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Abstract—Fairness related to locations (i.e., “where”) is critical for the use of machine learning in a variety of societal domains involving
spatial datasets (e.g., agriculture, disaster response, urban planning). Spatial biases incurred by learning, if left unattended, may cause
or exacerbate unfair distribution of resources, social division, spatial disparity, etc. The goal of this work is to develop statistically-robust
formulations and model-agnostic learning strategies to understand and promote spatial fairness. The problem is challenging as locations
are often from continuous spaces with no well-defined categories (e.g., gender), and statistical conclusions from spatial data are fragile
to changes in spatial partitionings and scales. Existing studies in fairness-driven learning have generated valuable insights related to
non-spatial factors including race, gender, education level, etc., but research to mitigate location-related biases still remains in its infancy,
leaving the main challenges unaddressed. To bridge the gap, we first propose a robust space-as-distribution (SPAD) representation of
spatial fairness to reduce statistical sensitivity related to partitionings and scales in continuous space. Furthermore, we propose a new
SPAD-based stochastic strategy to efficiently optimize over an extensive distribution of fairness criteria, and a bi-level training framework
to enforce fairness via adaptive adjustment of priorities among locations. Finally, we extend this framework with a similarity-based training
strategy to improve the computational efficiency. Experiments conducted on two real-world problems, crop monitoring in the US and palm
oil plantation mapping in Indonesia, show that SPAD can effectively reduce sensitivity in fairness evaluation and the stochastic bi-level
training framework can greatly improve the fairness. Controlled experiments also show that similarity-based acceleration can greatly
reduce the training time while keeping the prediction performance and fairness results at the same level.
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1 INTRODUCTION

The goal of spatial fairness, or fairness by “where”,
is to reduce biases that have significant linkage to the
locations or geographical areas of data samples. Such
biases, if left unattended, may cause or exacerbate unfair
distribution of resources, social division, spatial dispar-
ity, and weaknesses in resilience or sustainability [1].
As an important example of societal impact, food
production is witnessing tremendous supply stresses as

food shortage) and support local farmers, which are
necessary for sustainability and stability. However, cur-
rent products used to support these important decisions
are largely subject to concerns on their fairness across
locations as: (1) fairness has not been considered in the
training process of the vast majority of these products;
and (2) spatial data often follow heterogeneous patterns
over locations [9], which can easily lead to prediction
quality disparity without explicit intervention.

a result of rapidly increasing population, climate change,
etc. The urgency of the problem has led to major national
and international efforts to monitor crops at large scales
(e.g., G20's GEOGLAM global agriculture monitoring
initiative), and these systems and alike heavily rely on
both satellite Earth-observation imagery and learning
methods [2]-[4]. More importantly, resulting products
such as crop maps and acreage estimates [5] are used
to inform critical actions (e.g., distribution of subsidies
[6]-[8]), mitigate risks (e.g., natural disturbance incurred
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Fig. 1 shows the spatial distributions of the Fl-scores
achieved by a standard neural network model trained
independently for two separate times (all settings are the
same except random initial weights) for tomato classifi-
cation using satellite imagery over an example region
in Central Valley, California. The study area has a size
of 80km by 80km, and is partitioned into 5 by 5 local
regions. Another example in freshwater science is shown
in Fig. 2. The water temperature is a master factor for
water quality and is critical for many decision making
processes in water management, e.g.,, water reservoir
operations. We show the results of two different types of
models, the data-driven long-short term memory (LSTM)
model and the physics-based SNTemp model [10], in
a subset of the Delaware River Basin, which supplies
drinking water to a large population in the eastern
coast of the US. As we can see from both examples,
prediction accuracy in one region can be easily com-
promised to pursue better results at other places, which
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Fig. 1: Spatial bias examples. (a) and (b) show Fl-scores
of tomato classification by the same model (trained
twice).
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Fig. 2: Error distribution (in terms of root mean squared
error (RMSE)) by (a) an LSTM model and (b) a process-
based SNTemp [10] model for water temperature pre-
diction over different river segments in a subset of the
Delaware River Basin (the Christina River Watershed).

can be especially hurtful for disadvantaged groups, e.g.,
small holders representing the main production force
behind minor crops [1], [11], [12]. This can also lead to
unfair damage estimations (e.g., yield decrease) due to
floods, drought, and hurricanes, which are often used
to calculate farm insurance. Broadly, spatial fairness has
important implications in decision-making across many
domains, including disaster management (e.g., floods,
wildfires), large-scale carbon monitoring which affects
carbon tax, transportation (e.g., traffic and accident pre-
diction, delivery estimation, demand forecast), and many
more.

The formulation and enforcement of spatial fairness in-
troduce several major challenges. First, unlike traditional
categorical-attribute-based fairness (e.g., race or gender-
based), spatial domain is a continuous space, which
means the “categories” are not well-defined or given-
for-free. Second, statistics (e.g., fairness scores based on
variance) calculated from spatial datasets are fragile or
sensitive to both the partition of space and scales, which
is also known as the modifiable areal unit problem
(MAUP; detailed in Def. 2). In other words, conclusions
on “fair” or “unfair” can be easily altered by simple
changes in spatial partitions or scales. The lack of con-
sideration on MAUP has led to major societal concerns

such as the recent debate on partisan gerrymandering at
the US Supreme Court [13].

Despite the importance of spatial fairness for the use
of deep learning in societal applications, research on this
topic is still in its infancy and has barely been studied
explicitly in the context of deep learning. Traditional
line of research on fairness and equity in space mainly
focuses on direct analysis over existing maps or their
derivatives (e.g., COVID-19 statistics, access to resources)
[14]-[16]. However, existing formulations and methods
have yet to address the new challenges brought by
spatial fairness, where conclusions can be easily flipped
or manipulated due to statistical sensitivity introduced
by MAUP. One possible way to address this challenge is
by considering a larger number of spatial partitionings
or scales during model training [17], [18]. However, as
the number of spatial partitions or scales increases, it be-
comes increasingly challenging to ensure fairness across
all scenarios. In addition to enhancing spatial fairness,
the training time also escalates proportionally as the
consideration of various space-partitionings and scales
increases. This poses a significant challenge in terms of
efficient optimization. Addressing this challenge is also
crucial for the practical application of spatial fairness.

We aim to tackle the challenges by exploring new
formulations and model-agnostic learning frameworks
that are spatially-explicit and statistically-robust, i.e., the
fairness is expected to be preserved across a set of dif-
ferent partitionings of the continuous space. Specifically,
our contributions are:

We propose a SPace-As-Distribution (SPAD) represen-

tation to formulate and evaluate spatial fairness in

the context of continuous space, which mitigates the
statistical sensitivity problems introduced by MAUP.

We propose a SPAD-based stochastic strategy to ef-

ficiently optimize over an extensive distribution of

candidate criteria for spatial fairness, which are needed
to harness MAUP.

We propose a bi-level player-referee training frame-

work to enhance spatial fairness enforcement via adap-

tive adjustments of training priorities among locations.

We extend the framework with a similarity-based

training strategy, where SPAD candidates with simi-

lar fairness behaviors are dynamically clustered and
sampled to reduce the computational cost.

Experiments on real datasets show that the proposed
SPAD-based formulation and stochastic training can ef-
fectively promote fairness with improved robustness
against MAUP-incurred sensitivity. The bi-level train-
ing also improves the stability of the model and fair-
ness results compared to traditional regularization-based
paradigms. The new similarity-based strategy can also
accelerate the training process without undermining the
overall performance and spatial fairness.

This paper is a significant extension of our previous
conference paper [17]. We propose a similarity-based
training strategy to accelerate the training process and
improve the spatial fairness by selecting a small number
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of representative partitionings for training based on the
similarity amongst partitionings. We substantially ex-
tended the experiments with a new dataset and different
base models (e.g., the LSTM model), and results show
that the new extensions have a reduced training time
compared to the previous method in the conference
paper without undermining the overall performance and
fairness.

2 RELATED WORK

Existing fairness related work has explored a variety of
techniques. One commonly used and generally applica-
ble strategy is the regularization-based approach, which
includes additional fairness-related losses during the
training process [19]-[22]. Specifically, the model training
incorporates fairness loss as a regularization term in the
loss function . Note that the fairness measure used in this
function needs to be end-to-end differentiable, amenable
for training with back-propagation and updating ML
model parameters. The resulting fairness-enforced model
depends more on holistic task-relevant information, and
conditions less on categorical attributes (e.g., race, gen-
der, and age) at the same time. Another major direction
of methods aims to learn group-invariant features [23],
in which additional discriminators are included in the
training to penalize learned features that can reveal
the identity of a group (e.g., gender) in an adversarial
manner. Sensitive category de-correlation also employs
the adversarial learning regime. However, instead of
learning group-invariant features, it tries to learn features
that do not lead to polarization of predictions (e.g., the
sentiment of a phrase) for each category (e.g., a language)
[23]-[25]. Specifically, a predictor and an adversarial
classifier are learned simultaneously. The goal of the
predictor is to learn a high-level representation that is
maximally informative for the major prediction task,
while the role of the adversarial classifier is to minimize
the predictor’s ability to predict the sensitive attribute.
From the data perspective, strategies have also been
developed for data collection and filtering to reduce bias
in downstream learning tasks [26]-[28]. More variations
have also been discussed in a recent survey [29]. These
methods have been applied to tasks where groups are
well-defined by categorical attributes (e.g., face detec-
tion [22], text analysis [24], online bidding [30]). For
spatial data, location-explicit frameworks [31], [32] have
been developed to improve prediction performance over
locations, but they do not consider fairness.

3 KEY CONCEPTS

Definition 1: Partition p vs. Partitioning P. In this
paper, a partitioning P splits an input space into m indi-
vidual partitions p; (Fig. 3), i.e.,, P = {p1, ..., Dis --s Pm}s
where m is a variable.

Definition 2: Modifiable Areal Unit Problem (MAUP).
MAUP states that statistical results and conclusions are

Fig. 3: Partition p vs. Partitioning P.

Partitions p Partitionings 7

sensitive to the choice of space partitioning P and scale.
A change of scale (e.g., represented by the average area
of {p;|¥p; € P}) always infers a change of P but not
vice versa. MAUP is often considered as a dilemma
as statistical results are expected to vary if different
aggregations or groupings of locations are used.

Definition 3: Fairness measure Myq;,. A statistic used
to evaluate the fairness across a learning model’s per-
formance across several mutually-exclusive groups of
individuals. For example, M4 can be the variance of
accuracy across groups. In this paper, groups are defined
by partitions p € P.

Within the scope of this work, we consider partition-
ings P that follow a s; x sy pattern (ie., s, rows by s
columns). Fig. 4 shows an illustrative example of the
effect of MAUP on spatial fairness evaluation. Fig. 4
(al) and (b1l) show two example spatial distributions of
prediction results (green: correct; red: wrong): (al) has
a large bias where the left side has 100% accuracy and
the right side has 0%, and (bl) has a reasonably even
distribution of each. However, as shown in Fig. 4 (a2-3)
and (b2-3), different partitionings or scales can lead to
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Fig. 4: Tllustrative examples showing sensitivity to both
space-partitioning and scale.

4 FORMULATION AND METHOD

In this section, we first propose a novel space-as-
distribution (SPAD) formulation to mitigate MAUP-
incurred statistical sensitivity for fairness evaluation.
Then, we propose a SPAD-based stochastic strategy as
well as a bi-level training framework to enforce spa-
tial fairness for an input deep network F selected by
users. Finally, we propose a clustering-based sampling
algorithm to accelerate the training process without the
degradation of fairness performance.
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Fig. 5: Distributional representation by SPAD.

4.1 Space as a Distribution of Partitionings

As the grouping of locations is naturally needed for
fairness evaluation using common performance metrics
(e.g., precision, recall, accuracy), in the scope of this
work we focus on scenarios where space-partitionings

are used to generate location groups; in other words,
each partition is analogous to a gender, race, etc.
in related fairness studies. However, due to the MAUP
dilemma (Def. 2), conclusions drawn from most — if not
all — of common statistical measures are fragile to the
variability in space-partitionings and scales. If this issue
is ignored, then one may unintentionally or intentionally
introduce additional bias (e.g., partisan gerrymandering
[13]).

Thus, instead of relying on fragile scores calculated
from a fixed partitioning or scale, we propose a SPace-
As-Distribution (SPAD) representation to define spatial
fairness. The idea is to go beyond a single partitioning
or scale by treating space-partitionings at different scales

as outcomes of a generative process governed by a
statistical distribution. As mentioned in key concepts, in
this work we consider partitionings that follow a pattern
of rows by  columns. So, in this case, an example
generative process may follow a joint two-dimensional
distribution where , ,

(e.g., 10). By default, one may assume
a uniform distribution where
(for equal-size partitioning). This scheme also
allows users to flexibly impose a different distribution
or prior, which may be dynamically adjusted based on
intermediate results.

With the SPAD representation, spatial fairness becomes
a distribution of scores, which can more holistically
reflect fairness situations across a diverse set of parti-
tionings and scales. As there may exist a large number
of distinct partitionings  (e.g., exponential to
and for -partitioning with unequal-sized
partitions), in practice, we may estimate the distribution
using random samples of partitionings from the gener-
ative process. For example, Fig. 5 (al) and (b1l) show

the same set of partitioning samples (different patterns
and scales) overlaid on top of distributions A and B
in Fig. 4, respectively. The variance of accuracy across
partitions for all 6 partitioning samples is aggregated in
Fig. 5 (a2) and (b2), where lower variance means fairer
results. As we can see, with the distributional extension,
the majority of scores reflect our expected results on
the fairness evaluation for distributions A and B, and
the partitioning samples leading to unexpected results
become outliers (highlighted by red arrows).

Once a distribution of scores is obtained from the
SPAD representation, summary statistics can be conve-
niently used for fairness evaluation based on application
preferences (e.g., mean). Finally, the formal formulation
of spatial-fairness-aware learning is defined as follows:

1)
where  is an input deep network;  are the param-
eters of ;  represents variables describing a space-
partitioning  (e.g., number of rows and columns for

-partitionings) that are related to its probability
as specified by a statistical distribution (e.g.,
uniform or user-defined); is a metric used to evaluate
the performance of a model (e.g., F1-score); and
is a fairness measure (loss) that is defined as:

()

where is a partition in  (Def. 1), is a distance
measure (e.g., squared or absolute distance),
is the score (e.g., Fl-score) of on ’s training data,
is the number of partitions in , and is another
key variable, which represents the mean (expected) per-
formance at each local partition CIf
has a large deviation from the mean (weighted or un-
weighted), it means the model is potentially unfair
or biased across partitions. Finally, the mean here is
calculated from a based model , where parameters
are trained without any consideration of spatial
fairness:

3)

The benefit of using to set the mean is that,
ideally, we want to maintain the same level of overall
model performance (e.g., F1-score without considering
spatial fairness) while improving spatial fairness. Thus,
this choice automatically takes the overall model perfor-
mance into consideration as the objective function (Eq.
(1)) will increase if ‘s overall performance diverges
too far from it (e.g.,, a model that yields 0 Fl-scores
on all partitions — which is fair but poor — will not be
considered as a good candidate).
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Fig. 6: SPAD-based stochastic training strategy.

4.2 SPAD-based Stochastic Training

A direct way to incorporate the distributional SPAD
representation into the training process — either through
loss functions or the bi-level method to be discussed in
the next section — is to aggregate results from all the
partitionings for each iteration or epoch. However,
this is computationally expensive and sometimes pro-
hibitive. For example, the number of possible partition-
ings can be exponential to data size (e.g., the number
of sample locations) when general partitioning schemes
are considered (e.g., arbitrary, hierarchical, or
partitionings with unequal-size cells). Even for equal-size

partitionings, there can be easily over hundreds
of candidates when large and  values (e.g., 10, 40,
or more) are used for large-scale applications.

Thus, we propose a stochastic training strategy for
SPAD to mitigate the cumbersome aggregation. Consid-
ering SPAD as a statistical generative process , in each
iteration or epoch, we randomly sample a partitioning
from and use it to evaluate fairness-related loss (Def.
3). For example, for equal-size partitionings, each
time the generator may randomly sample ( , ) from
a joint discrete distribution (Fig. 6). In this way, the
probability of each partitioning (Eq. (1)) is automati-
cally taken into consideration during optimization over
epochs. In addition, in scenarios where the difficulty of
achieving fairness varies for different partitionings, the
SPAD-based stochastic strategy may accelerate the over-
all convergence. It may first help a subset of partitionings
reach good fairness scores faster without the averaging
effect, which may in turn help related partitionings to
move out local minima traps. In practice, we have three
further recommendations for implementation:

Unconstrained initial training: Ideally, we wish to
maintain a high overall performance (e.g., F1-scores)
while improving fairness across locations. However,
it can be pre-mature to try to find a balance between
the two objectives when the model still has a very
poor overall performance (e.g., untrained). Hence,
we keep fairness-related losses or constraints on-
hold at the beginning, and optimize parameters by
minimizing only prediction errors till stable.

Epoch as a minimum unit: Deep network training
often involves mini-batches (i.e., a middle-ground
between stochastic and batch gradient descent). As
a result, the combined randomness of mini-batches
and SPAD-based stochastic strategy may make the
training unstable. Thus, using epoch as a minimum
unit for changing partitioning samples can help
reduce the superposed randomness.

Increasing frequency: Extending the last point, de-
note as the number of continuous epochs to train
before a partitioning sample is changed. At the
beginning of training, a biased model without any
fairness consideration may need more epochs to
make meaningful improvements, which means a
larger (e.g., 10) is preferred. In contrast, towards
the end of the training, a large can be undesirable
as it may cause the model to overfit to a single
partitioning at the finish. Thus, we recommend a
decreasing (finally ) during training.

4.3 Bi-level Fairness Enforcement

Next, we discuss the method to enforce fairness on
each space partitioning sampled by the SPAD method.
A traditional way to incorporate fairness loss (e.g., Eq.
(2)) is to add it as a term in the loss function, e.g.,

, Where is the prediction
loss (e.g., cross-entropy or dice loss) and is a scaling
factor or weight. This regularization-based formulation
has three limitations when used for spatial-fairness en-
forcement: (1) Since deep learning training often uses
mini-batches due to data size, it is difficult for each
mini-batch to contain representative samples from all
partitions when calculating . (2) To
reflect true fairness over partitions, metrics used
in in Eq. (2) are ideally exact functions such as
precision, recall or Fl-scores. However, since many of
the functions are not differentiable as a loss function
(e.g., with the use of to extract predicted classes),
approximations are often needed (e.g., threshold-based,
soft-version), which introduce extra errors. Additionally,
as such approximations are used to further derive fair-
ness indicators (e.g., ), the uncertainty created by the
errors can be quickly accumulated and amplified; and (3)
The regularization term requires another scaling
factor , the choice of which directly impacts final output
and varies from problem to problem.

To mitigate these concerns, we propose a bi-level
training strategy that disentangles the two types of losses
with different purposes (i.e., and )- Specif-
ically, there are two levels of decision-making in-and-
between epochs:

Partitioning-level ( ): Before each epoch, a referee
evaluates the spatial fairness using Eq. (2) with
exact metrics (e.g., Fl-score); no approximation
is needed as back-propagation is not part of the
referee. The evaluation is performed on all partitions

, guaranteeing the representativeness. Note
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that the model is evaluatable for the very first epoch
because the fairness-driven training starts from a
base model, as discussed in the previous section
and explanations for Eq. (2). Based on an individual
partition p;’s deviation d(Mr(Fe,p;:), Ep) (a sum-
mand in M4,'s numerator in Eq. (2)), we assign its
learning rate n; for this epoch as:

L ST : !
n = Moz —Tmin Ninit, if n; >0 @
0, otherwise
n; = max(—(Mr(Fe,p:) — Ep),0) (5)

where 7;y,; is the learning rate used to train the base
model, n,;,, = argmin,, {n; [7; > 0, Vi}, and 7y,q, =
arg max, {n; | Vi}.

The intuition is that, if a partition’s fairness measure
is lower than the expectation Ep, its learning rate 7;
will be increased (relatively to other partitions’) so
that its prediction loss will have a higher impact dur-
ing parameter updates in this epoch. In contrast, if
a partition’s performance is the same or higher than
the expectation, its 7; will be set to 0 to prioritize
other lower-performing partitions. Positive learning
rates after the update are normalized back to the
range [0,7;,:;] to keep the gradients more stable.
This bi-level design also relieves the need for an
extra scaling factor to combine the prediction and
fairness losses.

e Partition-level (p): Using learning rates {7;} as-
signed by the referee, we perform regular training
with the prediction loss £Ly,.4, iterating over data in
all individual partitions p; € P in mini-batches.

4.4 Similarity-based Training Acceleration

The SPAD-based stochastic training needs to consider
all the individual partitionings, which can still be time-
consuming given a large number of partitionings. To ad-
dress this issue, we propose a clustering-based sampling
algorithm to accelerate the training process by selecting
a smaller number of partitionings based on the similarity
amongst partitionings.

Fig. 7 shows an illustrative example of changes in
performance distributions, which make results in one
partitioning fairer while the other fairer as well. This
example consists of Fig. 7 (b) and (c), where the grids
represent two different examples of space-partitionings,
which are partitioning 1x4 and partitioning 1x2 respec-
tively. The changes in performance distribution from
the top to the bottom (Fig. 7 (a)) make the location-
based fairness improve for partitioning 1x4, as shown
as Fig. 7 (b). Meanwhile, they also introduce more fair-
ness into partitioning 1x2, ie., the first column and
the second column have similar performance. This indi-
cates the potential for enforcing the spatial fairness over
a smaller set of representative partitionings to obtain
the fairness over other partitionings. We formulate the

sampling of representative partitionings in the training
process as a clustering problem. In the following, we will
describe similarity estimation, the clustering algorithm,
clustering-based sampling, and implementation details.
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Fig. 7: Nllustrative example showing similarity between
two partitionings 1x4 and 1x2. Improving fairness on
partitioning 1x4 can also guarantee the fairness for
partitioning 1x2.

Similarity estimation: We create an N-by-N adjacency
matrix Mat,q; to record the similarity relation between
each pair of partitionings, where N denotes the total
number of candidate partitionings. Here the similarity
M atag4ji, j] between each pair of partitionings P; and P;
measures the fairness improvement on partitioning P;
when we enforce fairness on partitioning P;. A higher
similarity value Mat,q;[i, j] indicates a greater tendency
for these partitionings to become fair simultaneously.
Obtaining each row Mat,g[i,:] in the adjacency matrix
requires running the bi-level fairness enforcement on
partitioning P; and then using the obtained model to
evaluate the fairness over all the other partitionings. In
particular, the similarity is computed as the proportion
of fairness improvement, as follows:

ﬂ’ffair(f@?apj) - ﬂ’ffair(}-e}:pj)
Mjair(Feo, P;)

where ©Y and ©! denote the model parameters before
and after we enforce the fairness on partitioning P;. Here
we measure the proportion of the fairness improvement
rather than the absolute improvement because the fair-
ness values may have different scales for different parti-
tionings. A positive similarity value (i.e., M atqq4;i, j| > 0)
indicates that the fairness enforcement on partitioning P;
also positively contributes to the fairness of partitioning
P;, and otherwise indicates a negative influence. We
further process the obtained matrix Matag in three
steps: (i) we assign 0 to all the negative entries; (ii) we
replace each pair of entries Mat,q; (7, j) and Mataq;(J, 1)
by their harmonic mean, as we prefer to establish a close
connection between a pair of partitionings only if they
have mutually positive influences; (iii) we convert the
similarity matrix into a distance matrix for the clustering
algorithm using dist(i,j) = 1y3751-, 57 for each entry.
Based on the distance matrix, we penlorm clustering to
group partitioning with similar fairness behaviors (i.e.,

ﬂf&.ta’dj [Z., j] =

(6)

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 17:41:42 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rightsfindex.html for more information.



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3371460

increase vs. decrease after an update). As the distances
between partitionings may not be uniform for different
clusters (i.e., partitionings’ fairness behaviors can be
more similar in certain clusters and less in the others),
a preferable property of the clustering algorithm is to
be able to identify clusters with varying densities. In
addition, the clustering algorithm should not require the
number of clusters, which is unknown for this problem.
Thus, we use hierarchical density-based clustering, HDB-
SCAN [33]-[35], which is an integration of DBSCAN and
OPTICS, which have the desired properties.

The HDBSCAN algorithm finds the clustering struc-
ture from the minimum spanning tree created using mu-
tual reachability distances amongst partitionings instead
of direct distances. The use of mutual reachability dis-
tance facilitates the clustering process by maintaining the
distances between points inside clusters while increasing
the distances between cluster points and susceptible
noise points, which help avoid different clusters being
detected as one due to bridges formed by noise points.
In our integration, we additionally include a ”spatial”
prior to enlarge the distance between partitionings if
their spatial patterns are highly different. For example,
partitionings 1 5 and 1 6 are more spatially similar,
whereas partitionings 1 5 and 5 1 are more differ-
ent. We use spatial-overlap-based mutual information
to measure this prior similarity. Specifically, the mutual
information between two partitionings and is
computed based on the maximum overlap between any
partitions in  and , as follows:

maXp,cP; (Ipa N po])

MI(PiP;) =( Y T
Pa€P; 7)
" Z InaXp,lePi[(l|pa N pb') )/27
PpEP;

where represents the overlapping area between
two partitions and ,and denotes the total area of
the study region, i.e., L for any partitioning

. Then the mutual information is used to rescale the
distance as and the rescaled distance
is used to create the minimum spanning tree in the
HDBSCAN algorithm.

Partitionings selection: Once we obtain the clustering
structure, we sample a subset of partitionings out of all
the  partitionings for enforcing fairness. The intuition
is to directly optimize the fairness for a small number
of representative partitionings, which stands a higher
chance to positively contribute to the fairness of other
partitionings. Specifically, we first determine the number
of partitionings to be sampled from each cluster , as
, where  is the total number of
clusters, and denotes the number of partitionings
in the cluster . Each cluster will have at least one
partitioning to be selected.
When sampling  partitionings from each cluster |,
we prioritize partitionings based on how representative

they are for the cluster and how frequently they were
selected during past updates. In particular, we use the
following two metrics for each partitioning, the sum
of similarity to other partitionings in the same cluster
and the number of times it has been selected in the
previous training process. More formally, the probability
of choosing a specific partitioning  in the cluster
can be computed via:

exp

;L eXp

exp (8)
exp

k

where denotes the number of times the partitioning

has been selected in the previous training process. Then

we randomly sample partitionings from the cluster
without replacement based on the obtained for

Training process: Algorithm 1 depicts the whole training
procedure using our similarity-based clustering. In our
implementation, the whole training process has three
stages, the initial stage, the clustering-sampling stage,
and the sampling-only stage.

The initial stage covers the first loops of
partitionings. The first ~ loops aim to train an initial
predictive model following the standard SPAD-based
stochastic and bi-level training processes. The goal is
to train a reasonably fair and accurate initial model so
as to avoid any bias from a completely random model.
Here we set in our test. The loop aims
to initialize the similarity matrix by tentatively
enforcing the fairness of each partitioning and measuring
the contribution to the fairness of other partitionings.
It is noteworthy that the model only gets temporarily
updated in this loop, i.e., the model will be reset to
the initial model obtained from the first  loops after
enforcing the fairness of each partitioning. The idea is to
create the initial similarity matrix that is independent of
the training order of partitionings.

The next clustering-sampling stage applies the HDB-
SCAN clustering algorithm and samples a small number
of partitionings to be optimized for each loop. Due
to the uncertainty of the stability and accuracy of the
initial similarity matrix , additional updates are
performed to enhance its reliability. Specifically, when a
partitioning  is selected and trained, the proportion of
fairness improvement is calculated again using the Eq
(6). Subsequently, is updated as the average
value of all obtained proportions of fairness improve-
ments after training  (from the current and previous
loops). This updating process ensures consistency among
the partitionings with varying training frequencies dur-
ing the clustering-sampling stage.

Compared to the original SPAD-based stochastic train-
ing process, this cluster-sampling process reduces the
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time cost of iterating over all the  partitionings but
only optimizes the fairness for all the selected parti-
tionings. The total number of selected partitionings is
and it is often much smaller than . How-
ever, it needs to update the clustering structure in each
loop, which requires an additional computational cost of
lg . The total computational cost for each loop
is lg , where the  denotes the total
number of locations for training, and is a constant value
depending on the model complexity (e.g., the number of
hidden neurons). In contrast, the standard SPAD-based
stochastic training with the cost of for each
loop. Hence, despite the clustering overhead, each loop
in the clustering-sampling stage usually has a lower cost
because .

In the last sampling-only stage, the clustering structure
is already stable and requires no further adjustment
based on our experiments. For the remaining training
loops, we directly sample partitionings in every
loop and train the model with the bi-level fairness en-
forcement on the selected partitionings. The time cost for
each loop gets further reduced to

5 DATASET AND IMPLEMENTATION DETAILS

California crop mapping dataset: Accurate mapping of
crops is critical for estimating crop areas and yield, which
are often used for distributing subsidies and providing
farm insurance over space. Our input  for crop and
land cover classification is the multi-spectral remote
sensing data from Sentinel-2 in Central Valley, California
(Sentinel tile T11SKA), and the study region has a size
of 4096 4096 ( 6711 km at 20m resolution). We use
the multi-spectral data captured in August 2018 for the
mapping, and each location has reflectance values from
10 spectral bands, which are used as input features. In
particular, the Sentinel-2 data product has 13 spectral
bands at three different spatial resolutions of 10, 20 and
60 metres. We leave out the atmospheric bands (Band
1, 9 and 10) of 60 metres resolution and re-sample all
the bands to 20 metres. The label is from the USDA
Crop Data Layer (CDL) [36]. Specifically, our experiment
covers 18 land cover types, including a variety of crop
types such as corn, cotton, sorghum, wheat, alfalfa,
grapes, citrus, almond, walnut, pistachio, tomato, garlic,
and others.
Mapping palm oil plantations in Indonesia: We also
validate our framework in detecting oil palm plantations,
which is a key driver for deforestation in Indonesia. Plan-
tations have similar greenness levels to tropical forests.
Our ground truth labels are created in Kalimantan, In-
donesia in 2014 based on manually created plantation
mapping products RSPO [37] and Tree Plantation [38].
Each location is labeled as one of the categories from
plantation, non-plantation, unknown , where the “un
known” class represents the locations with inconsistent
labels between the RSPO and Tree Plantation dataset. We

Algorithm 1: Training process

Input: The set of training samples
The set of candidate partitionings
number of loops for the initial stage,
clustering-sampling stage, and sampling-only
stage: ,

1 // Initial stage

2 for to do

3 repeat

4 Randomly select a partitioning without

replacement using the SPAD-based

stochastic training strategy;

5 Train the model with bi-level fairness

enforcement on the selected partitioning;

6 until all  partitionings are selected;

. The

N
98]

ave the model ;

s for to do

Select a partitioning

10 Train the model with the bi-level fairness
enforcement to the partitioning ;

1 Update the ;

12 Reset the model to

13 // Clustering-sampling stage:
14 for to do
15 Run the HDBSCAN algorithm for clustering;

Sample partitionings from each cluster ;

16 repeat

17 Randomly select a partitioning from
partitionings without replacement using
the SPAD-based stochastic training
strategy;

18 Train the model with bi-level fairness
enforcement on the selected partitioning;

19 Update the corresponding row in the
similarity matrix ;

20 until all partitionings are selected;

21 // Sampling-only stage:

2 for to do

23 Sample partitionings from each cluster ;

24 repeat

25 Randomly select a partitioning from

partitionings without replacement using
the SPAD-based stochastic training
strategy;

26 Train the model with bi-level fairness
enforcement on the selected partitioning;
27 until all  partitionings are selected;

do not consider the “unknown” class in the classifica-
tion. We utilize the 500-meter resolution multi-spectral
MODIS satellite image, which consists of 7 reflectance
bands (620-2155 nm) collected by MODIS instruments
onboard NASA'’s satellites, and is collected in January
2014.
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For both problems, we randomly select 20% and 80%
locations for training and testing respectively in our tests.
However, in our subsequent tests to compare with the
proposed SPAD method integrating clustering algorithm,
we experiment with different sizes of training samples,
which include 20%, 35%, 50%, and 65% locations for
model training. Also, the remaining locations are used
for model testing.

Implementation details: As mentioned in scope, we
consider a set of partitionings denoted as , which
represents multiple partitionings. In experiments,
to allow comparisons with non-stochastic-based SPAD
methods (computationally expensive), we set the max-
imum values for and  to 5 and generate a set of

partitionings , which leads to 24 different equal-size
partitionings (the partitioning is excluded). In addi-
tion, to validate the speedup performance of integrating
the clustering algorithm, we generate five other sets of
equal-size partitionings , , , , ,
which leads to 15, 35, 63, 99 and 143 different equal-size
partitionings.

Our proposed methods do not assume specific net-
work architectures. Most results presented in this paper
use an 8-layer deep neural network (DNN) as a base
model. We also test an LSTM model using a series of
remote sensing images for classification. These models
take inputs of multi-spectral data at each location and
output the land cover label. In our experiment, we first
train an initial model for 300 epochs (converged) without
considering the fairness, using Adam ( ) as
the optimizer. From this base model, we further imple-
ment different candidate approaches to improve fairness.
Based on the stochastic training strategy, we sample a
new partitioning in each epoch, and repeat this process
over all the partitionings for 50 loops. Overall there are
50 expected epochs for each partitioning. Both weighted
and unweighted Fl-scores are considered as the perfor-
mance metric in Egs. (2) and (3). The unweighted F1-
score is computed using the arithmetic mean of all the
per-class Fl-scores, treating all classes equally without
considering class imbalance. On the other hand, the
weighted F1-score takes into account the contribution of
each class by weighting the average based on the number
of examples in each class.

6 EXPERIMENTS

Our experiments aim to answer the following questions:

Q1. Does the SPAD representation improve spatial
fairness over different space-partitionings?

Q2. Does the bi-level training strategy improve
over other fairness enforcement methods, such
as regularization-based approaches and adversarial
discriminating-based approaches?

Q3. Is the SPAD-based stochastic training able to
maintain or improve fairness with a lower compu-
tational load?

Q4. What is the effect of the clustering-based sam-
pling algorithm on the training efficiency, predictive
performance, and the fairness performance?

The results to these questions can serve as an initial
base for spatial-fairness driven learning. To answer these
questions, we consider the following candidate methods:

Base: The base deep learning model (fully-connected
DNN and LSTM) without consideration of spatial
fairness.
REG: Spatial fairness is enforced using the SPAD rep-
resentation by adding a regularization term to the loss
function; the inclusion of a regularizer is a common
strategy in related work [20], [21]. As Fl-score is not
differentiable, we use standard approximation via the
threshold-based approach, which amplifies softmax
predictions over a threshold to 1 and suppresses
others to 0 using  ReLU ReLU , where

is a sufficiently large number ( in our tests).

The scaling factor for the regularizer is set to 5.

REG-Single: Spatial fairness is evaluated and im-

proved using the baseline REG on a single space-

partitioning . Specifically, our experiment targets par-

titioning (4, 1).

ADL-Single: This baseline is an extension of the

discriminator-based fairness enforcing approach [23].

For fairness preservation, the model aims to learn

group-invariant (or fair) features that make it difficult

for a discriminator to identify the partition from
which data samples come. Similar to REG-Single, our

experiment uses partitioning (4, 1).

BL-Single: Spatial fairness is evaluated and improved

using the proposed bi-level training strategy on a

single space-partitioning . Same as REG-Single and

ADL-Single, our experiment considers partitioning (4,

1).

SPAD-GD: This is the proposed SPAD method with-

out using the stochastic strategy, i.e., it aggregates over

gradients from all the candidate partitionings before
making parameter updates in each loop.

SPAD-RND: This method combines SPAD with the

random sampling strategy, i.e., it randomly samples

partial partitionings for enforcing fairness. Specifically,

for our experiment on partitionings , we randomly
sample five partitionings in each training loop. For ex-

periment on partitionings , we randomly sample
ten partitionings in each training loop. These sample

sizes (i.e., 5 in and 10 in ) are selected to
ensure that the model is trained with a similar number
of partitionings as the SPAD method integrating the
clustering-based partitioning sampling.

SPAD: This is the proposed approach using the SPAD
representation with the stochastic and bi-level training
strategies.

SPAD-SIM: This is the proposed approach with
similarity-based acceleration. Specifically, at the initial
stage, we train the model using the standard SPAD-
based stochastic and bi-level training strategies at the

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 17:41:42 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3371460

first 5 loops and then initialize the similarity matrix in
the next loop. At the clustering-sampling stages, we
update the clustering structure for another 5 loops.
At the last sampling-only stage, we fix the clustering
structure for the remaining loops.

6.1 California Crop Mapping Dataset
Comparison to existing fairness-preserving methods:

We compare the fairness for partitionings achieved
by SPAD, the base DNN model (without considering
fairness) and the REG method in Fig. 8. For each par-
titioning  (x-axis), we report mean absolute distance
mean, Which is the mean of the absolute distances
between Fl-scores achieved on each partition and
the average performance over all partitions

both weighted and unweighted Fl-scores are c0n51d—
ered. In Tables 1 and 2, we summarize the overall
performance (global Fl-scores), the sum of mean abso-
lute distance mean and the sum of maximum ab-
solute distance max across all partitionings under

two sets of partitionings and using weighted

and unweighted F1, respectively. Specifically, we have:

F © P;
mean —— i and

max ) i P
If mean or max 1 larger, it generally indicates
larger mean Or max Values over different partitionings,
and the curve will be higher in Fig. 8.

Fig. 8 shows that both SPAD and REG achieve a lower
mean absolute distance compared to the base model over
all space partitionings, which confirms the effectiveness
of the SPAD representation in improving the fairness
(Q1). Comparing SPAD and REG, we can see that SPAD
consistently outperforms REG in the experiments (Q2),
which shows that the bi-level design is more effective
in enforcing spatial fairness than regularization terms by
improving sample representativeness, allowing the use
of exact metrics (i.e., no need to use approximations of
Fl-scores for differentiability purposes) and eliminating
the need for an extra scaling factor for the regularizer
which may add extra sensitivity.

From the first columns of Tables 1 and 2, we can see
that SPAD is able to maintain a similar overall/global
classification performance compared to the base DNN,
which does not have any fairness consideration. Mean-
while, the second and third columns in the tables show
that our method can significantly reduce the sums of
mean and max absolute distance over all partitionings.
This confirms that SPAD can effectively promote the
fairness without compromising the classification perfor-
mance.

In Fig. 9, we also show the absolute distances between
F1-scores achieved on each partition and the average per-
formance across all partitions for a sampled partitioning
with six partitions, where each pair of bars in the figure
represents the results of two methods for one partition.
It can be seen that SPAD can achieve a more balanced

10

TABLE 1: Classification and fairness results on crop map-
ping by weighted Fl-scores ( denotes “timeout”, which
means model training requires more than 18 hours.)

Method » (24 partitionings) » (99 partitionings)
etho W.F] mem ma] WFI]  memn o
[ Base DNN [ 0.572 [1.379 3799 [ 0572 ]7585 23.680 |
REG-Single | 0.567 [ 1.366 3.718 0.567 |7.543 23.359
ADL-Single | 0.572 | 1.358 3.748 0.572 | 7.459 23.442
BL-Single 0.558 | 1.355 3.712 0.558 | 7.400 22.710
REG 0.566 | 1.319 3.821 0.567 | 7.274 23.274
SPAD-GD 0.573 | 1.275 3.571
SPAD-RND | 0.564 | 1.308 3.541 0.572 | 7.006 23.123
SPAD 0.573 | 1.102 3.190 0.570 | 6.700 21.880
[ SPAD-SIM [ 0.565 [1.163 3.033 [ 0.576 [ 6.686 21.937 ]

TABLE 2: Classification and fairness results on crop
mapping by unweighted Fl-scores ( denotes “timeout”,
which means model training requires more than 18
hours.)

Method 5 (24 partitionings) » (99 partitionings)

t

etho UW.FI] e m] OW.FI] e .

[ Base DNN [ 0.377 10.906 1.808 [ 0.377 [4.202 10.068 ]
REG-Single 0.376 | 0.884 1.774 0.376 |4.135 9.928
ADL-Single 0.375 |0.814 1.775 0.375 | 3.855 9.707
BL-Single 0.374 |0.733 1.553 0.374 | 3.695 9.251
REG 0.376 | 0.728 1.691 0.376 |3.544 9.629
SPAD-GD 0.372 | 0.602 1.384
SPAD-RND 0.376 | 0.706 1.498 0.375 | 3.578 9.190
SPAD 0.374 | 0.549 1.337 0.372 | 3.047 8.764

[ SPADGIM | 0372 [0595 1349 | 0368 [3.136 _ 8689 |

distribution of Fl-scores compared to the base model.
This highlights how SPAD can positively influence fair-
ness and provides evidence of the effectiveness of the
proposed method in improving fairness.

Comparison to partitioning-specific methods: We aim
to verify that SPAD can achieve better fairness over the
majority of the partitionings compared to non-SPAD-
based variants that only optimize fairness over a specific
spatial partitioning using different fairness enforcement
methods. Fig. 10 shows the fairness performance of
partition-specific methods REG-Single, ADL-Single, and
BL-Single. The overall trend is that SPAD achieves better
spatial fairness in most partitionings by modeling space-
partitionings as a distribution (Q1). Meanwhile, we can
see that BL-Single obtains a better fairness result for its
target partitioning (i.e., the partitioning (4,1)). However,
its fairness improvements are limited for other partition-
ings. This conforms to the expectation that partitioning-
specific methods are able to reach further improvements
on a given , but cannot generalize well to the others.
Interestingly, we can also observe that BL-Single can
produce better fairness on certain partitionings. For ex-
ample, in this test, BL-Single also achieves good fairness
on partitionings (2, 1), (3, 1) and (5, 1) because these
partitionings are more structurally similar to the target
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Fig. 9: The absolute difference between the obtained F1-
scores over different partitions and the average Fl-score
for crop mapping.

partitioning (4, 1). This result confirms that the similarity
relationships amongst partitionings can be leveraged to
further improve the efficiency of the stochastic sam-
pling process, as used in our proposed clustering-based
approach. Tables 1 and 2 (row 4) show the weighted
and unweighted Fl-scores achieved by BL-Single. This
method has similar global F1-scores with SPAD since our
design takes the overall performance into account (Egs.
(2) and (3)). However, BL-Single produces larger values
of mean and max compared to SPAD, which again
confirms the benefits of the SPAD representation.

In addition, Fig. 10 as well as Tables 1 and 2 (rows
2-4) show that the model using the bi-level training
strategy achieves the best fairness on target partitioning
without compromising the global F1-scores (Q2). This is
because the bi-level fairness enforcement mitigates the
direct competition between predictive performance and
spatial fairness, and also avoids the selection of hyper-
parameters.

In both the experiments with weighted and un-
weighted Fl-scores (Fig. 10), SPAD can often get very
close to the fairness scores achieved by partitioning-

(1.2) (1.3) (1. 4) (1. 5) (2. 1) (2. 2) (2. 3) (2. 4) (2.5 (3. 1) (3. 2) (3.3) (3.4) (3.5) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (5, 1) (5,2) (5, 3) (5,4) (5, 5)

nd the base model over all the partitionings.

specific methods on their sole-input . This shows the
potential dependency relationships between partition-
ings. We also explored a variant that uses only finer or
finest-scale partitioning such as (5, 5). One issue we ob-
served is that the method faces difficulty in convergence,
leading to poorer results on both fine and coarse scales.
This is potentially due to the fact that fairness enforce-
ment at finer-scale naturally leads to stricter criteria.

Validation of stochastic training strategies: Next, we
validate the effectiveness of the SPAD-based stochastic
training strategy (Q3). We first compare SPAD to the
SPAD-GD approach, which is the standard gradient de-
scent method across all the partitionings. Specifically,
this approach loops over all the partitionings in each
iteration, aggregates their gradients, and uses the aggre-
gated gradients to update model parameters. Compared
to our SPAD-based stochastic approach, the aggregation
in SPAD-GD leads to a heavier computational load and
requires longer time for model training (i.e., 2.5 hours vs.

9.5 hours for partitionings using NVIDIA Tesla K80
GPU over two runs). Here we maintain the same number
of parameter updates for the two methods, and the only
difference is that each SPAD update is made by gradients
from a sampled partitioning whereas each SPAD-GD up-
date uses average gradients from all partitionings. Fig. 12
shows their performance comparison. We can see that the
two methods have about the same performance for the
unweighted scenario (the lower part of Fig. 12), which
is expected. Interestingly, SPAD outperforms SPAD-GD
in the weighted scenario (the upper part of Fig. 12). One
reason is that the added randomness from the stochastic
sampling in SPAD may allow a better chance for the
training to move out of local minima traps without the
averaging effects, especially when fairness is harder to
achieve at the beginning for some partitionings.

Effectiveness of integrating clustering algorithm: Fi-
nally, we verify the effectiveness of SPAD-SIM, which
uses the clustering obtained by the HDBSCAN algorithm
to sample partitionings during the model training (Q4).
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Fig. 10: Fairness comparison on crop mapping amongst SPAD, REG-Single, ADL-Single, and BL-Single over all the
partitionings.
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Fig. 11: Fairness and training time comparison on crop mapping between SPAD and SPAD-SIM under different sizes
of training samples and different sets of partitionings across all 50 loops.

To ensure a fair comparison, we train 50 training loops
for all sampled partitionings in both the SPAD and
SPAD-SIM approaches. In our tests, we notice that the
models converged within these 50 loops.

We first validate the efficiency of SPAD-SIM under
different scenarios. We evaluate the performance and
training time consumption of SPAD and SPAD-SIM un-
der different sizes of training samples and different sets
of partitionings in Fig. 11. For each size of training
samples (x-axis), we report the training time across all
50 loops. Also, the global weighted Fl-score and the
sum of mean absolute distance mean are grouped as
a pair and presented for each testing scenario. Note that
“timeout” means model training requires more than 18
hours when using the NVIDIA Tesla K80 GPU.

Fig. 11 shows that SPAD-SIM can have a shorter time
for model training compared to the method SPAD with-
out undermining the overall performance and fairness.
With an increasing number of samples or partitioning,
SPAD-SIM leads to a higher speedup for model training.
This confirms that training the model using a represen-
tative subset of partitionings selected by the clustering-
based approach is sufficient to promote the spatial fair-
ness over all partitionings.

We further compare the performance of SPAD-SIM
to two methods SPAD and SPAD-RND. Fig. 12 shows
that both SPAD and SPAD-SIM achieve similar mean
absolute distances over all space partitionings, and they
consistently outperform SPAD-RND. When considering
the overall fairness performance over all the candidate
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partitionings.
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Fig. 13: Fairness and training time comparison on crop
mapping by SPAD-SIM with different loops at the initial
stage.

partitionings, Table 1 and 2 (rows 7-9) show that SPAD-
SIM has a smaller mean absolute distance and maximal
absolute distance than SPAD-RND, and can achieve a
similar level of spatial fairness and overall performance
(in F-1) with SPAD. The superiority of SPAD-SIM over
SPAD-RND is because SPAD-SIM can extract more rep-
resentative partitionings for model training.

In addition, the proposed SPAD-SIM method has the
initial stage to iterate all sampled partitionings in order
to initialize an unbiased and reasonable similarity matrix
for clustering. We also evaluate the fairness performance
and training time with varying loops for the initial stage,
as shown in Fig. 13. Even though the total number of
training loops is fixed as 50, the time required for model
training is growing as the number of loops increases at
the initial stage, which is expected. Also, it shows that
SPAD-SIM under our setting ( ) is sufficient to
generate an unbiased similarity matrix and produce a
good fairness result.

In the end, Fig. 14 shows a sequence of clusters

TABLE 3: Classification and fairness results of DNN-
based model on plantation mapping

Method 5 (24 partitionings)

t!

etho F1 [ mean [ max

[ Base DNN [ 0.648 [ 4630 [ 8615 |
REG-Single | 0.650 4.303 7.959
ADL-Single | 0.630 4.330 7.984
BL-Single 0.652 4.301 7.931
REG 0.647 4.254 7.927
SPAD-GD 0.647 4.232 7.803
SPAD-RND | 0.646 4.251 7.901
SPAD 0.640 4.166 7.783

[ SPAD-SIM [ 0637 [ 4170 [ 7833 |

for partitionings for the method SPAD-SIM at the
clustering-sampling stage. It can be clearly seen that the
partitionings that have higher similarities are grouped
together. For example, partitionings (1, 2) and (1, 4) are
grouped into the same cluster. Also, it shows the stability
of using the HDBSCAN clustering algorithm. The clus-
ters keep stable with only a few partitionings switching
between clusters each time, when starting clustering at
the clustering-sampling stage.

To further augment our analysis, we introduce an
additional experiment focusing on the training time ef-
ficiency of SPAD and SPAD-SIM in achieving a near-
optimal performance level for the first time during the
training process. Fig. 15 shows the performance and
training time consumption of SPAD and SPAD-SIM un-
der different sizes of training samples and different sets
of partitionings. This further highlights that SPAD-SIM
excels in terms of training time efficiency. Even when
considering varying training sample sizes and diverse
partitioning scenarios, SPAD-SIM consistently exhibits
a faster convergence towards near-optimal performance
compared to SPAD.
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Fig. 14: The sequence of generated clusters on partition-

ings by SPAD-SIM for each loop at the clustering-
sampling stage.
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TABLE 4: Classification and fairness results of LSTM-
based model on plantation mapping

Method » (24 partitionings)
e 1T | o [ o
[ Base LSTM | 0804 | 2587 | 6859 |
REG-Single 0.807 2.398 6.235
ADL-Single | 0.818 2.403 6.217
BL-Single 0.812 2.374 6.037
REG 0.824 2.262 6.161
SPAD-GD 0.827 2.143 5.370
SPAD-RND | 0.816 2.317 6.031
SPAD 0.819 2.139 5.270
[ SPAD-SIM [ 0826 [ 2140 [ 5404 |

6.2 Palm Qil Plantation Mapping Dataset

DNN-based model performance: In our evaluation of
palm oil plantation mapping, we conduct the same tests
on the dataset and observe consistent results. We perform
a comparative analysis of model performance and fair-

ness across partitionings obtained by SPAD, SPAD-
SIM, and other baseline methods. Note that there is no
distinction between weighted and unweighted Fl-scores
in the context of binary classification.

Table 3 presents the overall performance (global F1-
scores), the sum of mean absolute distance mean
and the sum of maximum absolute distance max

for the set of partitionings . We can see that SPAD
maintains the same level of overall/global classification
performance as the base DNN, which does not have
any fairness consideration. Meanwhile, SPAD achieves
significant reductions in both the sums of mean and max-
imum absolute distances across all partitionings com-
pared to other baseline methods. These results confirm
the effectiveness of SPAD in promoting fairness without
compromising classification performance. Additionally,
the fairness gap between BL-SINGLE, solely trained with
partitioning (4, 1), and SPAD is smaller than that in
the California crop mapping dataset. This is because the
palm oil plantations in this dataset are relatively ho-
mogeneous over space and thus improving the fairness
on certain partitioning could easily promote the fairness
over other partitionings.

Then, we verify the effectiveness of SPAD-SIM. Same
as the experiments conducted on the California crop
mapping dataset, we evaluate the classification perfor-
mance and training time consumption of SPAD and

SPAD-SIM for partitionings under different sizes
of training samples. This evaluation is twofold: Fig. 16
presents a comprehensive comparison of fairness and
training time across all 50 loops, whereas Fig. 17 focuses
on the comparison at the first achievement of good
performance during the training process. It can be seen
that SPAD-SIM still achieves shorter times for model
training compared to the method SPAD while preserving
the overall prediction performance and fairness.

Finally, we also evaluate the fairness performance and

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 17:41:42 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3371460

S‘,s,"sz the first achievement of good performance
8000

S,é,'é: the first achievement of good performance

15

S,é,'é: the first achievement of good performance

20000 40000
SPAD SPAD SPAD
W. F1: 0.568
6000 SPAD-SIM CFa 150001 SPAD-SIM VFE9T 30000 SPAD-SIM S 338
E /\\I\U\\ @ PN @ seal-F1: 0579
S(d)mean: 0.65 (d)mean: 1.848 d)
g 4000 W. F1: 0.566 g 100001 W.F1:0.5 g 20000 W.F1:0
.= W.FL: 0564 S (@mean: 0.661 W] (,\ 3 R=} S()mean: 1.8 it W. F1: 0.575 =] WL 0,570 S(d 8
= S(d)mean 0874 §(d)mean: 0633 = g ,“ i 93¢ oy S@meant 1.799 = S(d) 3.864
2000{ S 0553 5000-‘“” i 1566 St 1313 10000 w057 sl P93
W. Fl: 0.56 W.F1: 0.570 >\%)mean *W.F1:0.575 5(q) 313 S(d)mean’ 3.82 T F1: 0573
W.F1: 0.566 5 (@mean 0.680 S@Dmean: 1.8 WFL:0.574 S(@mean: 3.895 : B S(@)moun: 3.780
0 I5(d) mean: 0.688 ) . ) 0 S(d) prean: 1.826 0
20% 35% 50% 65% 20% 3% 50% 65% 20% 35% 50% 65%
(a) (b) ()
S},b' 10, the first achievement of good performance S,‘,i 12; the first achievement of good performance
40000 40000]
SPAD SPAD
30000 SPAD-SIM — 30000 SPAD-SIM
E “W.F1: 0.5 @ W 0571 Timeout . “‘\\ F1:0.575 |
() 20000 S(d) 6. MA [} 20000\ d
E W.F1:0.570 .g
= S(d)mean: 6.703 W.F1:0.577 = T .
S(d 6.65' 1: 0.5
10000 e W.F1:05 10000 s(d 10.431
S(d)mea ' W.F1:0.574
i W.F1:0.575  s(d 0.468
WSS WFI:0574 5(d 0.438 :
d) S(d)mean: 6.753
20% 35% 50% 65% 20% 35% 50% 65%

(d)

(e)

Fig. 15: Fairness and training time comparison on crop mapping between SPAD and SPAD-SIM under different sizes
of training samples and different sets of partitionings at the first achievement of good performance.
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Fig. 16: Fairness and training time comparison on plan-
tation mapping between SPAD and SPAD-SIM under
different sizes of training samples across all 50 loops.
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Fig. 17: Fairness and training time comparison on planta-
tion mapping between SPAD and SPAD-SIM under dif-
ferent sizes of training samples at the first achievement
of good performance.
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Fig. 18: Fairness and training time comparison on plan-
tation mapping by SPAD-SIM with different loops at the
initial stage.

training time by varying the number of loops for the
initial stage, as presented in Fig. 18. It shows that SPAD-
SIM under our setting (m = 5) is capable of generating an
unbiased similarity matrix and producing a good fairness
result.

LSTM-based model performance: In addition to evalu-
ating our method with the DNN-base model, we conduct
experiments using LSTM as the base model to assess the
generalizability of our approach across different network
architectures. The results are presented in Table 4 and
depicted in Fig. 19, 20 and 21. We can see that the F1
performance of LSTM is generally better than DNN as
LSTM is more likely to capture palm oil plantations from
a series of data. Despite the architectural differences,
the comparison of classification performance and fairness
exhibits consistent patterns as observed in the previous
experiments using DNN as the base model. Additionally,
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Fig. 19: Fairness and training time comparisc
tation mapping between SPAD and SPAD-!
different sizes of training samples across all 50 loops.
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Fig. 20: Fairness and training time comparison on planta-
tion mapping between SPAD and SPAD-SIM under dif-
ferent sizes of training samples at the first achievement
of good performance.
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Fig. 21: Fairness and training time comparison on plan-
tation mapping by SPAD-SIM with different loops at the
initial stage.
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Fig. 22: The absolute difference between the obtained F1-
scores over different partitions and the average Fl-score
for plantation mapping.

integrating the HDBSCAN clustering algorithm still im-
proves the computational efficiency and reduces training
time with the LSTM architecture. Finally, Fig. 22 shows
an example result of the impact of SPAD on fairness for
a sampled partitioning with six partitions, where SPAD
demonstrates its ability to rectify disparities in F1-scores
across different partitions.

7 CONCLUSION

Understanding and controlling location-related bias is
critical for fair resource distribution in many societal do-
mains, including agriculture, disaster management, etc.
We proposed a new formulation of spatial-fairness-aware
learning using the SPAD representation, which addresses
statistical sensitivities in fairness evaluation caused by
MAUP. We also proposed SPAD-based stochastic and
bi-level training strategies to enforce spatial fairness in
learning. Finally, we integrated a clustering algorithm to
improve the computational efficiency of the proposed
approach. Experiments on real-world agriculture mon-
itoring data confirmed that the proposed approach is
effective in improving spatial fairness while maintaining
a similar level of overall performance. Also, it is shown
that the integration of the clustering-based sampling
algorithm can greatly reduce the time for model train-
ing without compromising the overall performance and
fairness.

Our future work will expand the types of distributions
and partitionings used in SPAD beyond the examples
of uniform distribution and grid-based partitionings. We
will also extend the method to cover a larger variety of
spatial data types.
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