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Inspired by Aumann’s agreement theorem, Aaronson [2005] studied the amount of communication necessary
for two Bayesian experts to approximately agree on the expectation of a random variable. Aaronson showed
that, remarkably, the number of bits does not depend on the amount of information available to each expert.
However, in general the agreed-upon estimate may be inaccurate: far from the estimate they would settle on
if they were to share all of their information. We show that if the experts’ signals are substitutes—meaning
the experts’ information has diminishing marginal returns—then it is the case that if the experts are close to
agreement then they are close to the truth. We prove this result for a broad class of agreement and accuracy
measures that includes squared distance and KL divergence. Additionally, we show that although these
measures capture fundamentally different kinds of agreement, Aaronson’s agreement result generalizes to
them as well.
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1 Introduction

Suppose that Alice and Bob are honest, rational Bayesians who wish to estimate some quantity—say,
the unemployment rate one year from now. Alice is an expert on historical macroeconomic trends,
while Bob is an expert on contemporary monetary policy. They convene to discuss and share their
knowledge with each other until they reach an agreement about the expected value of the future
unemployment rate. Alice and Bob could reach agreement by sharing everything they had ever
learned, at which point they would have the same information, but the process would take years.
How then should they proceed?

In the seminal work “Agreeing to Disagree," Aumann [Aumann, 1976] observed that Alice and
Bob can reach agreement simply by taking turns sharing their current expected value for the
quantity. In addition to modeling communication between Bayesian agents, protocols similar to
this one model financial markets: each trader shares partial information about their expected value
on their turn (discussed in Section 5). A remarkable result by Scott Aaronson [Aaronson, 2005]
shows that if Alice and Bob follow certain protocols of this form, they will agree to within € with
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probability 1 — § by communicating O (ﬁ) bits.! Notably, this bound only depends on the error

Alice and Bob are willing to tolerate, and not on the amount of information available to them.

Absent from Aaronson’s results, however, is what Alice and Bob agree on. In particular, there
is no guarantee that Alice and Bob will be accurate, meaning their agreed-upon estimate will be
close (in e.g. expected squared distance) to what they would believe if they shared all of their
information. In fact, they might agree on something highly inaccurate: suppose that Alice and
Bob have independent, uniformly random bits b4, bp, and wish to estimate the XOR by @ bp. Alice
and Bob agree from the onset, as from each of their perspectives, the expected value of by @ bg
is % Yet this expectation is far from the best estimate given their collective knowledge, which
is either 0 or 1. So while agreement is fundamental to understanding communication between
Bayesians—in Aumann’s terms, they cannot “agree to disagree”—agreement is far from the whole
story. An important open problem is therefore what assumptions guarantee that Alice and Bob are
accurate once they agree.

We address this open problem by introducing a natural condition, called rectangle substitutes,
under which agreement implies accuracy. Rectangle substitutes is a notion of informational substi-
tutes: the property that additional information has diminishing marginal returns. The notion of
substitutes is ubiquitous in optimization problems, and informational substitutes conditions have
recently been used to analyze equilibria in markets [Chen and Waggoner, 2016]. In that context,
Kong and Schoenebeck [2023] showed for conditionally independent signals convergence of the
popular LMSR market implies full information aggregation, i.e. accuracy. We show that under
the rectangle substitutes condition, any protocol leading to agreement will also lead to accuracy.
We then extend these results beyond the case of squared error, to a broad family of measures of
agreement and accuracy including KL divergence.

1.1 Overview of approach and results

In Aaronson [2005], Alice and Bob are said to agree if the squared distance between their estimates
is small. Likewise, we can say that Alice and Bob are accurate if the squared distance between each
of their estimates and the truth is small. In Section 3 we present our first main result: under these
definitions, if the information structure satisfies rectangle substitutes, then agreement
implies accuracy. In other words, under this assumption, when two Bayesians agree—regardless
of how little information they have shared—they necessarily agree on the truth.

The proof involves carefully partitioning the space of posterior beliefs induced by the protocol.
Agreement is used to show that Alice and Bob usually fall into the same partition element, which
means that Bob would not learn much from learning the partition element of Alice’s expectation.
Then, the rectangle substitutes condition is used to show that if Bob were to learn Alice’s partition
element, then he would be very close to knowing the truth.

Aaronson measures agreement in terms of squared error, yet other measurements like KL
divergence may be better suited for some settings. For example, if Alice and Bob estimate the
probability of a catastrophic event as 1071% and 1072, respectively, then under squared error they are
said to agree closely, but arguably they disagree strongly, as reflected by their large KL divergence.
Motivated these different ways to measure agreement, we next ask:

(1) Can Aaronson’s protocols be generalized to other notions of agreement, such that the number
of bits communicated is independent of the amount of information available to Alice and
Bob?

(2) Do other notions of agreement necessarily imply accuracy under rectangle substitutes?

1To ensure that each message is short, Alice and Bob share discretized versions of their estimates; we discuss this in Section 2.
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In Section 4, we give our second and third main results: the answer to both questions is yes.
Specifically, the positive results apply when when measuring agreement and accuracy using Breg-
man divergences, a class of error measures that includes both squared distance and KL divergence.?

Aaronson’s proof of his agreement theorem turns out to be specific to squared distance. Our
agreement theorem (Theorem 4.11) modifies Aaronson’s protocol to depend on the particular
Bregman divergence, i.e. the relevant error measure. It then proceeds in a manner inspired by
Aaronson but using several new ideas. Our proof that agreement implies accuracy under rectangle
substitutes for general Bregman divergences also involves some nontrivial changes to our proof for
squared distance. In particular, the fact that the length of an interval cannot be inferred from the
Bregman divergence between its endpoints necessitates a closer analysis of the partition of Alice’s
and Bob’s beliefs.

We conclude in Section 5 with a discussion of connections between agreement protocols and
information revelation in financial markets, and discuss an interesting potential avenue for future
work.

1.2 Related Work

[Geanakoplos and Polemarchakis, 1982] discussed the distinction between agreement and full
information revelation. One result shown is that under a natural probability measure on information
structures, full agreement and information revelation occur in a single round of communication
with probability one. However, conditions for accuracy and the concept of substitutes are not
discussed.

Our setting is related to but distinct from communication complexity. In that field (e.g. [Rao
and Yehudayoff, 2020]), the goal is for Alice and Bob to correctly compute a function of their
inputs while communicating as few bits as possible and using any protocol necessary. By contrast,
Aaronson [2005] considered a goal of agreement, not correctness, and focused on specific natural
protocols, which he showed achieve this goal in a constant number of bits. Our work focuses
on Aaronson’s setting. We discuss how our results might be framed in terms of communication
complexity in Appendix E.

Our introduction of the substitutes condition is inspired by its usefulness in prediction mar-
kets [Chen and Waggoner, 2016]. The “expectation-sharing” agreement protocols we study bear
a strong similarity to dynamics of market prices. Ostrovsky [2012] introduced a condition under
which convergence of prices in a market implies that all information is aggregated. This can be
viewed as an “agreement implies accuracy” condition. Similarly, Kong and Schoenebeck [2023] pre-
sented a result that, for the logarithmic market scoring rule (LMSR) and conditionally independent
signals, convergence of the market implies full information revelation. Our results are conceptually
similar, although they are technically quite different as we rely on the novel condition of rectangle
substitutes. In the context of the LMSR, the rectangle substitutes notion includes conditionally
independent signals as a special case (see discussion in Section 4.1). We discuss the connection of
our work to markets in Section 5. Another similar definition of informational substitutes is used by
[Neyman and Roughgarden, 2021a] in the context of robust aggregation of forecasts.

Finally, we note that the “agreement protocols” we study are not related to key agreement
protocols in cryptography, where the goal is for two communicating parties to jointly construct a
shared string for cryptographic use.

2The third result holds under an “approximate triangle inequality” condition on the Bregman divergence, which is satisfied
by most or all natural choices; indeed, it is nontrivial to construct a Bregman divergence that does not satisfy this property.
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2 Preliminaries
2.1 Information Structures

We consider a set Q of states of the world, with a probability distribution P over the world states.
There are two experts, Alice and Bob. Alice learns the value of a random variable 6 : Q@ — S§;
we call o Alice’s signal and S her signal set. Correspondingly, Bob learns the value of a random
variable 7 : Q — 7. These signals each convey partial information about the true state v € Q.
Alice and Bob are interested in a third random variable Y : Q — [0, 1]. We use the term information
structure to refer to the tuple 7 := (Q,P, S, 7, Y).

We denote by psr := E[Y | 0, 7] the random variable that is equal to the expected value of
Y conditioned on both Alice’s signal o and Bob’s signal 7.> We also define p, := E[Y | o] and
iy =B [Y | 7]. For ameasurable set S C S, we define yis := E [Y | o € S]; we define pr analogously
for T C 7. Additionally, for T C 7, we define py,r :=E [Y | 7 € T, 0], i.e. the expected value of Y
conditioned on the particular value of ¢ and the knowledge that r € T. If Alice knows that Bob’s
signal belongs to T (and nothing else about his signal), then the expected value of Y conditional
on her information is p,; we refer to this as Alice’s expectation. Likewise, for S C S, we define
tsr :=E [Y | o € S, 7]. Finally, we define psr :== E [Y | 0 € S, € T]. This is the expectation of a
third party who only knows that 0 € Sand 7 € T.

In general we often wish to take expectations conditioned on o € S,7 € T (for some S € S, T C
7). We will use the shorthand E [- | S, T] for E [- | o € S, 7 € T] in such cases.

2.2 Agreement Protocols

The notion of agreement between Alice and Bob is central to our work. We first define agreement
in terms of squared error, and generalize to other error measures in Section 4.

DEFINITION 2.1 (e-AGREE). Let a and b be Alice’s and Bob’s expectations, respectively (a and b are
random variables on Q). Alice and Bob e-agree lf%E [(a - b)z] <e.

The constant 4—11 makes the left-hand side represent Alice’s and Bob’s distance to the average of their
expectations.

Our setting follows [Aaronson, 2005], which examined communication protocols that cause Alice
and Bob to agree. In a (deterministic) communication protocol, Alice and Bob take turns sending
each other messages (strings of bits). On Alice’s turns, Alice communicates a message that is a
deterministic function of her input (i.e. her signal o) and all previous communication, and likewise
for Bob on his turns. A rectangle is a set of the form S X T where S € Sand T C 7.

The communication transcript is the ordered tuple of all messages that have been sent. The
transcript at time step t refers to the tuple consisting of the first t messages. The transcript at
time step t partitions Q into rectangles: for any given sequence of t messages, there are subsets
S; € 8, T; € 7 such that the protocol transcript at time ¢ is equal to this sequence if and only if
(0,7) € Sy x T, .4

For a given communication protocol, we may think of S; and T, as random variables. Alice’s
expectation at time ¢ (i.e. after the t-th message has been sent) is y-7, and Bob’s expectation at time
t is ps,. Finally, the protocol terminates at a certain time (which need not be known in advance of
the protocol). While typically in communication complexity a protocol is associated with a final

3The value of Y need not be determined by o and 7, although for our purposes the case in which it is determined is
essentially equivalent.

4We can see this inductively: suppose the transcript at time step ¢ — 1 partitions Q into rectangles, and (without loss of
generality) that the ¢-th turn is Alice’s. Consider one of these rectangles. Alice’s message can only depend on her input and
the transcript so far, which means that her message can only partition this rectangle into sub-rectangles.



Agreement Implies Accuracy for Substitutable Signals EC ’23, July 9-12, 2023, London, United Kingdom

output, in this case we are interested in Alice’s and Bob’s expectations, so we do not require an
output.

It will be convenient to hypothesize a third party observer, whom we call Charlie, who observes
the protocol but has no other information. At time ¢, Charlie has expectation pg,r,. Charlie’s
expectation can also be interpreted as the expectation of Y according to Alice and Bob’s common
knowledge. Note that Alice and Bob each know Charlie’s expectation at any given time.

The following definition formalizes the relationship between communication protocols and
agreement.

DEFINITION 2.2 (E-AGREEMENT PROTOCOL). Given an information structure I, a communication
protocol causes Alice and Bob to e-agree on I if Alice and Bob e-agree at the end of the protocol, i.e.,
if%E [(,ugT, - ,ust,)z] < €, where the expected value is over Alice’s and Bob’s inputs. We say that a
communication protocol is an e-agreement protocol if the protocol causes Alice and Bob to e-agree on
every information structure.

Aaronson defines and analyzes two e-agreement protocols.’ The first of these is the standard
protocol, in which Alice and Bob take turns stating their expectations for a number of time steps
that can be computed by Alice and Bob independently in advance of the protocol, and which is
guaranteed to be at most O(1/¢).

The fact that exchanging their expectations for O(1/€) time steps results in e-agreement is
profound and compelling. However, the standard protocol may require an unbounded number of
bits of communication, since Alice and Bob are exchanging real numbers. To address this, Aaronson
defines another agreement protocol that is truly polynomial-communication (which we slightly
modify for our purposes):

DEFINITION 2.3 (DISCRETIZED PROTOCOL, [AARONSON, 2005]). Choose € > 0. In the discretized
protocol with parameter €, on her turn (at time t), Alice sends “low" if her expectation is smaller than
Charlie’s by more than €/4, i.e. if ps, ,» < ps, ,1,., — €/4; “high" if her expectation is larger than
Charlie’s by more than €/4; and “medium" otherwise. Bob acts analogously on his turn. At the start of
the protocol, Alice and Bob use the information structure to independently compute the time to,q < %

that minimizes B | (po1, = — s, d,)z]. The protocol ends at this time.

d

THEOREM 2.4 ([AARONSON, 2005, THEOREM 4]). The discretized protocol with parameter € is an
e-agreement protocol with transcript length O(1/€) bits.

In general, we refer to Aaronson’s standard and discretized protocols as examples of expectation-
sharing protocols. We will define other examples in Section 4, similar to Aaronson’s discretized
protocol but with different cutoffs for low, medium, and high. We also interpret expectation-sharing
protocols in the context of markets in Section 5.

2.3 Accuracy and Informational Substitutes

Most of our main results give conditions such that if Alice and Bob e-agree, then Alice’s and Bob’s
estimates are accurate. By accurate, we mean that Alice’s and Bob’s expectations are close to psr,
i.e., what they would believe if they knew each other’s signals. (After all, they cannot hope to have
a better estimate of Y than p,; for this reason we sometimes refer to y, as the “truth”) Formally:

5 A minor difference to our framing is that Aaronson [2005] focuses on probable approximate agreement: protocols that cause
the absolute difference between Alice and Bob to be at most € with probability all but §. While the results as presented in
this section are stronger than those in [Aaronson, 2005] (the original results follow from these as a consequence of Markov’s
inequality), these results follow from a straightforward modification of his proofs.
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DEFINITION 2.5 (€-ACCURATE). Let a be Alice’s expectation. Alice is e-accurate if E [(,uﬂ - a)z] <e.
We define e-accuracy analogously for Bob.

One cannot hope for an unconditional result stating that if Alice and Bob agree, then they are
accurate. Consider for instance the XOR information structure from the introduction: Alice and Bob
each receive independent random bits as input, and Y is the XOR of these bits. Then from the start
Alice and Bob agree that the expected value of Y is exactly 1, but this value is far from fi,,, which
is either 0 or 1.

Intuitively, this situation arises because Alice’s and Bob’s signals are informational complements:
each signal is not informative by itself, but they are informative when taken together. On the
other hand, we say that signals are informational substitutes if learning one signal is less valuable
if you already know the other signal. An extreme example is if o = 7 = X for any random
variable X. Here ¢ becomes useless upon learning  and vice versa. Chen and Waggoner [2016],°
discuss formalizations of several notions of informational substitutes. All of these notions capture
“diminishing marginal value,' in the sense that, roughly speaking, the value of partial information
is a submodular set function. The various definitions proposed by Chen and Waggoner [2016] only
differ in how finely they allow decomposing ¢ and 7 to obtain a marginal unit. Our definition has
the same format, but uses a decomposition inspired by information rectangles in communication
complexity. Recall that we write | S, T as shorthand for | o € S,7 € T.

DEFINITION 2.6. An information structure I = (Q,P, S, 7, Y) satisfies rectangle substitutes if for
everyS € S, T C T suchthatP [oc € S,7 € T] > 0, we have

E[(Y-pus)® | ST]| —E[(Y = pior)* | ST| <E[(Y = pst)® | ST| —E [(Y = pio1)* | S, T] . (1)

This definition is a strengthening of Chen and Waggoner’s notion of weak substitutes for two
agents: an information structure satisfies weak substitutes if Equation 1 holds for S =S and T =7
[Chen and Waggoner, 2016].

We will show that under rectangle substitutes, if Alice and Bob approximately agree, then they
are approximately accurate.

Interpreting substitutes. Both sides of Equation 1 represent the “value” of learning o as measured
by a decrease in error. The left-hand side gives the decrease if one already knows 7 and that o € S;
the right-hand side gives the decrease if one only knows that o € S, 7 € T. Substitutes thus says: the
marginal value of learning ¢ is smaller if one already knows 7 than if one does not. This statement
should hold for every sub-rectangle S, T. We remark that the inequality can be rearranged to focus
instead on the marginal value of 7 rather than o. We also note that in the XOR information structure,
the left-hand side of the inequality is % while the right-hand side is zero: a large violation of the
substitutes condition. In the example o = 7 = X, the left side is always zero.

Chen and Waggoner [2016] discusses three interpretations of substitutes, which motivate it as a
natural condition. (1) Each side of the inequality measures an improvement in prediction error, here
the squared loss, due to learning o. Under substitutes, the improvement is smaller if one already
knows 7. (2) Each side measures a decrease in uncertainty (here, measured roughly by variance) due
to learning o. Under substitutes, o provides less information about Y if one already knows 7.7 (3)
Each side measures the decrease in distance of a posterior expectation from the truth when learning
0. The distance to Y changes less if one already knows 7.

%We recommend the ArXiv version for the most up-to-date introduction to informational substitutes.
"Here, uncertainty is measured by variance of one’s belief. Under the KL divergence analogue covered in Section 4.1,
uncertainty is measured in bits via Shannon entropy.
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Restrictiveness of substitutes. It is natural to ask about the strength of the rectangle substitutes
assumption. In the case that |S| = |77| = 2, the condition reduces to the well-established “weak
substitutes" condition of [Chen and Waggoner, 2016]. For larger signal sets, the set of information
structures satisfying rectangle substitutes remains nontrivial. For example, it is satisfied by a
positive fraction of information structures (for a natural choice of measure). We show this fact in
Appendix A by exhibiting an information structure in which Equation 1 holds strictly for all S, T
with |S], |T| > 2 — meaning that all nearby information structures also satisfy rectangle substitutes.
Finally, we note that although the rectangle substitutes condition is strong due to the quantification
over sub-rectangles, in Section 3.2 we prove that our main results decay gracefully for information
structures that are close to but do not quite satisfy the rectangle substitutes condition.

2.4 The Pythagorean Theorem

We will use the following fact throughout. We defer the proof to Appendix C, where we establish a
more general version of this statement.

PROPOSITION 2.7 (PYTHAGOREAN THEOREM). Let A be a random variable, B=E [A | | where ¥
is a sigma-algebra, and C be a random variable defined on F. Then

E[(A-C)?| =E[(A-B)*|+E [(B-0O)?].

We use the phrase Pythagorean theorem in part because of its form, and in part because it is
precisely the familiar Pythagorean theorem when the random variables are viewed as points in a
Hilbert space® with inner product (X, Y) := E [XY].

Informally, A is a random variable, B is the expected value of A conditional on some partial
information, and C is a random variable that only depends on this information. So the theorem
applies when B is a coarse estimate of A and C is at least as coarse as B, a scenario that often occurs
in our setting.

One application of the Pythagorean theorem in our context takes A = Y, B = i, (the expected
value of Y conditioned on the experts’ signals), and C = p,r (Alice’s expected value, which only
depends on her signal and thus on the signal pair). This particular application, along with the
symmetric one taking C = pyg,, allows us to rewrite the rectangle substitutes condition in a form
that we will find more convenient:

Remark 2.8. An information structure 7 satisfies rectangle substitutes if and only if

E [(tor — ps0)* | S.T| < E [(uor — ps7)? | . T| (2)
forall S,T such that P [c € S, € T] > 0.

3 Results for Squared Distance

Our main results show that, under the rectangle substitutes condition, any communication protocol
that causes Alice and Bob to agree also causes them to be accurate. We now show the first of these
results, which is specific to the squared distance error measure that we have been discussing.

3.1 Agreement Implies Accuracy

THEOREM 3.1. LetT = (Q,P, S, 7T,Y) be an information structure that satisfies rectangle substitutes.
For any communication protocol that causes Alice and Bob to e-agree on I, Alice and Bob are 10€'/>-
accurate after the protocol terminates.

The crux of the argument is the following lemma.

83We do not make use of this abstraction in our work, but we refer the interested reader to [Sidak, 1957].
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LEMMA 3.2. Let I = (Q,P,S,7,Y) be an information structure that satisfies rectangle substitutes.
Lete =E [(pto — ptz)?]. Then

E [(for — pr)?] < 6€'/3.
Let us first prove Theorem 3.1 assuming Lemma 3.2 is true.

Proor oF THEOREM 3.1. Consider any protocol that causes Alice and Bob to e-agree on I Let
S be the set of possible signals of Alice at the end of the protocol which are consistent with the
protocol transcript, and define T likewise for Bob. Intuitively, S X T is the set of plausible signal
pairs (o, 7) according to an external observer of the protocol. Observe that S and T are random
variables, each a function of both ¢ and 7. We have

E [(/10'1' - ,UST)Z] =Esr [E [(,UO'T - /152')2 | S, T]]
<Esr [6 (B [(por — pse)? | S, T])1/3]

1/3
< 6Bst |E [(tor — pise)? | S, T /
1/3
= 6E | (4ot — pise)?] 3 < 6(4€)'/® < 10€!/3.
In the second step, we apply Lemma 3.2 to the information structure J restricted to S X T — that
is,toJ’ = (Q,P’,S,T,Y), where Q' ={w € Q:0€Sre€T}andP[w] =P|w|oceS,reT]
(Note that we use the fact that if 7 satisfies rectangle substitutes, then so does J’; this is because a

rectangle of 7 is also a rectangle of 7.) The third step follows by the concavity of x'/3. Therefore,
Bob is 10€!/3 accurate (and Alice is likewise by symmetry). o

The proof of Lemma 3.2 relies on the following claim. We defer the proof of Lemma 3.2 (and
Claim 3.3) to Appendix B, and instead sketch the proofs here.

CraM 3.3. In the setting of Lemma 3.2, for any N > 1, it is possible to partition [0,1] into N
intervals [0, x1), [x1, x2), - .., [xN—1, 1] in a way so that each interval has length at most % and

P k(o) # k(1)] < VeN,
where k(o) denotes the k € [N] such that x,_, < py < xx, and k(7) is defined analogously.’

Intuitively, Claim 3.3 is true because if E [( Lo — ,uT)Z] is small, then p; and p; are likely to fall
into the same interval.

We now sketch the proof of Lemma 3.2. To see why Claim 3.3 is relevant, recall that we wish
to upper bound the expectation of (uyr — pir)?. Let SK = {o€8:x1 < py < xk}- By the
Pythagorean theorem, we have

E [(,um’ - :ur)z] =E [(:ucrr - ,Us(k(v))f)z] +E [(,US(’C(U))T - ﬂr)z] .

By using the rectangle substitutes condition for S = S*), T = 7~ for every k, we find that
E (o — pswon)?] 2 E [(tor — psken,)?] - )
Therefore, we have

E [(tor = 10)°] < B [(po — pson)?] + B [(skion, — pe)?] - 4)

Claim 3.3 lets us argue that the first of these two terms is small (because y, and pgk()) are always
within % of each other) and that the second term is also small (because conditioned on 7, k(o) is

known with high probability). We find that choosing N = ¢~/° gives us the bound in Lemma 3.2.

9For convenience we define xy = 0 and xx to be some number greater than 1.
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Theorem 3.1 is a general result about agreement protocols. Applying the result to Aaronson’s
discretized protocol gives us the following result.

COROLLARY 3.4. Let I be any information structure that satisfies universal rectangle substitutes.
For any € > 0, Alice and Bob will be e-accurate after running Aaronson’s discretized protocol with
parameter €3 /1000 (and this takes O(1/€3) bits of communication).

Remark 3.5. The discretized protocol is not always the most efficient agreement protocol. For
example, Proposition B.1 shows that if the rectangle substitutes condition holds, agreement (and
therefore accuracy) can be reached with just O(log(1/¢)) bits, an improvement on Corollary 3.4.
We discuss communication complexity further in Appendix E. Even if more efficient protocols are
sometimes possible, expectation-sharing protocols are of interest because they model naturally-
occurring communication processes. For example, they capture the dynamics of prices in markets,
which we also discuss in Section 5. More generally, we find it remarkable that Alice and Bob
become accurate by running the agreement protocol (indeed any agreement protocol), despite such
protocols being designed with only agreement in mind.

Finally, we observe the following important consequence of Theorem 3.1: once Alice and Bob
agree, they continue to agree.

CoRrOLLARY 3.6. Let I = (Q,P,S,7,Y) be an information structure that satisfies rectangle substi-
tutes. Consider a communication protocol with the property that Alice and Bob e-agree after round t.
Then Alice and Bob 10€'/3-agree on all subsequent time steps.

1/3

Proor. If Alice and Bob e-agree then they are 10e'/°-accurate, so in particular E [( Uor — ,uth)z] <

10€!/3. Note that E [(,um — foT, )2] is a decreasing function of s, since for any s; < s; we have

E [(ﬂo‘r - ,UO'TSI)Z] =E [(/10'1' - ﬂo‘Tsz)z] +E [(ﬂa’TsZ - /10'7}1)2]
by the Pythagorean theorem. Therefore, for any t' > t, we have E [(yor — por,)?] < 10€'/3.
Symmetrically, we have E [(,um - pst,T)Z] < 10€!/3. Therefore, E [(p(,T[, - ,us[,T)z] < 40¢'/3, which

1/3

means that after round ¢’, Alice and Bob 10e'/°-agree. O

Corollary 3.6 stands in contrast to the more general case, in which it is possible that Alice and
Bob “nearly agree for the first t — 1 time steps, then disagree violently at the ¢-th step" [Aaronson,
2005, §2.2]. Thus, while the main purpose of Theorem 3.1 is a property about accuracy, an agreement
property falls out naturally: under the rectangle substitutes condition, once Alice and Bob are close
to agreement, they will remain in relatively close agreement into the future.

3.2 Graceful Decay Under Closeness to Rectangle Substitutes

In a sense, the rectangle substitutes condition is quite strong: it requires that the weak substitutes
condition be satisfied on every sub-rectangle. One might hope for a result that generalizes Theo-
rem 3.1 to information structures that almost satisfy the rectangle substitutes condition but do not
quite. Let us formally define a notion of closeness to rectangle substitutes.

DEFINITION 3.7. An information structure I = (Q,P, S, T,Y) satisfies 5-approximate rectangle
substitutes if for every partition of S X T~ into rectangles,’ the rectangle substitutes condition holds
in expectation over the partition, up to an additive constant of §, i.e., if we have

Eo, [(IJUT - IJSU,TT)Z] < Eor [(,UUT,,,T - ,USC,,TTE,,,)Z] + 6, (5)

10There are partitions into rectangles that cannot arise from a communication protocol. Our results would apply equally if
this condition were instead defined for every partition that could arise from a communication protocol, but we state this
condition more generally so that it could be applicable in a broader context than the analysis of communication protocols.
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where S, ; X T, is the rectangle containing (o, 7).

Remark 3.8. The §-approximate rectangle substitutes property is a relaxation of the rectangle
substitutes property, in the sense that the two are equivalent if § = 0. To see this, first observe that if
I satisfies rectangle substitutes, then it satisfies Equation 5 with § = 0 pointwise across all S5 ;, T ,
and thus in expectation. In the other direction, suppose that I satisfies 0-approximate rectangle
substitutes. Let S € S, T C 7 and consider the partition of 7 into rectangles that contains S X T
and, separately, every other signal pair (o, 7) in its own rectangle. For this partition, Equation 5
reduces precisely to Equation 2 (the rectangle substitutes condition for S and T).

Theorem 3.1 generalizes to approximate rectangle substitutes as follows.

THEOREM 3.9. Let I = (Q,P,S,7,Y) be an information structure that satisfies 5-approximate
rectangle substitutes. For any communication protocol that causes Alice and Bob to e-agree on I, Alice
and Bob are (10€'/® + 8)-accurate after the protocol terminates.

Proor. We first observe that Lemma 3.2 can be modified as follows.

LEMMA 3.10. Let I = (Q,P,S,7,Y) be an information structure that satisfies §-approximate
rectangle substitutes. Lete = B [(,u(, - ,uT)Z]. Then

E [(yaf - ,u,)z] < 6e? +36.

The proof of Lemma 3.10 is exactly the same as that of Lemma 3.2, except that Equation 3 (Equation 7
in the full proof) includes an additive § term on the left-hand side:

E [(to — pson)?] +8 = E [ (por — psixeon,)’] -

This modified inequality follows immediately from the §-approximate rectangle substitutes condi-
tion, noting that one partition of S X 7 into rectangles is {S; X T, ...,Sy X 7 }. The extra § term
produces the § term in the lemma statement.

To prove the theorem, let S be the set of possible signals of Alice at the end of the protocol which
are consistent with the protocol transcript, and define T likewise for Bob. Let s be the minimum §
such that S X T satisfies §-approximate rectangle substitutes. Note that Eg 1 [dst] < &: otherwise, by
taking the union over the worst-case partitions for each S, T we would exhibit a partition of S X 7~
into rectangles that would violate the §-approximate rectangle substitutes property. Therefore we
have

E [(.UGT - ﬂSr)z] =Est [E [(lla—r - ,UST)Z |'S, T”
<Esr [6 (E [(:uaT - .UST)2 |'S, T])1/3 + 557‘]

< 6B [B [(or = ps)? 1 S.T]]"* +5
= 6B [(por — pis)?]* + 5 = 6(4€)'/* + 5 < 10€'* + 5.

As in the proof of Theorem 3.1, the second step follows by applying Lemma 3.2 to the information
structure 7 restricted to S X T. O

4 Results for Other Divergence Measures

Squared distance is a compelling error measure because it elicits the mean. That is, if you wish
to estimate a random variable Y and will be penalized according to the squared distance between
Y and your estimate, the strategy that minimizes your expected penalty is to report the expected
value of Y (conditional on the information you have). This is in contrast to e.g. absolute distance as
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Glx)+ (- —x)G'(x) Dg(y |l x)

Fig. 1. The Bregman divergence Dg(y || x) is the vertical distance at y between G and the tangent line to G
at x.

an error measure, which would instead elicit the median of your distribution. The class of error
measures that elicit the mean is precisely the class of Bregman divergences (defined below).

In this section, our main result is a generalization of Theorem 3.1 to (almost) arbitrary
Bregman divergences (see e.g. Theorem 4.14). Additionally, we provide a generalization of
Aaronson’s discretized protocol to arbitrary Bregman divergences (Theorem 4.11).

4.1 Preliminaries on Bregman Divergences

DEFINITION 4.1. Given a differentiable,'! strictly convex function G : [0,1] — R, and x,y € [0,1],
the Bregman divergence fromy to x is

Dq(y || x) = G(y) - G(x) - (y = x)G'(x).

PROPOSITION 4.2 ((BANERJEE ET AL., 2005]). Given a random variableY, the quantityE [Dg (Y || x)]
is minimized by x = E [Y].

An intuitive formulation of Bregman divergence is that Dg(y || x) can be found by drawing
the line tangent to G at x and computing how far below the point (y, G(y)) this line passes. We
illustrate this in Figure 1. Note that the Bregman divergence is not in general symmetric in its
arguments; indeed, G(x) = x? is the only G for which it is.

The Bregman divergence with respect to G(x) = x? is precisely the squared distance. Another
common Bregman divergence is the KL divergence, which corresponds to G(x) = xlogx + (1 —
x) log(1 — x), the negative of Shannon entropy.

We generalize relevant notions such as agreement and accuracy to arbitrary Bregman divergences
as follows. In the definitions below, G : [0, 1] — R is a differentiable, strictly convex function.

DEFINITION 4.3. Let a be Alice’s expectation. Alice is e-accurate if E [Dg(isr || @)] < €, and
likewise for Bob.

We discuss our choice of the order of these two arguments (i.e. why we do not instead consider
the expectation of Dg(a || ysr)) in Appendix D. We now define e-agreement, and to do so we first
define the Jensen-Bregman divergence.

DEFINITION 4.4. Fora,b € [0, 1], the Jensen-Bregman divergence between a and b with respect to

G iS

' When we say “differentiable,' we mean differentiable on the interior of the interval on which G is defined.
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The validity of the second equality can be easily derived from the definition of Bregman diver-
gence. Note that the Jensen-Bregman divergence, unlike the Bregman divergence, is symmetric in its
arguments. The Jensen-Bregman divergence is a lower bound on the average Bregman divergence
from Alice and Bob to any other point (see Proposition C.1 (i)).

DEFINITION 4.5. Let a and b be Alice’s and Bob’s expectations, respectively. Alice and Bob e-agree
with respect to G if JBg(a, b) < e.

In Appendix D we discuss alternative definitions of agreement and accuracy. The upshot of this
discussion is that our definition of agreement is the weakest reasonable one, and our definition
of accuracy is the strongest reasonable one. This means that the main result of this section—that
under a wide class of Bregman divergence, agreement implies accuracy—is quite powerful: it starts
with a weak premise and proves a strong conclusion.

DEFINITION 4.6. Given an information structure I, a communication protocol causes Alice and
Bob to e-agree on I with respect to G if Alice and Bob e-agree with respect to G at the end of the
protocol. A communication protocol is an e-agreement protocol with respect to G if the protocol causes
Alice and Bob to e-agree with respect to G on every information structure.

We also generalize the notion of rectangle substitutes to this domain, following [Chen and
Waggoner, 2016], which explored notions of substitutes for arbitrary Bregman divergences.

DEFINITION 4.7. Let G : [0,1] — R be a differentiable, strictly convex function. An information
structure I = (Q,P, S, T, Y) satisfies rectangle substitutes with respect to G if for everyS € S,T C T,
we have

E [DG(Y || psz) | S, T]1 = E [Dg(Y || pior) | S, T]
SE[D(Y || pst) | S, T] =E [DG(Y || por) | S, T].

Chen and Waggoner [2016] explore the notion of weak substitutes with respect to arbitrary G’s as
well; just as before, I is said to satisfy the weak substitutes condition if the above inequality holds
for S = S and T = 7. The authors additionally explore in detail the weak substitutes condition with
respect to negative entropy, i.e. for D equal to the KL divergence. They show that if Alice and Bob
have independent signals conditioned on Y, then the information structure satisfies weak substitutes
with respect to this G. In fact, any such information structure also satisfies rectangle substitutes,
because an information structure with conditionally independent signals retains the conditional
independence when restricted to any sub-rectangle. The rectangle substitutes condition thus covers
the specific case of conditionally independent signals under which Kong and Schoenebeck [2023]
prove their accuracy result. On the other hand, the greater generality of our setting necessitates a
different proof strategy.

The Pythagorean theorem (Proposition 2.7) generalizes to arbitrary Bregman divergences:

PROPOSITION 4.8. Let A be a random variable, B=E [A | ] where F is a sigma-algebra, and C
be a random variable defined on F. Then

E[Do(A O] =E [Ds(A | B)] +E[Dg(B || C)].

Although the proof of this observation is fairly straightforward, to our knowledge Proposition 4.8
is original to this work. We provide a proof in Appendix C. Just as we did with squared error, this
general Pythagorean theorem allows us to rewrite the rectangle substitutes condition for Bregman
divergences.
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Remark 4.9. An information structure I satisfies rectangle substitutes with respect to G if and
onlyifforallS € S,T € 7 we have

E [D6(por | pisz) | S, T] < E [Dg(por |l psT) | S, T] . (6)

Given the interpretation of Bregman divergences as measures of error, we can interpret the left
side as Bob’s expected error in predicting the truth while the right side is Charlie’s expected error
when predicting Alice’s expectation (with Charlie as defined in Section 2.2). Both sides measure a
prediction error due to not having Alice’s signal, but from different starting points.

4.2 Generalizing the Discretized Protocol

Later in this work, we will show that under some weak conditions, protocols that cause Alice and
Bob to agree with respect to G also cause Alice and Bob to be accurate with respect to G. However,
this raises an interesting question: are there protocols that cause Alice and Bob to agree with
respect to G? In particular, we are interested in natural expectation-sharing protocols. Aaronson’s
discretized protocol is specific to G(x) = x%, and it is not immediately obvious how to generalize it.
We present the following generalization.

DEFINITION 4.10. Let G be a differentiable, strictly convex function, and let M := max, G(x) —
miny, G(x). Choose € > 0. In the discretized protocol with respect to G with parameter €, on her turn
(at time t), Alice sends “medium” if D¢ (por, , || pis,\1,.,) < %, and otherwise either “low" or “high’,
depending on whether 1, is smaller or larger (respectively) than ys,1,. Bob acts analogously on his

turn. At the start of the protocol, Alice and Bob use the information structure to independently compute

24M (4M-+e)
62

the time topg < that minimizes E [Dc(llar, . Il ps, df)]. The protocol ends at this time.

THEOREM 4.11. The discretized protocol with respect to G with parameter € is an e-agreement

M(M+e) )
62

protocol that involves O ( bits of communication.

Our proof draws inspiration from Aaronson’s proof of the discretized protocol, but has significant
differences. The key idea is to keep track of the monovariant E [D(;(Y I ,UStT,)]- This is Charlie’s
expected error (as measured by the Bregman divergence from the correct answer Y) after time step
t—recall that Charlie is our name for a third-party observer of the protocol. Note that this quantity
is at most M and at least 0. Hence, if we show that the quantity decreases by at least some value 8
every time Alice and Bob do not e-agree, then we will have shown that Alice and Bob must e-agree

within % time steps. We defer the proof to Appendix C.

4.3 Approximate Triangle Inequality

Our results will hold for a class of Jensen-Bregman divergences that satisfy an approximate version
of the triangle inequality. Specifically, we will require JBs to satisfy the following c-approximate
triangle inequality for some ¢ > 0.

DEFINITION 4.12. Given a differentiable, strictly convex function G : [0,1] — R and a positive
number c, we say that B (-, -) satisfies the c-approximate triangle inequality if for all a, b, x € [0, 1]
we have

JBg(a,x) + FB5(x,b) = cJBs(a, b).

It is possible to construct functions G such that there is no positive ¢ for which JB; satisfies the
c-approximate triangle inequality. However, JB; satisfies the c-approximate triangle inequality for
some positive c for essentially all natural choices of G.

ProrosITION 4.13. Let G : [0,1] — R be a differentiable, strictly convex function.
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(i) If \/JB5 (-, ) satisfies the triangle inequality, then JBg satisfies the %—approximate triangle
inequality.

(ii) If G(x) = x? (i.e. Dg is squared distance) or if G(x) = xlog x + (1 — x) log(1 — x) (i.e. Dg is KL
divergence), then \/E satisfies the triangle inequality (and so JBg satisfies the %-approximate
triangle inequality).

ProoF. Regarding Fact (i), suppose that \JB satisfies the triangle inequality. Then for all

a, b, x we have \/]BG(a, x) + \/JBG (x,b) = \/JBG(a, b). Squaring both sides and observing that
JBg(a,x) +JBg(x,b) > 24/JB;(a, x)JBg(x, b) completes the proof.
Fact (ii) is trivial for G(x) = x?, since 4/JB is the absolute distance metric (times a constant

factor). As for G(x) = xlogx + (1 — x) log(1 — x), we refer the reader to [Endres and Schindelin,
2003]. o

The question of when VJBg satisfies the triangle inequality has been explored in previous work;
we refer the interested reader to [Acharyya et al., 2013] and [Chen et al., 2008].

4.4 Generalized Agreement Implies Generalized Accuracy

In all of the results in this subsection, we consider the following setting: G is a differentiable convex
function; c is a positive real number such that JB; satisfies the c-approximate triangle inequality;
and 7 = (Q,P, S, 7,Y) is an information structure that satisfies rectangle substitutes with respect
to G.

We prove generalizations of Theorem 3.1, showing that under the rectangle substitutes con-
dition, if a protocol ends with Alice and Bob in approximate agreement, then Alice and Bob are
approximately accurate. The first result we state assumes that G is symmetric, but is otherwise
quite general.

THEOREM 4.14. Assume that G is symmetric about the line x = % For any communication protocol
that causes Alice and Bob to e-agree on I, and for any ff > %e, Alice and Bob are

6 1/(1-log, ¢)
G(O)"G((ﬁ) )

This result is not our most general, as it assumes that G is symmetric, but this assumption likely
holds for most use cases. To apply the result optimally, one must first optimize § as a function of G.
For example, setting = €/ ("+171°¢: ) (with r defined below) gives us the following corollary:'?

-accurate

8

after the protocol terminates.

COROLLARY 4.15. Assume that G(0) — G(x),G(1) — G(1 — x) < O(x"). For any communication
protocol that causes Alice and Bob to e-agree on I, Alice and Bob are O (e’/<’+1‘l°g2 C))-accumte after
the protocol terminates, where the constant hidden by O(-) depends on G.

Remark 4.16. Concretely, if G’ is bounded then we can choose r = 1, in which case our bound
simplifies to O (e'/(?71°8:))_ If instead we assume that c = 1 (as is the case if y/JB; (-, -) is a metric),
then the bound is O (e’/<’+2)). If both of these are true, as is the case for G(x) = x?, then the bound
is O(e'/?), which recovers our result in Theorem 3.1.

For G equal to the negative of Shannon entropy (i.e. the G for which D¢ is KL divergence), setting
B = €'*(log 1/€)?? in Theorem 4.14 gives us the following corollary.

12Corollary 4.15 as stated (without the symmetry assumption) is actually a corollary of Theorem 4.18.



Agreement Implies Accuracy for Substitutable Signals EC ’23, July 9-12, 2023, London, United Kingdom

CoroLLARY 4.17. IfG(x) = xlogx + (1 — x) log(1 — x), then for any communication protocol that
causes Alice and Bob to e-agree on I, Alice and Bob are O(e'/* (log 1/€)?/?)-accurate after the protocol
terminates.

Theorem 4.14 follows from our most general result about agreement implying accuracy:

THEOREM 4.18. Let G(x) := maxg p:|a-b|<x (G(a) — G(b)) be the maximum possible difference in
G-values of two points that differ by at most x, and let G*(x) be the concave envelope of G, i.e.

G*(x) = max wG(a) + (1 —w)G(b).

0<a,b,w<l:wa+(1-w)b=x

For any communication protocol that causes Alice and Bob to e-agree on I, and for any > 0, Alice

and Bob are
c 1/(1-log, ¢)
- -accurate
B )

Proor. To prove Theorem 4.18, it suffices to prove the following lemma.

8 Sk
(C—Zﬂ + 16G

after the protocol terminates.
LEMMA 4.19. Let G be a differentiable convex function on [0, 1] and ¢ € (0,1) be such that B,

satisfies the c-approximate triangle inequality. Let I = (Q,P,S,7,Y) be an information structure
that satisfies rectangle substitutes with respect to G. Let € = E [JBg (o || piz)]. Then for any > 0,

we have
1/(1-log, ¢)
€
B

Let us first prove Theorem 4.18 assuming Lemma 4.19 is true.

8 Sk
E [Dg(por Il pe)] < 7B +16G

Consider any protocol that causes Alice and Bob to e-agree on 7. Let S be the set of possible
signals of Alice at the end of the protocol which are consistent with the protocol transcript, and
define T likewise for Bob.

Let est = E [JBg (toT> tisz) | S, T]. Note that

Est [est] = Bs,r [E [JBG(fors pis) | S, T1] = E [JBg (Kot, pisr)] < €

Therefore, for any > 0 we have
o\ (Flogz©)
/3 +16G* —)
B

(
() )

esr] )l/u—logz c))

E [Dg (por || pso)] < Bsr

8 -
C—2ﬁ+ 16G

IA

8 ~. | (Es

B

1/(1-log, c)
8 ~ €

< =pB+16G* || =

2’ (/3)

In the first step, we apply Lemma 4.19 to the information structure J restricted to S X T—that is,
to 7" = (Q,P,ST,Y), where X' ={w € Q:0€SreTtand P'[w] =P [w | o € S,7 € T]. The
next two steps follow by the convexity of G* and x/(171°82¢) | respectively. i
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The basic outline of the proof of Lemma 4.19 is similar to that of Lemma 3.2. Once again, we
partition [0, 1] into N intervals. Analogously to Equation 4, and with $*(?)) defined analogously,
we find that

E [D6 (for || )] < E [Do(po || psion)| +E [Da (psieony || pe)] -

As before, we wish to upper bound each summand. However, the fact that the Bregman divergence
is now arbitrary introduces complications. First, it is no longer the case that we can directly
relate the length of an interval to the Bregman divergence between its endpoints. Second, we
consider functions G that become infinitely steep near 0 and 1 (such as the negative of Shannon
entropy), which makes matters more challenging. This means that we need to be more careful
when partitioning [0, 1] into N intervals: see Algorithm C.3 for our new approach. Additionally,
bounding the second summand involves reasoning carefully about the behavior of the function G,
which is responsible for the introduction of G* into the lemma statement. We defer the full proof
of Lemma 4.19 to Appendix C.

5 Connections to Markets

In this work, we established a natural condition on information structures, rectangle substitutes,
under which any agreement protocol results in accurate beliefs. As we saw, a particularly natural
class of agreement protocols are expectation-sharing protocols, where Alice and Bob take turns
stating their current expected value, or discretizations thereof.

Expectation-sharing protocols have close connections to financial markets. In markets, the
actions of traders reveal partial information about their believed value for an asset, i.e., their
expectation. Specifically, a trader’s decision about whether to buy or sell, and how much, can be
viewed as revealing a discretization of this expectation. In many theoretical models of markets (see
e.g. [Ostrovsky, 2012]) traders eventually reach agreement. The intuition behind this phenomenon
is that a trader who disagrees with the price leaves money on the table by refusing to trade. Our
work thus provides a lens into a well-studied question:!* when are market prices accurate? Our
results can be viewed as generalizing and conceptually supporting the result presented in Kong
and Schoenebeck [2023], under which convergence in a popular prediction market design implies
full information revelation in the prices.

An important caveat, however, is that traders behave strategically, and may not disclose their
true expected value. For example, a trader may choose to withhold information until a later point
when doing so would be more profitable. Therefore, to interpret the actions of traders as revealing
discretized versions of their expected value, one first has to understand the Bayes-Nash equilibria
of the market. Chen and Waggoner [2016] studies conditions under which traders are incentivized
to reveal all of their information on their first trading opportunity. They call a market equilibrium
all-rush if every trader is incentivized to reveal their information immediately. Their main result,
roughly speaking, is that there is an all-rush equilibrium if and only if the information structure
satisfies strong substitutes—a different strengthening of the weak substitutes condition. This result
is specific to settings in which traders have the option to reveal all of their information on their
turn—a setting that would be considered trivial from the standpoint of communication theory.

An exciting question for further study is therefore: under what information structure conditions
and market settings is it a Bayes-Nash equilibrium to follow an agreement protocol leading to
accurate beliefs? In other words, what conditions give not only that agreement implies accuracy,

13This is related to the efficient market hypothesis, the problem of when market prices reflect all available information, which
traces back at least to Fama [1970] and Hayek [1945]. Modern models of financial markets are often based on Kyle [1985];
we refer the reader to e.g. [Ostrovsky, 2012] and references therein for further information.
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but also that the market incentivizes participants to follow the protocol? Together with Chen and
Waggoner [2016], our work suggests that certain substitutes-like conditions could suffice.
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A Details Omitted From Section 2

Above we claimed that a positive measure of nxn information structures satisfy rectangle substitutes.
To formalize this claim, we choose a natural measure over n X n information structures, specified
via the following probability distribution over the values of Y and P [0, 7]:

e Alice has signals labeled oy, . . ., 0,—1; Bob has signals labeled 7y, . . ., 7,—1. Correspondingly,
there are n? states which we identify with the pair (i, j). For each i, j, whenever ¢ = o; and
T =1, Y = y(i, j) where y(i, j) is uniformly random in [0, 1].

e The probability distribution over states (i, j) is selected uniformly from the space of proba-
bility distributions over n? states.
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THEOREM A.1. For every n, a positive measure of n X n information structures (per the above
measure) satisfy the rectangle substitutes condition.

Proor. The proof is conceptually quite simple. It suffices to exhibit an information structure
in which the weak substitutes condition (i.e. Equation 1) holds strictly for every S, T such that
|S|,|T| = 2. It then follows that for a sufficiently small §, every information structure in the §-ball
around this one!* also satisfies rectangle substitutes, completing the proof.'

The information structure 7 that we exhibit is as follows: choose any increasing, strictly concave
function f : [0,2(n — 1)] — R (for example, f(x) = v/x). Let y(i, j) = l;{, and let P [(i, j)] be
proportional to ef (/)

For convenience, define the substitutes slack of an information structure to be the additive margin
by which the information structure satisfies weak substitutes, i.e. the right-hand side of Equation 1
minus the left-hand side for S =S and T = 7.

Fix a particular S and T such that |S|,|T| > 2. We wish to show that for sufficiently small
positive values of €, Equation 1 holds strictly. We will show that the substitutes slack of I |s, i.e.
I restricted to S x T, is positive when € is sufficiently small.

In order to prove this, we first consider the following (different) information structure for values
v,a,a’,b,b’,¢c,x,x’,y,y" (obeying comparisons that we specify below). Each row corresponds to a
possible signal value o for Alice, and each column a possible signal value 7 for Bob.

v v+b b’ 1y vy
Y=|ov+a v+a+db - with probability proportional to x cxy O
a - - x 0 0

In this information structure, suppose that x’ < x < ;' <y < L;and1 < ¢ < % % (so
xy < cxy < x,y). It can be verified (e.g. with a computer algebra system) that the substitutes slack
of this information structure is 2abcxy + O(xy).

We will transform this information structure into Zs while (approximately) preserving substi-
tutes slack. To foreshadow the correspondence, define is and i; be the smallest and second smallest
values of i such that o; € S, and define jr and j; analogously. The rows of the information structure
above will correspond to o = oy, o, and all other values of o € S, in that order; the columns will
correspond to 7 = 7, i, and all other values of 7 € T, in that order.

Set x 1= ef Ustin=Flistin) y = eflisti=~flistin) and ¢ i ef Ustin4f (hip=Flistin) = i) | gq
that cxy = ef Us*/7)=f(is*J1) Note that these values satisfy the aforementioned inequalities involving
and

x, Y, and c. (The fact that 1 < ¢ follows from the strict concav1ty of f.) Seto : a:=

2n’ Zn ’

b':JTZ—JT Set x’ sothatP[1>zS |z€S]:]T] = o and y’ sothatP[] > jr |z—15,]€T] =

1+y+y Weseta’ :=E [y(l jr) li>ig i€ S] and b’ = E [y(ls,]) | j>jp.J€ T]

We now make the following transformation to this information structure: we replace the third
row with [S| — 2 rows, each corresponding to a different i > i;. As before, each signal will only
be possible in conjunction with Bob’s first signal; the value of Y for the signal corresponding to
o; in 7 will be %, and the probability will be P [(i, jr)]. Note that this simply “splits" Alice’s
third signal into multiple (more informative) signals while preserving the total probability and

4We can for example define the distance between information structures 7 and 7 as 2y ) -y @ N2+ PG J)] -
B[, )2

15This uses the continuity of the terms in Equation 1. Note that the continuity of conditional expectations relies on the
conditioning events having positive probability, as is the case in the information structure that we exhibit. Note also that
we need not concern ourselves with cases in which |S| = 1 or |T| = 1, since in those cases the equation is necessarily an
equality.
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expectation (this is due to how we picked a’, b’, x’, y’ above). This does not affect the substitutes
slack of the information structure, because the value of Bob’s signal does not change as a result of
the transformation (regardless of whether Alice’s signal is known).

We make the same transformation but this time to Bob, replacing the third column with |T| — 2
columns. The transformation is otherwise analogous, and the substitutes slack again does not
change.

Finally, in our last transformation we make this information structure match 7 exactly. Note
that the information structures already match in the first row (i = is), and in the first column
(j = Jjr), and in the (second row, second column) entry ((i, j) = (i, j;)). All other entries in 7 have
probabilities that are o(cxy) (recall that cxy = ef s*/r)=f(is+i1)) A a consequence, adding these
entries to the information structure that we are transforming only changes the substitutes slack by
o(exy).

Therefore, I has substitutes slack 2abexy + o(cxy) > %ef(i/s+le)_f(i5+jT)(1 + 0(1)). This is
positive for e sufficiently small, as desired.

We complete the proof by setting € to be such that it is sufficiently small (in the above argument)
for all S, T such that |S|, |T| > 2. O

B Details Omitted From Section 3

ProOF OF CLAIM 3.3. We claim that in fact we can choose the x;’s so that each x; isin [ £ — 5k, & + 7k |-
This ensures that each interval has length at most %

For x € [0, 1], let p(x) be the probability that x is between u, and y,, inclusive. Note that
P [k(0) # k()] < TN p(x:).

Observe that if x is selected uniformly from [0, 1], the expected value of p(x) is equal to |uy — 7|,
because both quantities are equal to the probability that x is between p, and p,. Therefore, if (o, 7)
is additionally chosen according to P, we have

Ex<—[0,1] [P(x)] =E [|,uc _/lr” <+E [(,uo - :ur)z] = \/E

This means that

L] [p(0)] < VeN.

N-1
Z; By [i-piv ] [Pl = (N=DE, [
i=

Thus, if each x; is selected uniformly at random from [ﬁ - ﬁ ﬁ + ﬁ], the expected value of

P [k(o) # k(r)] would be at most v/eN. In particular this means that there exist choices of the x;’s

such that P [k(o) # k(7)] < VeN. O

PRrOOF OF LEMMA 3.2. Fix a large positive integer N (we will later find it optimal to set N = ¢~1/),
Consider a partition of [0, 1] into N intervals [0, x;), [x1, x2), . . ., [xn—_1, 1] satisfying the conditions
of Claim 3.3. Let S®) := {0 € S : x3_; < piy < xi}. Additionally, let k(o) and k() be as defined in
Claim 3.3.

Our goal is to upper bound the expectation of (pg; — p7)?. In pursuit of this goal, we observe
that by the Pythagorean theorem, we have

E [(tor = p2)?] = E [(tor — pson)?] + B [(swon, — p)?] -

We now use the rectangle substitutes assumption: for any k, by applying Equation 2 to § = $¢)
and T = 7, we know that

E [(ﬂa —psw)? | o€ S(k)] >E [(llaf — psy)’ | o€ S(k)] .
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Taking the expectation over k (i.e. choosing each k with probability equal to P [cr e s ] ), we have
that
E (o — pswon)?] 2 E [(tor — psken)?] - 7)

Therefore, we have

E [(tor — 1e)?] < E (4o = psieon)?] +E [ (usikion, — )] - 6)
We will use Claim 3.3 to argue that each of these two summands is small. The argument regarding the
first summand is straightforward: for any o, we have that xx(») < o, isk@) < Xk(a)41 < Xk(0) + %,
which means that E [(p(, - ,Us(k(a)))z] < %.

We now upper bound the second summand.!® For any 7 € 77, let p(#) = P [r = 7] and q(%) =
P[r=1% k(o) # k(r)]. Then X ;cqp(7) = 1 and Y, ;c4q(7) < +/eN. Observe that

E [(pskon, — p2)?] = ZP(f)E [(psireons — pe)? | T=17]

= Z(p(f) — q(D)E [(pswion; — p2)? | 7= £, k(o) = k()]

+q(D)E [(ﬂs(k(o‘)){. — )’ | =1 k(o) # k(f’)] . 9)
To handle the first expectation, we note that if k(o) = k(7), then |,u5(k(a))T ,ur| < q(T) . To see
this, observe
p(D)pz = (p(7) — q(£)) pskon z + q(F) g\ sk 7 -
Rerranging and taking absolute values, we conclude
P(2) |usikion s — pz| = q(2) s s — pg\son| < q(#).
Therefore, recalling q(7) < p(7), we have
_ q())? @ _
(p(£) = q(D)E [(nskons — pe)* | 7= £,k(0) = k()] < (p(9) - q(2)) () p( 5 < q(1).

On the other hand, we can bound the second expectation in Equation 9 by 1. Therefore we have
E (s, — )] < Y () +q(5) =2 q(#) < 2VeN.
7 7
To conclude, we now know that

4
E [(/10'1' _,UT)Z] = F + ZVEN-

1/3

Setting N = e~'/¢ makes the right-hand side equal to 6€'/3, completing the proof. O

ProprosiTION B.1. Consider the following protocol, parametrized by € > 0. Alice and Bob send
their initial expectations to each other, rounding to the nearest multiple of €. This protocol entails
communicating O(log 1/¢) bits. At the end of the protocol, Alice and Bob 2€*-agree and are €*-accurate
(with respect to G(x) = x?).

Proor. Let S be the set of possible signals of Alice at the end of the protocol which are consistent
with the protocol transcript, and define T likewise for Bob. Recall that we use S and 7~ to denote
the sets of all of Alice’s and Bob’s possible signals, respectively. We have

E [(ﬂo‘z‘ - ,UST)Z] <E [(.UO' - HS)Z] <é

16The proof below takes sums over 7 € 7 and thus implicitly assumes that 7" is finite, but the proof extends to infinite 7,
with sums over 7 replaced by integrals with respect to the probability measure over 7.
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since pi, and pg) are guaranteed to be within € of each other by construction. Thus, Bob is €?-
accurate, and likewise for Alice. By the %-approximate triangle inequality for G(x) = x?, it follows
that Alice and Bob 2e2-agree. i

C Details Omitted From Section 4
PRrROOF OF PROPOSITION 4.8. Let g = G’. We have
E [Dg(A || B)]+E [Dg(B || O)] —E [Dg(A || O)]
=E [G(A) - G(B) - (A-B)g(B) + G(B) - G(C) — (B-C)g(C) —G(A) + G(C) + (A - C)g(C)]
=E [(A-B)(9(C) —g(B))] =E [E [(A-B)(9(C) —g(B)) | 1]
=E[(9(C)-g(B)E[A-B|F1] =E[(9(C) —g(B)(E[A|F]-B)] =0.
The third-to-last step follows from the fact that g(C) — g(B) is ¥ -measurable (we are using the

“pulling out known factors" property of conditional expectation). The last step follows from the fact

that E[A | F] =B. O
ProposiTION C.1. Let G be a differentiable convex function on the interval [0, 1]. For all0 < a <

b <1, we have

(i) %(Dg(a || x) + Dg(b || x)) = FBs(a,b) for everyx € [0,1].
(ii) JBg satisfies the reverse triangle inequality: for every x € [a, b], we have JB5(a, x)+JBg(x, b) <

jBG(a, b)
(iii) For alla < a’ < b’ < b, we have JB;(a’,b’) < JBs(a,b).
(iv) For a random variable X supported on [a, b], we have

E [De(X | E[XD] =E [G(X)] - G(E [X]) < 2]Bg(a,b).

Proor. Fact (i) follows from Proposition 4.2. Regarding Fact (ii), without loss of generality
assume that x < %b and that G(x) = G (# (uniformly adding a constant to the derivative
of G does not change any Jensen-Bregman divergence, hence the second assumption). Then
G (‘”Tx) > G(x), soJBg(a,x) < w Since blzx > %b, we also have that G (HTX) > G(x), so
JBg(b,x) < w. Thus, we have

G(a) +G(b)
2

JBG(a, x) +JBg (b, x) < -G(x) =

G(a) + G(b) a+b
2 _G( 2

)  JBo(a.b).

Fact (iii) follows from Fact (ii): we have
JBg(a,b) =JBg(a,a’) +]Bg(a’,b’) +]JBs(b',b) = JBg(a’, b’).
Regarding the equality in Fact (iv), we have
E [Do(X || E [XD] =E [G(X) - G(E [X]) = (X - E [X])G'(E [X])]
=E[G(X) -G(E [XD] =E [G(X)] - G(E [X]),
where the first step follows from the fact that E [(X — E [X])G’(E [X])] = G'(E [X])E [X - E [X]],
and E [X - E [X]] =0.

Regarding the inequality in Fact (iv), without loss of generality assume that E [X] < %b. By
convexity we have that

a+b b%a asz_ [X]
G( 5 )Sb—E[X]G(E[X])+—b—E[X] G(b),



EC ’23, July 9-12, 2023, London, United Kingdom Rafael Frongillo, Eric Neyman, and Bo Waggoner

SO
JBg(a,b) = G(a)+G(b)—ZG(a+b)
b-—a a+b-2E [X]
> G(a)+G(b) - = E[X]G(E[X])—WG(@
B E[X]—-a b-
—G(a)"'m(}(b) WG(E[ D
_ b-a (b-EI[X] E[X] -
-t [ oeet + S 6 - 6(5 [X))
> 260+ X 60) 6@ x) 2 B 6(0] - 6E X)),

In the last step we use the fact that for a convex function f and a random variable X defined on an
interval [a, b] with mean y, the maximum possible value of E [ f(X)] is attained if X is either a or
b with the appropriate probabilities. O

Proor oF THEOREM 4.11. Suppose that Alice and Bob do not e-agree at time step ¢, and without
loss of generality assume that the next turn (number ¢ + 1) is Alice’s. We begin by observing that,
by Proposition C.1 (i), we have

E [Dg(por, |l ps,1,) + D (ps,e | ps,1,)| = 2E [IBg (poty. pis,e) | > 2e.
Therefore, either E [DG(,ugT[ [| ,US[T,)] > 2—5 orE [Dg(pstf I FS,T,)] > 476

" sc

Case I: E [DG (por, |l [JstTt)] > 26 . Let us use “hi," “lo," and “md" to denote the events that Alice
says “high," Alice says “low," and Ahce says “medium,’ respectlvely. We have

2?6 < E [D6(por, | ps,1,)] = B [E [De (o, Il pis,1,) | St Tt |
= E [E [De(tor, || 5,1,) - Tniorto | S]] + B [B [Do (o, Il ps,7,) - Lima | S0 T ]
<E [E [DG(HaTt Il #s,7,) - Lhiorlo | St,Tt]] + g,
where “| S;, T;" is short for “| o € S;, 7 € Ty, a notation we use throughout the proof. We thus have

E [E [Do(por, | ps,7.) - 1ni | St. o] | + B [E [Dg (por, || ps,7,) - Lio | St ]| > (10)

E
We now make use of the following lemma.

Lemma C.2. Suppose that turn t + 1 is Alice’s. Let “hi" denote the event that Alice says “high." Let
=E [De(por, Il ps,7,) - Lni | S0 Ti]. Then

ae
8M +2¢’

The analogous statement is true if Alice says “low," and likewise if it is instead Bob’s turn.

[DG(IlSt+1Tt+1 I s, 1,) - Lpi | S, Tt]

We assume Lemma C.2 and return to prove it afterward. This lemma translates Equation 10 into
a statement about how much Charlie learns. Specifically, we have that

E D (ps, i | ps,1,)| =B |E [D(ps, ot | s,1) 1 Se. T |
> E [E [DG(”St+th+l ” /JS:Tz) ' ]lhi | St, Tt]] +E [E [DG(IlSt+1Tt+1 ” iuSth) ' 110 | St’ Tf]]

> 8M€+ 5o (B [E [Dg (por, 1| s,7,) * Lni | Se. T¢] ] +E [E [D6 (o, Il s,7,) - Lio | St T2]])
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62

> —.
6(8M + 2¢)

Case 2: B [DG (ps,z |l HS,TZ)] > 4—36. Using the Pythagorean theorem to write the same Bregman
divergence in two ways, we have that

E [DG (/lst+lf ” Ilst+1Tt+1):| +E [DG(:uStﬂTtn ” /lSth)] =E [DG (”St+17 ” :uStTt)]
4e
=E [Dg s,z || ps,e)| + B [Do (s« || ps,1,)] = E [Do(ps, |l ps,1,)]| = 3
This means that one of the two summands on the left-hand side is at least %e
Case 2a: E [Dg(,usmr 1 luSt+1Tt+1)] > 23—6 In that case we have that
2
E [DG (45 pesTrey | BSpiTin) | 2 (M +20)
by the same logic as in Case 1.
2 2
Case 2b: E [Dg (ps, 1 |l psim) | = 58 > 5 > ST
In each of our cases, we have that
E [Do(Y || ps,1,) = Do (Y |l ps,37s) | = E [D6(s,ant | Hsi1,) ]
2
=E [D6 (4s,esTrey | B50iT) | + B [D (g5, i1 | is,7,) ] 2 ST 20)
Therefore, the total number of steps until agreement is first reached cannot be more than
M 24M(4M + €)
2. — = .
__e €2
6(8M+2¢)
This completes the proof. O

We now prove Lemma C.2.

Proor or LEMMA C.2. We will restrict our probability space to outcomes where Charlie knows
Sy, T; at time ¢ (and thus omit “| S;, T;" from here on). For convenience, we will let A := p,7, be
Alice’s expectation (a random variable) and ¢ := s, 7, be Charlie’s expectation (which is a particular
number in [0, 1]). We will let €” := £, so that if Alice says “high" then Charlie knows that A > ¢
and that Dg(A || ¢) > €’.

Let D(x) := Dg(x || ¢) = G(x) — G(c) — G’(¢)(x — ¢), and let d;, := E [A | hi]. Note that if Alice
says “high" then ps,,,1,,, = dp. In our new notation, we may write = E [D(A) | hi] - P [hi], and
we wish to show that D(dy) - P [hi] > % Put otherwise, our goal is to show that

D(ap) S €’
E[D(A) | hi] ~ 2(M+¢’)’
For convenience we will let B denote the quantity on the left-hand side.

Let apmin be the number larger than ¢ such that D(a) = €’, so that A > apmin whenever Alice says
“high."1” Observe that since D is convex (Bregman divergences are convex in their first argument),

7If D(a) < € for all a > c then Alice never says “high" and the lemma statement is trivial.
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for a fixed Value of dp, the value of E [D(A) | hi] is maximized when A is either apmi, or 1 (with

an— ahmm
1—-apm,

probablhtles - and , respectively). Therefore we have

D(ﬁh) . D(ax)(1 — anmin)

B= — > . = ) 11
E(D(A) | 11] = (1= dn)e’ + (@ — dumin) D(1 v
Case 1: (1 — ap)€’ = (dp — apmin)D(1). In that case we have
5o D@0~ ) €0 am) 1€
2(1 —dp)e’ 2(1—ap)e’ 2 2(M+¢€)
Case 2: (1 — ap)€e’ < (dp — apmin)D(1). In that case we have
D(a 1- min
5 D(@) (1= amin) 2

~ 2(ap - ahmin)D(l).
Case 2a: D(1) < ﬁ(M + ¢’). Then we have
D(ap)(1 - ahmin) s _ € (1 — anmin) (dn — ¢)
" 2(8h — apmin) - 2= (M +€) ~ 2(M+€) (dp — hmin) (1 =)’

(In the last step we again use that D(dy) > €.) Now, it is easy to verify that the second fraction is at
least 1 (this comes down to the fact that apmin > ¢), so we indeed have that B > 2’(A§—+€)
Case 2b: D(1) > ﬁ(M + €’). We claim that for all x > ¢, we have that
D(x) > ?D(l) ~M. (13)

-c

To see this, suppose for contradiction that for some x we have D(x) < =-D(1) — M. Then

G(x) = G(e) =G () (x = ¢) < T—=(G(1) = G() = G'(e) (1= ) = M
—-c
(1-0)G(x)—=(1-¢)G(c) < (x=¢)G(1)) = (x=¢)G(c) - (1 —c)M
(1-x)G(c) + (x—¢)G(1)
1-c¢ ’

On the other hand, we have that both G(c) and G(1) are less than or equal to G(x) + M, by definition
of M. This means that

G(x)+M <

G(1),G(c) < L= X)G(Ci * ‘(:x ~0G(1)

but this implies that G(1) < G(c) and that G(c) < G(1), a contradiction.

Plugging in x = aj into Equation 13, we find that

D(ap) = D(l)
Plugging this bound into Equation 12, we get that
a C
. (452D M) (=) 1 g - o
B 2(dp — apmin)D(1) 2(dp — apmin)  1-c¢ ah CD(].)
1 — Ghmin ap —c¢ M S €
~ 2(dp — Gpmin)  1-—c M+¢e')  2(M+¢)’
where in the second-to-last step we use that D(1) > ﬁ (M + €’) and in the last step we again use
the fact that U=Gmn)(@=¢) ~ O

(@n—anmin) (1-c) =
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Proor or LEmMA 4.19.
We will partition [0, 1] into a number N of small intervals I; = [xg = 0,x1), [ = [x1,x2), I5 = [x2, x3),
..o IN = [xN-1,xn = 1] with certain desirable properties (which we will describe below). For
k € [N], we willlet %) := {6 € S : yi, € It}. For a given o € S, we will let k(o) be the k such
that o € S,

Our goal is to upper bound the expectation of DG (ts- || fiz). In pursuit of this goal, we observe
that by Proposition 4.8 we have

E [Dg (por || )] = E [ D6 (por | psion)] +E [Da(pswony | pe)] - (14)
Now, for any k, by applying Equation 6 to S = S*) and T = 7", we know that

B | Dot Il 510) 1 59| 2 B | D6 (hor Il s 1 59|

(Here, “| S is short for “| o € S() ") This is our only use of the rectangle substitutes assumption.
Now, taking the expectation over k (i.e. choosing each k with probability equal to P [cr e s ] ), we
have that

E [Dg (ko |l pskon)| = B [Da(por || pskon)] -
Together with Equation 14, this tells us that

E [D6 (por | )] < E [Dg (o || psikion)] +E [Da (psiion, || pe)] - (15)

Our goal will be to bound the two summands in Equation 15. We will specify the boundaries of the
intervals Iy, . . ., Iy with this goal in mind.

On an intuitive level, we are hoping for two things to be true:

o In order for the first summand to be small, we want yi, and pig(o)) to be similar in value. In
other words, we want each interval is “short” (for a notion of shortness with respect to G
that we are about to discuss).

o In order for the second summand to be small, we want yigx(s)), and p, to be similar in value.
In other words, the estimate of a third party who knows 7 shouldn’t change much upon
learning k(o). One way to ensure this is by creating the intervals in a way that makes the
third party very confident about the value of k(o) before learning it. Intuitively this should
be true because Alice and Bob approximately agree, so Alice’s estimate is likely to be close to
Bob’s. However, we must be careful to strategically choose the boundaries of our intervals
X1,...,xN-1 so that Alice’s and Bob’s estimates are unlikely to be on opposite sides of a
boundary.'®

What, formally, do we need for the first summand to be small? For any k, we have pgx) =
E [,u,, | o e st ] . We can apply Proposition C.1 (iv) to the random variable X = y,; on the probability
subspace given by o € S%). Since X takes on values in I, we have that

B [ Do (o | nsw) 1 5| < 2B (1) (16)

where JBg(Ix) is shorthand for the Jensen-Bregman divergence between the endpoints of I.
Therefore, if JB;(Ix) is small for all k, then the first summand (which is an expected value of
E [Dc(yg Il ) | S(k)] over k € [N]) is also small.

What about the second summand? As per the intuition above, we wish to choose our boundary
points xi, ..., xn-1 so that Alice’s and Bob’s estimates are unlikely to be on opposite sides of any

8This limits how many intervals we can reasonably use, which is why we cannot make our intervals arbitrarily short to
satisfy the first of our two criteria.
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boundary. Let y_ = min(y,, ji;) be the smaller of the two estimates and y; = max(yg, ji;) be the
larger one. We say that p_, j1, thwart a point x € (0,1) if p- < x < py and p_ # p,.. We define the
thwart density of x to be

p(x) =P [p, py thwart x] .

Roughly speaking, we will choose x1, ..., xn-1 such that p(x) is small on average.

We will approach this problem by first creating intervals to satisfy the first criterion (short
intervals), without regard to the second, and then modifying them to satisfy the second without
compromising the first. Formally, we choose our intervals according to the following algorithm.

Algorithm C.3 (Partitioning [0, 1] into intervals I, ..., In).

’
1

all have Jensen-Bregman divergence between f and %, inclusive, where f and ¢ are as in
the statement of Lemma 4.19. (N is not pre-determined; it is defined as one more than the
number of intervals created.) (See footnote for why this is possible.'?)

(2) Let x; := 0,xy_, := 1 for convenience. Define I; := [x;_,x/]. For k € [N — 1], let a; :=

(1) Choose points 0 < x; < x; < -++ < x};_, < 1 such that the N — 1 intervals thus created

infyer, p(x). Let xi € I} be such? that p(x) < 2.
(3) Return the intervals I} = [0,x1), I, = [x1,%2),...,In = [xn-1, 1].

We begin by observing that for any k € [N], we have

1 4p
JBG (Ix) = JBg (xk—1, %) < JBg(x{_p.x;) < Z(JBG(X;C,Z,X;C,Q +]JBg(x;_1, %)) < =
where for convenience we define x’ | := 0, x]’V := 1. Therefore, by Equation 16, we have
8p
E [De (o || psieon)] < TR (17)

It remains to bound the second summand of Equation 15, E [DG (pstkn |l ,u,)] , which is the
bulk of the proof. We proceed in two steps:

(1) (Lemma C.4) We show that Z]k\]: | o is small. This means that Alice’s and Bob’s estimates are
unlikely to lie on opposite sides of some boundary point xi. As a consequence, Bob is highly
likely to know k(o) with a lot of confidence

(2) (Lemma C.7) We bound the second summand as a function of Zlk\]: 1 k. The intuition is that if
Dk ak is small, then Bob is highly likely to know k(o) with a lot of confidence, which means
that he does not learn too much from learning k(o).

We begin with the first step; recall our notation p~ := min(y,, g;) and p* := max(yg, fir)-

LemmA C 4.
)1/(1—log2 c)

N
€
ZZak < 4(—
=1 pe

PDefine x1 so that JB5(0,x]) = ? (this is possible because JBg is continuous in its arguments). Define x;, so that

JBg (x7,x3) = ? Keep going until an endpoint x};_, is defined such that adding x};_, as before would leave an interval

(xy_y» 1) with Jensen-Bregman divergence less than 2. Now, instead of defining x},_, in this way, define it so that

c
JBG (X _3 Xn_p) = JBG (xyy_p 1). Since JBg (x3y_5 1) = ? the c-approximate triangle inequality that we have by
assumption tells us that JBg (x,_s, X5_,) =JBg (x}y_, 1) = B.
20If the infimum is achieved (e.g. if the space of signals to Alice and Bob is finite), then we can set x := arg min, p(x).
Our algorithm works in more generality, at the expense of a factor of 2 in our final bound. Note that by replacing 2 with a

smaller constant can arbitrarily reduce this factor.
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Proor. We use the following claim, whose proof we provide afterward.

Cramm C.5. Let I = [x7,x%] be any sub-interval of [0,1] and let a = inf,¢; p(x). Then there
is an increasing sequence of points zy == X, 21,22, . - .,ZL-1, 2L = x*, such that for every £ € [L],
Plp- < zp1,p4 2 2¢] 2 4, and where

2
L<— Z Plp- < zp—q < py < zg].
a
te[L]

We apply Claim C.5 to the intervals I}, .. ., I, _,, witha = ay. Let zx, . . ., 2k 1, be the points whose
existence the claim proves, and let ry := X ¢, | P [/1, < Zpp-1 < iy < Zk,[:l, so that Ly < aikrk.
Observe that )}, rr < 1, because the intervals (zj ¢_1, zk (] are disjoint for all k, #. We make the

following claim (we provide the proof afterward).

Craimm C.6.

a 1-log, ¢ €

_ < —. 18
> (Zrk) % (18)

ke[N-1]
We may rewrite Equation 18 as

1/(1-log, ¢)

Z N ﬂ 1-log, ¢ . i 1/(1-log, )
21k ~\Be '

ke[N-1]

Recall that }; rr < 1. Scaling the r’s to add to 1 decreases the left-hand side above, so we may
assume that Y, ri = 1. Note that x!71°8:¢ is convex. Thus, by using a weighted Jensen inequality
on the left-hand side with weights r, we find that

1/(1-log, )
c

1-log,
1 A A 2 €
- > =) rg-—< re|=— <|\=
2 ; k ; k 2rk Z k (Zrk) ﬂc

)1/<1—logz 0)
ke[N-1]

This completes the proof of Lemma C 4. O

ProOF OF CLamM C.5. Let z; = inf{z : P [y < zp < py < 2] > §}, or x* if this number does not
exist or is larger than x*. Note that P [u_ < z¢ < py] > «, as we have p(z0) =P [p- < zo < piu] +
Plu- < zo=p+] = @, so if the first term were less than @ we would have some z’ > z; with

p(z’) < a. On the other hand, P [p- < 2o < py < z1] < %, since

Plu-<zo<pr <z = lim Plu- <zo < py <7]
z—2z; from below

and if the right-hand side were more than ¥ then that would contradict the definition of z; as an
infimum. Therefore, P [u- < zo, iy > 21] 2 5.

Ifz; = x*, we are done. Otherwise, let z; = inf{z : P [u- < zy < py <z] > §}.ThenP [y <z, 1y 2 22] 2
. Define z3 analogously, and so forth.

All that remains to show is the upper bound on L. This is where we use the fact that (by
construction) P [y < zp-1 < py < 2z¢] 2 §. Summing over all £, we have

Plp- <zpoy < py < z0] 2 %L,
te[L]

which (after rearranging) completes the proof. O
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Proor orF CLamm C.6. First note that by construction, JB;(I;) > f for all k. By repeated use of
the c-approximate triangle inequality,?! we find that

log, ¢
2rge 2rge 2 2
E JBG (zke-1, 2k,0) 2 CI-IOgZLk-IJBG(I;é) > 8 JBg (L) = cHlog: B=c (aL:) B
te[Ly]

On the other hand, we have
€ 2 E B (ko )] = ) P [0,7] JBG (oo pie) 2 D Blovel > IBg(zreo, 2ke)

kb <z p-q
P+ 22,0

Qk
= Z P [p- < zie-1 e > zie| B (2i-1 2k0) > Z 7JBG(Z/<,€—1, Zk,p)-
Kt Kt

Here, the third step follows by the reverse triangle inequality (Fact (ii) of Proposition C.1) and the
fourth step follows by rearranging the order of summation.?” Combining the last two facts gives us

that
log, c—1

ag 2rk logy ¢ 2rk
€2 —c|l— = e | — c,
N IO by B
which rearranges to the desired identity. O

We are now ready to bound the second summand, i.e. E [DG (pston || ,uf)] , where k(o) is the
k such that Alice’s estimate p; lies in I;.. For convenience we will define k(7) for Bob by analogy as
the k such that y; lies in Ir. By Lemma C.4 and the preceding discussion, we know that

o \V/(-log; )
Plk(o) #k(r)] <4 (—)
PBe
LemMA C.7. Let Q =P [k(o) # k(7)]. Then
E [De (pswon, || )] < 2G*(Q).

The key idea is that because k(o) = k(r) with probability near 1, learning k(o) is unlikely to
make Bob update his estimate much.

Proo¥. Consider any signal 7 € 7~ and let p(7) = P [t = 7]. We have®
E [Dg (pswon, || po)] = Zp(f)E [Do (pseons Il pz) | 7=7].
TeT

Note that p; = E [lJS(k(O‘))f. | 7= f'], so by Proposition C.1 we have that

E [Do(pswon || po)] = Zp(f) (E [Gluswens) | 7=2] = Glpz) -
teT
Let () =P [r = £, k(o) # k(?)], 50 X;e7q(f) = Q. Then
E [G(uswons) | T=%] = G(uz) =

’% (B[O = 6]} + L3 (8 [Glasion) | 7= 2k(0) # k()] = Gl

21We sub-divide I,’< into [z, 2k, /2] and [2k 1 /2, 2k, ], then subdivide each of these, and so on.

22The case that the space of signals is infinite is identical except that the summation is replaced by an integral over the
probability space.

ZThis proof takes sums over 7 € 7 and thus implicitly assumes that 7~ is finite, but the proof extends to infinite 77, with
sums over 7 replaced by integrals with respect to the probability measure over 7.

q(%)
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ZET; M, since M is the range of G. To bound the first term, we note that
q(?)

Hgk#) ; cannot differ from p; by more than »(H)—q(5) a8 otherwise the average value of pig)) ;

The second term is at most

could not be y;. Therefore, E [G(/ls(k(f))f—) - G(,uT)] is bounded by the largest possible difference

in G-values of two points that differ by at most 1#%. Therefore, we have

E [Dg (pseon Il pe)] < Zp( )(p(r) q(r) ( ACI(f) A ) q(r)M)

= p(7) p(H)—q(®)]  p(P)
@
<oM+ Y (p(3) - q(#)G (q—)
2 GG

where G is defined as in the statement of Lemma C.7. If G is symmetric on [0,1], then G(x) =
G(0) —G(x) forx < 3 and M otherwise. This is a concave function, but G is not in general concave.
However, consider G as defined in the lemma statement, so G(x) < G*(x) for all x. Then

o a®)
E [DG(HSUc(o))T Il #r)] <OM+ ;(p(r) —4(®))6 (M)

AP B 2ier q(7)
SQM+(;T(1)(T) q(f))) G (Zferr(p(f)—q(f)))

Q

—QM+(1—Q)G( Q)<QM+G(Q)<2G(Q)

q(%)
p(1)—q(7)

the second-to-last step follows from the fact that G* is convex and G*(0) = 0, and the last step
follows from the fact that G* is convex and G*(1) = M. O

Here, the second step follows by Jensen’s inequality with terms

and weights p(7) — q(%),

)1/(1 log, c)

Since Q < 4 ( , combining Lemma C.7 with Equation 17 gives us the following result.

8 ., € 1/(1-log, c)
E [De (tor || )] < c—f +26 (4(—) .

pec

Be

Noting that G* is concave and ¢~/(171°&:¢) < 2 (which is true for all 0 < ¢ < 1) completes the proof
of Lemma 4.19. o

D Alternative Definitions of Agreement and Accuracy

For arbitrary Bregman divergences, there are several notions of agreement and accuracy that are
worth considering. Before we discuss these, we make a note about the order of arguments in a
Bregman divergence. In our context, it makes the most sense to talk of the Bregman divergence
from a more informed estimate to a less informed estimate. By a “more informed estimate" we mean a
finer-grained one, i.e. one that is informed by more knowledge. For example, in terms of estimating
Y in the context of this work explores, Y is more informed than i, which is more informed than
Lo and ps;, which are each more informed than pgr, which is more informed than E [Y].

To see that this is the natural order of the arguments, recall that Bregman divergences are
motivated by the property that they elicit the mean (see Proposition 4.2): if an agent who gives
an estimate of x for the value of a random variable Y incurs a loss of Dg(Y || x), then the agent
minimizes their expected loss by reporting x = E [Y]. This means that the expert ought to report
the expected value of Y given the information that the expert knows.
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This means that given two estimates of Y, Z; and Z,, of which Z; is more informed, the quantity
Dg(Z; || Z,) has a natural interpretation: it is the expected amount the expert gains by learning
more and refining their estimate from Z, to Z;. This follows by the Pythagorean theorem:

E [Dg(Zy || Z2)] =E [Da(Y || Z2)] - E [Da(Y || Z1)]

D.1 Alternative Definitions of Agreement

One important motivation for using the Jensen-Bregman divergence to the midpoint as the definition
of agreement is that this quantity serves as a lower bound on the expected amount that Charlie
disagrees with Alice and Bob. Formally:

DEerFINITION D.1. Let a, b, and ¢ be Alice’s, Bob’s, and Charlie’s expectations, respectively (these are
random variables on Q). Alice and Bob e-agree with Charlie if 1 (E [Dg(a || ¢) + Dg(b || ¢)]) < e.

(This is the order of arguments because Alice and Bob are more informed than Charlie.) By
Proposition C.1 (i), we know that if Alice and Bob e-agree with Charlie then they c-agree.

As it happens the fact that under this (stronger) definition of agreement implies accuracy under
rectangle substitutes follows immediately:

ProrosiTION D.2. Let I = (P, S,7,Y) be an information structure that satisfies rectangle
substitutes. For any communication protocol that causes Alice and Bob to e-agree with Charlie on I,
Alice and Bob are 2e-accurate after the protocol terminates.

Proor. Let S be the set of possible signals of Alice at the end of the protocol which are consistent
with the protocol transcript, and define T likewise for Bob. Recall that Charlie’s expectation is ysr.
We have

E [Dg (por | ps)] < B [Dg(por || pst)] < B [Dg(por || pst)] +E [Da (pse || pst)] < 2e,

where the first inequality follows by rectangle substitutes and the last inequality follows because
Alice and Bob e-agree with Charlie. O

The drawback of Definition D.1 is that it is not so much a definition of Alice and Bob’s agreement
with each other, so much as a definition of agreement with respect to the protocol being run (since
Charlie only exists within the context of the protocol). Put otherwise, it is impossible to determine
whether Alice and Bob e-agree with Charlie simply by knowing Alice and Bob’s expectations; one
must also know Charlie’s expectation, which cannot be determined from Alice’s and Bob’s expecta-
tions. The question “how far from agreement are Alice and Bob if Alice believes 25% and Bob believes
30%?" makes sense in the context of e-agreement, but not in the context of e-agreement with Charlie.

A different notion of agreement, which (like e-agreement) only depends on Alice’s and Bob’s
expectations, uses the symmetrized Bregman divergence between these expectations: %(Dc(a I

b) + Dg(b || ).

DEFINITION D.3. Let a and b be Alice’s and Bob’s expectations, respectively (these are random
variables on Q). Alice and Bob satisfy symmetrized e-agreement if%(DG(a || b) + Dg(b || a)).

By Proposition C.1 (iii), we know that if Alice and Bob satisfy symmetrized c-agreement
then they e-agree.

In our context, symmetrized Bregman divergence is less natural than Jensen-Bregman divergence.
This is symmetrized Bregman divergence (unlike Jensen-Bregman divergence) does not seem to
closely relate to our previous discussion of the Bregman divergence from a more informed to a less
informed estimate being most natural.
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D.2 Alternative Notions of Accuracy

Our definition of Alice’s accuracy as the expected Bregman divergence from the truth y,, to Alice’s
expectation seems like the most natural one. However, one may desire a definition of accuracy that
takes both Alice’s and Bob’s expectations into account, judging the pair’s accuracy based on their
consensus belief, rather than each of their individual beliefs. For instance, one could say that Alice

and Bob are e-midpoint-accurate if E [DG (,um | %h)] < €. By this definition, Alice’s and Bob’s

expectations could individually be far from the truth, but they are considered accurate because the
average of their expectations is close to correct.

ProrosiTION D.4. If Alice and Bob are e-accurate, then they are 2e-midpoint-accurate.

Proor. Observe that for all a, b, y it is the case that
a+b
Dg |y Il ——] < max(Do(y Il a). Do(y I b) < Do(y Il @) + D (y || b).

The first inequality is true simply because “zib lies in between a and b. Therefore,

2 |o (v %”) <E[Do(y | @)+ Daly || )] < 2e.

]

Another natural choice for Alice’s and Bob’s consensus belief is the QA pool (see [Neyman and
Roughgarden, 2021b]). Proposition D.4 likewise holds for the QA pool in place of the midpoint, and
indeed holds for any choice of consensus belief that is guaranteed to lie in between Alice’s and
Bob’s expectations. Thus, any such definition will be weaker than our definition of e-accuracy for
Alice and Bob (up to a constant factor).

To summarize, among the above definitions of agreement, e-agreement is the weakest; and
among the above definitions of accuracy, Alice’s and Bob’s e-accuracy is the strongest. This is an
indication of strength for Theorem 4.18: it starts from a relatively weak premise and reaches a
relatively strong conclusion.

E Implications for Communication Complexity

Our results can be framed in a communication complexity context, where they imply that “sub-
stitutable” functions can be computed with probability 1 — § (over the inputs) with a transcript
length depending only on §. This is a nonstandard and weak notion of computing the function,
but sketching the reduction may inspire future work on connections between substitutes and
communication complexity.

In a classic deterministic communication complexity setup (e.g. [Rao and Yehudayoff, 2020]),
Alice holds o € S, Bob holds 7 € 7, and the goal is to compute some functiong: S X7~ — {0,1}
using a communication protocol (see Section 2.2). Our setting captures this model when Y = ¢(o, 7).
Observe that in this case, Y = y57, i.e. Alice and Bob’s information together determine Y completely.
A communication protocol defines its output by a function h : IT — {0, 1} where II is the space of
transcripts. We can simply let A(7r) = round(usr), i.e. rounding the ex post expectation E [Y | n] =
st to either zero or one. This is equivalent to the belief of “Charlie”, or the common knowledge of
Alice and Bob after the protocol is completed.

DEFINITION E.1 (RECTANGLE SUBSTITUTES, (1 — §)-COMPUTES). Given a function g and a distri-
bution D over S X T, we say (g, D) satisfy rectangle substitutes if the corresponding information
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structure with Y = g(o, 7) satisfies rectangle substitutes (Definition 2.6). We say a protocol (1 — §)-
computes g over D if, with probability at least 1 — § over (0, 7) ~ D, the protocol has h(r) = g(o, 7).

By our results, under rectangle substitutes (g, D), any agreement protocol approximately com-
putes g over D. More precisely, using a fast substitutes-agreement protocol similar to Proposition
B.1, we obtain the following.

CoroLLARY E.2. Suppose (g, D) satisfy rectangle substitutes. Then for every d € (0, 1), there is a
deterministic communication protocol using O(log(1/8)) bits of communication that (1 — §)-computes
g over D.

ProoF. In round one, Alice sends her current expectation y, rounded to a multiple of €; call this
message A. In round two, Bob sends his updated expectation pgs, rounded to a multiple of €; call
this message B. The protocol then halts, and the output is B rounded to either zero or one. It uses
O(log(1/e)) bits. Let S, T be the random rectangle associated with the protocol.

By construction, |p, — A| < €, and pg is the expectation of Y conditioned on A, so it follows that
|t — ps| < €. Using substitutes (just as in Proposition B.1),

E [(ﬂar - ,UST)Z] <E [(.utr - ,US)Z] <é.

By construction, |B — ps,| < €. Therefore, by the %-approximate triangle inequality for squared
distance (e.g. Proposition 4.13)),

E [(ﬂo‘r - B)z] < 2E [(ﬂo‘r - IUST)Z] +2E [(ﬂSr - B)z] < 262-
Now, the protocol is incorrect if |B — piyr| > 3. Using Markov’s inequality,
Pr[|B _,uO'TI 2 %] =Pr[(B _,ucn')z 2 %]
<4E [(B - uar)z]
< 8€%.

Therefore, given § € (0, 1), we run the protocol with € = 4/§/8. The probability of an incorrect
output is at most §, and we use O(log(1/€) = O(log(1/5)) bits of communication. O
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