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ABSTRACT: Herein, we disclose an approach to synthesize tert-
alkyl cyclopropanes by leveraging C—F bond functionalization of
gem-difluorocyclopropenes using tris(pentafluorophenyl)borane
catalysis. The reaction proceeds through the intermediacy of a
fluorocyclopropenium ion, which was confirmed by the isolation of
[Ph,(C¢Ds)Cs]*[(C¢Fs);BF]™. We found that silylketene acetal
nucleophiles were optimal reaction partners with fluorocyclopro-
penium ion intermediates yielding fully substituted cyclopropenes
functionalized with two a-tert-alkyl centers (63—93% yield). The
regioselectivity of the addition to cyclopropenium ions is
controlled by their steric and electronic properties and enables
access to 3,3-bis(difluoromethyl)cyclopropenes in short order. The
resulting cyclopropene products are readily reduced to the
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corresponding orphaned cyclopropanes under hydrogenation conditions. Quantum chemical calculations reveal the nature of the
C—F bond cleavage steps and provide evidence for catalysis by boron and not silylated oxonium ions, though Si—F bond formation

is the enthalpic driving force for the reaction.

B INTRODUCTION

Cyclopropanes are a class of carbocycles often employed in
drug development because of their unique physical properties.
The geometry, strain, and bonding modes of this motif impart
higher metabolic stabilities, binding affinities, and lipophilicity
in vivo relative to acyclic analogues." The success of
cyclopropane-containing drugs is best exemplified by antiviral
molecules such as beclabuvir,” lenacapavir,3 and nirmatrelvir,”*
compounds used to treat HCV-1, HIV-1, and SARS-CoV-2,
respectively.

Oxidation of cyclopropylmethyl (CM) groups is a metabolic
process that clears drugs from cells.” Thus, methods to obtain
cyclopropanes containing functionality that blocks oxidation at
the CM position (e.g, by the incorporation of quaternary
carbons or fluorine atoms) would be welcomed in drug
discovery (Figure 1). These tert-alkylcyclopropanes® and
fluorinated cyclopropanes are largely unobtainable using
common cyclopropanation methods’ like Simmons—Smith
reactions® or metal-catalyzed diazo decomposition’ due to the
steric bulk and unwanted side reactivity of metal carbenoids."’
Additionally, direct functionalization reactions of the CM
groups often result in rapid ring opening via cationic, radical,
and transition-metal-mediated processes,’’ making this dis-
connection unviable. Thus, they have been “orphaned” or left
behind by traditional cyclopropanation methodologies.

© 2023 American Chemical Society

WACS Publications

17389

As a part of a research program aimed at developing routes
to the synthesis of “orphaned” cyclopropanes,'” we sought to
develop a new substitution reaction of cyclopropenes as a
strategy to obtain highly congested tert-alkylcyclopropane
carbocycles. gem-Difluorocyclopropenes have emerged as
attractive candidates for the proPosed substitution reaction
because of their ease of synthesis, * well-documented physical
properties,"* and reactivity.'> We hypothesized that catalytic
C—F bond functionalization of difluorocyclopropenes could be
achieved based on studies conducted by Sargeant, West, and
Smart, which demonstrated that fluorocyclopropenium ions
are readily obtained from tetrafluorocyclopropenes by fluoride
ion abstraction using SbFs or BF,;-OEt,.'® Furthermore,
Breslow and co-workers reported the addition of Grignard
reagents to cyclopropenium perchlorates,'” thus demonstrating
the feasibility of C—C bond-forming reactions from cyclo-
propenium ion intermediates.'® The successful orchestration of
these elementary steps (i.e, C—F bond cleavage and C—C
bond formation) would result in a net substitution reaction
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A. Cyclopropylmethyl groups are oxidized to hydroxycyclopropane metabolites
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Figure 1. (A) Oxidation at the CM position results in hydroxylated
cyclopropane metabolite. Proposed strategy to block oxidation with
quaternary carbons or fluorination. (B) Seminal reports in
fluorocyclopropenium ion generation and cyclopropenium ion
reactivity. (C) Proposed reaction for this study.
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analogous to those published by Corey and Posner'” on
dibromocyclopropane derivatives. The proposed C—F bond
functionalization of difluorocyclopropenes stands in direct
contrast to carbometallation”® and hydrogenation®' reactions
of cyclopropenes, which functionalize the C—C double bond of
cyclopropenes by virtue of strain, and provides an avenue to
overcome deleterious ring-opening reactions of the highly
reactive intermediates formed in such reactions.

B RESULTS AND DISCUSSION

We began these studies by testing the ability of electron-
deficient boranes™ to activate the C—F bonds of difluor-
ocyclopropenes because of their high Lew15 acidity”** and
their established fluoride ion affinities.”> In addition, several
reports have demonstrated the ability of boranes to cleave C—
F bonds in fluoroalkanes.”*™** Upon combining stoichiometric
amounts of cyclopropene 1 (1.0 equiv) and B(C4Fs); (1.0
equiv) in CgDg (0.7 mL), white needles spontaneously
crystallized from the solution over 2 h. X-ray crystallographic

analysis of a single crystal of this solid revealed it to be ds-
triphenylcyclopropenium  tris(pentafluorophenyl)fluoroborate
([Ph,(CeDs)C3]*[(C4Fs)3BF]™, 3) (45% isolated yield)
(Scheme 1).** Presumably, the salt arose from a Friedel—
Crafts addition of C¢Dg to fluorodiphenylcyclopropenium ion
(4) generated in situ and then a second C—F bond
functionalization from intermediate 6. This exciting discovery
not only demonstrates that B(C4F;); was capable of
abstracting fluoride from difluorocyclopropenes but also that
highly electrophilic cyclopropenium ions were sufficiently
electrophilic to undergo reactions even with weak nucleophiles.

With this insight, we hypothesized that more nucleophilic
olefins would also readily add to fluorocyclopropenium ions.
Silyl ketene acetals emerged as intriguing reactants because
they are more nucleophilic toward cations than arenes.*’
Moreover, the formation of Me;Si—F would provide not only
an enthalpic driving force for the reaction but also a means to
turn over the triarylborane catalyst. When 3,3-difluoro-1,2-
diphenylcyclopropene (1) was reacted with silyl ketene acetal
7 (2.2 equiv) and 15 mol % of B(C4Fs); (Table 1, entry 1), we
observed nearly full conversion (95% yield) to double
alkylation product 8a by 'H NMR. A brief catalyst screen
revealed that many other boranes promoted the reaction. For
example, BF;-OEt, produced product 8a in an 87% yield.
Triphenylborane (2b) produced no product at room temper-
ature; however, heating for 16 h at 50 °C afforded a 72% yield
of product 8a. Other electron-deficient boranes 2c, 2d, and 2e
produced 8a in 76, 91, and 87% yields, respectively. The
fluorophilic tri(9-anthry1borane)36 (2f) was ineffective in this
reaction at 23 °C (Table 1, entry 8). Other Lewis acids such as
TiCl, and AICl; gave products in 72 and 92% yields,
respectively (Table 1, entries 9 and 10). Trityl tetrakis-
(pentafluorophenyl)borate gave 8a in an 81% yield (Table 1,
entry 11). Interestingly, trimethylsilyl trifluoromethanesulfo-
nate was ineffective, only producing 8a in a 6% yield.””

A variety of disubstituted gem-difluorocyclopropenes readily
undergo double alkylation reactions with silyl ketene acetal 7
(Figure 2). Symmetrical diaryl substrates la—1d gave the
corresponding cyclopropene products 8a—8d bearing two
quaternary carbon centers a to the cyclopropene in good to
excellent yields. When the reaction using 8a was conducted on
a 1.00 mmol scale, the product was obtained in 75% isolated
yield. Unsymmetrical diaryl substrates, such as 1e and 1f, also
worked well in the reaction, providing the double alkylation
products as a mixture of vicinal addition regioisomers. We

Scheme 1. Stoichiometric Reaction of B(C¢F;); and 3,3-Difluoro-1,2-diphenylcyclopropene in C¢D4 Forms
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Tablell. El.fecF of the C‘ataLyst on the C—F Bond F OSiMe;  B(CeFs);
Functionalization Reaction 5 Mew (15 mol%)
F R® + OEt
F Me, Me 1,2-DCE,
OSiMe o Ph R' Me 23°C,2h
0,
. & Ph+ Me\)\oa catalyst (15 mol%) . E 1a1j 7
o 1,2-DCE E (1.0 equiv) (2.2 equiv)
Me o “
23°C,1h v e
1 7 (2.2 equiv) 8a
Entry catalyst H NMR yield 8
1 B(CeFs)3 95%
2 none 0%
3 BF3OEt, 87%
4 BPh; (2b) 72%:2
5 2c 76%
6 2d 91%
7 2e 87%
8 B(9-anthyrl); (2f) 0%
9 TiCly 72%
10 AICI, 92%
1" [Ph3Cl*[BArF ] 81%
12 Me3SIOTf 6%

BAr; catalysts. Ar =
H F
H CF3 F F ‘
H H F F O
H CF3 F F O
2b 2c 2d 2e 2f

“E = CO,Et. Yields determined using 1.0 equiv of mesitylene as an
internal standard. Standard conditions use 0.15 mmol of compound 1.
?16 h at 50 °C.

noted that the regioselectivity of the addition to the
trisubstituted cyclopropenium ions was influenced by their
steric and electronic environment. For example, upon cooling
the reaction to —25 °C, product 8e was isolated in an 85%
yield as a 3.8:1 mixture of regioisomers, favoring the isomer
shown. For the push—pull diaryl substrate 1f, compound 8f
was produced as the major product by addition of the
nucleophile next to the more electron-deficient p-cyanophenyl
ring (9.2:1 rr) when conducted at 0 °C. Regioselectivity could
be increased by further differentiating the substituents on the
gem-difluorocyclopropenes. Cyclopropene 1g, bearing an n-
butyl group, afforded the double alkylation product 8g in 80%
yield as an 8.4:1 mixture of regioisomers at —25 °C, which can
be rationalized by a steric effect. Remarkably, cyclopropene 8i
was isolated as a 15:1 mixture of regioisomers in 81% yield.
Vicinal double alkylation was exclusively observed in all cases.
Presumably, this is due to the phenyl ring being sterically
smaller than a tetrasubstituted carbon atom. Finally, when
cyclopropene 1j bearing a benzoate group was tested, the ring-
expanded cyclobutene product 9 was isolated in a 51% yield.”

Next, we tested the performance of different silylated
nucleophiles on the outcome of the reaction. We synthesized
different silyl ketene acetals, silyl enol ethers, and silyl ketene
amides bearing different a-substituents to understand the effect
of the structure of the nucleophile on the course of the
reaction. Using SiEty- and Si(t-Bu)Me,-protected ketene
acetals gave 8a in 82 and 85% 'H NMR yields, respectively,
so the size of the Si group had little effect on the reaction. Silyl
ketene amide 10a and silyl ketene acetal 10b, each bearing two
terminal alkyl groups, gave exclusively the unsymmetrical
double addition products vic-11a and vic-11b in 64 and 93%
isolated yields, respectively (Figure 3). Allylsilanes were poor
reaction partners in this reaction, affording gem-11c resulting

g 8i
80%, (8.4:1 rr)P 87% 81%, (15:1rr)
(CeF5)3B
Me  Me
» EtO,C CO,Et
—_— Me
via cation then PH OBz Me

benzoate addition

9d

8j (rearranges with Lewis acid) 51% isolated yield

Figure 2. Reaction of silyl ketene acetal 7 with disubstituted gem-
difluorocyclopropenes (150 umol). Regioisomeric ratio based on
crude "H NMR yields of products using 1.0 equiv of mesitylene as an
internal standard. Major regioisomers drawn. *Repeated for
comparison purposes on a 1.00 mmol scale. "Reaction performed at
—25 °C. “Reaction performed at 0 °C. Reaction performed at —25
°C for 2 h, then warmed to room temperature.

from geminal addition in ~8% yield by '"H NMR spectroscopic
analysis; however, when allyltributylstannane was used as a
nucleophile, we isolated compound gem-11c in an 88% yield.
To our surprise, when 2-trimethylsiloxyfuran was used as a
reaction partner, the gem-dialkylated cyclopropene regioisomer
(gem-11d) was formed as a 1:1 mixture of diastereomers (C,/
meso) in a 79% isolated yield. This observation was confirmed
by isolation and X-ray crystallographic analysis of a single
crystal of the C,-symmetric diastereomer (Figure 3).
Apparently, the small size of the butenolide group promotes
geminal addition. With these results, we suspected that a,a-
difluoro silyl enol ethers may also result in 1,1-addition
product because of the small size and inductively withdrawing
nature of the resulting difluoromethylene groups. Indeed, gem-
difluoromethylenecyclopropene products gem-1le, gem-11f,
and gem-11g were isolated as single regioisomers in 63, 71, and
77% vyields, respectively (>20:1 selectivity) (Figure 3). The
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Figure 3. Alkylation of cyclopropenium ions with a variety of silyl-
containing nucleophiles. “Diastereomeric and regioisomeric ratio
based on crude 'H NMR yields of products using 1.0 equiv of
mesitylene as internal standard. Starred carbon indicates an epimeric
carbon atom.
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connectivity of these compounds was easily established by '
NMR analysis, which showed a sharp singlet at § = —92.3 ppm
for compound gem-11e.

We next turned our attention to functional group
manipulations of the cyclopropene products to obtain
orphaned cyclopropanes (Figure 4). Reduction of compound
gem-11c using 10% Pd/C and H, (balloon) afforded cis-1,2-
diphenyl-3,3-dipropylcyclopropane (12) in an 88% isolated
yield. Reduction of 8a proceeded to completion over 2 days,
affording 13 as a single diastereomer in a 72% isolated yield.
Similarly, the more sterically encumbered cyclopropene vic-
11b provided the corresponding product 14 in a 60% isolated
yield. X-ray crystallographic and ('H,'H)-NOESY data
confirmed that the hydrogenation of the cyclopropene
compounds occurred from the least sterically encumbered
face of the double bond, resulting in cyclopropane products
containing two cis-tert-alkyl groups. Sequential reductions of

Reductions (H, (balloon), 10% Pd/C, MeOH)

Me H Ph

H Ph
H H Me,, H H
Me_,,l/ e W
e gt " E PP e e ETPh g
12 13; E = CO,Et 14; E' = CO,Me
88% 72% 60%
(15 min) (48 h) (48 h)

Stepwise reduction of compound gem-11e to fluorinated pyran 15

phoc-F )
1. NaBH, (68% yield)
PhOC Ph
2. Et;SiH/TFA (45% yield)
F E 3. H, (balloon)
Ph 10% Pd/C (48% yield)
gem-11e 15

Figure 4. Reduction of cyclopropene substrates to the corresponding
orphaned tert-alkylcyclopropanes. Reaction times for hydrogenation
given in parentheses.

fluorinated compound gem-11e proceeded smoothly to afford
the fluorinated spirocyclic pyran product 15 over three steps.

Our proposed mechanism for the transformation is depicted
in Scheme 2. In this mechanism, B(C4Fs); reacts with

Scheme 2. Proposed Mechanism to Obtain fert-
Alkylcyclopropanes

Part I. First Addition

F

Ph Ph
(CeF5)sB—F
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difluorocyclopropene 1 to afford fluorocyclopropenium ion
intermediate 4. Intermediate 4, which is stabilized by
aromaticity, is also likely stabilized by resonance with the F
atom lone pairs because of the overlap of the C 2p and F 2p
orbitals Such effects have been documented in fluorinated
cations.”” Next, the nucleophilic silyl ketene acetal 7 reacts
with 4 to form a resonance-stabilized oxocarbenium ion 16.
Upon reaction with tris(pentafluorophenyl)fluoroborate, the
oxocarbenium ion is desilylated producing Me;Si—F irrever-
sibly and regenerating B(C¢F;);. The resulting 3-alkyl-3-
fluorodiphenylcyclopropene product (17) contains a C—F
bond that is expected to be more reactive than the C—F bond
in the difluorocyclopropene starting material since alkyl groups
are electron-donating through hyperconjugation. Thus, a
second F atom is readily abstracted producing C-substituted
cyclopropenium jon 18. The resulting cation undergoes a
reaction with a second equivalent of nucleophile 7 and
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desilylation with the borane catalyst to afford the cyclopropene
products.

The ease of the second C—F bond abstraction with
B(C4F;s); en route to 8a was apparent during these studies
since we were unable to isolate monofluorinated products like
compound 17 under a variety of conditions. For example, we
lowered the reaction temperature to —78 °C and observed the
exclusive formation of 8a. Therefore, we turned to C—H bond
activation of cyclopropene®® 37 as a potential method to
obtain mono-addition products. When 1,2-diphenylcyclopro-
pene was subjected to the optimized reaction conditions, the
incorporation of one equivalent of nucleophile was observed
and product 38 was isolated in 43% yield (50% based on
recovered starting material) (eq 1). This result can be

Me
. : _Me
H OSiMe; B(CgFs)3 EtO,C
(15 mol%) Eq. 1
H)VPh + Me\%\oa —_— H ph O
1,2-DCE,
Ph Me 23°C,2h Ph
37 7 38
(1.0 equiv) (2.2 equiv) 43% yield
(50% brsm)

rationalized by steric interactions between B(C4Fs); and 38
encountered during a later and more product-like transition
structure for the C—H bond abstraction step. Although the
cyclopropene C—H bond in 38 is weaker than those in 37,
there is a higher kinetic barrier for the C—H abstraction step
with 38.

To probe the plausibility of this mechanism, we turned to
DEFT calculations. Specifically, we sought to better understand

the nature of the defluorination steps (i.e, 1 = 4 and 17 —
18) since these steps could also conceivably be mediated by
Lewis-base-stabilized silyl cations (Figure 5).*' Using the
©B97X-D/ma-TZVP//SMD(DCE)-wB97X-D/def2-SV(P)
level of theory with the Gaussian 16 C.01 suite of programs,*”
transition structures for key steps were thoroughly examined
via constrained conformational searches using the iMTD-GC
protocol with CREST using ALPB(CH,Cl,)-GFN2-xTB
(parameters for DCE not available), followed by full DFT
relaxation; quasi-harmonic thermochemical corrections were
calculated using the GoodVibes package, and molecular
geometries were rendered using Cylview 1.0b.*> NICS(1),,
values were calculated using mPW1PW91/6-311++G(d,p)//
SMD(DCE)-wB97X-D/def2-SV(P),**** and second-order
perturbation theory analysis of the Fock matrix in the NBO
basis was performed with SMD(DCE)-wB97X-D/def2-SV(P)
using the NBO 7.0 package and Gaussianl6.**

The predicted energetically preferred mechanism proceeds
as follows (Figure S): complexation of B(C¢Fs); and 1 first
leads to reactant complex IMO. Subsequent fluoride transfer
from 1 to B(C4F;); through TS1 (AG* = 15 kcal/mol relative
to 1 and B(C.F;);) produces the fluorocyclopropenium
fluoroborate ion pair IM1. Second-order perturbation analysis
indicated a strong F(Ip) — C(cyclopropenium*) interaction
stabilizing the fluorocyclopropenium cation intermediate in
IM1 (see the Supporting Information for details). Alkylation of
IM1 with 7 is facile (8 kcal/mol barrier via TS2) and
exceptionally exergonic (by 23 kcal/mol), forming IM3, an O-
silylated carboxonium triarylfluoroborate ion pair.*® Migration
of the [(C4F;);BF]™ counter anion to the backside of the

B(CeFs)s

RoF FF
X, X o
(CeFs)sB—F

OSiMe,

Me~
OMe

Ph
S}
(CeFs5)sB—F

Relative Free Energy (kcal/mol)

PH’

B(CgFs)s

IM4

Ph
Me0,C OMe
N
Pl 5 0

h % i
Me Meg SiMes

337
o M8

OSiM
e F—B(CeFs)s

Me~
OMe

Me
Me CO,Me  OSiMe;
Me =
\H\OMe
h pn Me
(CeFs)sB—F
M7

M8
SiMesF +B(CgFs)3

)
(CeFs)sB—F
18
IM6

Figure 5. Computed energy profile for the reaction of 1 and 7 catalyzed by 2a at the ®B97X-D/ma-TZVP//SMD(DCE)-wB97X-D/def2-SV(P)
level. Relative free energies are shown in kcal/mol, and selected distances in optimized transition structures are shown in A. Et groups in 7 were
modeled as Me groups for simplicity. Color code: C, gray; H, white; F, green; O, red; and Si, beige.

17393

https://doi.org/10.1021/jacs.3c05278
J. Am. Chem. Soc. 2023, 145, 17389—17397


https://pubs.acs.org/doi/suppl/10.1021/jacs.3c05278/suppl_file/ja3c05278_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c05278?fig=eq1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c05278?fig=eq1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c05278?fig=eq1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c05278?fig=eq1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c05278?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c05278?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c05278?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c05278?fig=fig5&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c05278?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

pubs.acs.org/JACS

silicon in IM3 (not explicitly modeled here) allows for rapid
desilylation by fluoride transfer from [(CFs);BF]™ to the
silylated oxonium ion through TS3, forming IM4 and Me;SiF,
and regenerating B(CgFs); (AGT = 6 kcal/mol, AG = —19
kcal/mol). Other desilylation possibilities such as intermo-
lecular fluorine transfer from another molecule of 1 to form 4
and IM4 (AG¥ = 16 kcal/mol) and intramolecular desilylation
through fluorine transfer from the cyclopropene motif with a
six-membered transition structure to form IM6 and Me,SiF
(AG* = 14 kcal/mol) were also considered (see the
Supporting Information for details). While these pathways
are also kinetically feasible, they are found to be less favorable
compared to that via TS3. Defluorination of IM4 with
B(C4Fs); via TS4 was predicted to be even more facile than
that of 1 and irreversible (AG¥ = 11 kcal/mol, AG = —20 kcal/
mol), leading to ion pair IM6. Interestingly, TS4 contains an
elongated B—F bond length (2.42 A), consistent with a very
early transition structure for the second fluorine transfer. We
believe this early transition structure is reflective of the lability
of the C—F bond in intermediates like 17. Moreover,
comparing the NICS(1),, of the isolated alkylated cyclo-
propenium cation (—15.7 ppm) from IM6 and fluorocyclo-
propenium cation (IM1 without counter anion, —10.7 ppm)
indicated stronger aromaticity of IM6. The addition of 7 to
IM6 is predicted to proceed through TS5 (AG¥ = 18 keal/mol
from IM6, see the Supporting Information for further
discussion on selectivity). Subsequent desilylation in the
same fashion as TS3 through TS6 afforded the final product
with only a small barrier (AG* = 3 kcal/mol). This process
also provided a strong thermodynamic driving force, since it is
exergonic by 18 kcal/mol.

In conclusion, we have reported the first example of catalytic
C—F bond functionalization of difluorocyclopropenes using
B(C4Fs); to form C—C bonds.”” The reaction leverages both
the stability of aromatic cyclopropenium ions and their
reactivity toward silylketene acetals. Our reaction provides
fluorinated cyclopropenes and, ultimately, saturated cyclo-
propanes, which are currently difficult to obtain by traditional
methods and would be useful in medicinal chemistry
campaigns. We have studied the mechanism of this reaction
using quantum chemical calculations, which revealed that the
kinetically facile C—F bond abstraction steps are likely
mediated by B(C4F;); and are aided by the formation of
aromatic intermediates. Our future directions are aimed at
studying the kinetics of this reaction and extending the scope
of nucleophiles to enable the synthesis of other orphaned
cyclopropanes.
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see: Wang, T,; Chen, J; Shi, Y. S; Liu, X. X; Guo, L; Wu, Y.
Synthesis of Functional Carbocycles and Heterocycles via Transition-
Metal-Catalyzed Annulation or Homocoupling of Difluorocyclopro-
penes. Tetrahedron Lett. 2022, 99, 153845.
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age 17393 and Section VIII of the Supporting

Information: The solvation model used to calculate the
values in Figure 5 and the Supporting Information was
reported incorrectly. The IEF-PCM solvation model' was used
throughout the study and not the SMD model” as originally
reported. This error does not affect the conclusions drawn in
the computational section. We apologize for the error.

1. Article Page 17393: The corrected article text should
read: Using the wB97X-D/ma-TZVP//IEE-PCM-
(DCE)-wB97X-D/def2-SV(P) level of theory with the
Gaussian16 C.01 suite of programs,** transition
structures for key steps were thoroughly examined via
constrained conformational searches using the iMTD-
GC protocol with CREST using ALPB(CH,Cl,)-GFN2-
xTB (parameters for DCE not available), followed by
full DFT relaxation; quasi-harmonic thermochemical
corrections were calculated using the GoodVibes package,
and molecular geometries were rendered using Cylview
1.0b.¥ NICS(1),, values were calculated using
mPWI1PW91/6-311++G(d,p)//IEF-PCM(DCE)-
®B97X-D/def2-SV(P),** and second-order perturba-
tion theory analysis of the Fock matrix in the NBO basis
were performed with I[EF-PCM(DCE)-wB97X-D/def2-
SV(P) using the NBO 7.0 package and Gaussianl6.**

2. Article Page 17393: The corrected Figure S caption
should read: Computed energy profile for the reaction of
1 and 7 catalyzed by 2a at the ®B97X-D/ma-TZVP//
[EF-PCM(DCE)-wB97X-D/def2-SV(P) level. Relative
free energies are shown in kcal/mol, and selected
distances in optimized transition structures are shown in
A. Bt groups in 7 were modeled as Me groups for
simplicity. Color code: C, gray; H, white; F, green; O,
red; Si, beige.

3. Reference 42c should read: Cances, E.; Mennucci, B,;
Tomasi, B. A new integral equation formalism for the
polarizable continuum model: Theoretical background
and applications to isotropic and anisotropic dielectrics.
J. Chem. Phys. 1997, 107, 3032—3041.

The revised Supporting Information includes the following
changes:

1. Page S57: Solvation effects were considered by the IEF-
PCM solvation model in dichloroethane.*® The final free

© 2023 American Chemical Society

7 ACS Publications

energy is evaluated according to the following equation:
Gﬁna.l = Gcorr + Esolv,low - Egas,low + Egas,high} where Gcorr is
the free energies correction with IEF-PCM(DCE)-
wB97X-D/def2-SV(P) level of theory, + E 0w —
Eglow is the solvation free energy obtained from
difference of gas phase and solution phase electronic
energies at @B97X-D/def2-SV(P) level of theory, and
Egyohigh i the gas phase single point electronic energy at
@wB97X-D/ma-TZVP level of theory.

2. Page SS8 2. Table S14: Electronic energies and free
energy corrections (in Hartrees) calculated at @wB97X-
D/ma-TZVP//IEE-PCM(DCE)-wB97X-D/def2-SV(P)
level of theory.

3. Page S61: NICS(1)zz values were calculated using
mPW1PW91/6-311++G(d,p)//IEF-PCM(DCE)-
®B97X-D/def2-SV(P) level of theory.

4. Page S65: Table S185. Electronic energies and free energy
corrections (in Hartrees) calculated at wB97X-D/ma-
TZVP//IEF-PCM(DCE)-wB97X-D/def2-SV(P) level
of theory.

S. Reference 30: Cances, E.; Mennucci, B.; Tomasi, B. A
new integral equation formalism for the polarizable
continuum model: Theoretical background and applica-
tions to isotropic and anisotropic dielectrics. . Chem.
Phys. 1997, 107, 3032—3041.

A revised Supporting Information file has been included to
reflect these changes:
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