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ABSTRACT: We describe the various escape channels available to
dirhodium carbene intermediates from cycloheptatrienyl diazo com-
pounds located with density functional theory. An intramolecular
cyclopropanation would, in principle, provide a new route to
semibullvalenes (SBVs). A detailed exploration of the potential energy
surface reveals that methylating carbon-7 suppresses a competing β-
hydride migration pathway to heptafulvene products, giving SBV
formation a reasonable chance. During our explorations, we additionally
discovered unusual spirononatriene, spironorcaradiene, and metal-
stabilized 9-barbaralyl cation structures as local minima.

■ INTRODUCTION

“While it is mutually advantageous to tie theory with experiment, I
still feel that theory should lead, rather than follow experiment in
exploring chemistry.”

� Paul von Rague ́ Schleyer1

“In my opinion, quantum mechanics can make two dif ferent
contributions to chemistry. Firstly, it permits non-empirical
comprehension of experimental results. However, we should not
overlook another important aspect: the promotion of empirical
chemistry f rom the theoretical side.”

� Kenichi Fukui2

“A beautiful chemical world, of molecules waiting to be made,
opens up through the ingenuity of theoretical chemists. Their
predictions astound us, generate ideas, and prompt the synthesis of
new structures and functions. No exaggeration, none at all, is
needed to build this world.”

� Roald Ho.mann, Paul von Rague ́ Schleyer, and Henry
F. Schaefer III3

In 1966, by a fortunate stroke of serendipity, Zimmerman
and Grunewald introduced semibullvalene (SBV) to the world
of chemistry. Upon photolysis of barrelene, they discovered
they had synthesized SBV and its C8H8 isomer, cyclo-
octatetraene (COT, Scheme 1a).4 In 1972, Zimmerman and
Sousa then synthesized cycloheptatrienyldiazomethane and
studied its thermal and photochemical rearrangement to
products resulting from nitrogen loss and subsequent
rearrangement of the carbene intermediate, thinking they
might observe SBV among other C8H8 products.5 They did
not. Instead, they isolated benzene, COT, heptafulvene, and
acetylene. SBV has been observed6 as a side-product of

photochemical reactions leading to COT (COT on the S1 state
is notably a photostable, Baird aromatic D8h energetic sink).7−9

Considering advanced methods for taming carbene reactivity
with transition metals (e.g., Rh),10 we wondered whether metal
carbenes might, in theory, pave an alternate way to SBV.
Indeed, more than 50 years after its first synthesis, SBV still
remains a physical organic chemist’s playground,11,12 and
finding new synthetic routes to SBV and its derivatives would
be synthetically useful. Here, we o.er a theoretical prediction
for a potential synthetic route to SBV via an intramolecular
cyclopropanation (CP) using dirhodium carbenes derived
from cycloheptatrienyl diazo compounds and describe the
complex mechanistic networks surrounding such reactions.
Semibullvalene in Historical Context. SBV is one of the

most important molecules in the history of physical organic
chemistry. Its rapid, degenerate [3,3]-sigmatropic shift
(Hardy−Cope rearrangement)13,14 and fluxional15 (or
locked16) behavior have been points of sustained interest.
Other work investigated SBV’s electronic structure,17−19

heavy-atom tunneling capabilities (a theoretical prediction20

borne out by experiment),20−25 and [3,3] rearrangement
barrier height26 with quantum calculations. Some even
introduced ways to reduce,27 eliminate,28 interrupt,29 and
invert the activation barrier for its rearrangement to a
homoaromatic minimum (Scheme 1b).30−36 Its bromination
mechanism37 was examined in detail, as was the dynamic
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behavior associated with its formation via a reaction with a
post-transition state bifurcation (PTSB).38−40

SBV is a prototypical fluxional carbon cage, a class of
molecules that has gained extensive renewed interest. For
instance, some have leveraged the fluxionality of related carbon
cage molecules, such as bullvalene and barbaralane, for
applications in materials and sensing, sparking new interest
in the dynamic nature of shapeshifting molecules.41−49 Sanchez
and Maimone recently used shapeshifting anions in a total
synthesis ocellatusone C, highlighting that “the barbaralyl
nucleus remains an outstanding synthetic challenge”.50

Bullvalenes and SBV fit this mold as well.51

E.orts to synthesize SBV and SBV derivatives abound (e.g.,
Scheme 1c),52−59 and some are still seemingly stumbled upon
by accident.60 Much of the work in the late twentieth century
on SBV emerged out of a strong interest in homoaromaticity
(Scheme 1d),61 an interest that remains alive today (Scheme
1e).62 With the continuous discovery of new reactions, there
remains room for breathing new life into SBV synthesis.

Using quantum chemical computations, we explore the
viability of an approach to synthesize monosubstituted SBVs
via a dirhodium(II)-catalyzed CP through a metal carbene
intermediate (Scheme 1f). Sparked by our own interest in
PTSBs, we additionally ask whether CP could lead directly to
the [3,3] rearrangement transition structure (TS) (Scheme 1f)
by a PTSB.
Targeting Semibullvalene through the Lens of Metal-

Carbene Chemistry. Metal-carbene mediated chemistry has
a long and winding history.10 Our group has worked
independently and collaborated closely with experimental
groups to understand mechanisms of Rh-carbene mediated
transformations, including C−H insertion63,64 and ylide
formation reactions,65−67 with the aim of developing syntheti-
cally useful models of reactivity and selectivity. This chemistry
has proven to be a playground of its own�a family of
synthetically relevant organometallic reactions that display
behaviors considered by some to be esoteric, but which play
important roles in determining product distributions. For
example, our group has shown that some C−H insertion

reactions involve cryptic PTSBs that provide facile routes to
unwanted side products.68−71 Tandem processes72 from Rh-
carbene intermediates�such as CP/[3,3] rearrange-
ments,73−76 which have been applied in total syntheses to
access (otherwise diHcult to synthesize) seven-membered
rings, or C−H insertion/[3,3] rearrangements77�also look to
involve PTSBs.38,68,69,71 This line of work led us to the current
Rh-catalyzed strategy to SBV, and our past experience with
bifurcations led us to additionally ask whether SBV might be
generated by a CP that involves a PTSB (Scheme 1f).

We are not the first to suggest a transition metal-catalyzed
synthesis of fluxional molecules from cycloheptatrienes. In
1967, the Doering group discovered a synthetic route to
barbaralone from a cyclohepatrien-7-yl diazomethyl ketone,78

and building on that work in 1977, Casas and Serratosa
synthesized barbaralone with a Cu-carbene mediated CP in
their synthesis of bullvalene (Scheme 2a).79 Both methods
result in products that are net CPs of the diazomethyl ketone
with the central π bond of the cycloheptatriene.

Recently, Ferrer and Echavarren synthesized barbaralones by
gold(I)-catalyzed intramolecular oxidative cyclization of 7-
ethynyl-1,3,5-cycloheptatrienes (Scheme 2b).80 The same
group also reported generation of closely related and highly
fluxional barbaralyl cations from 7-alkynyl cycloheptatrienes by
gold catalysis.81 Could Rh(II)-catalysts assist in this type of
transformation? When the Echavarren group expanded on this
work in 2021, they discovered that the use of Rh(II)-catalysts

Scheme 1. Select Examples of (a−e) Semibullvalene and Related Syntheses to (f) This Work

Scheme 2. Select Examples of Barbaralone Syntheses by (a)
Doering and Serratosa and (b) Ferrer and Echavarren
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led to a decarbenation to alkynylcyclopropanes from 7-alkynyl
cycloheptatrienes and attributed the result to a lower barrier
for decarbenation (ΔG‡ = 21.9 kcal mol−1) than for 6-endo-dig
cyclization (ΔG‡ = 24.4 kcal mol−1) with the use of Rh(II)
catalysts.82 Cu(I) catalysts similarly have been shown to work
in a synthesis of barabaralyl-substituted allenyl acid esters from
terminal alkynes and tropylium tetrafluoroborate.83 Finally,
Dumele and Teichert published an intriguing synthesis of 6π
and 10π neutral homoaromatics during preparation of this
manuscript (Scheme 1e).62 Their synthetic approach, inspired
by the work of Vogel et al.,61 a.ords homoannulene esters with
a barbaralone framework through an intramolecular, dear-
omative Buchner reaction.

May cycloheptatrienyl diazo compounds be a reasonable
starting point to synthesize SBVs using Rh(II)-catalysts
through an intramolecular CP? Our computational explora-
tions allow us to predict1,84 that, whether this approach
succeeds in the lab, unusual rearrangement chemistry of the
metal carbene intermediate will likely reveal itself.

■ COMPUTATIONAL METHODS

Fluxional molecules are molecules that undergo rapid, degenerate
rearrangements according to the International Union of Pure and
Applied Chemistry (http://goldbook.iupac.org), and they generally
have low activation barriers. The degenerate rearrangement of SBV is
challenging to accurately predict computationally because it exists on
a relatively flat surface�an experimental ΔG‡ = 5.5 kcal mol−1 by 13C
NMR.85 Many have considered the B3LYP86 functional reliable for
obtaining reasonable geometries, and to a certain extent, reaction
barriers that are consistent with the experiment.20,87,88 In some cases,
however, spurious intermediates and/or significant deviation from
experimentally derived activation barriers have clouded the consensus
on the reliability of B3LYP for [3,3] rearrangements.89,90 Recently,
Karton reported that three functionals (BMK, PW6B95, and MN12-

SX) outperformed other functionals in predicting accurate [3,3]
barrier heights and reaction energies when compared to CCSD(T)/
CBS benchmark calculations and experiment.91 Based on Karton’s
benchmark work showing that PW6B95 performs accurately for
systems involving SBV and for systems including Rh,92 we selected
PW6B9593 as a functional with the def2-SVP basis set (i.e., PW6B95/
def2-SVP) for geometry optimizations followed by single-point
corrections to the electronic energy with a larger basis set (def2-
TZVP) at those geometries.94 We reasoned that PW6B95/def2-
TZVP//PW6B95/def2-SVP is a reasonable level of theory for
reactions involving dirhodium catalysts and for qualitative inves-
tigations of this kind, which have no experimental precedent against
which to compare data. However, we tested PW6B95/def2-TZVP//
PW6B95/def2-SVP’s ability to predict the [3,3] rearrangement of
SBV (experimental barrier: 5.585 to 6.295 kcal mol−1) and the
isomerization barrier of cycloheptatriene to norcaradiene (exper-
imental barrier: 7.2 kcal mol−1).96 Our predicted barriers of 5.7 and
7.1 kcal mol−1 for the [3,3] and isomerization barriers, respectively,
are within chemical accuracy (<1 kcal mol−1, see the Supporting
Information for more details).

Geometry optimizations and frequency calculations were carried
out with Gaussian 16.97 Transition structures (TSs) were identified by
the presence of one imaginary vibrational frequency and subsequent
intrinsic reaction coordinate (IRC) calculations identified minima on
the potential energy surface to which TSs are connected.98−100 Quasi-
classical ab initio molecular dynamics simulations were run with the
Progdyn script package developed by Singleton and co-workers101 at
the PW6B95/def2-SVP level of theory. Trajectories were propagated
downhill in energy from TSC‑D in the reactant and product directions
until the C8−C3 and C8−C4 distances were greater than 2.80 Å, for
which we report the trajectory as reaching the reactant well, until the
C3−C4 distance is less than 1.55 Å and the C8−C3 and C8−C4
distances are less than 1.52 Å, for which we report the trajectory as
reaching ‘SBV product 1’ (the SBV product we found from the IRC
calculation), or until the C1−C6 distance is less than 1.55 Å and the
C3−C4 distance is greater than 2.00 Å, for which we report the

Figure 1. Possible mechanistic pathways to and from C. All relative free energies (PW6B95/def2-TZVP //PW6B95/def2-SVP) are in kcal mol−1.
(Path I) Top, purple: conformational inversion followed by 1,2-hydride shift; (Path II) second to top, green: SBV formation by CP and [3,3]
rearrangement; (Path III) second to bottom, blue: 1,2-hydride shift; and (Path IV) bottom, red: norcaradiene formation followed by 1,2-hydride
shift and electrocyclic ring-opening. [Rh] = Rh2(OAc)4.
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trajectory as reaching ‘SBV product 2’, the other potential product of
a PTSB (Scheme 1f).

■ RESULTS AND DISCUSSION

Acetyl-Semibullvalene. The simplest reaction that we
envisioned might be achieved experimentally is the trans-
formation of diazo compound A to acetyl-SBV D/E (Figure 1,
Path II in green). We chose R to be a simple acetyl (Ac =
COCH3) group, given the body of the literature on acceptor
and donor/acceptor carbenes.102 In addition, structures similar
to (diazocarbonylmethyl)cycloheptatriene (A) have been
described in the literature.103

Exposure of A to a Rh catalyst (here, we model Rh2(OAc)4
for simplicity) should lead to nitrogen extrusion to form Rh-
carbene species C. The barrier for intramolecular CP of C to
form Ac-SBV D (via TSC−D) is predicted to be low (4.9 kcal
mol−1). Formation of D is also predicted to be highly
exergonic (−42.4 kcal mol−1), and its [3,3] rearrangement is
predicted to require a 12.5 kcal mol−1 barrier (TSD−E) to form
the slightly less-favorable E (−38.6 kcal mol−1). While these
results indicate that formation of Ac-SBV would not face a
large barrier, possible competing reactions must be consid-
ered.3 For instance, (i) the cycloheptatriene−norcaradiene
equilibrium (C ⇌ H) favors the norcaradiene H by 6.5 kcal
mol−1, (ii) conformational isomerization slightly favors the
isomer wherein the hydrogen at C7, instead of the Rh-carbene,
is positioned on the concave face of the cycloheptatriene
(Figure 2), and (iii) once the Rh-carbene is formed, side-
reactions (such as β-hydride migration to heptafulvenes, e.g., C
→ F → G or C → J → K → G)104,105 can occur. Thus, we are
unable to ignore the kinetic instability of intermediate C.3 The
variety of available escape channels is abundant, so these
possibilities were investigated in detail.106,107

Complications I: Electrocyclization. Cyclohepta-
trienes108−110 are generally in rapid equilibrium with
norcaradienes (Figure 2).111−114 If our desired CP reaction
is to predominate, either its barrier must be lower than that for
C ⇌ H equilibration or that equilibration must not lead to an
undesired reaction that serves as a kinetic trap. In our system, a
π-electron acceptor�the metal carbene group115

�exists at
the 7-position (C7), and π-electron acceptors at this position
tend to favor the norcaradiene isomer. We predict that H is
lower in energy than C (and the C → H barrier is predicted to
be 5.5 kcal mol−1, comparable to the CP barrier to D; Figure
1). However, the subsequent 1,2-hydride migration that would

lead to catalyst dissociation is associated with a TS that is
much higher in energy than that for CP (a 25.8 kcal mol−1

barrier out of H; TSH−I). Therefore, the C → H → I... path
does not appear to threaten our desired reaction.

Complications II: Conformational Bias. The π-systems of
cycloheptatrienes are not flat�instead, their sp3 carbons are
bent out of plane, inducing boat-like conformations (cf. Figure
2).116 Parent tropilidene (i.e., hydrogens at C7) has a ring-
inversion barrier of ca. 6 kcal mol−1 by low-temperature 1H
NMR.117−119 As a result, the environments of the two groups
on its sp3 carbon are di.erent: one sits over the cyclo-
heptatriene π-system, while the other points “outside”. For CP
to occur, the carbene center must reside over the π-system, but
the carbene center prefers to reside outside for C (by 1.6 kcal
mol−1; compare C vs J, Figure 1, Path I). When the carbene
center is outside, a 1,2-hydride shift (a β-hydride migration)
can occur (J → K) that is predicted to be rapid and highly
exergonic.120 In addition, our computed ring-inversion barrier
(TSC−J) is 4.4 kcal mol−1, slightly lower than that for CP,
which suggests the β-hydride migration might indeed be a
dead-end kinetic trap (Path I).

Complications III: Another β-Hydride Migration. A β-
hydride migration may also occur directly from conformer C
(Figure 1, Path III). While the TS for this 1,2-hydride
migration is predicted to be higher in energy than that for J
(2.9 vs 0.8 kcal mol−1), it is still lower than that for the desired
CP step (4.9 kcal mol−1) by 2.0 kcal mol−1.

Tendency to migrate hydride is increased for α-diazo-
carbonyl compounds�precursors to (donor/acceptor metal-
carbenes)�due to their higher electrophilicity compared to
donor and donor/donor metal-carbenes.63 Indeed, in Path III,
we find that the barrier for β-hydride migration directly from C
is increased upon swapping out the carbonyl acyl group for a
phenyl group, thereby making the donor/acceptor carbene into
a donor/donor carbene (Path III, 2.9 vs 5.9 kcal mol−1; see the
SI, Figure S2 for donor/donor pathways). However, though
the barrier for β-hydride migration increases upon changing
the carbene from donor/acceptor to donor/donor, so does the
CP barrier (Path II, 4.9 vs 8.6 kcal mol−1). Swapping the acyl
group for a phenyl group does not tip the selectivity in favor of
CP to SBV�the data tell us (with a ΔΔG‡ = 2.7 kcal mol−1)
that the reaction would still favor β-hydride migration over CP.

Thus, our metal-carbene may avoid our desired reaction
through β-hydride migration escape channels to heptafulvene,
G. Recall that heptafulvene was one product Zimmerman and

Figure 2. Cycloheptatriene−norcaradiene equilibrium. Three-dimensional depictions highlight the boat conformation of cycloheptatriene with
“concave” and “convex” faces. Relative free energies (PW6B95/def2-TZVP//PW6B95/def2-SVP) are in kcal mol−1. [Rh] = Rh2(OAc)4.
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Sousa isolated, as described in their original report.5 Addi-
tionally, Tomioka and Taketsuji reported heptafulvene
products in the gas-phase rearrangement of phenyl carbenes,
presumably through 7-membered ring intermediates.121

Heptafulvene G can additionally undergo a 10-π electrocyclic
ring closure to M (not shown in Figure 1; see the SI, Figure
S1) because of the acetyl group attached to C8, similar to that
of the acetyl-heptafulvene reaction reported by Liu and
Houk.122 We computed the barrier to do so and the barrier
is 16.0 kcal mol−1 from G to M; the reaction also is downhill in
energy (also see L, similar to M, in SI, Figure S3).
Potential Antidote to β-Hydride Migration. One way

around β-hydride migration is to introduce a di.erent
functional group at C7 in place of the hydrogen, a group
with a lower migratory aptitude (e.g., CH3 for H). Though
making this substitution in a computational study is trivial,
implementing it in a synthetic campaign could be challenging.
Our calculations indicate, however, that swapping out the H
for a CH3 group would switch the selectivity in favor of CP
over a possible concerted, intramolecular C−H insertion
(TSC−D vs TSC−F; ΔΔG‡ = 2.4 kcal mol−1; Figure 3) to a
spirononatriene�a direct result of our attempts to locate a
1,2-methyl shift (not found)! Though small-ring spiro
compounds have precedent in the literature,123 to our
knowledge, relatively few papers report structures resembling
spirononatriene.124−127 Conformational inversion of CHT
(and subsequent 1,2-methyl shift to cycloheptafulvene (G))
is again predicted to compete with CP (ΔΔG‡ = 0.7 kcal
mol−1; compare TSC−J to TSC−D). Isomerization to norcar-
adiene, H, is also possible. The relatively high barrier for C−H
insertion of H (ΔG‡ = 23.1 kcal mol−1) makes formation of
spironorcaradiene I unlikely. Tricyclic spiro compounds like I
have some literature precedent, but to our knowledge,

spironorcaradienes of the sort we describe here have not
been reported.128

In summary, although C7 methyl substitution makes CP to
form SBV more likely than in the C7 hydrogen-substituted
case (Figure 1), methyl migration (Path I) could still preclude
the desired chemoselectivity. We also computed the donor/
donor Rh-carbene system with a methyl group at C7 and
predict that selectivity for heptafulvene formation is enhanced
(a ΔΔG‡ = 2.3 kcal mol−1; see the SI, Figure S4). Methyl
substitution at C7 ameliorates the chemoselectivity troubles
with the parent system in Figure 1, but simultaneously
introduces the possibility of concerted, intramolecular C−H
insertion to generate a spirononatriene (F).
Bifurcating Pathways. To explore whether a PTSB that

leads to both D and E exists on the potential energy surface
downhill in energy from TSC−D, quasi-classical dynamics
trajectories were run from TSC−D (of Figure 3). Of trajectories
that formed product (32 total), all formed D and none formed
E, which suggests that a PTSB is unlikely to exist in this
reaction. Rather, sequential SBV formation (D) and sub-
sequent [3,3] rearrangement would form E.
Gold(I)-Catalyzed Synthesis of Barbaralones. How

similar is our proposed reaction to published work on related
fluxional molecule syntheses? For comparison, we examined
Ferrer and Echavarren’s gold(I)-catalyzed oxidative cycliza-
tions80,129 to barbaralones (Scheme 2b). Understanding the
mechanisms of these transformations could better inform a
possible test of our predictions on SBV. In their 2016 study,
the authors proposed two pathways to barbaralones�
specifically, 6-endo-dig130,131 cyclization then oxidation or
vice versa. We examined both possible pathways (Figures 4
and 5). The predicted barrier for cyclization in the unoxidized
system is higher than that for the oxidized system. The
oxidized system also has a significant energetic driving force

Figure 3. Possible mechanistic pathways to and from C for C7-methylated system. All relative free energies (PW6B95/def2-TZVP//PW6B95/
def2-SVP) are in kcal mol−1. [Rh] = Rh2(OAc)4.
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(ΔG = −33.2 kcal mol−1) that the unoxidized system lacks.82

The results in Figure 5 resemble our computed CP path (Path
II, Figure 1), but do not necessarily provide evidence for or
against Ferrer and Echavarren’s proposal that oxidation takes
place on barbaralyl gold(I) intermediates af ter cyclization80

�

further calculations would be needed. Unlike their reaction,
however, questions about oxidation state are irrelevant with
our [Rh2] catalysts. The relative energies of barbaralones
complexed to the gold(I)-catalyst are qualitatively consistent
with experimental and theoretical work by Alonso and
Echavarren on bare barbaralones: in particular, the 1-phenyl-
barbaralone (IntO in Figure 5) is the more thermodynamically
stable isomer (here, by 1.1 kcal mol−1).132

Our results in Figure 4 suggest that the [3,3] rearrangement
for the unoxidized system is stepwise (not surprising given the
copious studies that have discussed interrupted and aborted
pathways for metal-catalyzed pericyclic reactions).133−136 The
intermediate that interrupts the rearrangement (IntU-2) can be
described as a metal-stabilized 9-barbaralyl cation.137,138 Free
of catalyst and substituents, the 9-barbaralyl cation exhibits D3h

symmetry and has been the focus of several studies since its
description by Schleyer and coworkers (Figure 6).139

■ CONCLUSIONS

We assessed the viability of a Rh(II)-catalyzed CP strategy for
the synthesis of monofunctionalized SBVs from cyclohepta-

trienyl diazo compounds. The main takeaways (Figure 7) are
as follows:

1. The potential CP step was investigated by DFT
calculations, the results of which indicate that CP is
energetically feasible from the Rh-carbene intermediate
generated after decomposition of the diazo compound.
The most promising system starts from a C7-methylated
diazo compound (A in Figure 3).

Figure 4. Potential energy surface for barbaralyl cation formation and
sequential Cope rearrangements. Relative free energies (PW6B95/
def2-TZVP//PW6B95/def2-SVP) shown are in kcal mol−1 and are
relative to their respective reactants, R. [Au] = +AuP(CH3)3.

Figure 5. Potential energy surface for barbaralone cation formation
and sequential [3,3] rearrangements. Relative free energies
(PW6B95/def2-TZVP//PW6B95/def2-SVP) shown are in kcal
mol−1 and are relative to their respective reactants, R. [Au] =
+AuP(CH3)3.

Figure 6. Comparison of Cs IntU-2 (Figure 4) and D3h 9-barbaralyl
cation. Bond lengths (C−C bonds) are in angstrom (Å). Structures
shown were optimized at the PW6B95/def2-SVP level of theory.

Figure 7. Main takeaways of the proposed strategy.
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2. Potential side reactions and isomerizations were ex-
plored. Specifically, we predict that β-hydride/methyl
migration competes with, and quite possibly out-
competes, CP, potentially leading to substituted
heptafulvenes. While heptafulvenes are themselves
potentially useful products that can be transformed
further, it is possible that a particular substitution pattern
would allow heptafulvene formation to be suppressed in
favor of CP (a task we leave for others, given the
immensity of substituent space, and the goal of this
work�to demonstrate the feasibility of Rh(II)-pro-
moted CP to form SBVs).
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the π-Electron Delocalization in Exocyclically Substituted Heptaful-
vene Derivatives. J. Phys. Org. Chem. 2003, 16, 426−430.
(106) Rogachev, A. Y.; Wen, X.-D.; Hoffmann, R. Jailbreaking

Benzene Dimers. J. Am. Chem. Soc. 2012, 134, 8062−8065.
(107) Parambil, P. C.; Hoffmann, R. Alkyl Isosteres. J. Am. Chem.

Soc. 2018, 140, 12844−12852.
(108) Chen, Z.; Jiao, H.; Wu, J. I.; Herges, R.; Zhang, S. B.; Schleyer,

P. v. R. Homobenzene: Homoaromaticity and Homoantiaromaticity
in Cycloheptatrienes. J. Phys. Chem. A 2008, 112, 10586−10594.
(109) Williams, R. V.; Edwards, W. D.; Zhang, P.; Berg, D. J.;

Mitchell, R. H. Experimental Verification of the Homoaromaticity of
1,3,5-Cycloheptatriene and Evaluation of the Aromaticity of Tropone
and the Tropylium Cation by Use of the Dimethyldihydropyrene
Probe. J. Am. Chem. Soc. 2012, 134, 16742−16752.
(110) Jorner, K.; Jahn, B. O.; Bultinck, P.; Ottosson, H. Triplet State

Homoaromaticity: Concept, Computational Validation and Exper-
imental Relevance. Chem. Sci. 2018, 9, 3165−3176.
(111) Ciganek, E. The Direct Observation of a Norcaradiene-

Cycloheptatriene Equilibrium. J. Am. Chem. Soc. 1965, 87, 1149−

1150.
(112) Maier, G. The Norcaradiene Problem. Angew. Chem., Int. Ed.
1967, 6, 402−413.
(113) Hoffmann, R. The Norcaradiene - Cycloheptatriene

Equilibrium. Tetrahedron Lett. 1970, 11, 2907−2909.
(114) Ciganek, E. The Cycloheptatriene-Norcaradiene System. III.

Dependence of the Ground-State Enthalpy Difference on Substituents
in the 7 Position. J. Am. Chem. Soc. 1971, 93, 2207−2215.
(115) Berry, J. F. The Role of Three-Center/Four-Electron Bonds in

Superelectrophilic Dirhodium Carbene and Nitrene Catalytic
Intermediates. Dalton Trans. 2012, 41, 700−713.
(116) Berson, J. A.; Willcott, M. R., III Thermally Induced Skeletal

Rearrangements of Tropilidenes. J. Am. Chem. Soc. 1966, 88, 2494−

2502.
(117) Anet, F. A. L. Ring Inversion in Cycloheptatriene. J. Am.

Chem. Soc. 1964, 86, 458−460.
(118) Jensen, F. R.; Smith, L. A. The Structure and Interconversion

of Cycloheptatriene. J. Am. Chem. Soc. 1964, 86, 956−957.
(119) Freedberg, D. I.; Kopelevich, M.; Anet, F. A. L. Deuterium

Conformational Equilibrium Isotope Effects in 1,3,5-Cyclohepta-
triene-7-d. J. Phys. Org. Chem. 2001, 14, 625−635.
(120) DeAngelis, A.; Panish, R.; Fox, J. M. Rh-Catalyzed

Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds
with Selectivity over β-Hydride Migration. Acc. Chem. Res. 2016, 49,
115−127.
(121) Tomioka, H.; Taketsuji, K. Formation of Heptafulvene in

Reactions of [(Methoxycarbonyl)Methyl]Phenylcarbene in the Gas
Phases. J. Org. Chem. 1993, 58, 4196−4197.
(122) Liu, C.-Y.; Houk, K. N. Intramolecular [8+2] Cycloaddition

and 10π-Electron Electrocyclization Reactions of an 8-Acylheptaful-
vene. Tetrahedron Lett. 1987, 28, 1367−1370.
(123) Liebman, J. F.; Greenberg, A. A Survey of Strained Organic

Molecules. Chem. Rev. 1976, 76, 311−365.
(124) Mukai, T.; Nakazawa, T.; Isobe, T. Thermal Decomposition

of Troponetosylhydrazone. Tetrahedron Lett. 1968, 9, 565−569.

(125) Rostek, C. J.; Jones, W. M. Synthesis and Diels-Alder
Reactions of Spiro(2.6)Nona-4,6,8-Triene. Tetrahedron Lett. 1969, 10,
3957−3960.
(126) Jones, W. M.; Ennis, C. L. Cycloheptatrienylidene. J. Am.

Chem. Soc. 1969, 91, 6391−6397.
(127) Waali, E. E.; Jones, W. M. An Improved Synthesis of

Spiro[2.6]Nonatriene. The Addition of Cycloheptatrienylidene to
Ethylene. Synth. Commun. 1973, 3, 49−52.
(128) Li, C.; Yang, Y.; Zhou, Y.; Yu, Z. A Formal [3+3+1] Reaction

of Enyne-Methylenecyclopropanes through Au(I)-Catalyzed Enyne
Cycloisomerization and Rh(I)-Catalyzed [6+1] Reaction of Vinyl-
spiropentanes and CO. Asian J. Org. Chem. 2022 , 11 ,
No. e202100571.
(129) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Au-Catalysed

Oxidative Cyclisation. Chem. Soc. Rev. 2016, 45, 4448−4458.
(130) Gilmore, K.; Mohamed, R. K.; Alabugin, I. V. The Baldwin

Rules: Revised and Extended. WIREs Comput. Molec. Sci. 2016, 6,
487−514.
(131) Alabugin, I. V.; Gilmore, K. Finding the Right Path: Baldwin

“Rules for Ring Closure” and Stereoelectronic Control of Cycliza-
tions. Chem. Commun. 2013, 49, 11246−11250.
(132) Sanz-Novo, M.; Mato, M.; León, I.́; Echavarren, A. M.;

Alonso, J. L. Shape-Shifting Molecules: Unveiling the Valence
Tautomerism Phenomena in Bare Barbaralones. Angew. Chem., Int.
Ed. 2022, 61, No. e202117045.
(133) Felix, R. J.; Weber, D.; Gutierrez, O.; Tantillo, D. J.; Gagné,

M. R. A Gold-Catalysed Enantioselective Cope Rearrangement of
Achiral 1,5-Dienes. Nat. Chem. 2012, 4, 405−409.
(134) Vidhani, D. V.; Krafft, M. E.; Alabugin, I. V. Gold(I)-

Catalyzed Allenyl Cope Rearrangement: Evolution from Asynchro-
nicity to Trappable Intermediates Assisted by Stereoelectronic
Switching. J. Am. Chem. Soc. 2016, 138, 2769−2779.
(135) dos Passos Gomes, G.; Alabugin, I. V. Drawing Catalytic

Power from Charge Separation: Stereoelectronic and Zwitterionic
Assistance in the Au(I)-Catalyzed Bergman Cyclization. J. Am. Chem.
Soc. 2017, 139, 3406−3416.
(136) Ahmed, Y. G.; Tantillo, D. J. Designing an Apparently Orbital-

Symmetry-Forbidden [3s,5s]-Sigmatropic Shift through Transition-
State Complexation and Stereoelectronic Effects. Angew. Chem., Int.
Ed. 2023, 62, No. e202300288.
(137) Hoffmann, R.; Stohrer, W.-D.; Goldstein, M. J. The 9-

Barbaralyl Cation. Bull. Chem. Soc. Jpn. 1972, 45, 2513−2514.
(138) Cremer, D.; Svensson, P.; Kraka, E.; Ahlberg, P. Exploration of

the Potential Energy Surface of C9H9
+ by ab initio Methods. 1. The

Barbaralyl Cation. J. Am. Chem. Soc. 1993, 115, 7445−7456.
(139) Barborak, J. C.; Daub, J.; Follweiler, D. M.; Schleyer, P. v. R.

Degenerate Rearrangements of the 9-Barbaralyl Cation. J. Am. Chem.
Soc. 1969, 91, 7760−7761.
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