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Abstract—As compared to standard dynamic range (SDR)
videos, high dynamic range (HDR) content is able to represent
and display much wider and more accurate ranges of bright-
ness and color, leading to more engaging and enjoyable visual
experiences. HDR also implies increases in data volume, further
challenging existing limits on bandwidth consumption and on the
quality of delivered content. Perceptual quality models are used to
monitor and control the compression of streamed SDR content. A
similar strategy should be useful for HDR content, yet there has
been limited work on building HDR video quality assessment
(VQA) algorithms. One reason for this is a scarcity of high-
quality HDR VQA databases representative of contemporary
HDR standards. Towards filling this gap, we created the first pub-
licly available HDR VQA database dedicated to HDR10 videos,
called the Laboratory for Image and Video Engineering (LIVE)
HDR Database. It comprises 310 videos from 31 distinct source
sequences processed by ten different compression and resolution
combinations, simulating bitrate ladders used by the streaming
industry. We used this data to conduct a subjective quality study,
gathering more than 20,000 human quality judgments under two
different illumination conditions. To demonstrate the usefulness
of this new psychometric data resource, we also designed a new
framework for creating HDR quality sensitive features, using
a nonlinear transform to emphasize distortions occurring in
spatial portions of videos that are enhanced by HDR, e.g., having
darker blacks and brighter whites. We apply this new method,
which we call HDRMAX, to modify the widely-deployed Video
Multimethod Assessment Fusion (VMAF) model. We show that
VMAF+HDRMAX provides significantly elevated performance
on both HDR and SDR videos, exceeding prior state-of-the-art
model performance.

Index Terms—High dynamic range (HDR), video quality as-
sessment (VQA), HDR VQA database, HDRMAX, full reference
(FR) models

I. INTRODUCTION

THE human visual system (HVS) is able to perceive
luminance levels between 10−6 cd/m2 and 108 cd/m2

using various mechanical, photochemical, and neuronal adap-
tive processes [1]. Traditional imaging and display systems
produce content having much narrower ranges of luminance
values than the vision system is able to perceive, due to
limitations on sensor technology, processing, transmission,
bandwidths, and display depths. These older content formats
are commonly referred to as Standard Dynamic Range (SDR),
and have specifications on brightness, contrast, and color that
were originally designed for display on cathode ray tube
(CRT) devices [2]. Although CRTs are obsolete, a considerable
fraction of content continues to be produced according to
SDR specifications. A device that displays SDR content, which
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has a bit depth of 8 bits/channel, can represent a maximum
luminance of 100 nits (1 nit = 1 candela/meter2) and a
minimum luminance of 0.1 nits, using the Rec. 709/sRGB
color gamut [3], which covers 35.6% of the CIE 1931 color
space.

High Dynamic Range (HDR) is a set of techniques that ex-
tend the ranges of luminances and color that can be represented
and displayed. “HDR” pictures are sometimes synthesized by
combining photographs taken at multiple exposures into a
single picture, then tone-mapping it to the 8 bit range that
is compatible with SDR displays. What we will refer to as
“true HDR” video content is captured using single exposures
with advanced sensors, and compatible with HDR displays
having wider dynamic ranges and higher average and peak
brightness levels. True HDR content has a bit depth of at least
10 bits/channel. HDR10 is an open HDR standard announced
by the Consumer Technology Association in 2015 [4] and
remains the most widely used HDR format. HDR10 content
must have a bit-depth of 10 bits, use the Rec. 2020 [5] color
primaries (which cover 75.8% of the CIE 1931 color space),
and must apply the SMPTE ST 2084 [6] opto-electronic
Transfer Function (OETF) to the linear RGB signals, also
known as the Perceptual Quantizer (PQ).

HDR10 has seen increasing adoption over the past few
years. Streaming and video hosting services such as Amazon
Prime, Netflix, and YouTube now offer content in HDR10.
HDR10 is also used as the default standard for UHD Blu-
Rays. Major TV manufacturers such as LG, Samsung, and
Panasonic support HDR10 content, and manufacturers such as
Lenovo and Apple have also recently released laptops that can
display HDR10 content. HDR10 is now part of live broadcast
and film production workflows and is progressing rapidly into
an industry standard.

The adoption of HDR10 has created challenges related
to the quality of user experience and the performance of
compression algorithms. The increases in bit depth and the
use of nonlinear transfer functions in HDR can change the
visibility and severity of compression distortions. Being able to
measure and control perceptual quality is a critical element of
video compression and communication workflows. However,
there are few video quality assessment (VQA) models that
address the compression of HDR videos. Most existing VQA
models can only operate on 8 bit luminance and color data,
let alone account for HDR transfer functions and expanded
color gamuts. For example, one of the most successful VQA
models, the Video Multimethod Assessment Fusion (VMAF)
algorithm [7] can be applied to 10 bit data, but it does not take
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into account the extended luminance range or transfer function
of HDR10.

An important consideration is the nonlinear visual response
to brightness. Because the vision system is more sensitive
to luminance ratios than to absolute brightness values, the
perception of differences between luminances is governed
by the Weber-Fechner law [8]. The exponential function or
“gamma,” as specified in the industry standard BT. 709, has
been traditionally applied to nonlinearly encode SDR images,
but it fails to work with HDR imaging, due to the mismatch
of quantization and human perception. Therefore, SDR VQA
models, which operate under the assumption of gamma, are
less effective on HDR content. This does not imply that SDR
VQA models, developed under the assumption of gamma, are
always ineffective for HDR content. Several studies, such as
[9], [10], have demonstrated that these models can perform
competitively even when applied to HDR content, depending
on other aspects of the content, or the device it is displayed
on, suggesting a nuanced landscape [11], [12]. Furthermore,
the perception of brightness distortions is influenced by the
viewing conditions, including the image background, the en-
vironmental light, the peak luminance, and the dynamic range
of the display.

Towards advancing progress in this direction, we created
a new HDR video quality database, on which we conducted
a subjective quality study of how compression and scal-
ing distortion combinations affect the perceived quality of
HDR videos. Currently, there is no publicly accessible VQA
database of HDR10 material. There are other HDR content
databases, but these are either not publicly accessible, or are
based on outdated standards. To address this, we built the
first VQA database designed for contemporary HDR. The new
“LIVE HDR” database is also the largest HDR VQA database
to date. It consists of 310 HDR10 videos created from 31
reference contents that have been distorted by compression and
scaling. The videos were presented to 66 human subjects under
two ambient conditions using high-speed display hardware in a
controlled environment. We conducted an extensive analysis of
the collected subjective opinion scores and studied the possible
differences in scores gathered under two ambient conditions.

To demonstrate the usefulness of our new psychometric
HDR data resource, we used it to compare the HDR quality
prediction performances of a number of leading VQA models.
In addition, we designed a new framework for conceptualizing
and developing new HDR-specific video features, which we
call HDRMAX. We used HDRMAX to modify the widely-
used VMAF model by supplementing it with HDRMAX
features that sensitize it to the expanded luminance ranges,
transfer functions, and large color gamuts of HDR video
formats. Because of its excellent commercial success and ex-
tensive real-world validation, VMAF is an excellent platform
to show how HDR-specific HDRMAX features can improve
the performance of existing SDR VQA models.

The remainder of the paper is organized as follows. Sec-
tion II reviews relevant literature on subjective and objective
HDR quality studies. Section III details the design of the new
LIVE HDR database’s source contents, as well as the protocol
and implementation of the psychometric study we conducted

on the new database. Section IV analyzes the human subjective
data gathered from the study, while Section V analyzes the
effects of the different ambient environments. Section VI
explains the design of new HDRMAX video features, while
section VII applies HDRMAX to VMAF, examines its quality
prediction performance and compares it against other objective
VQA models on the new database. Finally, Section VIII
concludes with a forward-looking discussion.

This paper is developed from a conference paper [13].
This paper includes additional details on the subjective study,
analysis of the human ratings, the design and evaluation of
the new HDRMAX model and the evaluation of other existing
VQA models.

II. RELATED WORK

A. Subjective HDR Video Quality Databases

Over the past few years, a number of efforts have been made
to create video quality datasets for HDR, but all of these have
limited usefulness, either because they have been rendered
obsolete by the rapid pace of HDR standard development,
or by the inability of authors to publicly release their data
owing to copyright issues. Azimi et al. [14] conducted a study
using 18 human subjects who viewed 5 different 12-bit YUV
contents captured by a RED Scarlet-X Camera and afflicted
by compression and four other types of distortion, yielding 30
videos. The videos were displayed on a non-standard HDR
device the authors designed themselves, supporting the older,
more limited BT. 709 gamut, rather than the HDR10 compliant
BT. 2020 gamut, and the PQ OETF was not applied prior to
compression. Moreover, the videos were of maximum reso-
lution 1920×1080 (1080p), while most current HDR content
is 4K. Pan et al. [15] conducted a study of the effects of
compression on HDR quality using 6 source videos encoded
using PQ and HLG and the BT. 2020 color space, but the
codec used for compression was AVS2, which has seen little
industry adoption. The study included 144 videos that were
rated by 22 subjects, but unfortunately none of the video or
subjective data has been made publicly available. Baroncini
et al. [16] conducted a study of 12 compressed HDR videos
evaluated by 40 human subjects. The source contents did not
follow ITU Rec. BT 2020, the PQ OETF was not applied
on the video data, and again, none of the data was made
publicly available. Moreover, the resolution of all the videos
was 1080p. Rerabek et al. [17] conducted a study of 5 HDR
videos, each distorted by 4 compression levels, with the aim
of comparing objective HDR VQA algorithms, but the data
was not made publicly available. The videos were all only of
resolution 944×1080, and the data was tone-mapped to 8-bit
format before being displayed to the subjects. Athat et al. [18]
conducted a subjective study of HDR10 content, but none of
the data was publicly released because of copyright issues.
The authors compressed 14 HDR10 source contents using
H.264 and HEVC to generate 140 distorted videos, which were
viewed and rated by 51 subjects.

The study that we report here advances the field in several
ways: first, all of the source videos are compliant with the most
widely used modern HDR standard (HDR10) and include wide
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color gamut (WCG) and high frame rate (HFR) videos. Sec-
ond, the new dataset contains almost twice as many videos as
any prior HDR VQA dataset, and more than double the number
of collected subjective opinion scores. Third, we conducted the
largest and most contemporaneous HDR VQA study on it to
date. Fourth, we compared the performances of leading HDR
VQA models on it to validate the usefulness of the collected
data. Lastly, unlike nearly all of the prior datasets, we are
making the LIVE HDR dataset publicly available at http://live.
ece.utexas.edu/research/LIVEHDR/LIVEHDR index.html.

B. Objective Video Quality Assessment Algorithms

Objective VQA algorithms aim to automatically predict the
perceptual quality of videos. There are three categories of
objective VQA models: full-reference (FR), reduced reference
(RR), and no-reference (NR). FR VQA models operate by
comparing pristine reference videos against distorted versions
of them using perceptually motivated features and/or training
data [19], [20]. Reduced reference VQA models use only
partial reference information to achieve efficiencies [21], [22],
[23], [24]. NR VQA models require no information regarding
any reference videos, and instead predict perceptual video
quality based only on information extracted form distorted
videos [25], [26], [27], [28]. We use the new psychometric
HDR VQA database to compare leading HDR VQA models
that fall into the FR VQA category. The MSE (or equivalently,
the PSNR) has long been used as a basic index of video
quality. More recent popular VQA models include Structural
Similarity (SSIM) [19], Multiscale SSIM (MS-SSIM) [29],
Gradient Magnitude Similarity Deviation (GMSD) [30], most
apparent distortion (MAD) [31], visual information fidelity
(VIF) [20], and FSIM [32], among others [33], [34], [35], [36].
More recently, machine learning-based FR-VQA frameworks
have become quite popular. For example, VMAF [7] combines
features from two VQA models, using a Support Vector
Regressor (SVR) to map their feature sets to video quality
predictions. FR VQA models that rely on deep learning have
recently achieved competitive performance, such as DeepVQA
[37], and some even use unsupervised deep learning (UDL)
[38].

HDR quality prediction research is still a nascent field,
and there is only a small literature on the subject. [39]
discusses HDR visual quality impairments and efforts at
developing dedicated objective HDR video quality metrics.
An early algorithm was HDR-VDP [40], which considers the
nonlinear response to light of high contrast content and the
full range of luminances. An improved version called HDR-
VDP-2 [41] uses a model of all luminance conditions derived
from contrast sensitivity measurements. Further improvements
of HDR-VDP-2 include HDR-VDP2.2 [42], [43]) and HDR-
VDP3 [44]. The author of [45] proposed PU, a nonlinear
transform to extend normal SDR quality metrics to HDR.
Recent developments such as the PU21 encoding function have
further refined the field, providing an enhanced methodology
for designing quality metrics specific to HDR images [11].
Other authors have focused on the chromatic aspects of HDR
video quality by focusing on color fidelity [46], using HDR

Uniform Color Spaces [47], and using color difference mod-
els [48]. Another method called HDR-VQM utilizes spatio-
temporal analysis that simulates human perception [49].

Each of these prior methods has shortcomings. Most of them
rely on simple transforms that map video features to quality
predictions, such as, the root mean square error (RMSE) used
in color difference models, spatial pooling in HDR-VDP-2, or
the PU-SSIM and PU-PSNR models proposed in [45]. While
these methods are effective on their intended applications,
they were primarily designed for legacy HDR videos or HDR
images. The modern HDR10 standard, however, introduces
several significant changes, including the use of the Perceptual
Quantizer (PQ) curve for encoding luminance information, the
adoption of the BT.2020 color space, and the inclusion of
metadata for accurate display of HDR content. Furthermore,
our focus on a video database inherently includes temporal dis-
tortions, a factor not present in image databases. Given these
changes, it is likely that the reliability of legacy-based quality
metrics is reduced when applied to HDR10 content. Therefore,
it is necessary to evaluate these existing methods within the
context of HDR10 content to ensure their continued relevance
and accuracy. Additionally, our study also emphasizes the use
of the HEVC codec, which aligns with modern practice. This
new codec may introduce different types of distortions, and
the visibility of these distortions may also be different, further
underscoring the need for evaluation.

III. SUBJECTIVE EXPERIMENT DESIGN

A. HDR Video Contents

We gathered a collection of high-quality, distortion-free
HDR10 sequences from [50], [51] and nearly distortion-
free content from [52]. These videos were captured by pro-
fessionals using high-end cinematic HDR video cameras.
These sequences were all progressively captured at resolution
3840×2160 with the audio signal removed. The sequences
from [50], [51] were captured using Sony F55 or Sony F65
cameras with the dynamic range fixed to the S-log3 profile
and are then transformed to PQ EOTF in the post-production
process. The videos from [52] were provided in HDR10
format. The videos from [50], [51] have frame rates of 60
frames per second (fps) and those from [52] include both
50 fps and 60 fps. All of the source sequences are HDR-
WCG-HFR videos. Following recent studies [53], [54], [55],
[56], we segmented all of the video sequences into one or
more clips of 7-10 seconds duration. This range was chosen to
balance data collection efficiency and maintaining the integrity
of the depicted scenes. The 31 source clips were generated
from 19 different sources. When clipping the videos, care
was taken to avoid awkward interruptions of content and to
prevent similar clips from being taken from the same segments,
ensuring a more coherent, diverse, and representative set of
visual experiences for studying quality assessment.

Fig. 1 shows several sample frames from the source se-
quences we acquired. The videos span a wide range of
contents. We directly applied the spatial information (SI), or
integrated Sobel magnitude, and the temporal information (TI),
or absolute average frame difference, both defined in [57],

http://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
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Fig. 1. Exemplar screenshots of frames from source sequences.
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Fig. 2. Spatial Information (SI) versus (a) colorfulness (CF) and (b) Temporal
Information (TI), measured on all of the source sequences in the new LIVE-
HDR Database. The corresponding convex hulls are plotted by red lines.
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Fig. 3. Proportion of pixels outside of the sRGB color gamut, measured on
all of the source sequences in the new LIVE-HDR Database.

to the 10-bit HDR data. Similarly, the colorfulness measure
denoted as CF was computed as in [58]. Fig 2 plots the SI,
TI, and CF of all of the source sequences in the LIVE-HDR
database, indicating wide coverage of low-level content and
activity in space and time.

Moreover, we included additional characteristics of the
HDR content: min, max, mean, and median luminance, and the
portion of pixels outside of the sRGB color gamut. These new
metrics, visualized in Figs. 3 and 4, provide further insights
into the diversity and coverage of the color and luminance in
the HDR videos of our database.
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Fig. 4. Min, max, mean, and median luminance metrics measured on all of
the source sequences in the new LIVE-HDR Database.

B. Test Sequences

We collected 9 distorted video sequences from each source
sequence using the High Efficiency Video Coding (HEVC)
Codec. The selection process was subjective but systematic,
aiming to ensure that the videos are perceptually distinguish-
able while spanning a broad range of perceptual qualities. We
initially generated a substantial set of videos using a range of
bitrates and spatial resolutions, including but extending beyond
common settings in the streaming industry. We manually
reviewed all the videos and progressively reduced their number
to make the total playback duration suitable for our human
subjective study. The final bitrate and resolution settings that
we used are listed in Table I.

As for the encoding parameters, we used the libx265
encoder in constant bitrate mode with single-pass encoding,
which is most commonly used in industrial streaming appli-
cations, owing to its simplicity and efficiency. While certain
bitrates and resolutions may be less prevalent in practical ap-
plications, their inclusion remains advantageous. For instance,
a 540p video with a 2.2 Mbps bitrate may exceed those en-
countered in real-world situations, yet it exemplifies a scenario
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TABLE I
BITRATE AND RESOLUTION SETTINGS USED TO CREATE THE DISTORTED

VIDEOS.

Number resolution bitrate (Mbps)
1 3840×2160 15
2 3840×2160 6
3 3840×2160 3
4 1920×1080 9
5 1920×1080 6
6 1920×1080 1
7 1280×720 4.6
8 1280×720 2.6
9 960×540 2.2

with pronounced scaling artifacts and reduced compression
artifacts. Conversely, the 2160p video at 3 Mbps exhibits
significant compression artifacts, devoid of any scaling issues.
Lastly, the 720p video at 2.6 Mbps represents a confluence
of both compression and scaling artifacts. In numerous past
studies [59], [60] we have found this approach to be an
effective way to cover the distortion space, helping to ensure
subsequent model learning. The source videos were included
in the database and subsequent psychometric study, to serve
as labeled reference videos against which difference mean
opinion scores (DMOS) can be calculated. The videos include
four practical spatial resolutions. The higher-resolution 4K and
1080p videos were compressed using four and three bitrate
targets, respectively, mimicking the bitrate ladders used in
HDR video streaming. The videos compressed at the high-
est bitrate may be observed to present only slightly visible
compression artifacts, while the videos compressed to the
lowest bitrates exhibit obvious blocking, banding, temporal
and scaling artifacts. The 1080p, 720p and 540p videos
were all upscaled to 4K resolution when displayed to the
human subjects, using bicubic interpolation. This method was
selected for its balance between computational efficiency and
performance, which minimizes distortion and delay during
video playback, thereby maintaining the integrity of the HDR
content. The overall video database contains 279 distorted
videos and 31 reference videos, yielding a total of 310 videos
that were presented to the human subjects.

C. Subjective Testing Design

The human study was conducted in the Laboratory for
Image and Video Engineering (LIVE) subjective study room
at The University of Texas at Austin. A 65 inch Samsung
Class Q90T QLED 4K UHD HDR Smart TV [61] was used
to display the HDR content to the participating subjects. The
TV was calibrated for HDR by an Imaging Science Foundation
(ISF) certified professional using a Calman Calibration kit.

After calibration, the TV had a peak luminance of approx-
imately 1033 cd/m2, and a minimum luminance below the
measurement threshold of 0.7 cd/m2. Color gamut coverages
were 99.88% for BT.709, 88.86% for P3, and 66.33% for
BT.2020. Our choice of display sought to mirror what typical
consumers currently use in their homes. However, the limited

coverage can potentially introduce clipping on HDR10 videos.
We plotted the proportion of pixels of each video that fall
outside the TV’s gamut in Fig. 14 of the supplemental material.
It may be observed that this percentage was very small on
all but one video (‘bonfire’), but even on it most consumer
devices would display it similar to the display used in the
study. All the measurement was made with a SpectraScan®
Spectroradiometer PR-655. It was crucial to ascertain that
the TV detected and displayed HDR input correctly, thereby
avoiding any unintended tone mapping processes that might
introduce distortions. To accomplish this, we made specific
configurations and settings adjustments.

First, we enabled the “input signal plus function” in the
TV settings, allowing the Samsung TV to receive an extended
input signal range and enable HDR input. Subsequently, in the
Windows 10 operating system, we activated HDR functionality
in the Display settings. Additionally, in the Nvidia Control
Panel, we modified the output format to yuv420p and 10-bit
depth, while setting the refresh rate at 60Hz. These settings
were meticulously reviewed and ensured to remain consistent
throughout the entire study. The TV was connected to a
workstation having a 12 GB Titan X Graphics Processing
Unit (GPU), via an HDMI 2.0b cable allowing for smooth
playback of the videos.The Potplayer Video Player with the
MadVR renderer was used for playback. In the MadVR
settings, we took additional measures to guarantee an authentic
HDR viewing experience for the subjects. Specifically, we
configured MadVR to pass through HDR content directly
to the display. Moreover, we ensured that the ”Send HDR
metadata to the display” option was enabled. We also used
the test pattern in [62] to verify the display. All advanced
temporal processing options on the TV were disabled to avoid
the introduction of any processing artifacts.

For all the subjects the viewing distance was about 1.5H ,
where H is the height of the display. During a session, the
subject would watch each video, then see a screen where
they were asked to record a quality judgment on the video
that they had just seen, using a visible slider on the screen
they controlled with their mouse. While the rating scale was
continuous, the user was guided by five Likert-like markers
placed at uniform intervals labeled as “Bad,” “Poor,” “Fair,”
“Good,” and “Excellent.” The scores given by the subjects
were sampled as integers on the interval [0, 100], although
numerical values were not made visible to the subjects. In
order to prevent bias due to initial positioning of the rating
indicator, it would not appear on the sliding scale until the
subject placed the cursor on the slider and clicked on it.

The first session shown to each subject was preceded by a
briefer training session that presented six exemplar videos of
two contents (different from those that followed) that generally
spanned the range of distortions that would be seen. For each
of the two contents, one reference video and two compressed
versions were displayed. All of the training videos were played
in a randomized order, each followed by the interactive rating
screen, to allow the subjects to become familiar with the
overall rating protocol. We utilized the Absolute Category
Rating with Hidden Reference (ACR-HR) protocol [57] when
displaying the training and test videos, hence the videos shown
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in each session were displayed in randomized order. Each
subject viewed the videos in a different random order.

D. Ambient Conditions

Two different lighting conditions were used to test the
effects of ambient illumination on the perceived quality of
HDR content. The first was a dark viewing condition, where
the incident illumination on the television was measured to
be 5 lux, following the recommendation in [63] for critical
viewing of HDR content, and the recommendation in [64]
describing general viewing conditions for a subjective study
conducted in a laboratory environment. An incandescent table
lamp and floor lamp were used to create the light necessary
for this environment.

The second ambient condition was illuminated by a pair of
yellow-filtered Neewer LED lights to produce an incident illu-
mination on the TV of 200 lux, following the recommendation
in [64] for general viewing conditions in a home environment.
In this environment, a set of studio LED lights and a 95
W studio compact fluorescent light were placed behind and
below the television in order to create a uniform, diffuse
ambient illumination. In both environments, the lights were
positioned so that their reflections off the television would not
be visible to the viewers. The incident luminance on the TV
was measured by a Dr. Meter LX1330B luxmeter.

E. Subjects

A total of 66 human subjects were recruited from the student
population at The University of Texas at Austin. Each subject
participated in two sessions separated by at least 24 hours.
The subjects were divided into two groups, one for each
ambient condition. Hence 33 subjects watched the videos in
the darker environment and 33 watched the videos in the
brighter environment. No subject was given any information
about the ambient conditions. We applied the Snellen and
Ishihara tests of test each subject’s visual acuity and color
perception, respectively. One subject was found to have a color
deficiency, but no subjects had less than 20/30 visual acuity
on the Snellen test, when wearing their corrective lenses (if
needed). The color deficient subject was not rejected from the
study following our common practice of promoting a more
realistic subject pool, as explained on our website [65].

IV. PROCESSING OF SUBJECTIVE SCORES

There are a number of ways in which subjective scores
can be converted into Mean Opinion Scores (MOS). We
computed MOS as the average of subjective scores given by
subjects (MOS), the average of z scores (ZMOS), and we also
computed MOS using the statistical method proposed in [66].

A. MOS

Let id index those subjects that viewed videos in the
dark environment, and ib index the subjects who viewed the
videos in the bright environment. MOS is calculated as the
average of the scores given by a set of subjects, in [67]. We
will also define separate MOS values for the dark and light

environments. Let the scores given by a subject ik on video j
be sikj . We will refer to the MOS of a video j whose scores
were collected under the darker (brighter) ambient conditions
as the respective average scores given under each condition:
MOSdj and MOSbj , where

MOSkj =

Sk∑
ik=1

sikj , (1)

for k = d, b (dark, bright), and j = 1, 2 . . . N .

B. ZMOS
We also define MOS calculated as the average of the z

scores [68], given by

zikj =
sikj − µik

σik
(2)

for k = b, d, where the subjects under dark (bright) conditions
are indexed id = 1, 2 . . . Sd (ib = 1, 2 . . . Sb) when rating
videos indexed j = 1, 2 . . . N . In our database, Sd = 33, Sb =
33 and N = 310. In (2), µik and σik are the mean and standard
deviation of the scores given by subject ik across all videos:

µik =

∑N
j=1 sikj

N
(3)

and

σik =

√∑N
j=1 (sikj − µik)

2

N
. (4)

Since there are two ambient conditions, for each video j =
1, . . . , N we will refer to the MOS calculated from scores that
were collected under darker (brighter) ambient conditions as
ZMOSdj and ZMOSbj , respectively, where

ZMOSkj =

Sk∑
ik=1

zikj (5)

for k = d, b (dark, bright).

C. Consistency Analysis
We studied the internal consistency of the scores as follows.

We randomly partitioned the subjects who participated under
each ambient condition into two approximately equal sized
groups and computed the correlations between the mean MOS
computed separately from the two groups over 100 random
divisions. We then computed the correlation across the 100
splits. As expected, the internal consistency of the ZMOS
was better than that of MOS. We applied the outlier rejection
method suggested by ITU Rec. BT 500.11 on both the MOS
and ZMOS, separately for each ambient condition. However,
we found that the internal correlations did not improve when
the outliers were removed, as shown in Table II. We also
examined the scores of the color-deficient subject, and found
that his scores correlated more highly against the other subjects
who participated under the same ambient condition (0.88)
than the average correlation between individual scores and
group scores (0.82). In our analysis, we therefore chose not to
remove the outliers when conducting the subsequent statistical
analysis.
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TABLE II
CONSISTENCY ANALYSIS OF THE SUBJECTIVE DATA.

Correlations before ITU BT 500.11
outlier removal.

Number of outliers accord-
ing to ITU BT 500.11.

Correlations after ITU BT 500.11
outlier removal.

MOSd 0.9481 0 0.9481
MOSb 0.9528 2 0.9492
ZMOSd 0.9636 7 0.9581
ZMOSb 0.9669 6 0.9665

D. SUREAL Scores

A number of deficiencies in the ITU BT 500.11 outlier
removal method have been observed in [66], along with an
improved method called SUREAL that finds a Maximum
Likelihood (ML) estimate of the scores. Using this method,
represent the opinion scores sikj as random variables Sikr

Sikj = ψkj +∆ik + νikX, (6)

where ψkj is the true quality of video j under ambient
condition k, ∆ik represents the bias of subject ik, the non-
negative term νik represents the inconsistency of subject ik,
and X ∼ N(0, 1) are i.i.d. Gaussian random variables. The
quantities ψkj ,∆ik , νik are estimated by computing the log-
likelihood of the observed scores, using the Newton-Raphson
method to solve for the values of ψkj ,∆ik , νik that maximize
the log-likelihood. We plotted the estimated subject biases in
Fig. 15 and their inconsistencies in Fig. 16 in the supplemen-
tary material. It may be observed that both the subject biases
and inconsistencies are quite dispersed. In this way, subject
biases are accounted for when estimating the true qualities
ψkj , and the method is robust against subject inconsistencies.

V. EFFECT OF AMBIENT ILLUMINATION

We used all three types of summary subjective opinion
scores to analyze the effects of ambient illumination on
impressions of quality. It is worth noting that the MOS and
SUREAL scores preserve the differences between the absolute
values of the scores under the two ambient conditions, while
the ZMOS scores do not, since they are normalized. The
distributions of MOS, ZMOS, and SUREAL are shown
in Fig. 5. The MOS and SUREAL values under each of
the ambient conditions cover a wide range, and it may be
observed that the overall distributions of scores under the two
ambient conditions are similar. Since SUREAL and MOS are
absolute scores, one may deduce from Fig. 5 that the videos
watched under darker ambient conditions were rated as being
of slightly higher qualities than those watched under bright
ambient conditions. The same conclusions cannot be drawn
regarding ZMOS, which is a normalized score, suggesting
that these results reflect a slight preference for viewing under
the darker conditions, but the relative ratings remain largely
unaffected. Fig. 6 plots MOS against spatial resolution and
bitrate. It may be observed that the MOS recorded under
both ambient conditions fell in similar ranges for each spatial
resolution and bitrate combination, but the MOS recorded
under brighter conditions were slightly lower than under

darker conditions at most resolution and bitrate settings. These
differences, however, were more pronounced at lower bitrates
and resolutions.

To assess the possible significance of the differences that
we observed in Fig. 6, we conducted Welch’s two-sided t-
test on the MOS under both ambient illumination settings.
We compared the MOS at each resolution and bitrate setting,
obtaining the p-values shown in Table III. As may be seen,
none of the resolution and bitrate combinations yielded a p-
value less than 0.05, indicating that, while differences may be
discerned between the MOS obtained under the two different
illumination settings, these differences were not statistically
significant. Separately, we also tested the raw (non-averaged)
scores that were recorded by the individual subjects under the
two ambient conditions. From among 310 labeled videos, only
17 were associated with differences in quality judgments that
were statistically significant.

We further investigated the influence of ambient illumina-
tion on perceived video quality through a permutation test
as outlined in [69]. Despite 17 videos showing statistically
significant differences in mean scores under different viewing
conditions in our initial t-test analysis (D = 17), we sought to
examine whether this could occur by chance. In the permuta-
tion test, subjects were randomly divided into two groups and
mean scores for each video were recalculated. A paired t-test
was then executed for each video. This process was replicated
10,000 times to construct a distribution of counts of significant
differences, D′, under random group assignment.

For ambient illumination to be considered significant, it
must satisfy Pr(D′ < D) ≥ 0.95. Our analysis revealed that
the 95th percentile of the D′ distribution was 41, greater than
observed D = 17, leading to the conclusion that differences
between bright and dark conditions were not statistically
significant. The D′ distribution, observed D, and the 95th per-
centile are shown in Fig. 7, illustrating the lack of significant
impact of the ambient illumination on video quality ratings.

Further, we calculated the average luminances of each video
which does not depend on the illumination. Fig. 8 shows a
scatter plot of the p-values of videos in the raw score com-
parisons against the computed average luminances. There was
no clear tendency of p-values against the average luminance.
Indeed, the Pearson’s correlation coefficient between the p-
values and the average luminances were essentially nil (0.03).

We also used the confidence intervals of the SUREAL
scores to study the effects of ambient illumination. The
SUREAL method provides 95% confidence intervals on the
subjective scores using the Cramer-Rao bound. The values of
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Fig. 5. Histograms showing distributions of MOS, ZMOS, and SUREAL scores.
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Fig. 6. A box plot showing the distribution of MOS under two ambient
illumination settings for each distortion combination.

TABLE III
THE P-VALUE OF EACH BITRATE AND RESOLUTION SETTINGS FOR THE

DISTORTED VIDEOS.

Number resolution bitrate (Mbps) p-value
1 3840×2160 ref 0.5987
2 3840×2160 15 0.1539
3 3840×2160 6 0.1750
4 3840×2160 3 0.1538
5 1920×1080 9 0.3422
6 1920×1080 6 0.2856
7 1920×1080 1 0.3105
8 1280×720 4.6 0.4361
9 1280×720 2.6 0.3645
10 960×540 2.2 0.7095

ψdj and ψbj are plotted in Fig. 17 in the supplementary ma-
terial. We found that for 10 of the 310 videos, the confidence
intervals did not overlap, indicating statistically significant
differences. We also computed the 95% confidence intervals
of the MOS (assuming normality) and plotted the scores
and their confidence intervals in Fig. 18 in the supplementary
material.

VI. OBJECTIVE VIDEO QUALITY MODEL DESIGN

The goal of our model design is to find features that are
expressive of distortions that are more noticeable in HDR
videos. As compared to SDR videos, HDR videos contain
lower black levels, higher peak luminances, and more brilliant
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Fig. 7. Distribution of significant differences (D′) under random group
assignment for the permutation test. The observed value D = 17 and the
95th percentile of the D′ distribution are also shown, indicating that the
observed differences in scores under bright and dark ambient conditions are
not statistically significant.
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Fig. 8. Scatter plot of the p-values of the raw score comparison against the
average luminances of each video .

colors. Rich visual information, and visible distortions, can
be observed in the dark and bright zones, both affecting
subjective quality; however, conventional SDR VQA models
have difficulty capturing this information.

The reason for this is that the responses of conventional
VQA feature sets are dominated by, or at least strongly
affected by distortions on regions that are “SDR-like,” i.e.,
occupying the mid-range of brightnesses. The feature re-
sponses to very dark and bright regions become dilute, greatly
reducing the sensitivity of standard VQA models to highly
conspicuous “HDR” distortions. Moreover, the visual response
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to luminance is highly nonlinear. The visual system is able to
map large ranges of luminances onto much smaller ranges
of perceived lightness, thereby achieving a high degree of
compression [70]. For a distortion of fixed magnitude, the
Weber ratio of luminance is higher on dark and is reduced
as the luminance increases. Thus, small changes in luminance
in dark regions will be more noticeable than in bright regions.

Because of these reasons, distortions on the darkest and
brightest areas have distinct perceptual responses and contri-
butions to perceptual quality. The perceptual distortion infor-
mation in these areas is not effectively captured by conven-
tional VQA feature sets. Thus, we introduce additional feature
computation pathways to capture “HDR-specific” features in
parallel with the traditional “SDR” features, to better account
for perceived distortions in these areas.

Specifically, we introduce HDRMAX, a simple but effective
way to process bright and dark regions separately, and comput-
ing HDR-aware quality features on them, while avoiding com-
plicated computations such as image segmentation. Instead, we
define a pair of nonlinear transforms that expand the luminance
ranges of very dark and bright regions, at the expense of the
mid-range, which effectively amplifies the impact of “HDR”
distortions on VQA feature responses. Following the trans-
forms, we define separate and parallel feature extraction paths,
to drive the quality-aware features specific to each of the areas,
so that features computed on the nonlinearly altered frames can
be used to augment conventional SDR VQA features.

A. Double Exponential Nonlinearity

The main characteristic of the nonlinear transform is to
stretch the brightness values near the minimal (darker) and
maximum (lighter) values, thereby enhancing the contrast
there.

Neural responses are adequately modelled as sigmoidal
functions [71]:

R = Rmax
In

In + Ins
, (7)

where R is the response to an input signal I , Rmax is a
maximum response, Is is a semisaturation constant, and n
depends on the type of neuron, but usually falls in the range
[1, 2] [72]. The sigmoidal function has the greatest slope for
the smallest input magnitudes, gradually decreasing as the
input increases.

We selected an exponential functions as a simple and effec-
tive way to amplify the brightness values at the extreme ends
of the dynamic range in a nonlinear fashion, while gradually
compressing the mid-range brightness values. This choice was
guided by the simplicity of an exponential function’s form and
the control it provides over the degree of expansion through its
parameters. The numerical stability it offers also contributed
to its selection. While we do not claim that it accurately
models the perceptual response, its use is quite perceptually
relevant to VQA model design. The reason is that it is making
perceptually relevant distortion information more available to
VQA algorithms. It does this in a way that is copacetic
with theories of distortion-sensitive natural video statistics. In
this sense it may be viewed as a pooling preprocessing step

that can remedy the defects of current learning-based VQA
models. Since it is not meant to model a biological perceptual
process, there may be other functional forms that are as
effective, or more so, but our choice is a simple one. Moreover,
HDRMAX incorporates a local adaptation operation, a process
fundamental to vision, facilitating adjustment to a wide range
of brightness values. Local adaptation adjusts the sensitivity
of the visual system based on the local luminance level, acting
specifically on each region of the retina [73]. A refined model
of this process, building upon the Naka-Rushton equation, has
been proposed to simulate the physiological adaptations of the
retina. Particularly, it modifies the half-saturation parameter,
depending on the local luminance level. Inspired by this
model of local brightness adaptation, we integrated a mean
debiasing operation into HDRMAX. This operation precedes
the exponential transform, its purpose being to adjust the
nonlinearity based on the local mean luminance, thereby
preserving sensitivity across different local luminance levels
within each frame.

In the context of the HDRMAX augmentation, the mean
debiasing operation is positioned before the input into con-
ventional SDR VQA models. This reflects the local adaptation
model that simulates the initial stages of visual processing in
the retina. Implementing this operation before later stages of
the visual pathway modeled by existing SDR VQA models
aligns with the natural flows of visual processing. As a result,
HDRMAX ensures that the local nonlinear operation maintains
sensitivity and responsiveness across varying local luminance
levels.

The basic goal of HDRMAX is to address the inability
of conventional SDR VQA models to capture some HDR
distortion characteristics. Our method makes better available
distortion information in the extreme range of luminance and
color that are highly visible but not well accessed by current
VQA models such as VMAF. We do this by introducing a
separate processing pathway that expands the extreme ends
of the dynamic range. This is accomplished by introducing
an expansive nonlinearity whose outputs are nicely analyzable
using natural video statistics model.

The nonlinearities are applied on the perceptually uni-
form PQ-encoded luma. The nonlinearities, while designed to
capture aspects of relative luminance perception, are only a
simple model of it. The interplay between the PQ transfer
function and the exponential functions is intricate and not
easily explained from a perceptual point of view. An advan-
tage of applying the nonlinearities on perceptually uniform
luma is that it allows for predictable modifications to video
content. This predictability enables a clear understanding of
how the nonlinearities stretch or compress bright/dark regions,
providing a greater level of control over the quality assessment
process.

Assume that the brightness values I(x, y, t) fall within the
range [0, 1]. If they don’t, linearly scale the brightness range
[A,B] 7→ [0, 1], where A and B represent the minimum
and maximum brightness values within each frame, respec-
tively. This scaling operation aligns the dynamic range of
each frame’s brightness values with the [0, 1] interval, while
controlling the strength of the applied exponential function,
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maintaining uniformity across each frame and avoiding ex-
treme values. While this approach to normalization diminishes
the link to absolute luminance, it isolates the local contrast,
which is highly relevant to visual distortion perception. We
then apply point operations on the scaled brightness values,
with the goal of nonlinearly expanding the dynamic ranges of
the extreme high (bright) and dark ends. Once these operations
are applied, feature extraction is conducted in the same way
on two nonlinearly transformed frames, and the original frame.
The nonlinear transformations are adaptive, since it includes
local mean debiasing. The two nonlinearly transformed videos
are given by:

Ĩ l1(x, y, t) = exp[δ1(I(x, y, t)− Ī l(x, y, t))], (8)

and

Ĩ l2(x, y, t) = exp[−δ2(I(x, y, t)− Ī l(x, y, t))]. (9)

The parameters δ1, δ2 ∈ 0.5, 1, 2, 5 in equations 8 and 9
control the expansion strength in the bright and dark areas,
respectively. This choice, akin to a log grid search, offers a
balance between model complexity and computational feasi-
bility, and appropriately captures the inherent data patterns.

These parameters help modulate the representation of HDR
details in dark and bright regions. Extreme values could lead to
under-detailed or unnaturally contrasted images, emphasizing
the need for careful selection of these parameters. In the
experiments, we fixed δ1 = 0.5 and δ2 = 5 but we discuss
these choices and how performance varies with them in the
performance evaluation section. Ī l(x, y, t) is the local mean
brightness estimate:

Ī l(x, y, t) =

K∑
k=−K

L∑
j=−L

wk,lIk,l(i, j), (10)

where w = {wk,l|k = −K, ...,K, l = −L, ..., L} is a 2D
circularly-symmetric unit-volume Gaussian weighting function
sampled up to 3 standard deviations away from the mean. We
used K = L = 31 in our experiments and we discuss the
choice of the parameter later in the performance evaluation
section.

We show plots of the exponential transforms in Fig. 9,
illustrating the expansion of the extreme dark and bright
ranges. We use separate transformations, because it allows
flexibility when accessing information at the bright and dark
ends. For example, we assume throughout that the luma values
are expressed as luma, rather than luminance. In most HDR
streaming video workflows, the PQ OETF is applied to the
linear luminance signals received by RGB sensors to convert
them to nonlinear color R’G’B’, which are then weighted
and summed to compute luma and color-difference channels
(Y ′C ′

BC
′
R, sometimes referred to as YUV.) The nonlinearities

(8)-(10) are flexible enough to be used either on luma or on
luminance, the latter of which has already been transformed
by an asymmetric nonlinearity.

Two sample reference frames taken from the ‘flower’ and
the ‘firework’ videos, as well as the result of applying the non-
linear transformations to the ‘flower’ and ‘firework’ frames,
are shown in Fig. 10. The ‘flower’ video frame contains
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Fig. 9. The two exponential transforms in (8) (left) and (9) (right) plotted
for several values of the expansion parameters δ1 and δ2.

Fig. 10. The reference frames ‘flower’ and ‘firework’ (left), the transformed
reference frames after processing with (8) (middle) and (9) (right).

(a) (b) (c) (d)

Fig. 11. A patch from ‘flower’. (a) from the reference frame; (b)-(d) from
the compressed frame. (b) before nonlinear transformation; (c) after nonlinear
transformation (8); (d) after nonlinear transformation (9).

areas containing mostly mid-range brightness values, while
the ‘firework’ video frame contains very bright areas on a
very dark background. As such, the nonlinearly processed
‘firework’ video will contain more heavily enhanced areas.
Of course, these printed representations are not HDR and are
being shown to give an idea of the applied effects. To illustrate
the effects on distortion visibility, we also show magnified
areas of ‘flower’ and ‘firework’ before and after compression
and with nonlinearities applied in Fig. 11 and Fig. 12. To
demonstrate the amplification of distortions on the bright
areas, we also show the result of applying transformation (8)
and (9). As may be observed, application of the nonlinear
transformation greatly enhances the distortions in the bright
regions of ‘firework,’ and less so on the mid-range distortions
in ‘flower.’

B. Modifying VMAF Using HDRMAX Features

VMAF is a data driven video quality framework that extracts
several highly successful VQA features, then uses a trained
SVR to map the features to human judgments. The features
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(a) (b) (c) (d)

Fig. 12. A patch from ‘firework’. (a) from the reference frame; (b)-(d) from
the compressed frame. (b) before nonlinear transformation; (c) after nonlinear
transformation (8); (d) after nonlinear transformation (9).

TABLE IV
DESCRIPTIONS OF FEATURES

Feature index Description

f1 − f5 VIF and DLM features from the original
frame.

f6 Motion feature

f7 − f16 VIF and DLM features from the frames
following the nonlinear transformation.

used in VMAF 2.3.0 include the Detail Loss Metric (DLM),
four Visual Information Fidelity (VIF) features computed
on different oriented frequency bands, and a simple frame
difference feature, all of which are applied on the PQ luma
component only. Modifying VMAF to include HDRMAX
features is quite simple. On the brightness component of each
video frame, also compute the nonlinearly transformed frames
Ĩ l1 and Ĩ l2, along with the usual VMAF features computed on
I . Table IV summarizes the features used.

VII. OBJECTIVE VIDEO QUALITY ASSESSMENT
EXPERIMENTS

As a way of demonstrating the usefulness of the new LIVE
HDR Database, we used it to study the performance of several
existing HDR VQA models, as well as state-of-the-art (SOTA)
SDR VQA models. We also studied the performance of VMAF
augmented by HDRMAX features as its parameters were
varied.

A. Evaluation Criteria

We used the SUREAL scores owing to their statistical
reliability. Since they are absolute quality scores, we obtained
quality differences referred to as difference MOS (DMOS).
Given a video indexed j with SUREAL score ψdj , compute
the difference score

Dψdj = ψref
dj − ψdj . (11)

The performances of the compared algorithms, including
VMAF+HDRMAX, were evaluated using three standard met-
rics: the Spearman’s Rank Order Correlation Coefficient
(SROCC), the Pearson Linear Correlation Coefficient (PLCC),
and the Root Mean Square Error (RMSE). Following common

practice [74], we fit the predicted scores to the real scores
using a logistic function

f(s) = β1(
1

2
− 1

(1 + exp(β2(s− β3))
) + β4s+ β5 (12)

before computing the PLCC and the RMSE.

B. Evaluation Protocol

We used an SVR to learn the mappings from features to
DMOS. The SVR was implemented using the linear kernel. All
of the compared algorithms were evaluated using 1000 random
train-test splits. On each split, 80% of the data was used for
training, and the other 20% for testing, while not allowing
any sharing of content between training and testing subsets.
Notably, the new dataset includes several videos derived from
the same longer clips, specifically, the football videos (football
1-8) and golf videos (golf 1-2). We diligently ensured that
these videos were not split between the training and testing
sets, to avoid any potential leakage of similar content between
the sets. We applied 5-fold cross-validation to find the optimal
SVR parameters for each training set.

C. Performance Evaluation of VMAF+HDRMAX

We tested the performance of VMAF+HDRMAX against
different choices of the expansion parameters δ1 and δ2. For
each parameter combination, we computed the 16 features in
Table IV, on the LIVE HDR Database and conducted 1000
train-test splits. The median values of the obtained perfor-
mance metrics SROCC, PLCC and RMSE are given in Ta-
ble V. For better visualization, a heatmap of the SROCC as the
parameters δ1, δ2 were varied is shown in Fig. 13. As may be
observed, smaller values of δ1 and larger value of δ2 generally
resulted in higher SROCC, while (δ1, δ2) = (0.5, 5.0) yielded
the best SROCC. One possible explanation for this is that
HDR10 videos extend the original SDR luminance range from
0.01-100 nits to 0.0001-10000 nits. The difference between the
darkest blacks of SDR and HDR is much less than between
the brightest SDR and HDR values, suggesting that greater
expansion is required on the darker end. However, although the
choice of the parameter selection does influence the measured
model efficacy, the differences are not large, and every choice
and combination resulted in excellent performance relative
to other, prior models. This demonstrates the efficacy of the
nonlinear transformation and HDR features.

We also conducted experiments on the patch size W used in
transformation (8) and (9). The results for W = 9, 17, 31 and
63 are reported in Table VI using δ1 = 0.5 and δ2 = 5. We
avoided W values that are multiples of 4 to avoid alignments
of the transformation window edges with compression block
boundaries. The choice of window size had a minor effect
on performance, but we chose the one giving the highest
degree of correlation between predicted quality against human
judgments.

We also studied other design choices. First, we extended
the nonlinear transformation to the components of three color
spaces: the BT.2020 RGB color space, the Y CBCR [5] color
space, and the HDR − Lab [75] color space. The RGB
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TABLE V
PERFORMANCE OF LUMA VMAF+HDRMAX AS THE EXPANSION

PARAMETERS δ1 AND δ2 VARIED, FOR USING THE NONLINEAR
TRANSFORM (8)-(10). THE TOP PERFORMING COMBINATION IS

BOLDFACED.

δ1 δ2 SROCC PLCC RMSE

0.5 0.5 0.8470 0.8056 11.9296

0.5 1 0.8238 0.7918 11.4521

0.5 2 0.8610 0.8167 10.8815

0.5 5 0.8755 0.8397 10.1410
1 0.5 0.8516 0.8099 11.6104

1 1 0.8500 0.8125 11.5388

1 2 0.8628 0.8303 10.9217

1 5 0.8584 0.8213 11.2416

2 0.5 0.8335 0.7861 11.5870

2 1 0.8282 0.7953 11.5907

2 2 0.8433 0.8200 10.1993

2 5 0.8540 0.8268 10.1404

5 0.5 0.8378 0.8003 11.8099

5 1 0.8422 0.8086 11.3328

5 2 0.8203 0.8081 11.6327

5 5 0.8216 0.7958 11.6869
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Fig. 13. A heatmap visualizing median SROCC as (δ1, δ2) are varied for
the nonlinear transformation (8)-(10).

space is associated with acquisition and display. Y CBCR is a
common format for HDR videos. In HDR−Lab, the L∗ com-
ponent captures the perceived lightness of a color as compared
to a white reference. The a∗ and b∗ components represent the
position of the color between red/magenta and green, yellow
and blue respectively. For each variant model, we extracted
the original six VMAF features on each channel, and also
extracted the four VIF features and the DLM feature on the
nonlinearly transformed frames of each component. Thus, each
color variant of VMAF+HDRMAX utilizes 46 features. As
a final comparison model, we applied the nonlinearity (8)-
(10) on the linear luminances instead of the PQ luma values,
but without any color components. The performance results
for these four variants of HDRMAX are shown in Table VII.
The results for all models were quite good, but not as high

TABLE VI
PERFORMANCE OF THE NONLINEAR TRANSFORM FOR VARIOUS WINDOW

SIZES. TOP PERFORMANCE IS BOLDFACED.

W SROCC PLCC RMSE

9 0.8601 0.8265 11.1056

17 0.8552 0.8354 11.0654

31 0.8755 0.8397 10.1410
63 0.8675 0.8205 11.1852

TABLE VII
PERFORMANCE OF COLOR VARIANTS OF VMAF+HDRMAX. THE

“SETTING” COLUMN INDICATES THE COLOR SPACE. “LINEAR” INDICATES
THE TWO-EXPONENTIAL TRANSFORM AND FEATURES ARE PERFORMED

ON THE LINEAR LUMINANCE VALUES. THE TOP PERFORMANCE IN EACH
DOMAIN IS BOLDFACED.

Setting SROCC PLCC RMSE

HDR− Lab 0.7850 0.7348 14.3641

RGB 0.7986 0.7477 13.3448

Y CBCR 0.8025 0.7502 13.7340

linear 0.8355 0.8068 11.3307

as for the luma-only VMAF+HDRMAX results. Since the
database contains videos that have excellent color diversity
and coverage, this suggests that most of the distortion artifacts
can be captured and analyzed within the luma channel, while
increasing the dimension of the feature space slightly reduces
the model performance.

D. Comparison Against Other VQA Models

We also evaluated several other FR HDR and FR SDR VQA
models on the new database and compared them against the
VMAF+HDRMAX. The existing HDR algorithms we studied
are the latest PU21 enhanced models, including PSNR, SSIM,
MS-SSIM, FSIM [32] and VSI [76], HDR-VDP2.2, HDR-
VDP3, and HDR-VQM, while the compared SDR methods are
PSNR, SSIM, MS-SSIM, STRRED, SpEED-QA, and VMAF.
Most of these models are not trained. We listed both the pre-
trained and retrained VMAF for comparison. The results of
the comparison are shown in Table VIII and Table IX against
the DMOS obtained from the dark environment and bright
environment respectively. It may be seen that VMAF mod-
ified using HDRMAX was able to significantly outperform
the other models, including retrained VMAF. The fact that
VMAF+HDRMAX outperforms VMAF by a large margin
implies that the unmodified VMAF largely captures distortions
from the usually dominant mid-range of brightness.

To further substantiate our claim, we performed a one-
sided t-test for statistical analysis. For each model, we used
1000 SROCC values, obtained from individual train-test splits.
In the case of models that do not require training, we ran-
domly selected a 20% video sample to calculate a comparable
SROCC sample. The single-sided t-test was then performed
on the SROCCs between our proposed VMAF+HDRMAX
method and the rest of the models, under both bright and
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TABLE VIII
PERFORMANCE OF THE COMPARED HDR AND SDR QUALITY MODELS
EVALUATED USING THE SCORES FROM THE DARK ENVIRONMENT. THE

TOP PERFORMANCE IS BOLDFACED.

Method SROCC PLCC RMSE

SDR
Quality
Models

PSNR 0.5798 0.6229 13.6735

SSIM 0.4982 0.4925 15.2124

MS-SSIM 0.5139 0.5252 14.8741

STRRED 0.5670 0.5506 14.5913

SpEED-QA 0.5716 0.5685 14.6258

VMAF (origi-
nal)

0.7628 0.7492 12.2953

VMAF
(retrained)

0.7940 0.7679 11.4522

HDR
Quality
Models

HDR-
VDP2.2

0.5868 0.5128 15.0052

HDR-
VDP3.0.7

0.7363 0.7307 11.9332

HDR-VQM 0.5543 0.5450 14.3890

PU21-PSNR 0.5841 0.5767 14.2798

PU21-SSIM 0.6019 0.6065 13.8971

PU21-
MSSSIM

0.6593 0.6564 13.1868

PU21-FSIM 0.6470 0.6372 13.4705

PU21-VSI 0.6795 0.6667 13.0284

VMAF+
HDRMAX

0.8755 0.8397 10.1410

dark conditions. The details of these t-test analyses can be
found in Table X. It may be observed that the SROCC values
for pretrained and retrained VMAF appear to be similar in
Tables VIII and IX, but show some difference in Table X. This
minor difference arises from the fact that we sample 20% of
the videos for the pretrained VMAF in the process of t-test,
leading to slightly varied SROCC values obtained from these
samples. This provided statistical evidence of our method’s
superior performance, with all p-values below the threshold
of 0.05, denoting statistical significance.

E. Evaluation on SDR Database

We also trained and evaluated VMAF+HDRMAX on the
SDR-only LIVE Livestream Database [77] to study the effi-
cacy of the nonlinear transformation prior to conducting SDR
VQA. We also re-trained the original (SDR) VMAF in a
similar manner for a fair comparison. The LIVE Livestream
Database was selected because it is both modern and very di-
verse. It contains 315 videos of varying resolutions (1080p and
4K) multiple types of distortions and significant high-motion
temporal content. It offers professional-quality videos captured
under controlled lab conditions, similar to the anticipated
application scenarios of the HDRMAX model. Moreover, there

TABLE IX
PERFORMANCE OF THE COMPARED HDR AND SDR QUALITY MODELS

EVALUATED USING THE SCORES FROM THE BRIGHT ENVIRONMENT. THE
TOP PERFORMANCE IS BOLDFACED.

Method SROCC PLCC RMSE

SDR
Quality
Models

PSNR 0.6268 0.6621 13.0476

SSIM 0.5493 0.5406 14.6461

MS-SSIM 0.5740 0.5831 14.1442

STRRED 0.6373 0.6167 13.7048

SpEED-QA 0.6435 0.6254 13.6944

VMAF (origi-
nal)

0.8184 0.7947 11.0224

VMAF
(retrained)

0.8133 0.7890 11.0915

HDR
Quality
Models

HDR-
VDP2.2

0.6472 0.6254 13.9861

HDR-
VDP3.0.7

0.8080 0.8098 10.2139

HDR-VQM 0.6315 0.6144 13.5114

PU21-PSNR 0.6117 0.5963 13.9762

PU21-SSIM 0.6403 0.6301 13.5188

PU21-
MSSSIM

0.7120 0.6969 12.4859

PU21-FSIM 0.7116 0.6904 12.5951

PU21-VSI 0.7290 0.7058 12.3334

VMAF+
HDRMAX

0.8693 0.8256 10.6864

is no content overlap with the LIVE-HDR database, ensuring
independent evaluation.

Our findings, displayed in Table XI, indicate that HDR-
MAX notably enhances performance on SDR content as well,
underscoring the value of focusing on dark and bright regions
during VQA. This improvement does not merely result from
an increase in the size of the feature space. In the context
of machine learning, it is widely recognized that adding
more features does not inherently enhance model performance.
Instead, the efficacy of a feature lies in its discriminative
power and its relevance to the task at hand. The features added
by HDRMAX are both discriminitive and highly sensitive to
video quality characteristics, thus contributing to improved
performance. Recognizing potential interest in the contribu-
tion of HDRMAX features, we also include the standalone
performance of these features.

F. Evaluation on HDR Inage Database

To better illustrate the generalizability of our method, we
conducted additional testing on the Unified Photometric Image
Quality dataset (UPIQ) [12]. UPIQ is an expansive collection
of over 4000 HDR and SDR images, and has proven to be a
valuable resource for developing and validating HDR metrics.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE X
STATISTICAL ANALYSIS OF MODEL COMPARISONS

Test Condition Dark Bright

Model t-statistic p-Value t-statistic p-Value

SDR Quality
Models

PSNR 7.32 1.78E-13 3.72 1.01E-04

SSIM 23.67 1.07E-109 21.42 4.43E-92

MS-SSIM 31.76 6.76E-180 25.71 1.72E-126

ST-RRED 14.20 5.87E-44 12.60 2.18E-35

SpEED-QA 19.32 1.02E-76 14.31 1.30E-44

VMAF (original) 29.59 3.34E-160 17.93 4.18E-67

VMAF (retrained) 2.63 4.30E-03 3.52 2.23E-04

HDR Quality
Models

HDR-VDP 2.2 13.46 6.78E-40 12.46 1.19E-34

HDR-VDP3.0.7 40.53 5.86E-263 24.05 9.69E-113

HDR-VQM 405.60 0 444.17 0

PU21-PSNR 74.90 0 74.11 0

PU21-FSIM 61.62 0 48.35 0

PU21-MSSSIM 57.80 0 74.55 0

PU21-SSIM 73.21 0 69.63 0

PU21-VSI 53.53 0 45.73 2.44E-313

TABLE XI
PERFORMANCE OF THE EVALUATED ALGORITHMS ON LIVE

LIVESTREAM DATABASE. THE TOP PERFORMANCE IS BOLDFACED.

Algorithms SROCC PLCC RMSE

PSNR 0.3760 0.4192 10.3355

SSIM 0.6976 0.7107 8.0082

MS-SSIM 0.6757 0.6907 8.2324

STRRED 0.6564 0.6694 8.4573

SpEED-QA 0.6894 0.7235 7.8589

VMAF (original) 0.6434 0.6355 8.7894

VMAF (retained) 0.6836 0.6912 8.2712

HDRMAX 0.6613 0.6755 8.9744

VMAF+HDRMAX 0.7632 0.7743 7.2468

However, given the scope of our study, we focused exclusively
on the 380 HDR images in UPIQ.

It is noteworthy that the images in UPIQ are represented in
absolute photometric and colorimetric units, reflecting light
emitted from a display. To make these images compatible
with our method, we transformed the pixel values into PQ
before applying our models. We show the results in Table XII.
Although our model didn’t outperform all of the existing HDR
metrics on this dataset, it still demonstrated commendable
performance. This extra evaluation indicates the potential of
our approach on diverse HDR contents and highlights its
applicability to real-world scenarios.

TABLE XII
PERFORMANCE OF THE EVALUATED ALGORITHMS ON UPIQ DATABASE.

THE TOP PERFORMANCE IS BOLDFACED.

SROCC PLCC RMSE

HDR-VDP 3.0.7 0.8448 0.8426 0.3528

HDR-VQM 0.8893 0.8824 0.3082
PU21-FSIM 0.7358 0.71944 0.4551

PU21-MSSSIM 0.8192 0.8193 0.3757

PU21-PSNR 0.4903 0.4192 0.5950

PU21-SSIM 0.7215 0.7270 0.4499

PU21-VSI 0.6792 0.6713 0.4857

VMAF+HDRMAX 0.8485 0.8417 0.3680

VIII. DISCUSSION

We have created and made available the first public domain
HDR10 VQA database. The new database contains 310 videos
and subjective evaluations of these videos under two illumi-
nation conditions. The database can be effectively used for
HDR algorithm design, evaluation, and comparison. However,
it is important to note that our current focus is exclusively on
the HDR10 format. Further research could extend this work
to encompass other HDR formats such as HDR10+, Dolby
Vision, and HLG. It is important to mention that 8 of the
31 source videos focus on football. While our goal was to
highlight popular consumer sports content, this overweight
could conceivably introduce biases. We also developed a
framework for defining HDR quality aware features, which
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when used to modify the widely-used VQA model, VMAF,
achieves improved quality predictions against human subjec-
tive judgments on both HDR and SDR content. The enhanced
HDRMAX performance across different HDR parameters, and
on SDR data, suggests that this parallel pathway with nonlinear
transforms adeptly captures perceived distortions on both HDR
and SDR content. The extra feature extraction steps have only
a minor impact on the computational complexity relative to
the original VMAF. The nonlinear transform requires a single
convolution to obtain a local average and is O(k2NT ), where
k is the local window size, N is the number of pixels in each
frame, and T is the number of frames. Because the feature
extraction stage can occur in parallel on the transformed and
original frames, parallel computation may substantially speed
up feature extraction.
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