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Fig. 1. Images showing (a) the HazARdSnap snapped to a pedestrian in the gaze path of the cyclist, (b) the computer vision algorithms
we designed to detect pedestrians and potholes in real-time, (c) the UI fixed to the forward direction when no hazards are detected, (d)
an example of placement in a more complex environment, in this case on a crowded sidewalk, and (e) a screenshot from an AR based
user study in which participants avoided collisions with virtual hazards while reading virtual content.

Abstract—During cycling activities, cyclists often monitor a variety of information such as heart rate, distance, and navigation using a
bike-mounted phone or cyclocomputer. In many cases, cyclists also ride on sidewalks or paths that contain pedestrians and other
obstructions such as potholes, so monitoring information on a bike-mounted interface can slow the cyclist down or cause accidents
and injury. In this paper, we present HazARdSnap, an augmented reality-based information delivery approach that improves the
ease of access to cycling information and at the same time preserves the user’s awareness of hazards. To do so, we implemented
real-time outdoor hazard detection using a combination of computer vision and motion and position data from a head mounted display
(HMD). We then developed an algorithm that snaps information to detected hazards when they are also viewed so that users can
simultaneously view both rendered virtual cycling information and the real-world cues such as depth, position, time to hazard, and
speed that are needed to assess and avoid hazards. Results from a study with 24 participants that made use of real-world cycling and
virtual hazards showed that both HazARdSnap and forward-fixed augmented reality (AR) user interfaces (UIs) can effectively help
cyclists access virtual information without having to look down, which resulted in fewer collisions (51% and 43% reduction compared to
baseline, respectively) with virtual hazards.

Index Terms—Augmented Reality, Cycling, Safety, Eye Tracking, Object Detection and User Interfaces

1 INTRODUCTION

Cycling is a very popular form of transportation around the world, and it
is environmentally friendly and generally safe. However, cyclists must
often ride on sidewalks, narrow or rugged paths, or situations in which
obstacles can be crash hazards. To stay safe, riders must pay attention
to what is in front of them without looking down and reduce their
speed to avoid collisions when necessary [4, 38]. Maintaining visual
attention to the forward view can also be challenging when cyclists are
distracted by navigation information or smartphone messages [31]. To
complicate the matter, many countries, including Japan and various
states the US, allow or partially allow cycling on sidewalks according
to cycling regulations [13, 14, 18]. In addition, both professional and
recreational cyclists typically make use of a cyclocomputer or phone
that is usually mounted to a bicycle’s stem, handlebars, or a forward-
projecting extension to access biometric or map data. Although safety
preservation and head-up information delivery approaches for driver
assistance have been well-studied in the automotive domain, assistance
for cyclists has not been well addressed. To alleviate the dangers of
looking down at a smartphone, cyclocomputer, or other digital cycling

• Guanghan Zhao is with Osaka University, Japan. E-mail:
zhao.guanghan@lab.ime.cmc.osaka-u.ac.jp.

• Jason Orlosky is with Augusta University and Osaka University
• Joseph Gabbard is with Virginia Tech, United States.
• Kiyoshi Kiyokawa is with NAIST, Japan.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

interface for everyday and competitive cycling alike, we propose an
information delivery approach for safer and more efficient cycling
that combines eye tracking with adaptive augmented visualization.
Our primary objective in this work is to improve and test this type of
information presentation.

AR systems have increasingly been implemented with HMDs to
augment user vision and provide more accessible digital content, such
as the system by Chatterjee et al. [2] and Matviienko et al. [23]. These
studies explored the impact of AR methods on attention and hazard
perception during driving and cycling, suggesting that future research
should delve further into counterbalancing information access and envi-
ronmental awareness. Head-worn technology is an excellent candidate
for cycling since riders already wear helmets while riding, and HMDs
can easily be integrated into helmets. In addition, bike-mounted screens
(e.g. smartphones or cyclocomputers) that function as cycling support
systems require cyclists to look down frequently, potentially causing
distractions and accidents [7, 34].

Optical see-through headworn AR displays have the potential to
alleviate this problem since information can be overlaid in the user’s
natural cycling field of view (FoV). In order to develop an optical see-
through interface for cyclists, the detection of, and interaction between,
digital content and real-world hazards must be handled by the system in
real time. For this purpose, machine learning and deep neural network
(DNN) models are well developed for human and object detection, and
they have already been widely applied in the fields of unmanned aerial
vehicles, robotics, and autonomous driving, such as the implementation
by Lan et al. [16] and Redmon et al. [30].

Although the performance of the obstacle detecting DNN models
remains non-ideal in high-speed scenarios [8,32], they can be incredibly
useful for bicycles, which travel at relatively low speeds compared to
vehicles. In addition, AR approaches are widely applied in driving and
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hazard avoidance experiments since they can improve immersion while
reducing danger to the participants [21, 25, 44].

In this paper, we introduce a novel approach called “HazARdSnap”
that not only improves accessibility of bike-related UIs but also pre-
serves awareness of hazards (e.g. pedestrians, cyclists and potholes).
Several images outlining HazARdSnap are shown in Fig. 1. First, to
determine the location and size of potential hazards, we gather scene
data with an RGB-D camera and process scenery in front of the bike
through a set of computer vision based algorithms. This data is sent
to a HoloLens 2 via TCP/IP socket communication. Then, scene data,
motion, gaze, and head position are gathered from the HMD.

Using this data as input, we designed an algorithm that detects
hazards and snaps any relevant UI information onto those hazards
when they become gaze targets. This allows simultaneous visual ac-
cess to the information and awareness of the hazard’s location and
speed. Simply put, we provide better information access to cyclists
without compromising their perception of forward-located hazards. In
an experiment using real bicycles with virtual hazards (for participant
safety), we evaluated HazARdSnap, smartphone-based presentation,
and a forward-fixed UI delivered by an HMD. Our contributions in this
paper are summarized as follows:

• The design, testing, and refinement of a UI snapping technique,
HazARdSnap, designed to decrease the chance of collisions when
accessing digital information during cycling.

• A bike-mounted system that makes use of computer vision, depth
information, and environment tracking to detect oncoming haz-
ards such as potholes and pedestrians.

• An AR based user study that compares cyclist performance while
using HazARdSnap, a forward-fixed UI, and a bike-mounted
smartphone UI as well as analysis and discussion of metrics like
collisions with virtual objects, time spent viewing the road, and
subjective ratings.

In the following sections, we discuss related work, detail the design
process and implementation of HazARdSnap, describe our user study,
and provide an analysis of the results. We conclude with a discussion
of our findings and observations.

2 RELATED WORK

When in motion, cyclists can often be distracted when checking their
smartphones or cyclocomputers for navigation instructions, biometric
information, or messages, especially when riding on low-quality sur-
faces or passing pedestrians or other cyclists. To help address these
problems, many studies have been conducted for cycling and driving
support. In this section, we discuss previously proposed approaches
for improving both safety and information accessibility for cyclists and
drivers.

2.1 Information Delivery
Cycling through narrow tracks or terrain with obstacles often requires
high attention to the forward direction, frequent steering and low
speed [38]. These challenges are especially pronounced for people
who lack spatial awareness, such as children [39]. Moreover, Van der
Horst et al. [36] demonstrated that cyclists’ directional control behavior
is usually influenced by pedestrians, particularly on shared bike paths,
highlighting potential conflicts and safety concerns in such scenarios.
On the other hand, using supporting functions (i.e. navigation) in mo-
bile phones or other displays causes distractions [31] for cyclists and
drivers. To solve this problem, Dancu et al. [6] evaluated a projection-
based interface featuring a head-up display (HUD) that displayed map
information and concluded that the HUD was only subjectively con-
sidered as safer and easier to use. Further, AR displays were proposed
as a viable solution: Ginters [11] developed an AR cycling support
system that displays route information on AR glasses. However, his
work mainly focused on computing route design rather than interactive
information delivery. Sawitzky et al. [40] investigated the effectiveness
of augmentation concepts such as warnings with a cycling simulation.
Their results suggest that the augmented information should be pro-
vided in a way that is easily accessible in order to benefit cyclists,

which further inspired our work. With further consideration of usabil-
ity, Berge et al. [1] found that on-bike human-machine interfaces may
fulfill a cyclist’s need for visually receiving recognition information
from automated vehicles, however their interview studies revealed that
the cyclists were hesitant about using such devices for communicating
with automated vehicles. Lopik et al. [37] demonstrated that handheld
devices provide higher perceived usability, while in-sight monocular
displays, such as AR glasses, enhance awareness of hazards by leading
to a greater number of hazards being acknowledged during navigation
tasks. This further underscores the potential of AR glasses as a device
to enhance hazard perception.

According to the concept of “processing resources,” when the com-
bined demand of two tasks exceeds available attention resources, time-
sharing efficiency decreases, especially as the difficulty of either task
increases [43]. In this context, the two tasks are information access
and spatial awareness. To better counterbalance the potential negative
effects of AR-based information presentation that may draw excessive
attention away from spatial awareness, suitable content length and de-
livery timing were studied by Uchiya and Futamura [35].The results
of their experiment indicated that the appropriate presentation timing
depended on the participants’ usual modes of transportation. Regarding
driving safety, HMD based information delivery systems were also con-
sidered as more competitive than classical head-up displays [17]. Park
et al. [28] proposed an in-vehicle AR system that delivers driving-safety
information within the driver’s field of view and excels in recognizing
obstacles under adverse weather conditions. Their research confirms
the effectiveness of combining AR in-view safety information delivery
with real-time hazard detection algorithms. As an evolutionary branch
of AR, MR approaches can also be both interactive and immersive for
driving support while preserving efficiency and safety, as demonstrated
by Ghiurau et al. [10]. They extended the safety support system of
Volvo cars to incorporate MR technology, thereby improving users’
awareness of upcoming hazards. Additionally, Matsunaga et al. [22]
developed an MR-based assistance system for welfare vehicle users
and validated its effectiveness in collision avoidance. Leveraging the
characteristics of MR, the system projects a virtual vehicle in the user’s
field of view, allowing them to control the real vehicle as if it were
following the virtual one from behind.

2.2 Hazard Detection

Computer vision based AR methods were widely accepted as efficient
and low-cost solutions for detecting pedestrians, thus they were applied
to vehicles: Early work by Gavrila [9] applied a two-step machine
learning algorithm on moving vehicles as a pedestrian avoiding sup-
port and suggested further improvements and integration to meet the
performance requirements for practical deployment of driving safety
systems. On the basis of Garvrila’s study, Shashua et al. [33] developed
a single-frame classification approach for day-time driving conditions.
Their system showed satisfactory performance for some functions un-
der specific conditions, but further improvements were needed for more
challenging scenarios. Hariyono et al. [12] have improved the per-
formance of moving vehicle pedestrian detection with a histogram of
oriented gradients. The way that they take advantage of contours and
histograms in these works inspired the development of our real-time
hazard detection algorithms.

To date, DNN models have been applied as an advanced computer
vision method for pedestrian detection on vehicles. Wang et al. [41]
demonstrated a DNN based pedestrian detecting system with semantic
information of body parts and contextual information. By leveraging
body part semantic information and contextual data, it significantly
reduced missed detections and improved localization accuracy, partic-
ularly for occluded pedestrians. Nataprawira et al. [24] evaluated the
performance of a DNN model for pedestrian detection on an urban road
during both day and night time conditions. Their results indicated that
the model performed significantly worse in low-lighting conditions.

Reagrding the danger caused by low-quality road surfaces with obsta-
cles, Labayrade et al. [15] implemented a robust computer vision based
method for obstacle detection on non-flat roads that estimates the road’s
longitudinal profile, identifies objects above the road surface as poten-
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Fig. 2. Images of the bicycle setup, including the HMD, bike-mounted
phone UI, RGB-D camera, and laptop from a front (left image) and top
(right image) view.

tial obstacles, and accurately detects road obstacles. Similarly, Rateke
et al. [29] proposed a convolutional neural network based road quality
classifier, aiming to benefit road maintenance departments and enhance
road safety. However, this approach does not take hazard indication to
the driver side into consideration. In line with the concerns raised by
previous studies regarding the hazards posed by low-quality roads, we
believe that pothole detection is also essential to our topic. Addition-
ally, a smartphone based hazard warning system for pedestrians was
proposed by Wang et al. [42]. In this work, they take advantage of the
smartphone’s back camera to detect vehicles with machine learning,
however the performance can be easily affected by the smartphone’s
gesture. This issue highlights the importance of securely positioning
the RGB-D camera in a position where it is minimally affected by
cycling behavior in our research. Similar to the work by Wang et al.,
Li et al. [19] proposed a system for smartphones which focus more
on detecting the pedestrian’s walking behaviour by machine learning
algorithms with video inputs from the front camera of the smartphone.

2.3 Further Motivation
Current approaches on AR based information delivery mostly use fixed
UIs (i.e. screen-relative graphics) on HUDs or take advantage of audi-
tory outputs. As UIs are fixed in the field of view, they may block the
user’s vision and require the gaze to move away from the road or ob-
stacles. On the other hand, although the spatial audio can be delivered
by bone conduction headsets, the user still has to process the sounds
received and translate those sounds into directional cues, which may
be difficult to process or correctly map to a hazard’s location. These
current limitations further motivated us to come up with a method that
allows for simultaneous perception of information and road hazards.

When DNN models and other hazard detection algorithms are typi-
cally used, it is often for the safety support of motor vehicles. However,
cycling presents unique challenges, as it requires additional motor con-
trol, involves more frequent tilts and turns, and often involves close
proximity to other cyclists or pedestrians. Therefore, there is a need
to adapt and evaluate the performance of DNN models and other haz-
ard detection algorithms specifically for cycling scenarios. This issue
highlights the importance of developing a method that allows for simul-
taneous perception of information and road hazards during cycling.

3 DESIGN AND IMPLEMENTATION

In order to detect potential hazards in front of the bike and place the
interface such that it smoothly snaps to each hazard, we developed two
subsystems: a visual recognition subsystem programmed with Python
and an interface delivery subsystem programmed with C#. The visual
recognition subsystem was implemented with an RGB-D camera and a
backseat attached laptop, as shown on the left of Fig. 2. The interface
delivery subsystem was implemented using an AR HMD. These two
subsystems exchange data using asynchronous TCP/IP socket commu-
nication through a smartphone WiFi hotspot. Algorithms in these two
subsystems run in separate threads for efficient parallel processing.

Fig. 3. Images showing the detection process for a pothole using binary
thresholding of the RGB-D camera with contour detection (left) and the
resulting detected pothole with the three points indicating the coordinates
used for specifying the distance calculation and resulting distance-based
pothole detection.

3.1 Equipment
In the implementation (Fig. 2), we applied a Microsoft HoloLens 2
HMD, an Alienware m15 Laptop, an Intel Realsense D435i RGB-D
camera, an iPhone 11 smartphone and a Dahon Jetstream P5 bicycle.
The algorithms were driven by Unity 2021.1.20f1 and Python 3.9. The
HMD’s FoV is 43°×29°. The RGB-D camera has minimum 28cm depth
distance, frame rate of 30 frames per second (fps), and 69°×42° FoV.

3.2 Visual Recognition Subsystem
To start, we capture both the RGB and depth frames using an RGB-D
camera fixed to the front of the bicycle, which faces directly forward
with respect to the bike frame. Specifically, the RGB-D camera is fixed
to the main frame of the bicycle rather than the handlebar in order
to maintain a forward-looking pose independent of small movements
in the handlebar. We align these captured frames with the camera’s
application program interface and then apply two algorithms: a Caffe-
based MobileNet-SSD detection network DNN model [5] for human
detection and a customized algorithm for pothole detection.

In addition, in the pothole algorithm we first calculate the peak gray
value of the ground area using a histogram and then apply a binary
threshold with a value of the peak value minus 30. Contours of probable
potholes are gathered from the binary threshold results using a contour
finder. To filter non-pothole results such as dark stains or manholes,
we further compare the average depth of the far point and near point
with the depth of the middle point (Fig. 3). If the difference is higher
than 0.2 meters, the contour will be passed to the next step. With the
gathered regions of interest (ROIs) and their vertex coordinates from
both algorithms, we calculate the center pixel coordinate and depth
of each ROI. In addition, the available depth range is 0.3 meters to
12 meters due to the RGB-D camera, but this covers a wide range of
possible hazards and stopping distances (roughly 5 seconds of stopping
time at 20km/h at 12 meters). After gathering vertex coordinates and
center depth, world coordinates (x,y,z) of each vertex are defined as:

z = centerdepth (1)

x = (u− cx)∗ z/ f x (2)

y =−(v− cy)∗ z/ f y (3)

where the (u,v) is the pixel coordinate of each vertex, and the
cx,cy, f x, f y are from the intrinsic matrix of the RGB-D camera. To
convert the v value on the top down v axis in pixel coordinates to the
y axis in projection coordinates, we calculate −(v− cy). This set of
equations are originally from the 2D-3D coordinate transformation
models of SLAM. Since we only focus on the front view and the cam-
era is always considered to be the origin in this study, the rotation and
transformation matrices are not applied.

Once the world coordinates of the region of interest are defined, we
pass them through an asynchronous TCP/IP socket running in another
thread. In this socket, we set the subsystem to be the host and the
sending interval to 0.05 seconds in order to mitigate jitter and packet
sticking.
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Fig. 4. Images showing (a) the detection result from the visual recognition
system with the depth value marked and (b) the UI snapped to an in-
focus pedestrian (the red dot is a gaze indicator).

3.3 Interface Delivery Subsystem
This subsystem is developed in Unity and deployed to an HMD to
afford an AR environment (Fig. 4). The data from the visual recognition
subsystem is received via Socket client as messages and are cut based
on a header in order to further avoid packets getting stuck. To compute
the intersection of the HoloLens Gaze vector with hazards, transparent
quads are generated in the AR environment based on the received world
coordinates of detected pedestrians and potholes. An 8-meter long,
0.7-meter wide (corresponding to the bicycle width) transparent bicycle
heading indicator is implemented in order to detect obstructions that
stand in the way within a range of 4-12 meters.

We have also developed a method to compensate for the drift phe-
nomenon that occurs in gyroscopes and other direction errors that result
from the tilt motions that happen often while cycling. In our implemen-
tation, the bicycle’s heading direction is calculated by taking the HMD’s
velocity vector in the AR environment, which is further corrected using
the face-forward direction of the head with a 5-degree difference range.
In simple terms, the heading direction will shift only when the HMD is
moving in a similar direction to the face-forward direction of the head.
With this justified heading direction, we are able to rotate the quads
and heading indicator such that they are forward-fixed. The height of
the quads are set relative to the HMD height plus 0.3 meters in order to
match the hazards’ locations in-view.

3.4 Gaze-contingent Rendering
Gaze data is collected from the built-in eye tracker of the HMD, which
allows the interface to be snapped to the quad of the hazard that the
user is focusing on. In particular, as the gaze ray comes close enough
to a detected hazard (less than a 5-degree difference on the Y-axis),
the UI’s position will be updated to the hazard’s position, providing a
frame-to-frame transition from the current UI position to the next as the
user’s gaze follows the hazard. Considering that erratic or instantaneous
motion of the UI is likely to cause confusion or distract the cyclist, a
smoothing function is applied. In particular, the UI is set to move
toward the hazard with a speed of 7m/s, which provides smooth and
more consistent movement. To prevent variations in the scale of the
text of the interface, which can degrade readability [3], the scale of the
interface is set to change relative to the distance to the gaze-hit position
in order to keep the same scale in the view. In other words, the text
will appear to remain the same size, but binocular cues will still give
the cyclist proper depth judgement. With further logical testing, we
defined the scale relationship as:

w = d ∗0.12 (4)

h = w∗1.7778 (5)

where the d is the distance between the gaze-hit position and (w,h)
are the width and height of the interface. The w-d ratio is defined
by testing the minimum scale for displaying our UI content with the
HMD’s resolution and a ratio of 0.1 (w : d) is found as the just readable
value. In order to ensure that the UI was fully readable in a variety of
scenarios (especially our experiment), we defined the ratio as 0.12. The
aspect ratio was fixed to 16:9 (1.7778) in order to match the aspect ratio

of smartphone applications. Regarding situations in which the user is
not focusing on any hazard or there is no hazard in a forward location,
we provide an interface that is fixed in front of and 20 degrees below
the heading direction (below the horizon from the user’s viewpoint)
in order to prevent blocking the user’s forward vision and preserve
accessibility [26] at the same time.

4 SYSTEM EVALUATION

In this section, we describe two evaluations of the system’s techni-
cal performance, including evaluations of detection accuracy and the
system’s process latency.

4.1 Detection Accuracy
To set up this test, members of our research team went cycling in
three different environments for approximately 18 minutes in each
one, recording data for the duration of the trip. Then we gathered
the every 10th frame from the data and set up two frame pools that
included a total of 2000 frames in each pool for testing human and
pothole detection. Forty representative images taken from this dataset
are shown in Fig. 15. From each frame pool, we picked every second
frame (1000 for each condition) for testing in terms of true and false
positives and negatives. Then, we manually labeled all of these frames
as having or not having a human/pothole and compared the detection
output with our manually labeled results. For human detection, results
were 97.48% precision, 93% recall, and a 2.4% false-positive rate. For
pothole detection, results were 96.27% precision, 82.6% recall, and
3.2% false-positive rate.

4.2 Process Latency
We next tested the end-to-end latency of the system by printing times-
tamps in each step of the system processes for 10 iterations and aver-
aging the results. We found that the latency was on average 273.1ms
from the detection of a hazard to a quad (i.e., the gaze-contingent
bounding-box) is placed. The average latency of each step was: 82.6ms
from detection until sending a socket message (with the 50ms sending
interval), 186.5ms from sending a socket message until it is received
by the display, and 4ms from receiving a socket message until a quad
is placed.

5 USER STUDY

Our primary design considerations for the HazARdSnap algorithm
were to 1) ensure fewer collisions with virtual objects while reading
UI content, 2) enhance the participant’s ability to read the information
on the interface, and 3) reduce distraction while improving the user’s
feeling of safety, as compared to other conditions.

In the experiment, we compared HazARdSnap to a smartphone UI,
as shown on the right of Fig. 2, and a forward-fixed AR interface.
Because of the common use of smartphones or cyclocomputers for
information access during cycling, the smartphone UI condition in this
experiment was taken as a baseline (control) condition. Participants
rode a bicycle in an open space, while attending to the UIS and avoiding
virtual hazards. In addition, participants were asked to go through
an AR track with assigned tasks. We examined their primary task
performance (i.e., cycling and reading performance), head and gaze
behavior, and subjective preference with the three UI conditions.

5.1 Equipment
We used a Microsoft HoloLens 2 HMD, a Dahon Jetstream P5 bicycle,
an iPhone 11 and a set of a cycling helmet with joint pads. The subsys-
tems were separately developed and driven by Python 3.9 and Unity
2021.1.20f1.

5.2 Experimental Design
Although HazARdSnap is designed for real-world cycling scenarios,
considering the potential risks to participants and pedestrians when
navigating through real crowds while cycling, we aimed to create a
testing environment that is both safe and closely mimics actual cycling
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Fig. 5. Images showing (a) the sidewalk where we conducted the user study and the three conditions in the experiment, including (b) the smartphone
UI, (c) the forward-fixed UI, and (d) HazARdSnap.

Fig. 6. Images showing (a) a view of the AR environment in the real world
recorded through the HoloLens 2’s streaming function and examples of
a (b) virtual pedestrian and (c) virtual pothole from Unity.

conditions. In order to preserve safety in bicycle related works, re-
searchers have conducted experiments with virtual reality environments
and fixed bicycles [20, 25]. However, this approach of user testing
may cause motion sickness and could miss some motions triggered by
losing body balance. To provide a better tradeoff, our experiment was
implemented by letting participants actually ride a bicycle in an open
and flat space with virtual pedestrians, potholes and a track delivered by
the AR HMD. Since the user study was conducted as a directly forward
scenario and no direction adjustment was needed, we did not apply the
RGB-D camera and laptop in order to mitigate the load on the bicycle.

The user study used a repeated measures within-subjects design to
test HazARdSnap (Fig. 5-d) against two other conditions: An interface
delivered by a smartphone mounted on the left side of the handwheel
(Fig. 5-b) and an interface which was fixed front-below the forward
direction (same as the situation that the user is not focusing on any
hazard or there is no hazard located forward of our proposed approach)
(Fig. 5-c). The order of conditions was assigned based on a balanced
Latin-Square in order to minimize order effects.

Considering the possibility that participants may remember the lo-
cations of the hazards and the content on the interface, six different
experimental environments and six different content on the interface
were randomly assigned as each trial start. For each trial, participants
were required to ride forward while avoiding the virtual hazards and
boundaries in the experimental pathway. Furthermore, participants
were asked to read out the content presented via UI condition and
complete the UI reading task before reaching the finish line. Detailed
descriptions about the hazards and content can be found in section 4.3.
Raw data (e.g. collisions, speed, focus, and distance) were recorded
during each trial in order to help us to understand the accessibility of
each method and how participants’ riding behavior were affected.

Fig. 7. Overview of the designed virtual environment in the Unity Inspec-
tor, scaled to 50 meters long and 2.5 meters wide. This was segmented
into 3 sections with 4 objects in each section.

5.3 Experimental Environment
To test HazARdSnap and the AR UI, we utilized a system that made
use of virtual humans and potholes to ensure that participants would not
be at risk of crashing into real hazards. Instead of detecting real objects,
we adapted our method to react to the virtual objects within a Unity
environment for the experiment. In the AR environment, we rendered
8 pedestrians, 4 potholes and 2 boundaries (one on each side) where
the size of these objects were set according to real-world sizes (Fig. 6).
In order to simulate real pedestrian behaviours, we programmed the
scenario such that at least one pedestrian would move across the track
repeatedly, one pedestrian across the entire track when approached by
the bicycle, and one pedestrian who is already on the road but moves
into the path of the bicycle when approached. Note that the version
of HazARdSnap described above includes a smoothing function to
move one object to the next. The initial version of the algorithm in
the experiment quickly snapped the content from one object to another,
which we improved upon later based on participant feedback.

In the virtual environment, the track was set to be 50 meters long
and 2.5 meters wide to increase the likelihood that participants would
finish the UI reading task and the objects would not fully block the
way. To alleviate ordering effects between trials while ensuring similar
difficulty, we segmented the environment into three sections, and the
arrangement of these sections were randomized, resulting in six vari-
ations of experimental environment (Fig. 7). Regarding the reading
content, we randomly typed 35 letters for each UI instance (Fig. 8).
Considering the performance of hologram displays can be highly af-
fected by day light conditions, we conducted our user study in the same
place and same time of day (5pm to 7pm) (Fig. 5-a).

5.4 Participants
24 naive individuals (9 female, mean age 32.29, SD 7.17, range 13-52),
were recruited from the general population to take part in the study.
All participants had normal or corrected-to-normal vision, little to no
experience with AR and were able to ride bicycles. They were informed
that they were allowed to quit the study at any time. We set the bicycle
seat to a relatively low height and added provided protective gears (i.e.
the helmet and joint pads as shown in Fig. 2) in order to protect the
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Fig. 8. An example of the content that participants had to read while
cycling during the user study.

participants in the unlikely event that they fell down. The experiment
was conducted under approval of the Osaka University Cybermedia
Center Institutional Review Board (IRB), number SA2022-02.

5.5 Dependent Measures
During the study, we logged the data necessary to calculate a compre-
hensive set of dependent measures as follows:

Number of collisions (i.e. hit an obstacle or ran out of boundaries):
We collected collision data using a Unity collider that moves with the
HMD, with its size set to match the actual size of the bicycle. This
measure represents the times the participant collided with any hazard.

Average cycling speed in m/s: We divided the AR track length by
completion time.

Average cycling speed while reading (i.e. while focusing on UI) in
m/s: We took the average cycling speed when the participants were
focusing on the interfaces.

Reading time (total time focused on the UI): We recorded the total
time that the participants were focused on the interfaces. This measure
was applied to test the amount of time users spent viewing the text with
different methods.

Reading-to-completion time ratio: We divided the reading time by
trial completion time. Considering that reading speed likely varies
between individuals, we used this measure for further comparison of
reading efficiency between methods.

Average angular speed of head rotations and average angular speed
of gaze in °/s: We averaged the differences in angles between frames,
measured in degrees per second. These measures were applied to
determine how much a participant’s gaze (both eye and head) moved
during cycling, which is revealing of the number of attention switches
between tasks.

Average angle difference between head direction and face-forward
(i.e., head deviation from face-forward) and average angle differences
between gaze direction and face-forward (i.e., eye gaze deviation from
face-forward) in degrees: we first collected the head facing direction
and gaze direction data from the HMD and then calculated the average
angle between the direction data with a forward vector (0,0,1). This
measure tells us whether participants were focused on the forward
direction and thus better able to view hazards.

Post-trial subjective ratings: participants were asked to rate the
following subjective preference questions with 7-scale ratings from 1
(“Strongly disagree”) to 7 (“Strongly agree”):

• I had a clear perception of the pedestrians’ and potholes’ positions
while looking at the UI.

• I felt safe while riding.
• Reading content on the interface disturbed me.
• I could read the content easily and clearly.
The quantitative measures listed above were recorded with the

HMD’s built-in eye tracker and sensors. In order to estimate time
of focus data for the smartphone UI condition, we recorded the time
periods when participant gaze was pointing the left-down direction with
a degree to forward more than 20 degrees.

Fig. 9. Analysis of number of collisions showed that smartphone UI was
associated with significantly more collisions than forward-fixed UI and
HazARdSnap.

Fig. 10. Analysis of (a) speed and (b) average speed while reading.
Although there was no significant difference within cycling speed, partici-
pants tend to ride faster while reading via forward-fixed UI.

5.6 Procedure
As each participant joined our experiment, we briefly introduced the
experiment, and we informed the participants about the tasks and re-
quirements. Then, the participant put on the protective gear and the
HMD with help from an experimenter. The experiment included three
trials in total, with each trial representing a single condition (either
Smartphone UI, Forward-fixed UI, or HazARdSnap). Before the first
trial started, the participants were asked to complete an eye calibration
using the calibration tool bundled with the HoloLens 2. Before each
trial was conducted, we carefully checked the clearance of the physical
experimental space. After each trial, the experimental environment was
reset and the participant was asked to fill in a questionnaire. This was
repeated until all three conditions were tested.

5.7 Results
Here, we describe the results of our experiment with respect to the three
UI conditions, differences on accessibility, and subjective preference
of the participants. For parametric data, we applied ANOVA tests
and Tukey’s HSD post-hoc tests. On the other hand, Friedman tests
and Wilcoxon post-hoc tests were applied for non-parametric data. In
addition, η2, Cohen’s d, Kendall’s W , and r values are included in
our results to define effect sizes. In the figures, the heights of the bars
represent the means, with error bars indicating standard deviations.
Significance was determined at a significance level of 0.05, denoted by
‘∗’.

5.7.1 Task Performance
For the cycling task, regarding number of collisions, ANOVA test
revealed significance between the three conditions (F(2,69) = 8.26,
p < 0.001, η2 = 0.19) (Fig. 9). Further differences were found in
the smartphone UI vs. the forward-fixed UI (p < 0.01, d = 0.81)
and the smartphone UI vs. the HazARdSnap (p < 0.001, d = 1.00),
indicating that participants were more likely to collide while reading
the smartphone UI. Regarding average cycling speed, no significant
difference was found (F(2,69) = 1.20, p = 0.31, η2 = 0.03) (Fig. 10-
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Fig. 11. Analysis of (a) reading time and (b) reading-clear time ratio.
Regarding the UI reading task, these two metrics revealed that reading
speed was not affected by conditions.

Fig. 12. Analysis of (a) head’s average angular speed and (b) gaze’s
average angular speed. These showed that there are significant differ-
ences in the rotating frequency of both head and gaze.

a). Regarding average speed while reading, significance was found
(F(2,69) = 5.62, p < 0.01, η2 = 0.14) (Fig. 10-b) and post hoc tests
show that there was a significant effect in the smartphone UI vs. the
forward-fixed UI (p < 0.01, d = 0.88), which showing that participants
rode faster with the forward-fixed UI.

For the UI reading task, regarding reading time, the data revealed
no significance (F(2,69) = 2.39, p = 0.10, η2 = 0.06) (Fig. 11-a).
Regarding reading-clear time ratio, no significant difference appeared
(F(2,69) = 1.99, p = 0.15, η2 = 0.05) (Fig. 11-b).

5.7.2 Head and Gaze Behavior
To determine whether the augmented UI delivering methods affected
participants’ head and gaze rotation, ANOVA tests were applied to
reveal that there were significant differences in both of the head’s
average angular speed data (F(2,69) = 9.92, p < 0.001, η2 = 0.24)
and the gaze’s average angular speed data (F(2,69) = 52.81, p < 0.001,
η2 = 0.60). Further Tukey’s HSD tests showed that for head’s average
angular speed (Fig. 12-a), there were significant differences in the
smartphone UI vs. the forward-fixed UI (p < 0.001, d = 1.24) and
the smartphone UI vs. the HazARdSnap (p < 0.01, d = 1.10) and
for gaze’s average angular speed (Fig. 12-b), there were significant
differences in the smartphone UI vs. the forward-fixed UI (p < 0.001,
d = 2.23) and the smartphone UI vs. the HazARdSnap (p < 0.001,
d = 2.67), indicating participants, on average, moved their heads and
gazes more frequently when using the smartphone UI as compared to
both the Forward-fixed and HazARsnap UI. In addition, significant
differences were also found in average angle of head facing direction to
forward (F(2,69) = 117, p < 0.001, η2 = 0.77) and average angle of
gaze direction to forward (F(2,69) = 91.64, p< 0.001, η2 = 0.73). For
average angle of head facing direction to forward (Fig. 13-a), significant
differences were located in the smartphone UI vs. the forward-fixed
UI (p < 0.001, d = 2.69), the smartphone UI vs. the HazARdSnap
(p < 0.001, d = 3.64) and the forward-fixed UI vs. the HazARdSnap
(p < 0.001, d = 2.17). For average angle of gaze direction to forward
(Fig. 13-b), significant differences were located in the smartphone UI
vs. the forward-fixed UI (p < 0.001, d = 2.50), the smartphone UI
vs. the HazARdSnap (p < 0.001, d = 3.59) and the forward-fixed UI

Fig. 13. Analysis of (a) the average angle difference between head
direction and face-forward and (b) average angle differences between
gaze direction and face-forward. These two metrics roughly represent
the average time spent viewing the road.

vs. the HazARdSnap (p < 0.01, d = 1.22). These results revealed that
participants averagely focused more on the forward direction when
using the HazARdSnap.

5.7.3 Subjective Preference
We analyzed data from post-trial questionnaires with Friedman tests,
where significant differences were found between the three UI condi-
tions for “perception of hazards” (χ2 = 12.61, p < 0.01, W = 0.55),
“safety” (χ2 = 16.22, p < 0.001, W = 0.59) and “disturbing” (χ2 =
11.63, p < 0.01, W = 0.56). Secondly, Wilcoxon tests were applied as
paired tests: For “perception of hazards” (Fig. 14-a), significant differ-
ences were found in the smartphone UI vs. the forward-fixed UI (V
= 5, p < 0.01, r = 0.63) and the smartphone UI vs. the HazARdSnap
(V = 5, p < 0.01, r = 0.63), which means that participants subjectively
perceived less hazards with the smartphone UI applied. For “safety”
(Fig. 14-b), significant differences were located in the smartphone UI
vs. the forward-fixed UI (V = 30, p < 0.01, r = 0.58) and the smart-
phone UI vs. the HazARdSnap (V = 5, p < 0.001, r = 0.76), indicating
participants felt less safe when reading the smartphone UI. For “disturb-
ing” (Fig. 14-c), significant differences were located in the smartphone
UI vs. the forward-fixed UI (V = 157, p < 0.01, r = 0.63) and the
smartphone UI vs. the HazARdSnap (V = 140.5, p < 0.05, r = 0.54),
showing that the smartphone UI was considered more disturbing as
compared with the forward-fixed UI and HazARdSnap. Besides, no
significance was observed in the result of “readability” (χ2 = 0.94, p =
0.63, W = 0.35) (Fig. 14-d).

6 DISCUSSION

Based on the collision data, participants encountered fewer collisions
when using the forward-fixed UI (43%, mean = 2.17,SD = 1.40) and
HazARdSnap (51%, mean = 1.88,SD = 1.12) as compared to the
smartphone UI (mean = 3.79,SD = 2.47), suggesting that delivering
UIs in a head-up fashion (e.g., via AR HMDs) is safer than using han-
dlebar mounted smartphones. In addition, the head and gaze behavior
revealed how AR based methods helped preventing dangers. Partici-
pants performed lower values on the head’s and gaze’s average angular
speed data when using the forward-fixed UI and HazARdSnap. Which
suggested that with the AR based methods, the participants were able to
rotate their head and gaze in a less frequency and gain a longer period
of stable view.

Furthermore, the average angle of head and gaze direction to forward
data showed significant lower values when using the forward-fixed UI
and HazARdSnap. This indicated that while reading UI content via an
AR HMD, the participants were allowed to look forward more often
and gain a higher chance to notice front hazards. It was interesting
that both the forward-fixed UI and HazARdSnap performed similarly
in general. It may be the case that users have a preference for the
location of data in their field of view or that these methods may benefit
from further context-dependent adaptation. Further refinement of both
methods is planned as future work

On the other hand, the average speed of riding did not show any
difference between the three conditions which indicates that interface
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Fig. 14. Analysis of subjective ratings for (a) perception of hazards, (b) safety, (c) disturbing, and (d) readability. Participants were more likely to feel
safer and have clearer views as forward-fixed UI and HazARdSnap were applied.

delivery methods are not likely to effect the user’s preferred speed
of riding. However, if the hazards were real objects, there may be
differences since real crashes may cause the participants to be nervous
and slow down. In conclusion, HazARdSnap did reduce the number of
collisions in comparison with the phone-based UI.

Although significant differences did not exist for most metrics be-
tween the two AR-based UIs, HazARdSnap did help participants to
outperform in both average angle of head facing direction and gaze
direction to forward. Fixed UIs have a limitation that they can not be
placed straight forward in the middle of the view, since they will block
the view. According to the demonstration by Orlosky et. al. [26], they
was also preferred to be placed at a forward-down position by users.
Therefore, dangers may happen with this kind of methods when cycling
toward to upper located hazards such as hang-up wires or lift-up arms
of pedestrians. On the other hand, keeping the view straight forward
allows cyclists to better gather information about signboards, traffic
signals and routes, as shown by Orlosky et al. [27]. On the other hand,
these results may also indicate that participants are offloading some
of the cognitive demands of scanning the environment for hazards
to the UI. However, while a reduction in gaze and head movements
might suggest a reliance on our approach, it does not necessarily equate
to a decrease in situational awareness. Alternatively, considering the
results regarding the number of collisions, it could be interpreted as
cyclists efficiently reallocating their attention, thereby enabling them to
identify potential hazards more promptly. We recommend that future
research delves deeper into the impact of UI delivery AR technologies
on situational awareness and the balance between them.

Regarding enhancement of reading ability, our analysis of average
cycling speed while reading data revealed that while reading the UI
content, participants were able to ride faster using forward-fixed UI
than the smartphone UI. This result was reasonable since looking
down at the smartphone causes a huge loss of front view, therefore
participants are likely to slow down in order to prevent a crash. On
the other hand, the HazARdSnap did not show any significance with
this data. We believe this was caused by the tendency of the UI to snap
or “jump” from one object to another since several participants orally
reported that they thought the snapping behavior made it difficult to
find the position of the UI while cycling with HazARdSnap. Therefore
when the UI was snapped, they were more likely to slow down and
read. As this situation was noticed during the experiment phase, we
applied a smoothing algorithm to the real implementation. Besides, the
reading-to-completion time ratio data did not reveal any significance
between the three conditions. Note that reading comprehension was
not measured in the experiment, which is one limitation of the study.

In general, these results demonstrate that content delivered by AR
HMDs would not likely have a negative effect on the time spent viewing
the text, as long as the UI is delivered in a constant and readable
scale. Moreover, the reading time data did not reveal any significance
between the conditions. This suggests that different interface delivery
approaches may not effect the participants’ reading speed as long as
the content has similar resolution. In addition, the subjective ratings of
”Readability” also revealed no significance between the three conditions,
which aligns with the quantitative results.

As one of our primary design considerations, we expected that
HazARdSnap may positively affect the participants’ subjective feelings

of safety since our approach allows them to read while looking at a
hazard at the same time. However, although both of the AR based
methods were more preferred than the smartphone UI in the subjective
rating results of ”Perception of hazards” and ”Safety”, there was no
significant difference found between them. We believe that this was
because both the AR based methods did not require high frequency head
rotations and the stability of their views were preserved. Furthermore,
looking at the smartphone was considered as more disturbing by the
participants. The AR based methods were more effective on helping
the participants to gain a stronger feeling of stability which leads to a
feeling of safety.

7 LIMITATIONS

In the experiment, we noticed that most of the participants, based on
oral feedback, hesitated to use the HMD because of a lack of experience
with AR and HMDs. This situation may slightly effect the results,
especially since participants needed to read and ride at the same time.
We suggest that future work focuses more on counter balancing this
situation when conducting experiments.

Several practical considerations come into play when deploying
AR technology, particularly the HoloLens 2, in real-world cycling
scenarios. Firstly, the HoloLens 2 has a built-in thermal management
system, and if it becomes too hot, it will shut down, potentially affecting
the continuity of the AR experience. Secondly, the visibility of the
display can be compromised when exposed to direct sunlight, making
it challenging for cyclists to see crucial information. Thirdly, the
field of view provided by AR glasses like the HoloLens 2 is limited,
which may not be ideal for presenting a wide field of UI information
simultaneously.

Furthermore, integrating AR glasses into cycling helmets raises
concerns related to size and weight. The added bulk and heft could
potentially increase the load on the cyclist’s head, which may lead to
discomfort or safety concerns if not adequately addressed. There is
also the worry of the integrated device falling off during cycling.

These practical considerations highlight the need for further research
and development to optimize the use of AR glasses in cycling scenarios
and ensure a seamless and safe user experience.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel augmented reality-based information
delivery system designed to help cyclists read UI content in a safe
and easy manner. To accomplish this, we integrated real-time forward
hazard detection and gaze tracking so that information can be snapped
to a hazard that is in focus, which allows the cyclist to both view UI
content and perceive the locations of hazards. We finally conducted an
AR based within-subjects user study with 24 participants to study how
HazARdSnap and a forward-fixed UI would perform in comparison to a
traditional bike-mounted phone interface. Random text were delivered
to participants via each UI, including a handlebar-mounted smartphone,
a forward-fixed UI and our proposed HazARdSnap approach. Results
from this study show that both the forward-fixed UI and our proposed
approach effectively reduced the number of collisions with hazards in
comparison to the smartphone UI. Moreover, the AR methods enabled
users to maintain higher stability of head and gaze without a significant
reduction of reading speed.
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In addition, since the participants were not familiar with AR and
HMDs, the systems may prove to be more effective when AR is more
common and broadly accepted by users in the future. In contrast to
the popular virtual reality based user tests on driving and cycling, our
experimental setup is also a novel way to safely test AR based interfaces
and provide more realistic but safe user tests. We presented and tested
the system with relative non-urgent information just for demonstration.
In practice, the UI content can be changed to more urgent information
such as navigation popups, stopwatch and distance to the hazard.

One current limitation of our work is that multiple elements of in-
formation cannot yet be distributed amongst multiple hazards in the
environment. One potential extension of this work is to allocate var-
ious spaces, such as the backs of multiple cyclists in a cycling team,
for different types of information such as speed or biometrics. This
might allow for easier readability without sacrificing the amount of
information available. Our interface may also benefit from eye-based
engagement or control to satisfy individual user preferences for infor-
mation display. Another potential limitation of our work is that reading
comprehension was not tested in the experiment. Comprehension of
long meaningful sentences may require more attention and cause tunnel
vision. Therefore, the outcome of the experiment may be different
when testing those kinds of sentences.

In future studies, we plan to further explore wearable UI delivery
approaches that can better help cyclists handle multiple tasks at the
same time while preserving safety. We also plan to conduct experiments
testing user interactions with UIs while cycling. Moreover, we would
like to improve the proposed approach and investigate its effectiveness
with more types of hazards such as vehicles, trees and/or roadblocks.

We hope that this work will encourage the development of other
AR based UI delivery techniques for cyclists that can improve riding
safety and maintain ideal readability as well as the exploration of aug-
mented reality-based experimental designs that allow for safer testing
of collision avoidance systems.
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