P [f ∈ (, g ∈ ) ] > 0.

3 Results for Squared Distance

Our main results show that, under the rectangle substitutes condition, any communication protocol
that causes Alice and Bob to agree also causes them to be accurate. We now show the �rst of these
results, which is speci�c to the squared distance error measure that we have been discussing.

3.1 Agreement Implies Accuracy

Theorem 3.1. LetI = (Ω, P,S,T , . ) be an information structure that satis�es rectangle substitutes.

For any communication protocol that causes Alice and Bob to n-agree on I, Alice and Bob are 10n1/3-
accurate after the protocol terminates.

The crux of the argument is the following lemma.

8We do not make use of this abstraction in our work, but we refer the interested reader to [Šidák, 1957].
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Lemma 3.2. Let I = (Ω, P,S,T , . ) be an information structure that satis�es rectangle substitutes.
Let n = E

[
(`f − `g )2

]
. Then

E
[
(`fg − `g )2

]
≤ 6n1/3.

Let us �rst prove Theorem 3.1 assuming Lemma 3.2 is true.

Proof of Theorem 3.1. Consider any protocol that causes Alice and Bob to n-agree on I. Let
( be the set of possible signals of Alice at the end of the protocol which are consistent with the
protocol transcript, and de�ne ) likewise for Bob. Intuitively, ( ×) is the set of plausible signal
pairs (f, g) according to an external observer of the protocol. Observe that ( and ) are random
variables, each a function of both f and g . We have

E
[
(`fg − `(g )2

]
= E(,)

[
E

[
(`fg − `(g )2 | (,)

] ]
≤ E(,)

[
6
(
E

[
(`f) − `(g )2 | (,)

] )1/3]
≤ 6E(,)

[
E

[
(`f) − `(g )2 | (,)

] ]1/3
= 6E

[
(`f) − `(g )2

]1/3 ≤ 6(4n)1/3 ≤ 10n1/3.

In the second step, we apply Lemma 3.2 to the information structure I restricted to ( ×) — that
is, to I ′ = (Ω′, P′, (,) , . ), where Ω

′
= {l ∈ Ω : f ∈ (, g ∈ ) } and P′[l] = P [l | f ∈ (, g ∈ ) ].

(Note that we use the fact that if I satis�es rectangle substitutes, then so does I ′; this is because a
rectangle of I ′ is also a rectangle of I.) The third step follows by the concavity of G1/3. Therefore,
Bob is 10n1/3 accurate (and Alice is likewise by symmetry). □

The proof of Lemma 3.2 relies on the following claim. We defer the proof of Lemma 3.2 (and
Claim 3.3) to Appendix B, and instead sketch the proofs here.

Claim 3.3. In the setting of Lemma 3.2, for any # ≥ 1, it is possible to partition [0, 1] into #

intervals [0, G1), [G1, G2), . . . , [G#−1, 1] in a way so that each interval has length at most 2
#
, and

P [: (f) ≠ : (g)] ≤
√
n#,

where : (f) denotes the : ∈ [# ] such that G:−1 ≤ `f < G: , and : (g) is de�ned analogously.9

Intuitively, Claim 3.3 is true because if E
[
(`f − `g )2

]
is small, then `f and `g are likely to fall

into the same interval.
We now sketch the proof of Lemma 3.2. To see why Claim 3.3 is relevant, recall that we wish

to upper bound the expectation of (`fg − `g )2. Let ( (:) := {f ∈ S : G:−1 ≤ `f < G: }. By the
Pythagorean theorem, we have

E
[
(`fg − `g )2

]
= E

[
(`fg − `( (: (f ) )g )2

]
+ E

[
(`( (: (f ) )g − `g )2

]
.

By using the rectangle substitutes condition for ( = ( (:) ,) = T for every : , we �nd that

E
[
(`f − `( (: (f ) ) )2

]
≥ E

[
(`fg − `( (: (f ) )g )2

]
. (3)

Therefore, we have

E
[
(`fg − `g )2

]
≤ E

[
(`f − `( (: (f ) ) )2

]
+ E

[
(`( (: (f ) )g − `g )2

]
. (4)

Claim 3.3 lets us argue that the �rst of these two terms is small (because `f and `( (: (f ) ) are always
within 2

#
of each other) and that the second term is also small (because conditioned on g , : (f) is

known with high probability). We �nd that choosing # = n−1/6 gives us the bound in Lemma 3.2.

9For convenience we de�ne G0 = 0 and G# to be some number greater than 1.
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Theorem 3.1 is a general result about agreement protocols. Applying the result to Aaronson’s
discretized protocol gives us the following result.

Corollary 3.4. Let I be any information structure that satis�es universal rectangle substitutes.
For any n > 0, Alice and Bob will be n-accurate after running Aaronson’s discretized protocol with
parameter n3/1000 (and this takes $ (1/n3) bits of communication).

Remark 3.5. The discretized protocol is not always the most e�cient agreement protocol. For
example, Proposition B.1 shows that if the rectangle substitutes condition holds, agreement (and
therefore accuracy) can be reached with just $ (log(1/n)) bits, an improvement on Corollary 3.4.
We discuss communication complexity further in Appendix E. Even if more e�cient protocols are
sometimes possible, expectation-sharing protocols are of interest because they model naturally-
occurring communication processes. For example, they capture the dynamics of prices in markets,
which we also discuss in Section 5. More generally, we �nd it remarkable that Alice and Bob
become accurate by running the agreement protocol (indeed any agreement protocol), despite such
protocols being designed with only agreement in mind.

Finally, we observe the following important consequence of Theorem 3.1: once Alice and Bob
agree, they continue to agree.

Corollary 3.6. Let I = (Ω, P,S,T , . ) be an information structure that satis�es rectangle substi-
tutes. Consider a communication protocol with the property that Alice and Bob n-agree after round C .

Then Alice and Bob 10n1/3-agree on all subsequent time steps.

Proof. If Alice and Bob n-agree then they are 10n1/3-accurate, so in particularE
[
(`fg − `f)C )2

]
≤

10n1/3. Note that E
[
(`fg − `f)B )2

]
is a decreasing function of B , since for any B1 ≤ B2 we have

E
[
(`fg − `f)B1 )

2
]
= E

[
(`fg − `f)B2 )

2
]
+ E

[
(`f)B2 − `f)B1 )

2
]

by the Pythagorean theorem. Therefore, for any C ′ > C , we have E
[
(`fg − `f)C′ )2

]
≤ 10n1/3.

Symmetrically, we have E
[
(`fg − `(C′g )2

]
≤ 10n1/3. Therefore, E

[
(`f)C′ − `(C′g )2

]
≤ 40n1/3, which

means that after round C ′, Alice and Bob 10n1/3-agree. □

Corollary 3.6 stands in contrast to the more general case, in which it is possible that Alice and
Bob “nearly agree for the �rst C − 1 time steps, then disagree violently at the C-th step" [Aaronson,
2005, §2.2]. Thus, while the main purpose of Theorem 3.1 is a property about accuracy, an agreement
property falls out naturally: under the rectangle substitutes condition, once Alice and Bob are close
to agreement, they will remain in relatively close agreement into the future.

3.2 Graceful Decay Under Closeness to Rectangle Substitutes

In a sense, the rectangle substitutes condition is quite strong: it requires that the weak substitutes
condition be satis�ed on every sub-rectangle. One might hope for a result that generalizes Theo-
rem 3.1 to information structures that almost satisfy the rectangle substitutes condition but do not
quite. Let us formally de�ne a notion of closeness to rectangle substitutes.

Definition 3.7. An information structure I = (Ω, P,S,T , . ) satis�es X-approximate rectangle
substitutes if for every partition of S × T into rectangles,10 the rectangle substitutes condition holds
in expectation over the partition, up to an additive constant of X , i.e., if we have

Ef,g

[
(`fg − `(f,gg )2

]
≤ Ef,g

[
(`f)f,g − `(f,g)f,g )2

]
+ X, (5)

10There are partitions into rectangles that cannot arise from a communication protocol. Our results would apply equally if
this condition were instead de�ned for every partition that could arise from a communication protocol, but we state this
condition more generally so that it could be applicable in a broader context than the analysis of communication protocols.
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where (f,g ×)f,g is the rectangle containing (f, g).

Remark 3.8. The X-approximate rectangle substitutes property is a relaxation of the rectangle
substitutes property, in the sense that the two are equivalent if X = 0. To see this, �rst observe that if
I satis�es rectangle substitutes, then it satis�es Equation 5 with X = 0 pointwise across all (f,g ,)f,g ,
and thus in expectation. In the other direction, suppose that I satis�es 0-approximate rectangle
substitutes. Let ( ⊆ S,) ⊆ T and consider the partition of I into rectangles that contains ( ×)
and, separately, every other signal pair (f, g) in its own rectangle. For this partition, Equation 5
reduces precisely to Equation 2 (the rectangle substitutes condition for ( and ) ).

Theorem 3.1 generalizes to approximate rectangle substitutes as follows.

Theorem 3.9. Let I = (Ω, P,S,T , . ) be an information structure that satis�es X-approximate
rectangle substitutes. For any communication protocol that causes Alice and Bob to n-agree on I, Alice
and Bob are (10n1/3 + X)-accurate after the protocol terminates.

Proof. We �rst observe that Lemma 3.2 can be modi�ed as follows.

Lemma 3.10. Let I = (Ω, P,S,T , . ) be an information structure that satis�es X-approximate
rectangle substitutes. Let n = E

[
(`f − `g )2

]
. Then

E
[
(`fg − `g )2

]
≤ 6n1/3 + X.

The proof of Lemma 3.10 is exactly the same as that of Lemma 3.2, except that Equation 3 (Equation 7
in the full proof) includes an additive X term on the left-hand side:

E
[
(`f − `( (: (f ) ) )2

]
+ X ≥ E

[
(`fg − `( (: (f ) )g )2

]
.

This modi�ed inequality follows immediately from the X-approximate rectangle substitutes condi-
tion, noting that one partition of S × T into rectangles is {(1 × T , . . . , (# × T }. The extra X term
produces the X term in the lemma statement.

To prove the theorem, let ( be the set of possible signals of Alice at the end of the protocol which
are consistent with the protocol transcript, and de�ne) likewise for Bob. Let X() be the minimum X

such that (×) satis�es X-approximate rectangle substitutes. Note that E(,) [X() ] ≤ X : otherwise, by
taking the union over the worst-case partitions for each (,) we would exhibit a partition of S × T
into rectangles that would violate the X-approximate rectangle substitutes property. Therefore we
have

E
[
(`fg − `(g )2

]
= E(,)

[
E

[
(`fg − `(g )2 | (,)

] ]
≤ E(,)

[
6
(
E

[
(`f) − `(g )2 | (,)

] )1/3 + X() ]
≤ 6E(,)

[
E

[
(`f) − `(g )2 | (,)

] ]1/3 + X
= 6E

[
(`f) − `(g )2

]1/3 + X = 6(4n)1/3 + X ≤ 10n1/3 + X.
As in the proof of Theorem 3.1, the second step follows by applying Lemma 3.2 to the information
structure I restricted to ( ×) . □

4 Results for Other Divergence Measures

Squared distance is a compelling error measure because it elicits the mean. That is, if you wish
to estimate a random variable . and will be penalized according to the squared distance between
. and your estimate, the strategy that minimizes your expected penalty is to report the expected
value of . (conditional on the information you have). This is in contrast to e.g. absolute distance as
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�� (~ ∥ G)� (G) + ( · − G)� ′(G)

G ~

� (·)

Fig. 1. The Bregman divergence �� (~ ∥ G) is the vertical distance at ~ between � and the tangent line to �

at G .

an error measure, which would instead elicit the median of your distribution. The class of error
measures that elicit the mean is precisely the class of Bregman divergences (de�ned below).
In this section, our main result is a generalization of Theorem 3.1 to (almost) arbitrary

Bregman divergences (see e.g. Theorem 4.14). Additionally, we provide a generalization of

Aaronson’s discretized protocol to arbitrary Bregman divergences (Theorem 4.11).

4.1 Preliminaries on Bregman Divergences

Definition 4.1. Given a di�erentiable,11 strictly convex function� : [0, 1] → R, and G,~ ∈ [0, 1],
the Bregman divergence from ~ to G is

�� (~ ∥ G) := � (~) −� (G) − (~ − G)� ′(G).

Proposition 4.2 ([Banerjee et al., 2005]). Given a random variable. , the quantityE [�� (. ∥ G)]
is minimized by G = E [. ].

An intuitive formulation of Bregman divergence is that �� (~ ∥ G) can be found by drawing
the line tangent to � at G and computing how far below the point (~,� (~)) this line passes. We
illustrate this in Figure 1. Note that the Bregman divergence is not in general symmetric in its
arguments; indeed, � (G) = G2 is the only � for which it is.
The Bregman divergence with respect to � (G) = G2 is precisely the squared distance. Another

common Bregman divergence is the KL divergence, which corresponds to � (G) = G logG + (1 −
G) log(1 − G), the negative of Shannon entropy.

We generalize relevant notions such as agreement and accuracy to arbitrary Bregman divergences
as follows. In the de�nitions below, � : [0, 1] → R is a di�erentiable, strictly convex function.

Definition 4.3. Let 0 be Alice’s expectation. Alice is n-accurate if E [�� (`fg ∥ 0)] ≤ n , and
likewise for Bob.

We discuss our choice of the order of these two arguments (i.e. why we do not instead consider
the expectation of �� (0 ∥ `fg )) in Appendix D. We now de�ne n-agreement, and to do so we �rst
de�ne the Jensen-Bregman divergence.

Definition 4.4. For 0, 1 ∈ [0, 1], the Jensen-Bregman divergence between 0 and 1 with respect to
� is

JB� (0, 1) :=
1

2

(
��

(
0 ∥ 0 + 1

2

)
+ ��

(
1 ∥ 0 + 1

2

))
=
� (0) +� (1)

2
−�

(
0 + 1
2

)
.

11When we say “di�erentiable," we mean di�erentiable on the interior of the interval on which� is de�ned.
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The validity of the second equality can be easily derived from the de�nition of Bregman diver-
gence. Note that the Jensen-Bregman divergence, unlike the Bregman divergence, is symmetric in its
arguments. The Jensen-Bregman divergence is a lower bound on the average Bregman divergence
from Alice and Bob to any other point (see Proposition C.1 (i)).

Definition 4.5. Let 0 and 1 be Alice’s and Bob’s expectations, respectively. Alice and Bob n-agree
with respect to � if JB� (0, 1) ≤ n .

In Appendix D we discuss alternative de�nitions of agreement and accuracy. The upshot of this
discussion is that our de�nition of agreement is the weakest reasonable one, and our de�nition
of accuracy is the strongest reasonable one. This means that the main result of this section—that
under a wide class of Bregman divergence, agreement implies accuracy—is quite powerful: it starts
with a weak premise and proves a strong conclusion.

Definition 4.6. Given an information structure I, a communication protocol causes Alice and
Bob to n-agree on I with respect to � if Alice and Bob n-agree with respect to � at the end of the
protocol. A communication protocol is an n-agreement protocol with respect to� if the protocol causes
Alice and Bob to n-agree with respect to � on every information structure.

We also generalize the notion of rectangle substitutes to this domain, following [Chen and
Waggoner, 2016], which explored notions of substitutes for arbitrary Bregman divergences.

Definition 4.7. Let � : [0, 1] → R be a di�erentiable, strictly convex function. An information
structure I = (Ω, P,S,T , . ) satis�es rectangle substitutes with respect to� if for every ( ⊆ S,) ⊆ T ,
we have

E [�� (. ∥ `(g ) | (,) ] − E [�� (. ∥ `fg ) | (,) ]
≤ E [�� (. ∥ `() ) | (,) ] − E [�� (. ∥ `f) ) | (,) ] .

Chen andWaggoner [2016] explore the notion of weak substitutes with respect to arbitrary� ’s as
well; just as before, I is said to satisfy the weak substitutes condition if the above inequality holds
for ( = S and) = T . The authors additionally explore in detail the weak substitutes condition with
respect to negative entropy, i.e. for �� equal to the KL divergence. They show that if Alice and Bob
have independent signals conditioned on. , then the information structure satis�es weak substitutes
with respect to this � . In fact, any such information structure also satis�es rectangle substitutes,
because an information structure with conditionally independent signals retains the conditional
independence when restricted to any sub-rectangle. The rectangle substitutes condition thus covers
the speci�c case of conditionally independent signals under which Kong and Schoenebeck [2023]
prove their accuracy result. On the other hand, the greater generality of our setting necessitates a
di�erent proof strategy.
The Pythagorean theorem (Proposition 2.7) generalizes to arbitrary Bregman divergences:

Proposition 4.8. Let � be a random variable, � = E [� | F ] where F is a sigma-algebra, and �
be a random variable de�ned on F . Then

E [�� (� ∥ �)] = E [�� (� ∥ �)] + E [�� (� ∥ �)] .

Although the proof of this observation is fairly straightforward, to our knowledge Proposition 4.8
is original to this work. We provide a proof in Appendix C. Just as we did with squared error, this
general Pythagorean theorem allows us to rewrite the rectangle substitutes condition for Bregman
divergences.
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Remark 4.9. An information structure I satis�es rectangle substitutes with respect to � if and
only if for all ( ⊆ S,) ⊆ T we have

E [�� (`fg ∥ `(g ) | (,) ] ≤ E [�� (`f) ∥ `() ) | (,) ] . (6)

Given the interpretation of Bregman divergences as measures of error, we can interpret the left
side as Bob’s expected error in predicting the truth while the right side is Charlie’s expected error
when predicting Alice’s expectation (with Charlie as de�ned in Section 2.2). Both sides measure a
prediction error due to not having Alice’s signal, but from di�erent starting points.

4.2 Generalizing the Discretized Protocol

Later in this work, we will show that under some weak conditions, protocols that cause Alice and
Bob to agree with respect to � also cause Alice and Bob to be accurate with respect to � . However,
this raises an interesting question: are there protocols that cause Alice and Bob to agree with
respect to �? In particular, we are interested in natural expectation-sharing protocols. Aaronson’s
discretized protocol is speci�c to � (G) = G2, and it is not immediately obvious how to generalize it.
We present the following generalization.

Definition 4.10. Let � be a di�erentiable, strictly convex function, and let " := maxG � (G) −
minG � (G). Choose n > 0. In the discretized protocol with respect to� with parameter n , on her turn
(at time C), Alice sends “medium" if �� (`f)C−1 ∥ `(C−1)C−1 ) < n

2
, and otherwise either “low" or “high",

depending on whether `f)C is smaller or larger (respectively) than `(C)C . Bob acts analogously on his
turn. At the start of the protocol, Alice and Bob use the information structure to independently compute

the time Cend ≤ 24" (4"+n)
n2

that minimizes E
[
�� (`f)Cend ∥ `(Cendg )

]
. The protocol ends at this time.

Theorem 4.11. The discretized protocol with respect to � with parameter n is an n-agreement

protocol that involves $
(
" ("+n)

n2

)
bits of communication.

Our proof draws inspiration from Aaronson’s proof of the discretized protocol, but has signi�cant
di�erences. The key idea is to keep track of the monovariant E

[
�� (. ∥ `(C)C )

]
. This is Charlie’s

expected error (as measured by the Bregman divergence from the correct answer . ) after time step
C—recall that Charlie is our name for a third-party observer of the protocol. Note that this quantity
is at most" and at least 0. Hence, if we show that the quantity decreases by at least some value V
every time Alice and Bob do not n-agree, then we will have shown that Alice and Bob must n-agree

within V

"
time steps. We defer the proof to Appendix C.

4.3 Approximate Triangle Inequality

Our results will hold for a class of Jensen-Bregman divergences that satisfy an approximate version
of the triangle inequality. Speci�cally, we will require JB� to satisfy the following 2-approximate
triangle inequality for some 2 > 0.

Definition 4.12. Given a di�erentiable, strictly convex function � : [0, 1] → R and a positive
number 2 , we say that JB� (·, ·) satis�es the 2-approximate triangle inequality if for all 0, 1, G ∈ [0, 1]
we have

JB� (0, G) + JB� (G, 1) ≥ 2JB� (0, 1).

It is possible to construct functions � such that there is no positive 2 for which JB� satis�es the
2-approximate triangle inequality. However, JB� satis�es the 2-approximate triangle inequality for
some positive 2 for essentially all natural choices of � .

Proposition 4.13. Let � : [0, 1] → R be a di�erentiable, strictly convex function.
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(i) If
√
JB� (·, ·) satis�es the triangle inequality, then JB� satis�es the 1

2
-approximate triangle

inequality.
(ii) If� (G) = G2 (i.e. �� is squared distance) or if� (G) = G logG + (1− G) log(1− G) (i.e. �� is KL

divergence), then
√
JB� satis�es the triangle inequality (and so JB� satis�es the 1

2
-approximate

triangle inequality).

Proof. Regarding Fact (i), suppose that
√
JB� satis�es the triangle inequality. Then for all

0, 1, G we have
√
JB� (0, G) +

√
JB� (G, 1) ≥

√
JB� (0, 1). Squaring both sides and observing that

JB� (0, G) + JB� (G, 1) ≥ 2
√
JB� (0, G)JB� (G, 1) completes the proof.

Fact (ii) is trivial for � (G) = G2, since
√
JB� is the absolute distance metric (times a constant

factor). As for � (G) = G logG + (1 − G) log(1 − G), we refer the reader to [Endres and Schindelin,
2003]. □

The question of when
√
JB� satis�es the triangle inequality has been explored in previous work;

we refer the interested reader to [Acharyya et al., 2013] and [Chen et al., 2008].

4.4 Generalized Agreement Implies Generalized Accuracy

In all of the results in this subsection, we consider the following setting:� is a di�erentiable convex
function; 2 is a positive real number such that JB� satis�es the 2-approximate triangle inequality;
and I = (Ω, P,S,T , . ) is an information structure that satis�es rectangle substitutes with respect
to � .
We prove generalizations of Theorem 3.1, showing that under the rectangle substitutes con-

dition, if a protocol ends with Alice and Bob in approximate agreement, then Alice and Bob are
approximately accurate. The �rst result we state assumes that � is symmetric, but is otherwise
quite general.

Theorem 4.14. Assume that � is symmetric about the line G =
1
2
. For any communication protocol

that causes Alice and Bob to n-agree on I, and for any V ≥ 2
2
n , Alice and Bob are(

8

22
V + 16

(
� (0) −�

((
n

V

)1/(1−log2 2) )))
-accurate

after the protocol terminates.

This result is not our most general, as it assumes that � is symmetric, but this assumption likely
holds for most use cases. To apply the result optimally, one must �rst optimize V as a function of� .
For example, setting V = nA/(A+1−log2 2) (with A de�ned below) gives us the following corollary:12

Corollary 4.15. Assume that � (0) −� (G),� (1) −� (1 − G) ≤ $ (GA ). For any communication

protocol that causes Alice and Bob to n-agree on I, Alice and Bob are $
(
nA/(A+1−log2 2)

)
-accurate after

the protocol terminates, where the constant hidden by $ (·) depends on � .

Remark 4.16. Concretely, if � ′ is bounded then we can choose A = 1, in which case our bound
simpli�es to$

(
n1/(2−log2 2)

)
. If instead we assume that 2 = 1

2
(as is the case if

√
JB� (·, ·) is a metric),

then the bound is$
(
nA/(A+2)

)
. If both of these are true, as is the case for� (G) = G2, then the bound

is $ (n1/3), which recovers our result in Theorem 3.1.

For� equal to the negative of Shannon entropy (i.e. the� for which�� is KL divergence), setting
V = n1/3 (log 1/n)2/3 in Theorem 4.14 gives us the following corollary.

12Corollary 4.15 as stated (without the symmetry assumption) is actually a corollary of Theorem 4.18.
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Corollary 4.17. If� (G) = G logG + (1 − G) log(1 − G), then for any communication protocol that

causes Alice and Bob to n-agree on I, Alice and Bob are$ (n1/3 (log 1/n)2/3)-accurate after the protocol
terminates.

Theorem 4.14 follows from our most general result about agreement implying accuracy:

Theorem 4.18. Let �̃ (G) := max0,1: |0−1 | ≤G (� (0) −� (1)) be the maximum possible di�erence in

�-values of two points that di�er by at most G , and let �̃∗ (G) be the concave envelope of �̃ , i.e.
�̃∗ (G) := max

0≤0,1,F≤1:F0+(1−F)1=G
F�̃ (0) + (1 −F)�̃ (1).

For any communication protocol that causes Alice and Bob to n-agree on I, and for any V > 0, Alice
and Bob are (

8

22
V + 16�̃∗

((
n

V

)1/(1−log2 2) ))
-accurate

after the protocol terminates.

Proof. To prove Theorem 4.18, it su�ces to prove the following lemma.

Lemma 4.19. Let � be a di�erentiable convex function on [0, 1] and 2 ∈ (0, 1) be such that JB�
satis�es the 2-approximate triangle inequality. Let I = (Ω, P,S,T , . ) be an information structure
that satis�es rectangle substitutes with respect to � . Let n = E [JB� (`f ∥ `g )]. Then for any V > 0,
we have

E [�� (`fg ∥ `g )] ≤
8

22
V + 16�̃∗

((
n

V

)1/(1−log2 2) )
.

Let us �rst prove Theorem 4.18 assuming Lemma 4.19 is true.

Consider any protocol that causes Alice and Bob to n-agree on I. Let ( be the set of possible
signals of Alice at the end of the protocol which are consistent with the protocol transcript, and
de�ne ) likewise for Bob.
Let n() = E [JB� (`f) , `(g ) | (,) ]. Note that

E(,) [n() ] = E(,) [E [JB� (`f) , `(g ) | (,) ]] = E [JB� (`f) , `(g )] ≤ n.

Therefore, for any V > 0 we have

E [�� (`fg ∥ `(g )] ≤ E(,)

[
8

22
V + 16�̃∗

((
n()

V

)1/(1−log2 2) )]

≤ 8

22
V + 16�̃∗

(
E(,)

[(
n()

V

)1/(1−log2 2) ])

≤ 8

22
V + 16�̃∗

((
E(,) [n() ]

V

)1/(1−log2 2) )

≤ 8

22
V + 16�̃∗

((
n

V

)1/(1−log2 2) )
.

In the �rst step, we apply Lemma 4.19 to the information structure I restricted to ( ×)—that is,
to I ′ = (Ω′, P′, (,) , . ), where Ω′ = {l ∈ Ω : f ∈ (, g ∈ ) } and P′[l] = P [l | f ∈ (, g ∈ ) ]. The
next two steps follow by the convexity of �̃∗ and G1/(1−log2 2) , respectively. □
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The basic outline of the proof of Lemma 4.19 is similar to that of Lemma 3.2. Once again, we
partition [0, 1] into # intervals. Analogously to Equation 4, and with ( (: (f)) de�ned analogously,
we �nd that

E [�� (`fg ∥ `g )] ≤ E
[
�� (`f ∥ `( (: (f ) ) )

]
+ E

[
�� (`( (: (f ) )g ∥ `g )

]
.

As before, we wish to upper bound each summand. However, the fact that the Bregman divergence
is now arbitrary introduces complications. First, it is no longer the case that we can directly
relate the length of an interval to the Bregman divergence between its endpoints. Second, we
consider functions � that become in�nitely steep near 0 and 1 (such as the negative of Shannon
entropy), which makes matters more challenging. This means that we need to be more careful
when partitioning [0, 1] into # intervals: see Algorithm C.3 for our new approach. Additionally,
bounding the second summand involves reasoning carefully about the behavior of the function� ,
which is responsible for the introduction of �̃∗ into the lemma statement. We defer the full proof
of Lemma 4.19 to Appendix C.

5 Connections to Markets

In this work, we established a natural condition on information structures, rectangle substitutes,
under which any agreement protocol results in accurate beliefs. As we saw, a particularly natural
class of agreement protocols are expectation-sharing protocols, where Alice and Bob take turns
stating their current expected value, or discretizations thereof.
Expectation-sharing protocols have close connections to �nancial markets. In markets, the

actions of traders reveal partial information about their believed value for an asset, i.e., their
expectation. Speci�cally, a trader’s decision about whether to buy or sell, and how much, can be
viewed as revealing a discretization of this expectation. In many theoretical models of markets (see
e.g. [Ostrovsky, 2012]) traders eventually reach agreement. The intuition behind this phenomenon
is that a trader who disagrees with the price leaves money on the table by refusing to trade. Our
work thus provides a lens into a well-studied question:13 when are market prices accurate? Our
results can be viewed as generalizing and conceptually supporting the result presented in Kong
and Schoenebeck [2023], under which convergence in a popular prediction market design implies
full information revelation in the prices.
An important caveat, however, is that traders behave strategically, and may not disclose their

true expected value. For example, a trader may choose to withhold information until a later point
when doing so would be more pro�table. Therefore, to interpret the actions of traders as revealing
discretized versions of their expected value, one �rst has to understand the Bayes-Nash equilibria
of the market. Chen and Waggoner [2016] studies conditions under which traders are incentivized
to reveal all of their information on their �rst trading opportunity. They call a market equilibrium
all-rush if every trader is incentivized to reveal their information immediately. Their main result,
roughly speaking, is that there is an all-rush equilibrium if and only if the information structure
satis�es strong substitutes—a di�erent strengthening of the weak substitutes condition. This result
is speci�c to settings in which traders have the option to reveal all of their information on their
turn—a setting that would be considered trivial from the standpoint of communication theory.

An exciting question for further study is therefore: under what information structure conditions
and market settings is it a Bayes-Nash equilibrium to follow an agreement protocol leading to
accurate beliefs? In other words, what conditions give not only that agreement implies accuracy,

13This is related to the e�cient market hypothesis, the problem of when market prices re�ect all available information, which
traces back at least to Fama [1970] and Hayek [1945]. Modern models of �nancial markets are often based on Kyle [1985];
we refer the reader to e.g. [Ostrovsky, 2012] and references therein for further information.
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but also that the market incentivizes participants to follow the protocol? Together with Chen and
Waggoner [2016], our work suggests that certain substitutes-like conditions could su�ce.
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A Details Omi�ed From Section 2

Abovewe claimed that a positivemeasure of=×= information structures satisfy rectangle substitutes.
To formalize this claim, we choose a natural measure over = × = information structures, speci�ed
via the following probability distribution over the values of . and P [f, g]:
• Alice has signals labeled f0, . . . , f=−1; Bob has signals labeled g0, . . . , g=−1. Correspondingly,
there are =2 states which we identify with the pair (8, 9). For each 8, 9 , whenever f = f8 and
g = g 9 , . = ~ (8, 9) where ~ (8, 9) is uniformly random in [0, 1].
• The probability distribution over states (8, 9) is selected uniformly from the space of proba-
bility distributions over =2 states.
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Theorem A.1. For every =, a positive measure of = × = information structures (per the above
measure) satisfy the rectangle substitutes condition.

Proof. The proof is conceptually quite simple. It su�ces to exhibit an information structure
in which the weak substitutes condition (i.e. Equation 1) holds strictly for every (,) such that
|( | , |) | ≥ 2. It then follows that for a su�ciently small X , every information structure in the X-ball
around this one14 also satis�es rectangle substitutes, completing the proof.15

The information structure I that we exhibit is as follows: choose any increasing, strictly concave
function 5 : [0, 2(= − 1)] → R (for example, 5 (G) =

√
G). Let ~ (8, 9) = 8+9

2=
, and let P [(8, 9)] be

proportional to n 5 (8+9) .
For convenience, de�ne the substitutes slack of an information structure to be the additive margin

by which the information structure satis�es weak substitutes, i.e. the right-hand side of Equation 1
minus the left-hand side for ( = S and ) = T .
Fix a particular ( and ) such that |( | , |) | ≥ 2. We wish to show that for su�ciently small

positive values of n , Equation 1 holds strictly. We will show that the substitutes slack of I |(,) , i.e.
I restricted to ( ×) , is positive when n is su�ciently small.

In order to prove this, we �rst consider the following (di�erent) information structure for values
E, 0, 0′, 1, 1 ′, 2, G, G ′, ~,~ ′ (obeying comparisons that we specify below). Each row corresponds to a
possible signal value f for Alice, and each column a possible signal value g for Bob.

. =


E E + 1 1 ′

E + 0 E + 0 + 1 −
0′ − −


with probability proportional to


1 ~ ~ ′

G 2G~ 0

G ′ 0 0


In this information structure, suppose that G ′ ≤ G ≪ 1; ~ ′ ≤ ~ ≪ 1; and 1 ≪ 2 ≤ 1

G
, 1
~
(so

G~ ≪ 2G~ ≤ G,~). It can be veri�ed (e.g. with a computer algebra system) that the substitutes slack
of this information structure is 2012G~ +$ (G~).

We will transform this information structure into I(,) while (approximately) preserving substi-
tutes slack. To foreshadow the correspondence, de�ne 8( and 8 ′( be the smallest and second smallest
values of 8 such that f8 ∈ ( , and de�ne 9) and 9 ′) analogously. The rows of the information structure
above will correspond to f = f8( , f8′( , and all other values of f ∈ ( , in that order; the columns will
correspond to g = g 9) , g 9 ′) , and all other values of g ∈ ) , in that order.

Set G := n 5 (8
′
(
+9) )−5 (8(+9) ) , ~ := n 5 (8(+9

′
)
)−5 (8(+9) ) , and 2 := n 5 (8(+9) )+5 (8

′
(
+9 ′

)
)−5 (8(+9 ′) )−5 (8

′
(
+9) ) , so

that 2G~ = n 5 (8
′
(
+9 ′

)
)−5 (8(+9) ) . Note that these values satisfy the aforementioned inequalities involving

G , ~, and 2 . (The fact that 1 ≪ 2 follows from the strict concavity of 5 .) Set E := 8(
2=
, 0 :=

8′
(
−8(
2=

, and

1 :=
9 ′
)
−9)
2=

. Set G ′ so that P
[
8 > 8 ′( | 8 ∈ (, 9 = 9)

]
=

G ′

1+G+G ′ and ~
′ so that P

[
9 > 9 ′) | 8 = 8( , 9 ∈ )

]
=

~′

1+~+~′ . We set 0′ := E
[
~ (8, 9) ) | 8 > 8 ′( , 8 ∈ (

]
and 1 ′ := E

[
~ (8( , 9) | 9 > 9 ′) , 9 ∈ )

]
.

We now make the following transformation to this information structure: we replace the third
row with |( | − 2 rows, each corresponding to a di�erent 8 > 8 ′( . As before, each signal will only
be possible in conjunction with Bob’s �rst signal; the value of . for the signal corresponding to
f8 in I will be 8+9)

2=
, and the probability will be P [(8, 9) )]. Note that this simply “splits" Alice’s

third signal into multiple (more informative) signals while preserving the total probability and

14We can for example de�ne the distance between information structures I and I′ as∑8,9 (~ (8, 9) −~′ (8, 9))2 + (P[ (8, 9) ] −
P
′ [ (8, 9) ])2.

15This uses the continuity of the terms in Equation 1. Note that the continuity of conditional expectations relies on the
conditioning events having positive probability, as is the case in the information structure that we exhibit. Note also that
we need not concern ourselves with cases in which |( | = 1 or |) | = 1, since in those cases the equation is necessarily an
equality.
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expectation (this is due to how we picked 0′, 1 ′, G ′, ~ ′ above). This does not a�ect the substitutes
slack of the information structure, because the value of Bob’s signal does not change as a result of
the transformation (regardless of whether Alice’s signal is known).

We make the same transformation but this time to Bob, replacing the third column with |) | − 2
columns. The transformation is otherwise analogous, and the substitutes slack again does not
change.
Finally, in our last transformation we make this information structure match I exactly. Note

that the information structures already match in the �rst row (8 = 8( ), and in the �rst column
( 9 = 9) ), and in the (second row, second column) entry ((8, 9) = (8 ′( , 9 ′) )). All other entries in I have

probabilities that are > (2G~) (recall that 2G~ = n 5 (8
′
(
+9 ′

)
)−5 (8(+9) ) ). As a consequence, adding these

entries to the information structure that we are transforming only changes the substitutes slack by
> (2G~).

Therefore, I has substitutes slack 2012G~ + > (2G~) ≥ 2
=2 n

5 (8′
(
+9 ′

)
)−5 (8(+9) ) (1 + > (1)). This is

positive for n su�ciently small, as desired.
We complete the proof by setting n to be such that it is su�ciently small (in the above argument)

for all (,) such that |( | , |) | ≥ 2. □

B Details Omi�ed From Section 3

Proof of Claim 3.3. We claim that in fact we can choose theG8 ’s so that eachG8 is in
[
8
#
− 1

2#
, 8
#
+ 1

2#

]
.

This ensures that each interval has length at most 2
#
.

For G ∈ [0, 1], let d (G) be the probability that G is between `f and `g , inclusive. Note that
P [: (f) ≠ : (g)] ≤ ∑#−1

8=1 d (G8 ).
Observe that if G is selected uniformly from [0, 1], the expected value of d (G) is equal to |`f − `g |,

because both quantities are equal to the probability that G is between `f and `g . Therefore, if (f, g)
is additionally chosen according to P, we have

EG←[0,1] [d (G)] = E [|`f − `g |] ≤
√
E [(`f − `g )2] =

√
n.

This means that

#−1∑
8=1

EG←[ 8
# −

1
2# , 8

# +
1
2# ] [d (G)] = (# − 1)EG←[ 1

2# ,1− 1
2# ] [d (G)] ≤

√
n# .

Thus, if each G8 is selected uniformly at random from
[
8
#
− 1

2#
, 8
#
+ 1

2#

]
, the expected value of

P [: (f) ≠ : (g)] would be at most
√
n# . In particular this means that there exist choices of the G8 ’s

such that P [: (f) ≠ : (g)] ≤
√
n# . □

Proof of Lemma 3.2. Fix a large positive integer # (we will later �nd it optimal to set # = n−1/6).
Consider a partition of [0, 1] into # intervals [0, G1), [G1, G2), . . . , [G#−1, 1] satisfying the conditions
of Claim 3.3. Let ( (:) := {f ∈ S : G:−1 ≤ `f < G: }. Additionally, let : (f) and : (g) be as de�ned in
Claim 3.3.
Our goal is to upper bound the expectation of (`fg − `g )2. In pursuit of this goal, we observe

that by the Pythagorean theorem, we have

E
[
(`fg − `g )2

]
= E

[
(`fg − `( (: (f ) )g )2

]
+ E

[
(`( (: (f ) )g − `g )2

]
.

We now use the rectangle substitutes assumption: for any : , by applying Equation 2 to ( = ( (:)

and ) = T , we know that

E

[
(`f − `( (: ) )2 | f ∈ ( (:)

]
≥ E

[
(`fg − `( (: )g )2 | f ∈ ( (:)

]
.
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Taking the expectation over : (i.e. choosing each : with probability equal to P
[
f ∈ ( (:)

]
), we have

that
E

[
(`f − `( (: (f ) ) )2

]
≥ E

[
(`fg − `( (: (f ) )g )2

]
. (7)

Therefore, we have

E
[
(`fg − `g )2

]
≤ E

[
(`f − `( (: (f ) ) )2

]
+ E

[
(`( (: (f ) )g − `g )2

]
. (8)

Wewill use Claim 3.3 to argue that each of these two summands is small. The argument regarding the
�rst summand is straightforward: for any f , we have that G: (f) ≤ `f , `( (: (f ) ) < G: (f)+1 ≤ G: (f) + 2

#
,

which means that E
[
(`f − `( (: (f ) ) )2

]
≤ 4

# 2 .
We now upper bound the second summand.16 For any ĝ ∈ T , let ? (ĝ) = P [g = ĝ] and @(ĝ) =

P [g = ĝ, : (f) ≠ : (g)]. Then ∑
ĝ ∈T ? (ĝ) = 1 and

∑
ĝ ∈T @(ĝ) ≤

√
n# . Observe that

E
[
(`( (: (f ) )g − `g )2

]
=

∑
ĝ

? (ĝ)E
[
(`( (: (f ) ) ĝ − `ĝ )2 | g = ĝ

]
=

∑
ĝ

(? (ĝ) − @(ĝ))E
[
(`( (: (f ) ) ĝ − `ĝ )2 | g = ĝ, : (f) = : (ĝ)

]
+ @(ĝ)E

[
(`( (: (f ) ) ĝ − `ĝ )2 | g = ĝ, : (f) ≠ : (ĝ)

]
. (9)

To handle the �rst expectation, we note that if : (f) = : (ĝ), then
��`( (: (f ) ) ĝ − `ĝ �� ≤ @ (ĝ)

? (ĝ) . To see
this, observe

? (ĝ)`ĝ = (? (ĝ) − @(ĝ))`( (: (f ) ) ĝ + @(ĝ)`S\( (: (f ) ) ĝ .
Rerranging and taking absolute values, we conclude

? (ĝ)
��`( (: (f ) ) ĝ − `ĝ �� = @(ĝ)

��`( (: (f ) ) ĝ − `S\( (: (f ) ) �� ≤ @(ĝ).
Therefore, recalling @(ĝ) ≤ ? (ĝ), we have

(? (ĝ) − @(ĝ))E
[
(`( (: (f ) ) ĝ − `ĝ )2 | g = ĝ, : (f) = : (ĝ)

]
≤ (? (ĝ) − @(ĝ))

(
@(ĝ)
? (ĝ)

)2
≤ @(ĝ)2

? (ĝ) ≤ @(ĝ).

On the other hand, we can bound the second expectation in Equation 9 by 1. Therefore we have

E
[
(`( (: (f ) )g − `g )2

]
≤

∑
ĝ

(@(ĝ) + @(ĝ)) = 2
∑
ĝ

@(ĝ) ≤ 2
√
n# .

To conclude, we now know that

E
[
(`fg − `g )2

]
≤ 4

# 2
+ 2
√
n# .

Setting # = n−1/6 makes the right-hand side equal to 6n1/3, completing the proof. □

Proposition B.1. Consider the following protocol, parametrized by n > 0. Alice and Bob send
their initial expectations to each other, rounding to the nearest multiple of n . This protocol entails
communicating$ (log 1/n) bits. At the end of the protocol, Alice and Bob 2n2-agree and are n2-accurate
(with respect to � (G) = G2).

Proof. Let ( be the set of possible signals of Alice at the end of the protocol which are consistent
with the protocol transcript, and de�ne ) likewise for Bob. Recall that we use S and T to denote
the sets of all of Alice’s and Bob’s possible signals, respectively. We have

E
[
(`fg − `(g )2

]
≤ E

[
(`f − `( )2

]
≤ n2,

16The proof below takes sums over ĝ ∈ T and thus implicitly assumes that T is �nite, but the proof extends to in�nite T ,
with sums over g replaced by integrals with respect to the probability measure over T.
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since `f and `( ) are guaranteed to be within n of each other by construction. Thus, Bob is n2-
accurate, and likewise for Alice. By the 1

2
-approximate triangle inequality for � (G) = G2, it follows

that Alice and Bob 2n2-agree. □

C Details Omi�ed From Section 4

Proof of Proposition 4.8. Let 6 = � ′. We have

E [�� (� ∥ �)] + E [�� (� ∥ �)] − E [�� (� ∥ �)]
= E [� (�) −� (�) − (� − �)6(�) +� (�) −� (�) − (� −�)6(�) −� (�) +� (�) + (� −�)6(�)]
= E [(� − �) (6(�) − 6(�))] = E [E [(� − �) (6(�) − 6(�)) | F ]]
= E [(6(�) − 6(�))E [� − � | F ]] = E [(6(�) − 6(�)) (E [� | F ] − �)] = 0.

The third-to-last step follows from the fact that 6(�) − 6(�) is F -measurable (we are using the
“pulling out known factors" property of conditional expectation). The last step follows from the fact
that E [� | F ] = �. □

Proposition C.1. Let � be a di�erentiable convex function on the interval [0, 1]. For all 0 ≤ 0 ≤
1 ≤ 1, we have

(i) 1
2
(�� (0 ∥ G) + �� (1 ∥ G)) ≥ JB� (0, 1) for every G ∈ [0, 1].

(ii) JB� satis�es the reverse triangle inequality: for every G ∈ [0, 1], we have JB� (0, G)+JB� (G, 1) ≤
JB� (0, 1).

(iii) For all 0 ≤ 0′ ≤ 1 ′ ≤ 1, we have JB� (0′, 1 ′) ≤ JB� (0, 1).
(iv) For a random variable - supported on [0, 1], we have

E [�� (- ∥ E [- ])] = E [� (- )] −� (E [- ]) ≤ 2JB� (0, 1).

Proof. Fact (i) follows from Proposition 4.2. Regarding Fact (ii), without loss of generality

assume that G ≤ 0+1
2

and that � (G) = �
(
0+1
2

)
(uniformly adding a constant to the derivative

of � does not change any Jensen-Bregman divergence, hence the second assumption). Then

�
(
0+G
2

)
≥ � (G), so JB� (0, G) ≤ � (0)−� (G)

2
. Since 1+G

2
≥ 0+1

2
, we also have that �

(
1+G
2

)
≥ � (G), so

JB� (1, G) ≤ � (1)−� (G)
2

. Thus, we have

JB� (0, G) + JB� (1, G) ≤
� (0) +� (1)

2
−� (G) = � (0) +� (1)

2
−�

(
0 + 1
2

)
= JB� (0, 1).

Fact (iii) follows from Fact (ii): we have

JB� (0, 1) = JB� (0, 0′) + JB� (0′, 1 ′) + JB� (1 ′, 1) ≥ JB� (0′, 1 ′).
Regarding the equality in Fact (iv), we have

E [�� (- ∥ E [- ])] = E [� (- ) −� (E [- ]) − (- − E [- ])� ′(E [- ])]
= E [� (- ) −� (E [- ])] = E [� (- )] −� (E [- ]),

where the �rst step follows from the fact thatE [(- − E [- ])� ′(E [- ])] = � ′(E [- ])E [- − E [- ]],
and E [- − E [- ]] = 0.
Regarding the inequality in Fact (iv), without loss of generality assume that E [- ] ≤ 0+1

2
. By

convexity we have that

�

(
0 + 1
2

)
≤

1−0
2

1 − E [- ]� (E [- ]) +
0+1
2
− E [- ]

1 − E [- ] � (1),



EC ’23, July 9–12, 2023, London, United Kingdom Rafael Frongillo, Eric Neyman, and Bo Waggoner

so

JB� (0, 1) = � (0) +� (1) − 2�
(
0 + 1
2

)

≥ � (0) +� (1) − 1 − 0
1 − E [- ]� (E [- ]) −

0 + 1 − 2E [- ]
1 − E [- ] � (1)

= � (0) + E [- ] − 0
1 − E [- ]� (1) −

1 − 0
1 − E [- ]� (E [- ])

=
1 − 0

1 − E [- ]

(
1 − E [- ]
1 − 0 � (0) + E [- ] − 0

1 − 0 � (1) −� (E [- ])
)

≥ 1 − E [- ]
1 − 0 � (0) + E [- ] − 0

1 − 0 � (1) −� (E [- ]) ≥ E [� (- )] −� (E [- ]).

In the last step we use the fact that for a convex function 5 and a random variable - de�ned on an
interval [0, 1] with mean `, the maximum possible value of E [5 (- )] is attained if - is either 0 or
1 with the appropriate probabilities. □

Proof of Theorem 4.11. Suppose that Alice and Bob do not n-agree at time step C , and without
loss of generality assume that the next turn (number C + 1) is Alice’s. We begin by observing that,
by Proposition C.1 (i), we have

E
[
�� (`f)C ∥ `(C)C ) + �� (`(Cg ∥ `(C)C )

]
≥ 2E

[
JB� (`f)C , `(Cg )

]
> 2n.

Therefore, either E
[
�� (`f)C ∥ `(C)C )

]
≥ 2n

3
or E

[
�� (`(Cg ∥ `(C)C )

]
≥ 4n

3
.

Case 1: E
[
�� (`f)C ∥ `(C)C )

]
≥ 2n

3
. Let us use “hi," “lo," and “md" to denote the events that Alice

says “high," Alice says “low," and Alice says “medium," respectively. We have

2n

3
≤ E

[
�� (`f)C ∥ `(C)C )

]
= E

[
E

[
�� (`f)C ∥ `(C)C ) | (C ,)C

] ]
= E

[
E

[
�� (`f)C ∥ `(C)C ) · ✶hi or lo | (C ,)C

] ]
+ E

[
E

[
�� (`f)C ∥ `(C)C ) · ✶md | (C ,)C

] ]
≤ E

[
E

[
�� (`f)C ∥ `(C)C ) · ✶hi or lo | (C ,)C

] ]
+ n
2
,

where “| (C ,)C " is short for “| f ∈ (C , g ∈ )C ," a notation we use throughout the proof. We thus have

E
[
E

[
�� (`f)C ∥ `(C)C ) · ✶hi | (C ,)C

] ]
+ E

[
E

[
�� (`f)C ∥ `(C)C ) · ✶lo | (C ,)C

] ]
≥ n

6
. (10)

We now make use of the following lemma.

Lemma C.2. Suppose that turn C + 1 is Alice’s. Let “hi" denote the event that Alice says “high." Let
U := E

[
�� (`f)C ∥ `(C)C ) · ✶hi | (C ,)C

]
. Then

E
[
�� (`(C+1)C+1 ∥ `(C)C ) · ✶hi | (C ,)C

]
≥ Un

8" + 2n .

The analogous statement is true if Alice says “low," and likewise if it is instead Bob’s turn.

We assume Lemma C.2 and return to prove it afterward. This lemma translates Equation 10 into
a statement about how much Charlie learns. Speci�cally, we have that

E
[
�� (`(C+1)C+1 ∥ `(C)C )

]
= E

[
E

[
�� (`(C+1)C+1 ∥ `(C)C ) | (C ,)C

] ]
≥ E

[
E

[
�� (`(C+1)C+1 ∥ `(C)C ) · ✶hi | (C ,)C

] ]
+ E

[
E

[
�� (`(C+1)C+1 ∥ `(C)C ) · ✶lo | (C ,)C

] ]
≥ n

8" + 2n (E
[
E

[
�� (`f)C ∥ `(C)C ) · ✶hi | (C ,)C

] ]
+ E

[
E

[
�� (`f)C ∥ `(C)C ) · ✶lo | (C ,)C

] ]
)
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≥ n2

6(8" + 2n) .

Case 2: E
[
�� (`(Cg ∥ `(C)C )

]
≥ 4n

3
. Using the Pythagorean theorem to write the same Bregman

divergence in two ways, we have that

E
[
�� (`(C+1g ∥ `(C+1)C+1 )

]
+ E

[
�� (`(C+1)C+1 ∥ `(C)C )

]
= E

[
�� (`(C+1g ∥ `(C)C )

]
= E

[
�� (`(C+1g ∥ `(Cg )

]
+ E

[
�� (`(Cg ∥ `(C)C )

]
≥ E

[
�� (`(Cg ∥ `(C)C )

]
≥ 4n

3
.

This means that one of the two summands on the left-hand side is at least 2n
3
.

Case 2a: E
[
�� (`(C+1g ∥ `(C+1)C+1 )

]
≥ 2n

3
. In that case we have that

E
[
�� (`(C+2)C+2 ∥ `(C+1)C+1 )

]
≥ n2

6(8" + 2n)
by the same logic as in Case 1.

Case 2b: E
[
�� (`(C+1)C+1 ∥ `(C)C )

]
≥ 2n

3
≥ n2

12n
≥ n2

6(8"+2n) .

In each of our cases, we have that

E
[
�� (. ∥ `(C)C ) − �� (. ∥ `(C+2)C+2 )

]
= E

[
�� (`(C+2)C+2 ∥ `(C)C )

]
= E

[
�� (`(C+2)C+2 ∥ `(C+1)C+1 )

]
+ E

[
�� (`(C+1)C+1 ∥ `(C)C )

]
≥ n2

6(8" + 2n) .

Therefore, the total number of steps until agreement is �rst reached cannot be more than

2 · "
n2

6(8"+2n)
=
24" (4" + n)

n2
.

This completes the proof. □

We now prove Lemma C.2.

Proof of Lemma C.2. We will restrict our probability space to outcomes where Charlie knows
(C ,)C at time C (and thus omit “| (C ,)C " from here on). For convenience, we will let � := `f)C be
Alice’s expectation (a random variable) and 2 := `(C)C be Charlie’s expectation (which is a particular
number in [0, 1]). We will let n ′ := n

2
, so that if Alice says “high" then Charlie knows that � > 2

and that �� (� ∥ 2) ≥ n ′.
Let � (G) := �� (G ∥ 2) = � (G) −� (2) −� ′(2) (G − 2), and let 0̂ℎ := E [� | hi]. Note that if Alice

says “high" then `(C+1)C+1 = 0̂ℎ . In our new notation, we may write U = E [� (�) | hi] · P [hi], and
we wish to show that � (0̂ℎ) · P [hi] ≥ Un′

2("+n′) . Put otherwise, our goal is to show that

� (0̂ℎ)
E [� (�) | hi] ≥

n ′

2(" + n ′) .

For convenience we will let � denote the quantity on the left-hand side.
Let 0hmin be the number larger than 2 such that � (0) = n ′, so that� ≥ 0hmin whenever Alice says

“high."17 Observe that since � is convex (Bregman divergences are convex in their �rst argument),

17If � (0) < n′ for all 0 > 2 then Alice never says “high" and the lemma statement is trivial.
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for a �xed value of 0̂ℎ , the value of E [� (�) | hi] is maximized when � is either 0hmin or 1 (with
probabilities 1−0̂ℎ

1−0hmin
and 0̂ℎ−0hmin

1−0hmin
, respectively). Therefore we have

� =
� (0̂ℎ)

E [� (�) | hi] ≥
� (0̂ℎ) (1 − 0hmin)

(1 − 0̂ℎ)n ′ + (0̂ℎ − 0hmin)� (1)
. (11)

Case 1: (1 − 0̂ℎ)n ′ ≥ (0̂ℎ − 0hmin)� (1). In that case we have

� ≥ � (0̂ℎ) (1 − 0hmin)
2(1 − 0̂ℎ)n ′

≥ n ′(1 − 0hmin)
2(1 − 0̂ℎ)n ′

≥ 1

2
≥ n ′

2(" + n ′) .

Case 2: (1 − 0̂ℎ)n ′ ≤ (0̂ℎ − 0hmin)� (1). In that case we have

� ≥ � (0̂ℎ) (1 − 0hmin)
2(0̂ℎ − 0hmin)� (1)

. (12)

Case 2a: � (1) ≤ 1−2
0̂ℎ−2 (" + n

′). Then we have

� ≥ � (0̂ℎ) (1 − 0hmin)
2(0̂ℎ − 0hmin) · 1−2

0̂ℎ−2 (" + n
′)
≥ n ′

2(" + n ′) ·
(1 − 0hmin) (0̂ℎ − 2)
(0̂ℎ − 0hmin) (1 − 2)

.

(In the last step we again use that � (0̂ℎ) ≥ n .) Now, it is easy to verify that the second fraction is at
least 1 (this comes down to the fact that 0hmin ≥ 2), so we indeed have that � ≥ n′

2("+n′) .

Case 2b: � (1) ≥ 1−2
0̂ℎ−2 (" + n

′). We claim that for all G ≥ 2 , we have that

� (G) ≥ G − 2
1 − 2 � (1) −". (13)

To see this, suppose for contradiction that for some G we have � (G) < G−2
1−2 � (1) −" . Then

� (G) −� (2) −� ′(2) (G − 2) < G − 2
1 − 2 (� (1) −� (2) −�

′(2) (1 − 2)) −"

(1 − 2)� (G) − (1 − 2)� (2) < (G − 2)� (1) − (G − 2)� (2) − (1 − 2)"

� (G) +" <

(1 − G)� (2) + (G − 2)� (1)
1 − 2 .

On the other hand, we have that both� (2) and� (1) are less than or equal to� (G) +" , by de�nition
of" . This means that

� (1),� (2) < (1 − G)� (2) + (G − 2)� (1)
1 − 2

but this implies that � (1) < � (2) and that � (2) < � (1), a contradiction.

Plugging in G = 0̂ℎ into Equation 13, we �nd that

� (0̂ℎ) ≥
0̂ℎ − 2
1 − 2 � (1) −".

Plugging this bound into Equation 12, we get that

� ≥

(
0̂ℎ−2
1−2 � (1) −"

)
(1 − 0hmin)

2(0̂ℎ − 0hmin)� (1)
=

1 − 0hmin

2(0̂ℎ − 0hmin)
· 0̂ℎ − 2
1 − 2

(
1 − "

0̂ℎ−2
1−2 � (1)

)

≥ 1 − 0hmin

2(0̂ℎ − 0hmin)
· 0̂ℎ − 2
1 − 2

(
1 − "

" + n ′

)
≥ n ′

2(" + n ′) ,

where in the second-to-last step we use that � (1) ≥ 1−2
0̂ℎ−2 (" + n

′) and in the last step we again use

the fact that (1−0hmin) (0̂ℎ−2)
(0̂ℎ−0hmin) (1−2) ≥ 1. □
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Proof of Lemma 4.19.

Wewill partition [0, 1] into a number# of small intervals �1 = [G0 = 0, G1), �2 = [G1, G2), �3 = [G2, G3),
. . . , �# = [G#−1, G# = 1] with certain desirable properties (which we will describe below). For
: ∈ [# ], we will let ( (:) := {f ∈ S : `f ∈ �: }. For a given f ∈ S, we will let : (f) be the : such
that f ∈ ( (:) .

Our goal is to upper bound the expectation of �� (`fg ∥ `g ). In pursuit of this goal, we observe
that by Proposition 4.8 we have

E [�� (`fg ∥ `g )] = E
[
�� (`fg ∥ `( (: (f ) )g )

]
+ E

[
�� (`( (: (f ) )g ∥ `g )

]
. (14)

Now, for any : , by applying Equation 6 to ( = ( (:) and ) = T , we know that

E

[
�� (`f ∥ `( (: ) ) | ( (:)

]
≥ E

[
�� (`fg ∥ `( (: )g ) | ( (:)

]
.

(Here, “| ( (:) " is short for “| f ∈ ( (:) .") This is our only use of the rectangle substitutes assumption.
Now, taking the expectation over : (i.e. choosing each : with probability equal to P

[
f ∈ ( (:)

]
), we

have that
E

[
�� (`f ∥ `( (: (f ) ) )

]
≥ E

[
�� (`fg ∥ `( (: (f ) )g )

]
.

Together with Equation 14, this tells us that

E [�� (`fg ∥ `g )] ≤ E
[
�� (`f ∥ `( (: (f ) ) )

]
+ E

[
�� (`( (: (f ) )g ∥ `g )

]
. (15)

Our goal will be to bound the two summands in Equation 15. We will specify the boundaries of the
intervals �1, . . . , �# with this goal in mind.

On an intuitive level, we are hoping for two things to be true:

• In order for the �rst summand to be small, we want `f and `( (: (f ) ) to be similar in value. In
other words, we want each interval is “short" (for a notion of shortness with respect to �
that we are about to discuss).
• In order for the second summand to be small, we want `( (: (f ) )g and `g to be similar in value.
In other words, the estimate of a third party who knows g shouldn’t change much upon
learning : (f). One way to ensure this is by creating the intervals in a way that makes the
third party very con�dent about the value of : (f) before learning it. Intuitively this should
be true because Alice and Bob approximately agree, so Alice’s estimate is likely to be close to
Bob’s. However, we must be careful to strategically choose the boundaries of our intervals
G1, . . . , G#−1 so that Alice’s and Bob’s estimates are unlikely to be on opposite sides of a
boundary.18

What, formally, do we need for the �rst summand to be small? For any : , we have `( (: (f ) ) =

E
[
`f | f ∈ ( (:)

]
. We can apply Proposition C.1 (iv) to the random variable- = `f on the probability

subspace given by f ∈ ( (:) . Since - takes on values in �: , we have that

E

[
�� (`f ∥ `( (: ) ) | ( (:)

]
≤ 2JB� (�: ), (16)

where JB� (�: ) is shorthand for the Jensen-Bregman divergence between the endpoints of �: .
Therefore, if JB� (�: ) is small for all : , then the �rst summand (which is an expected value of
E

[
�� (`f ∥ `( (: ) ) | ( (:)

]
over : ∈ [# ]) is also small.

What about the second summand? As per the intuition above, we wish to choose our boundary
points G1, . . . , G#−1 so that Alice’s and Bob’s estimates are unlikely to be on opposite sides of any

18This limits how many intervals we can reasonably use, which is why we cannot make our intervals arbitrarily short to
satisfy the �rst of our two criteria.
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boundary. Let `− = min(`f , `g ) be the smaller of the two estimates and `+ = max(`f , `g ) be the
larger one. We say that `−, `+ thwart a point G ∈ (0, 1) if `− ≤ G ≤ `+ and `− ≠ `+. We de�ne the
thwart density of G to be

d (G) := P [`−, `+ thwart G] .
Roughly speaking, we will choose G1, . . . , G#−1 such that d (G: ) is small on average.

We will approach this problem by �rst creating intervals to satisfy the �rst criterion (short
intervals), without regard to the second, and then modifying them to satisfy the second without
compromising the �rst. Formally, we choose our intervals according to the following algorithm.

Algorithm C.3 (Partitioning [0, 1] into intervals �1, . . . , �# ).

(1) Choose points 0 < G ′1 < G ′2 < · · · < G ′#−2 < 1 such that the # − 1 intervals thus created

all have Jensen-Bregman divergence between V and 2V

2
, inclusive, where V and 2 are as in

the statement of Lemma 4.19. (# is not pre-determined; it is de�ned as one more than the
number of intervals created.) (See footnote for why this is possible.19)

(2) Let G ′0 := 0, G ′#−1 := 1 for convenience. De�ne � ′
:
:= [G ′

:−1, G
′
:
]. For : ∈ [# − 1], let U: :=

infG ∈� ′
:
d (G). Let G: ∈ � ′: be such20 that d (G: ) ≤ 2U: .

(3) Return the intervals �1 = [0, G1), �2 = [G1, G2), . . . , �# = [G#−1, 1].

We begin by observing that for any : ∈ [# ], we have

JB� (�: ) = JB� (G:−1, G: ) ≤ JB� (G ′:−2, G
′
: ) ≤

1

2
(JB� (G ′:−2, G

′
:−1) + JB� (G

′
:−1, G

′
: )) ≤

4V

22

where for convenience we de�ne G ′−1 := 0, G ′# := 1. Therefore, by Equation 16, we have

E
[
�� (`f ∥ `( (: (f ) ) )

]
≤ 8V

22
. (17)

It remains to bound the second summand of Equation 15, E
[
�� (`( (: (f ) )g ∥ `g )

]
, which is the

bulk of the proof. We proceed in two steps:

(1) (Lemma C.4) We show that
∑#

:=1 U: is small. This means that Alice’s and Bob’s estimates are
unlikely to lie on opposite sides of some boundary point G: . As a consequence, Bob is highly
likely to know : (f) with a lot of con�dence

(2) (Lemma C.7) We bound the second summand as a function of
∑#

:=1 U: . The intuition is that if∑
: U: is small, then Bob is highly likely to know : (f) with a lot of con�dence, which means

that he does not learn too much from learning : (f).
We begin with the �rst step; recall our notation `− := min(`f , `g ) and `+ := max(`f , `g ).

Lemma C.4.

2

#∑
:=1

U: ≤ 4

(
n

V2

)1/(1−log2 2)
.

19De�ne G′1 so that JB� (0, G′1) =
2V
2 (this is possible because JB� is continuous in its arguments). De�ne G′2 so that

JB� (G′1, G′2) =
2V
2 . Keep going until an endpoint G′

#−3 is de�ned such that adding G′
#−2 as before would leave an interval

(G′
#−2, 1) with Jensen-Bregman divergence less than 2V

2 . Now, instead of de�ning G′
#−2 in this way, de�ne it so that

JB� (G′#−3, G
′
#−2) = JB� (G′#−2, 1) . Since JB� (G′#−3, 1) ≥

2V
2 , the 2-approximate triangle inequality that we have by

assumption tells us that JB� (G′#−3, G
′
#−2) = JB� (G′#−2, 1) ≥ V .

20If the in�mum is achieved (e.g. if the space of signals to Alice and Bob is �nite), then we can set G: := argminG d (G) .
Our algorithm works in more generality, at the expense of a factor of 2 in our �nal bound. Note that by replacing 2 with a
smaller constant can arbitrarily reduce this factor.
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Proof. We use the following claim, whose proof we provide afterward.

Claim C.5. Let � = [G−, G+] be any sub-interval of [0, 1] and let U = infG ∈� d (G). Then there
is an increasing sequence of points I0 := G−, I1, I2, . . . , I!−1, I! := G+, such that for every ℓ ∈ [!],
P [`− ≤ Iℓ−1, `+ ≥ Iℓ ] ≥ U

2
, and where

! ≤ 2

U

∑
ℓ∈[!]

P [`− ≤ Iℓ−1 < `+ ≤ Iℓ ] .

We apply ClaimC.5 to the intervals � ′1, . . . , �
′
#−1, withU = U: . Let I:,0, . . . , I:,!: be the points whose

existence the claim proves, and let A: :=
∑

ℓ∈[!: ] P
[
`− ≤ I:,ℓ−1 < `+ ≤ I:,ℓ

]
, so that !: ≤ 2

U:
A: .

Observe that
∑

: A: ≤ 1, because the intervals (I:,ℓ−1, I:,ℓ ] are disjoint for all :, ℓ . We make the
following claim (we provide the proof afterward).

Claim C.6. ∑
:∈[#−1]

A:

(
U:

2A:

)1−log2 2
≤ n

V2
. (18)

We may rewrite Equation 18 as

©­«
∑

:∈[#−1]
A:

(
U:

2A:

)1−log2 2ª®¬
1/(1−log2 2)

≤
(
n

V2

)1/(1−log2 2)
.

Recall that
∑

: A: ≤ 1. Scaling the A: ’s to add to 1 decreases the left-hand side above, so we may
assume that

∑
: A: = 1. Note that G1−log2 2 is convex. Thus, by using a weighted Jensen inequality

on the left-hand side with weights A: , we �nd that

1

2

∑
:

U: =

∑
:

A: ·
U:

2A:
≤ ©­«

∑
:∈[#−1]

A:

(
U:

2A:

)1−log2 2ª®¬
1/(1−log2 2)

≤
(
n

V2

)1/(1−log2 2)
.

This completes the proof of Lemma C.4. □

Proof of Claim C.5. Let I1 = inf{I : P [`− ≤ I0 < `+ ≤ I] ≥ U
2
}, or G+ if this number does not

exist or is larger than G+. Note that P [`− ≤ I0 < `+] ≥ U , as we have d (I0) = P [`− ≤ I0 < `+] +
P [`− < I0 = `+] ≥ U , so if the �rst term were less than U we would have some I ′ > I0 with
d (I ′) < U . On the other hand, P [`− ≤ I0 < `+ < I1] ≤ U

2
, since

P [`− ≤ I0 < `+ < I1] = lim
I→I1 from below

P [`− ≤ I0 < `+ ≤ I]

and if the right-hand side were more than U
2
then that would contradict the de�nition of I1 as an

in�mum. Therefore, P [`− ≤ I0, `+ ≥ I1] ≥ U
2
.

If I1 = G+, we are done. Otherwise, let I2 = inf{I : P [`− ≤ I1 < `+ ≤ I] ≥ U
2
}. ThenP [`− ≤ I1, `+ ≥ I2] ≥

U
2
. De�ne I3 analogously, and so forth.
All that remains to show is the upper bound on !. This is where we use the fact that (by

construction) P [`− ≤ Iℓ−1 < `+ ≤ Iℓ ] ≥ U
2
. Summing over all ℓ , we have∑

ℓ∈[!]
P [`− ≤ Iℓ−1 < `+ ≤ Iℓ ] ≥

U

2
!,

which (after rearranging) completes the proof. □
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Proof of Claim C.6. First note that by construction, JB� (� ′: ) ≥ V for all : . By repeated use of
the 2-approximate triangle inequality,21 we �nd that

∑
ℓ∈[!: ]

JB� (I:,ℓ−1, I:,ℓ ) ≥ 2 ⌈log2 !:⌉ JB� (� ′: ) ≥ 2
1+log2

2A:
U: JB� (� ′: ) ≥ 2

1+log2
2A:
U: V = 2

(
2A:

U:

) log2 2
V.

On the other hand, we have

n ≥ E [JB� (`f , `g )] =
∑
f,g

P [f, g] JB� (`f , `g ) ≥
∑
f,g

P [f, g]
∑

:,ℓ :`−≤I:,ℓ−1
`+≥I:,ℓ

JB� (I:,ℓ−1, I:,ℓ )

=

∑
:,ℓ

P
[
`− ≤ I:,ℓ−1, `+ ≥ I:,ℓ

]
JB� (I:,ℓ−1, I:,ℓ ) ≥

∑
:,ℓ

U:

2
JB� (I:,ℓ−1, I:,ℓ ).

Here, the third step follows by the reverse triangle inequality (Fact (ii) of Proposition C.1) and the
fourth step follows by rearranging the order of summation.22 Combining the last two facts gives us
that

n ≥
∑
:

U:

2
· 2

(
2A:

U:

) log2 2
V =

∑
:

A:

(
2A:

U:

) log2 2−1
V2,

which rearranges to the desired identity. □

We are now ready to bound the second summand, i.e. E
[
�� (`( (: (f ) )g ∥ `g )

]
, where : (f) is the

: such that Alice’s estimate `f lies in �: . For convenience we will de�ne : (g) for Bob by analogy as
the : such that `g lies in �: . By Lemma C.4 and the preceding discussion, we know that

P [: (f) ≠ : (g)] ≤ 4

(
n

V2

)1/(1−log2 2)
.

Lemma C.7. Let & = P [: (f) ≠ : (g)]. Then
E

[
�� (`( (: (f ) )g ∥ `g )

]
≤ 2�̃∗ (&).

The key idea is that because : (f) = : (g) with probability near 1, learning : (f) is unlikely to
make Bob update his estimate much.

Proof. Consider any signal ĝ ∈ T and let ? (ĝ) = P [g = ĝ]. We have23

E
[
�� (`( (: (f ) )g ∥ `g )

]
=

∑
ĝ ∈T

? (ĝ)E
[
�� (`( (: (f ) ) ĝ ∥ `ĝ ) | g = ĝ

]
.

Note that `ĝ = E
[
`( (: (f ) ) ĝ | g = ĝ

]
, so by Proposition C.1 we have that

E
[
�� (`( (: (f ) )g ∥ `g )

]
=

∑
ĝ ∈T

? (ĝ)
(
E

[
� (`( (: (f ) ) ĝ ) | g = ĝ

]
−� (`ĝ )

)
.

Let @(ĝ) = P [g = ĝ, : (f) ≠ : (ĝ)], so ∑
ĝ ∈T @(ĝ) = & . Then

E
[
� (`( (: (f ) ) ĝ ) | g = ĝ

]
−� (`ĝ ) =

? (ĝ) − @(ĝ)
? (ĝ)

(
E

[
� (`( (: (ĝ ) ) ĝ ) −� (`ĝ )

] )
+ @(ĝ)
? (ĝ)

(
E

[
� (`( (: (f ) ) ĝ ) | g = ĝ, : (f) ≠ : (ĝ)

]
−� (`ĝ )

)
.

21We sub-divide � ′
:
into [I:,0, I:,!: /2 ] and [I:,!: /2, I:,! ], then subdivide each of these, and so on.

22The case that the space of signals is in�nite is identical except that the summation is replaced by an integral over the
probability space.
23This proof takes sums over ĝ ∈ T and thus implicitly assumes that T is �nite, but the proof extends to in�nite T, with
sums over g replaced by integrals with respect to the probability measure over T .
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The second term is at most @ (ĝ)
? (ĝ)" , since" is the range of � . To bound the �rst term, we note that

`( (: (ĝ ) ) ĝ cannot di�er from `ĝ by more than @ (ĝ)
? (ĝ)−@ (ĝ) , as otherwise the average value of `( (: (f ) ) ĝ

could not be `ĝ . Therefore, E
[
� (`( (: (ĝ ) ) ĝ ) −� (`ĝ )

]
is bounded by the largest possible di�erence

in �-values of two points that di�er by at most @ (ĝ)
? (ĝ)−@ (ĝ) . Therefore, we have

E
[
�� (`( (: (f ) )g ∥ `g )

]
≤

∑
ĝ ∈T

? (ĝ)
(
? (ĝ) − @(ĝ)

? (ĝ) �̃

(
@(ĝ)

? (ĝ) − @(ĝ)

)
+ @(ĝ)
? (ĝ)"

)

≤ &" +
∑
ĝ ∈T
(? (ĝ) − @(ĝ))�̃

(
@(ĝ)

? (ĝ) − @(ĝ)

)
,

where �̃ is de�ned as in the statement of Lemma C.7. If � is symmetric on [0, 1], then �̃ (G) =
� (0) −� (G) for G ≤ 1

2
and" otherwise. This is a concave function, but �̃ is not in general concave.

However, consider �̃∗ as de�ned in the lemma statement, so �̃ (G) ≤ �̃∗ (G) for all G . Then

E
[
�� (`( (: (f ) )g ∥ `g )

]
≤ &" +

∑
ĝ ∈T
(? (ĝ) − @(ĝ))�̃∗

(
@(ĝ)

? (ĝ) − @(ĝ)

)

≤ &" +
(∑
ĝ ∈T
(? (ĝ) − @(ĝ))

)
· �̃∗

( ∑
ĝ ∈T @(ĝ)∑

ĝ ∈T (? (ĝ) − @(ĝ))

)

= &" + (1 −&)�̃∗
(

&

1 −&

)
≤ &" + �̃∗ (&) ≤ 2�̃∗ (&).

Here, the second step follows by Jensen’s inequality with terms @ (ĝ)
? (ĝ)−@ (ĝ) and weights ? (ĝ) − @(ĝ),

the second-to-last step follows from the fact that �̃∗ is convex and �̃∗ (0) = 0, and the last step
follows from the fact that �̃∗ is convex and �̃∗ (1) = " . □

Since& ≤ 4
(
n
V2

)1/(1−log2 2)
, combining Lemma C.7 with Equation 17 gives us the following result.

E [�� (`fg ∥ `g )] ≤
8V

22
+ 2�̃∗

(
4

(
n

V2

)1/(1−log2 2) )
.

Noting that �̃∗ is concave and 2−1/(1−log2 2) ≤ 2 (which is true for all 0 < 2 < 1) completes the proof
of Lemma 4.19. □

D Alternative Definitions of Agreement and Accuracy

For arbitrary Bregman divergences, there are several notions of agreement and accuracy that are
worth considering. Before we discuss these, we make a note about the order of arguments in a
Bregman divergence. In our context, it makes the most sense to talk of the Bregman divergence
from a more informed estimate to a less informed estimate. By a “more informed estimate" we mean a
�ner-grained one, i.e. one that is informed by more knowledge. For example, in terms of estimating
. in the context of this work explores, . is more informed than `fg , which is more informed than
`f and `(g , which are each more informed than `() , which is more informed than E [. ].
To see that this is the natural order of the arguments, recall that Bregman divergences are

motivated by the property that they elicit the mean (see Proposition 4.2): if an agent who gives
an estimate of G for the value of a random variable . incurs a loss of �� (. ∥ G), then the agent
minimizes their expected loss by reporting G = E [. ]. This means that the expert ought to report
the expected value of . given the information that the expert knows.
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This means that given two estimates of . , /1 and /2, of which /1 is more informed, the quantity
�� (/1 ∥ /2) has a natural interpretation: it is the expected amount the expert gains by learning
more and re�ning their estimate from /2 to /1. This follows by the Pythagorean theorem:

E [�� (/1 ∥ /2)] = E [�� (. ∥ /2)] − E [�� (. ∥ /1)] .

D.1 Alternative Definitions of Agreement

One importantmotivation for using the Jensen-Bregman divergence to themidpoint as the de�nition
of agreement is that this quantity serves as a lower bound on the expected amount that Charlie
disagrees with Alice and Bob. Formally:

Definition D.1. Let 0, 1, and 2 be Alice’s, Bob’s, and Charlie’s expectations, respectively (these are
random variables on Ω). Alice and Bob n-agree with Charlie if 1

2
(E [�� (0 ∥ 2) + �� (1 ∥ 2)]) ≤ n .

(This is the order of arguments because Alice and Bob are more informed than Charlie.) By
Proposition C.1 (i), we know that if Alice and Bob n-agree with Charlie then they n-agree.

As it happens the fact that under this (stronger) de�nition of agreement implies accuracy under
rectangle substitutes follows immediately:

Proposition D.2. Let I = (Ω, P,S,T , . ) be an information structure that satis�es rectangle
substitutes. For any communication protocol that causes Alice and Bob to n-agree with Charlie on I,
Alice and Bob are 2n-accurate after the protocol terminates.

Proof. Let ( be the set of possible signals of Alice at the end of the protocol which are consistent
with the protocol transcript, and de�ne ) likewise for Bob. Recall that Charlie’s expectation is `() .
We have

E [�� (`fg ∥ `(g )] ≤ E [�� (`f) ∥ `() )] ≤ E [�� (`f) ∥ `() )] + E [�� (`(g ∥ `() )] ≤ 2n,

where the �rst inequality follows by rectangle substitutes and the last inequality follows because
Alice and Bob n-agree with Charlie. □

The drawback of De�nition D.1 is that it is not so much a de�nition of Alice and Bob’s agreement
with each other, so much as a de�nition of agreement with respect to the protocol being run (since
Charlie only exists within the context of the protocol). Put otherwise, it is impossible to determine
whether Alice and Bob n-agree with Charlie simply by knowing Alice and Bob’s expectations; one
must also know Charlie’s expectation, which cannot be determined from Alice’s and Bob’s expecta-
tions. The question “how far from agreement are Alice and Bob if Alice believes 25% and Bob believes
30%?" makes sense in the context of n-agreement, but not in the context of n-agreement with Charlie.

A di�erent notion of agreement, which (like n-agreement) only depends on Alice’s and Bob’s
expectations, uses the symmetrized Bregman divergence between these expectations: 1

2
(�� (0 ∥

1) + �� (1 ∥ 0)).

Definition D.3. Let 0 and 1 be Alice’s and Bob’s expectations, respectively (these are random
variables on Ω). Alice and Bob satisfy symmetrized n-agreement if 1

2
(�� (0 ∥ 1) + �� (1 ∥ 0)).

By Proposition C.1 (iii), we know that if Alice and Bob satisfy symmetrized n-agreement

then they n-agree.
In our context, symmetrized Bregman divergence is less natural than Jensen-Bregman divergence.

This is symmetrized Bregman divergence (unlike Jensen-Bregman divergence) does not seem to
closely relate to our previous discussion of the Bregman divergence from a more informed to a less
informed estimate being most natural.
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D.2 Alternative Notions of Accuracy

Our de�nition of Alice’s accuracy as the expected Bregman divergence from the truth `fg to Alice’s
expectation seems like the most natural one. However, one may desire a de�nition of accuracy that
takes both Alice’s and Bob’s expectations into account, judging the pair’s accuracy based on their
consensus belief, rather than each of their individual beliefs. For instance, one could say that Alice

and Bob are n-midpoint-accurate if E
[
��

(
`fg ∥ 0+1

2

)]
≤ n . By this de�nition, Alice’s and Bob’s

expectations could individually be far from the truth, but they are considered accurate because the
average of their expectations is close to correct.

Proposition D.4. If Alice and Bob are n-accurate, then they are 2n-midpoint-accurate.

Proof. Observe that for all 0, 1,~ it is the case that

��

(
~ ∥ 0 + 1

2

)
≤ max(�� (~ ∥ 0), �� (~ ∥ 1) ≤ �� (~ ∥ 0) + �� (~ ∥ 1).

The �rst inequality is true simply because 0+1
2

lies in between 0 and 1. Therefore,

E

[
��

(
~ ∥ 0 + 1

2

)]
≤ E [�� (~ ∥ 0) + �� (~ ∥ 1)] ≤ 2n.

□

Another natural choice for Alice’s and Bob’s consensus belief is the QA pool (see [Neyman and
Roughgarden, 2021b]). Proposition D.4 likewise holds for the QA pool in place of the midpoint, and
indeed holds for any choice of consensus belief that is guaranteed to lie in between Alice’s and
Bob’s expectations. Thus, any such de�nition will be weaker than our de�nition of n-accuracy for
Alice and Bob (up to a constant factor).

To summarize, among the above de�nitions of agreement, n-agreement is the weakest; and
among the above de�nitions of accuracy, Alice’s and Bob’s n-accuracy is the strongest. This is an
indication of strength for Theorem 4.18: it starts from a relatively weak premise and reaches a
relatively strong conclusion.

E Implications for Communication Complexity

Our results can be framed in a communication complexity context, where they imply that “sub-
stitutable” functions can be computed with probability 1 − X (over the inputs) with a transcript
length depending only on X . This is a nonstandard and weak notion of computing the function,
but sketching the reduction may inspire future work on connections between substitutes and
communication complexity.
In a classic deterministic communication complexity setup (e.g. [Rao and Yehudayo�, 2020]),

Alice holds f ∈ S, Bob holds g ∈ T , and the goal is to compute some function 6 : S × T → {0, 1}
using a communication protocol (see Section 2.2). Our setting captures this model when . = 6(f, g).
Observe that in this case, . = `fg , i.e. Alice and Bob’s information together determine . completely.
A communication protocol de�nes its output by a function ℎ : Π → {0, 1} where Π is the space of
transcripts. We can simply let ℎ(c) = round(`() ), i.e. rounding the ex post expectation E [. | c] =
`() to either zero or one. This is equivalent to the belief of “Charlie”, or the common knowledge of
Alice and Bob after the protocol is completed.

Definition E.1 (Rectangle substitutes, (1 − X)-computes). Given a function 6 and a distri-
bution D over S × T , we say (6,D) satisfy rectangle substitutes if the corresponding information
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structure with . = 6(f, g) satis�es rectangle substitutes (De�nition 2.6). We say a protocol (1 − X)-
computes 6 over D if, with probability at least 1 − X over (f, g) ∼ D, the protocol has ℎ(c) = 6(f, g).

By our results, under rectangle substitutes (6,D), any agreement protocol approximately com-
putes 6 over D. More precisely, using a fast substitutes-agreement protocol similar to Proposition
B.1, we obtain the following.

Corollary E.2. Suppose (6,D) satisfy rectangle substitutes. Then for every X ∈ (0, 1), there is a
deterministic communication protocol using$ (log(1/X)) bits of communication that (1−X)-computes
6 over D.

Proof. In round one, Alice sends her current expectation `f rounded to a multiple of n ; call this
message �. In round two, Bob sends his updated expectation `(g rounded to a multiple of n; call
this message �. The protocol then halts, and the output is � rounded to either zero or one. It uses
$ (log(1/n)) bits. Let (,) be the random rectangle associated with the protocol.

By construction, |`f −�| ≤ n , and `( is the expectation of . conditioned on �, so it follows that
|`f − `( | ≤ n . Using substitutes (just as in Proposition B.1),

E
[
(`fg − `(g )2

]
≤ E

[
(`f − `( )2

]
≤ n2.

By construction, |� − `(g | ≤ n . Therefore, by the 1
2
-approximate triangle inequality for squared

distance (e.g. Proposition 4.13)),

E
[
(`fg − �)2

]
≤ 2E

[
(`fg − `(g )2

]
+ 2E

[
(`(g − �)2

]
≤ 2n2 .

Now, the protocol is incorrect if |� − `fg | ≥ 1
2
. Using Markov’s inequality,

Pr[|� − `fg | ≥ 1
2
] = Pr[(� − `fg )2 ≥ 1

4
]

≤ 4E
[
(� − `fg )2

]
≤ 8n2.

Therefore, given X ∈ (0, 1), we run the protocol with n =

√
X/8. The probability of an incorrect

output is at most X , and we use $ (log(1/n) = $ (log(1/X)) bits of communication. □
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