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Overcoming the Boundaries of History: Extracting Land Use and
Land Cover Features from Archival Maps of Northern Burkina Faso

Using GIS Software
Alfredo J. Rojas, Jr.

, Colin Thor West, Philip McDaniel, Julia Longo (@),

Vishnu Ramachandran, Natalie R. Gauger, and Aaron Moody

University of North Carolina at Chapel Hill, USA

Archival maps provide a valuable way to explore historical environmental data collected before the use of satellite imagery.
Archival maps in their physical form cannot readily be used, however, beyond what the original cartographer intended. In
this project, we describe a manual method to bring scanned archival maps into digital form using common tools in a geo-
graphic information systems (GIS) software platform. We rely on the important context of West Africa where a generation
of geographers as part of the Terroir school worked with local agrarian communities to understand land use and land cover
(LULC) dynamics. Specifically, we analyze archival maps of the Yatenga Province in Burkina Faso originally created by
Jean-Yves Marchal, who used aerial photography from 1952 and 1973. This article describes the image processing steps to
extract LULC data from scanned archival images using the graphical user interface of popular GIS tools. We compare our
results to Marchal’s original maps and provide an alternative analysis of LULC change in the region using the newly
extracted LULC data. Key Words: archival maps, Burkina Faso, image processing, LULC, Terroir school.

istorical maps can show patterns of environ-

mental change over time. As visual tools, hard-
copy maps can quickly and efficiently convey spatial
information about agricultural expansion, forest con-
version, or other types of land use and land cover
(LULC) transitions. Analysis of hard-copy maps is
difficult, however, because users are limited by the
fixed nature of physical sheets of paper, and it is
challenging to do much more than the original car-
tographer intended. In the era of satellite imagery, it
is possible to analyze LULC change using space-
based imagery, which is widely available for most of
the planet. Prior to the 1970s, though, hand-drawn
maps were used to depict land cover, land use, and
land change. The historical record of remotely
sensed imagery is limited, irregular, and contingent
on the interests of historical actors in specific places.
Additionally, before the computational power to
analyze such imagery existed, categorizing LULC
features on an image was performed manually using
aerial photography. Today, historians, archaeolo-
gists, and other humanistic researchers are increas-
ingly interested in using geographic information
systems (GIS) to analyze historical information com-
bining social and demographic information with
spatial data (Gregory and Healey 2007; Knowles
2008; Schuppert and Dix 2009). If we wish to ana-
lyze these deeper historical data, we need to bring
them into digital form.

Digitally analyzing archival maps poses unique
challenges depending on how the maps were origi-
nally created, and researchers have approached these
challenges in various ways. Previous scholars have
explored long-term LULC change by meticulously

digitizing features on historical maps, thereby creat-
ing a new data set based on an archival reference
(Petit and Lambin 2002). This approach is successful
but can be time consuming depending on how many
historical maps are of interest. Advances in com-
puter vision and image segmentation methods have
made automatically extracting features from histori-
cal maps possible (Leyk and Boesch 2010; Chiang,
Leyk, and Knoblock 2013). For example, Maxwell
et al. (2020) relied on deep learning semantic seg-
mentation methods to extract mining disturbance
patterns from historic topographic maps of
Appalachia in the eastern United States. They train
a deep learning algorithm to predict whether a pixel
belongs to a mine disturbance class or not. This
approach, however, requires knowledge of special-
ized computational techniques that could act as a
barrier for non-GIS and non-remote sensing
specialists.

We aim to provide a different approach using
built-in tools commonly available in popular GIS
software with a graphical user interface. In this pro-
ject, we demonstrate a novel method to extract
LULC from archival maps by removing lines, text,
and other features not relevant to LULC analysis.
We rely on manually created maps of LULC in
Burkina Faso, West Africa. This article presents the
steps used to convert digital archival maps into GIS
layers that enable further spatial analyses, like the
change of LULC over time, as well as certain chal-
lenges faced during the process. We aim to make
this approach replicable for those coming from dis-
ciplines in the humanities or social sciences with
interests in GIS.
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L'ESPACE RURAL DU CENTRE YATENGA

1 TATENGH (TEOLTH) 1

LE PAYSAGE EN 1973 CARTE N Ill 5

Figure 1 Original 1973 Yatenga map by J. Y. Marchal (1983).

This project uses Marchal’s (1983) influential
analysis of LULC change in the Yatenga Province of
northern Burkina Faso (Figure 1) as a starting point.
Marchal was a French geographer who studied the
impacts local farming communities had on their envi-
ronment. He tracked changes in land degradation,

rehabilitation, and land use from 1952 to 1973.
Marchal’s work has been central to understanding
historical dynamics of land use change in this region.
The study presented here expands on his work using
GIS software to perform spatial analyses that were
not possible at the time he conducted his research.



We explain the conversion of two scanned archi-
val maps into classified raster data. Next, we
describe the degree of agreement of the resulting
raster map to the original data. We end by reporting
on changes in LULC for the region of Tugu in
northern Burkina Faso.

Marchal and the Terroir School of
French Geography

The Terroir school was initiated by geographers
within the French Overseas Scientific and Technical
Research Office (ORSTOM) in the 1960s and per-
sisted into the mid-1980s. It represented a novel and
innovative approach to applied research and devel-
opment because its members established structured
and systematic fieldwork methodologies that enabled
controlled comparisons among different agrarian
systems across West Africa and Madagascar (Bassett,
Blanc-Pamard, and Boutrais 2007). Detailed maps
were a critical component of these studies, and each
research project was published as an atlas. Individual
villages were often the focus and their terroir was
constituted as the territorial limit of social and agri-
cultural activities for members of these communi-
ties. 'The Terroir school was tremendously
influential and informed development initiatives
across West Africa. In particular, these works con-
tributed to the gestion de terroir villageois (village ter-
ritory management) approach whereby donors,
governments, and nongovernmental organizations
devolved decision making, design, and implementa-
tion to individual communities as part of a larger
process of decentralization (Painter, Sumberg, and
Price 1994). Overall, ORSTOM researchers pro-
duced twenty-six case studies consisting of both
detailed descriptive text and cartographic figures
(Bassett, Blanc-Pamard, and Boutrais 2007).

The published reports included dozens or even
more than 100 maps as either in-text figures or
folded plates in an annex. These thematic maps
ranged in scale from 1:5,000 to 1:2,000,000 and
visually displayed the distribution of population den-
sity, LULC, soil types, and numerous other agrarian
characteristics. Some were produced as black-and-
white images using different types of texture. Others
were elaborate color plates. The reports themselves
are available as .pdf files for download on the
French Institute for Development Research (IRD)
Horizon Web site (https://horizon.documentation.
ird.fr/). Individual plates can also be searched and
downloaded as .pdf files from the IRD SPHAERA
cartographic database (http://sphaera.cartographie.
ird.fr/). A simple search using the keyword paysage
(or landscape) and carte (or map) returned more
than 100 .pdf files available for download from
SPHAERA. Of these, approximately thirty-five were
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maps of agrarian structures in Africa that dated from
1962 to 1995.

Marchal was a prominent geographer in the
ORSTOM Terroir school. His 1983 Yatenga Norde
Haute Volta: La Dynamique d'Un Espace Rural
Soudano-Sabelian epitomizes their approach. The
book features 842 pages of text, 106 tables, 47
black-and-white photographs, and approximately
145 maps. Some of the maps appear in the text and
most are featured in the thirty-five plates. His work
raised the alarm on desertification in the Yatenga
region of northern Burkina Faso (then Upper Volta)
and attracted development interventions to combat
it (Reij, Tappan, and Belemvire 2005). Like other
terroir  school geographers, Marchal laboriously
mapped LULC for Yatenga using matched aerial
photographs from 1952 and 1973. This resulted in
two detailed 1:75,000 landscape maps for central
Yatenga showing the spatial distribution of LULC
for the two time periods (CARTE No. IIT 4 and
CARTE No. III 5). His innovative use of aerial pho-
tography was incorporated into the participatory
methods implemented by development organizations
to promote soil and water conservation projects
throughout northern Burkina Faso in the 1980s
through 2000s (Batterbury 1998). Our goal is to
bring these archival maps back to life and present a
methodology that could be used for other zerroir and
archival maps as well.

Methods

Our goal was to transform a .jpg file of the original
scanned maps into data that could be analyzed using
GIS software (Environmental Systems Research
Institute [ESRI] 2019). This section describes the steps
used to produce a newly classified image free of text,
lines, and other data not needed for LULC analysis.

Obtaining Spatial Data from a .jpg File

First, high-quality .pdf files of the scanned maps
(from 1952 and 1973) were obtained from the IRD
SPHAERA Web site (IRD 1998, 2014; Zaiss 2014).
We then converted these maps into .jpg files. Next,
we used the Python computer vision library,
OpenCV (Version 2.4.13.2; Bradski 2000), to reduce
noise (i.e., reduce random variation in pixel values)
in the image, relying on the non-local means denois-
ing algorithm (see Appendix; Bradski 2000). This
algorithm applies windows around pixels in the
image, creating patches. For a specific pixel, it cre-
ates a window around the pixel in question, finds
similar patches in other parts of the image, averages
these patches’ values, and replaces the pixel in ques-
tion with the resulting average. This was necessary
to make features on the image as distinct and spec-
trally uniform as possible. Then, we extracted the
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Color English Description French Name Description
Name
Cultivated spaces, fallow, | Espace cultivé Culture, jachéres en terrain
Agriculture | parkland decouvert, parc
Bush showing advanced Formation arbustive et | Dégradation avancée du bush,
Eroded Soil |degradation, rangelands buissonnante éparse sur |aire de parcours du cheptel et de
with wood-cutting sol érodé coupe de bois
Previously cultivated area | Sol nu; ancienne aire A aspect damé, décapé par un
with compacted soil prone | cultivée; stade ultime de | ruissellement en nappe
Bare Soil to sheet erosion dégradation
Vegetated areas with Formation végétales en | Arborée, arbustive et
scattered trees, bushes and | bon état apparent; en buissonnante, herbacée en tapis
Vegetation grasses; exhibit incipient début de dégradation discontinue a buissons épars
degradation
Orchard Orchard or reforestation Verger Verger ou parcelle de
area reboisement
Low-lying sparsely wooded | Reprise de vegetation Formation buissonnante basse et
Re-vegetated |area éparse

Figure 2 Classes for Marchal’s 1973 map. Orchard and Re-vegetated were not featured in the 1952 map.

red (R), green (G), and blue (B) channels of the file
that, when combined, created the RGB color com-
posite image. This resulting raster file became the
base data set used as the primary input. A raster file
is any data that is represented as a matrix (or grid)
of pixels organized in rows and columns.

Next, the raster was georeferenced using ESRI’s
ArcGIS Desktop 10.7.1 software. Georeferencing
refers to “the process by which a scanned [map] is
processed into a digital raster map with geographic
coordinates defined in a contemporary geographic
reference system” (Affek 2013, 376). Georeferencing
was completed by adding four evenly dispersed
ground control points that match intersecting grati-
cule lines on the original map with their known
positions of latitude and longitude. The transforma-
tion specified was a first-order polynomial transfor-
mation. This step allowed us to give the raster a
spatial reference (using the World Geodetic System
1984 spatial reference system and geodetic datum).
The cell size of this resulting raster is 0.000059
degrees and, when projected to UTM Zone 30N,
6.4 m. To test the accuracy of our georeferencing
method, we calculated the root mean square error
by matching graticules on the source map to four
known and evenly dispersed longitude and latitude
coordinates not included in the original georeferenc-
ing task. The 1952 and 1973 maps resulted in a total
root mean square error of 0.000057 and 0.00019
decimal degrees, respectively. The georeferenced
raster was then converted to a GeoTIFF file, which
stores all coordinates so that the data could be
imported into other GIS projects and applications.

Because the original map included features such
as the legend and white background, we needed to
exclusively extract the map to the extent of the
region’s boundary. Before extraction, we digitized
the entire boundary line of Yatenga Province to cre-
ate a new polygon. This polygon feature was used to
clip (using the Extract by Mask tool) a new raster
layer containing only pixels contained within the
Yatenga boundary.

Unsupervised Classification and Reclassifying

To convert the raster data to distinct classes, such as
agriculture and degraded soil, we used an unsuper-
vised classification method. Unsupervised classifica-
tion (“Iso-Cluster Unsupervised Classification” in
ArcMap 10.7.1) assigns a user-defined number of
classes to the data based on the clustering of the
scanned values of the image. This method results in
a new image with newly classified data. It converts
the georeferenced raster to a classified raster where
each pixel features a single value, which corresponds
to its class.

For example, Marchal defined seven separate
classes in the original 1973 map (Figure 2). Because
random variation in pixel brightness values exists all
throughout the image, even after noise reduction,
the unsupervised classification technique will inevi-
tably misclassify certain pixels (Figure 3). To
account for these classification errors, we selected a
larger number of clusters, specifically twenty clus-
ters, than the number of classes desired. This
approach gives the user more flexibility to merge
misclassified pixels if they belong to the same
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Figure 3 /mpacts of “noise” in the data after performing a classification method. Note the mixing of black and green

pixels in labels and lines.

predefined class as from the original map.
Otherwise, an unsupervised classification using only
seven classes might create more incorrectly labeled
classes in incommensurable categories than the use
of twenty classes. T'o merge classes, we visually com-
pared the newly created image of twenty classes to
the original map, merging classes (using the
“Reclassify” tool) that belong to the same LULC
category, such as agriculture or bare soil. We
merged these classes to obtain the seven classes in
Marchal’s original map. We then repeated the same
process on the 1952 image.

Remove Text and Boundary Data

Because this study focuses on agricultural land use,
degradation, and rehabilitation, one challenge
entailed removing features not relevant for the
LULC analysis. Features on the map considered
unimportant for this study included village zerroir
boundaries, annotation (i.e., text such as the names
of localities), roads, and trails. Marchal represented
these features in black on the original map. After
reclassifying the map, some of the black boundary
lines and text were still incorrectly labeled, causing
a mixing of black with other pixels (Figure 3).
Thus, the next step was to remove as much of the
black boundary lines and misclassified categories
as possible.

To remove the unneeded data, we used ArcGIS’s
Nibble tool to assign text and boundary lines the
values of its nearest neighbor. This method requires
that we create a new layer and assign “No Data” to
the classes represented by the color black. We then
use this new layer and the previous raster as inputs
for the Nibble tool. For example, if a cell is “No
Data,” then Nibble will select the closest surround-
ing cells and change the “No Data” cell to the sur-
rounding cells’ value. There were still some pixels
throughout the image that were artifacts of lines and
text (see panel 3 in Figure 4). To remove these

remaining artifacts, we used the Focal Statistics tool,
which applies a filter across an image to smooth the
results, converting pixels within a filter to the class
by which they are surrounded based on certain crite-
ria (see Figure 4). The Focal Statistics tool relies on
a moving window with a specific shape to determine
the value of pixels in the image. The choice of shape
plays a role in how pixels are classified. We ran the
Focal Statistics tool three times with a majority fil-
ter, first with an annulus (inner radius = 1, outer
radius = 15) as the shape of choice and then with
annulus (inner radius = 1, outer radius = 5) again to
remove remaining line artifacts and with wedge
(radius = 3, starting angle = 0, ending angle = 45)
to help fill in “No Data” pixels resulting from the
previous two passes.' See Figure 5 for all image
processing steps using ArcMap 10.7.1.

These steps significantly reduced the artifacts of
text and boundary data in the final classified raster.
We performed this process for both maps. These fil-
ter operations created slight modifications throughout
the image, leading to the next question: How accurate
was this procedure? The following section describes
our method to test for degree of agreement.

Methods for Measuring Agreement

A common practice to assess how well a classified
map corresponds to the original data is to perform
an analysis of agreement, which compares classified
pixels to known points in the original reference data
using an error matrix (Foody 2002). Scholars have
addressed limitations of other approaches, often
called “accuracy assessment” in remote sensing stud-
ies, that use a Kappa index (Foody 2002, 2008,
2020; Pontius and Millones 2011; Comber et al.
2012). Kappa is an index of agreement between two
maps that has been used to quantify the degree to
which the agreement is greater than what could be
achieved by random chance. Scholars, however, have
criticized the formula for calculating kappa as an
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Figure 4 A breakdown of the different image processing steps.

incorrect formulation of chance correction, and thus
the results are potentially misleading (Foody 2020).
Instead, simpler measures of agreement have been put
forward. In this project, we rely on two simpler met-
rics: quantity disagreement and allocation disagree-
ment (Pontius and Millones 2011). Quantity
disagreement is the amount of difference between a
reference map and a classified map due to mismatches
between the categories. In other words, this quantifies
how many pixels were mislabeled in the classified map
compared to the reference map. Allocation disagree-
ment is the difference between a reference map and a
classified map due to mismatches between the spatial
allocation of certain categories. In other words, this
quantifies the disagreement in the spatial distribution
of mislabeled pixels between the reference and classi-
fied maps.

We rely on an error matrix to report the total
number of points classified correctly and incorrectly.
We chose the terroir of Tugu because the commu-
nity figured prominently in Marchal’s (1983) study.
His book included large-scale printed maps and
tables of LULC change for Tugu. We detail this
method for the terroir of Tugu (Figure 6).

To obtain reference data, we digitized the zerroir
of Tugu on Marchal’s 1973 map, producing a new
polygon feature class and adding attributes for each
feature within this layer. These attributes corre-
spond to the original LULC classes in Figure 2.

The classified data were the output raster data
from the image processing steps described in the
previous section.

Analyzing agreement between two maps entails col-
lecting reference points and comparing them to the
classified data. We transformed the reference polygon
data into raster format, with the same cell size as the
original map, and created a point for every pixel. We
clipped and aligned the classified data to the reference
data using “Extract by Mask.” Reference points were
compared against the classified data to produce a
cross-tabulation or an error matrix (see Table 1).

Finally, we used equations detailed in Pontius
and Millones (2011) to compute quantity disagree-
ment and allocation disagreement for each category.
Because these equations report counts of points, it
can be difficult to compare across categories if one
of the categories is extremely large, as was the case
for agriculture. We then computed relative disagree-
ment metrics for each category using methods
described in Warrens (2015). This final step allows
the reader to easily compare across categories.

Methods for Change Detection

Marchal’s two maps from 1952 and 1973 enable the
detection of LULC change between the two time
periods. Detecting LULC change is defined as
observing differences in features at different time
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Figure 5 /mage processing techniques used to convert .jpg file to georeferenced raster image and to remove bound-
ary, text, and locality data not necessary for land use, land cover analysis.

periods (Singh 1989). This study relies on a pixel-
based change detection method by comparing
changes in individual pixel values (cf. Tewkesbury
et al. 2015). For instance, we can discern which
pixels changed from agriculture to bare soil and
quantify the number of pixels that did so.
Moreover, we can also identify spatial clusters in
the data and visualize them. This is important
because, at the time, Marchal (1983) only reported
the percentage of increases of certain classes
(Table 2) but not the trajectory of class change;

that is, answering the question, “What changed
to what?”

To perform this pixel trajectory method (Wang
et al. 2012), we reclassified the 1952 raster by
assigning single-digit numbers (1-6) corresponding
to the individual LULC classes and multiplying by
ten (creating 10, 20, ..., 60). Then, we classified the
subsequent 1973 image using the leading values of
the 1952 image (1, 2, ..., 6). Next, we used a raster
calculator to add both layers in ArcMap, creating a
new raster image of added values (e.g., 11, 23, 14).



750 Volume 74, Number 4, 2022

1.

Image
File

Same
resolution as
P % 1
original image,

1
I 7
o/
L __________ 1 ’INII
g o
\ 4
-2 ,g;l/ 4,
[ s ’
] ~ II
k7 S
© & Raster
o+ \,'
3| ; To
IS ! ;
3 i K Point

g 1
Processing Extent and |
Snap Raster using
Reference Data

Frequency
(Reference and
Classified)

Figure 6 Analysis of agreement steps.

This newly created raster image tracks change over
time by specifying the first class in the tens digit and
the second class in the ones digit; for example, a change
from Class 1 to Class 3 is represented by 13, but an 11
means the class stayed the same (see Figure 7). Results
from this process were used to visualize areas converted
from agriculture to bare soil.

Draw Polygon

Extract Values
to Points

NOTE: Ensure to code
classes in the same way as
output above, e.g.
Agriculture = 1,

Degraded Veg. = 2, etc.

1
! Input Field: Classified :
I Pivot Field: Reference |
! Value Field: Frequency :

Pivot Table
(To make error
matrix)

Results

Image Processing Results

Visually speaking, we successfully removed the text,
labels, and boundary lines (Figure 8). If these had
not been removed, there would have been interfer-
ences with the text, label, and line class represented
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Table 1 Error matrix with absolute count and proportion (in parentheses) of reference points for Tugu, 1973

Reference
Classified Agriculture Deg. Veg. Bare Soil Veg Non-Deg. Orchard Re-veg Other Total
Agriculture 668,283 4,394 15,725 22,179 3,168 2,808 7,997 724,554
(51.8%) (0.34%) (1.22%) (1.72%) (0.25%) (0.22%) (0.62%) (56.1%)
Deg. Veg. 2,837 126,410 5,258 9,613 0 194 (0.02%) 0 144,312
(0.22%) (9.79%) (0.41%) (0.74%) (0.00%) (0.00%) (11.2%)
Bare Soil 13,580 6,054 131,872 15,647 83 1,118 152 168,506
(1.05%) (0.47%) (10.2%) (1.21%) (0.01%) (0.09%) (0.01%) (13.1%)
Veg Non-Deg. 10,898 6,171 1,988 204,697 0 870 0 224,624
(0.84%) (0.48%) (0.15%) (15.9%) (0.00%) (0.07%) (0.00%) (17.4%)
Orchard 4,636 1,119 614 4,417 1,635 3,745 103 16,269
(0.36%) (0.09%) (0.05%) (0.34%) (0.13%) (0.29%) (0.01%) (1.26%)
Re-veg 568 223 141 552 0 11,336 0 12,820
(0.04%) (0.02%) (0.01%) (0.04%) (0.00%) (0.88%) (0.00%) (0.99%)
Other 0 0 0 0 0 0 0 0
(0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%)
Total 700,802 144,371 155,598 257,105 4,886 20,071 8,262 1,291,085
(54.3%) (11.2%) (12.1%) (19.9%) (0.38%) (1.55%) (0.64%) (100%)

Table 2 Quantity disagreement and allocation disagreement expressed in absolute and relative terms for analysis

of agreement

Quantity Disagreement

Allocation Disagreement

Class Absolute Relative (%) Absolute Relative (%) Overall Disagreement (%)
Agriculture 23,752 1.67 65,038 4.56

Deg. Veg. 59 0.02 35,804 12.40

Bare Soil 12,908 3.98 47,452 14.64

Veg Non-Deg 32,481 6.74 39,854 8.27

Orchard 11,383 53.81 6,502 30.74

Re-veg 7,251 22.05 2,968 9.02

Other 8,252 100.00 0 0.00 —

Overall 48,043 3.72 98,809 7.65 11.37

Note: Absolute values represent number of pixels. Overall disagreement in the entire map is equal to overall quantity disagreement

plus overall allocation disagreement.

10 +

i

Agriculture Bare Soil
in1952 in1973

1952 1973

|:| = One pixel

1 =Agriculture
3 =Bare Soil

Figure 7 Pixel trajectory diagram.

by the color black. The agreement can be assessed
for each category using the total number of classes
(and proportions in parentheses) in the error matrix
in Table 1 as well as the relative disagreement met-
rics in Table 2. The four most commonly occur-
ring classes had relatively good accuracies during
classification. The relative measure for quantity
and allocation disagreement will be closer to 100
percent if there was complete disagreement
between the reference and classified maps. Thus, a
lower percentage means a higher degree of agree-
ment. Agriculture, degraded vegetation, bare soil,
and vegetation had low values of 1.67, 0.02, 3.98,

and 6.74 percent, respectively, for quantity dis-
agreement. This means that for each of these four
categories, the number of pixels classified as each
class is close to the number of that class in the ref-
erence map. In terms of allocation disagreement,
agriculture and vegetation had low values of 4.56
percent and 8.27 percent, respectively. This indi-
cates that other classes did not get mislabeled as
agriculture or vegetation very often, and the classi-
fied image reported these classes with high spatial
agreement with the reference data. Bare soil had a
slightly elevated allocation disagreement of 14.6
percent. This is likely due to either the mislabeling
of classes after the unsupervised classification or
small errors in class labeling during each pass of
Focal Statistics that modified the edges of various
classes. The overall disagreement of the classified
map to the reference map was 11.37 percent, which
is the sum of the overall quantity disagreement
(3.72 percent) and the overall allocation disagree-
ment (7.65 percent).

On the other hand, some classes did not perform
well due to either errors in class labeling during
image processing, their relatively small area, or the
class not being distinct enough to be identified by
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Figure 8 /mage processing, before (left) and after (right), of an area of Tugu, Yatenga.

the classification algorithm. The classes with the
highest levels of quantity disagreement were orchard
and other with values of 53.8 and 100 percent,
respectively. This happened for two separate rea-
sons. For the orchard class, the likely reason is that
its area was small from the start and the image proc-
essing steps diminished some area around its edges.
Orchard’s allocation disagreement, moreover, was
30.7 percent, due to artifacts of boundary lines that
were incorrectly classified during the classification
algorithm step (see Figure 9). The reason the cate-
gory of other has such a high quantity disagreement
value, despite its very small area, is because it was all
converted to agriculture. This happened because the
original category was demarcated by black lines that
were removed with the text, label, and line class. Its
allocation disagreement is 0 percent, which is erro-
neous because there were zero pixels of this category
in the classified image. The conclusion here is that
classes with very small areas might perform less than
optimally during image processing but more abun-
dant areas were faithfully preserved. In the context
of Yatenga, we are interested in measuring agricul-
tural change to bare soil, which is now possible
given the relatively accurate results for these spe-
cific categories.

Change Detection Results

Marchal originally reported increases and decreases
in LULC area for the Tugu region (Table 3). We

extend his original analysis to determine the trajec-
tory of LULC change; that is, what changed to
what? Marchal calculated an increase in bare soil
from 2.2 to 10.4 percent of the regional area (a 470
percent increase in bare soil). In comparison, our
analysis shows an increase from 9.23 to 13.10 per-
cent of the regional area (a 141 percent increase in
bare soil). Although our results differ from
Marchal’s, they follow the same directions and are
on the same order of magnitude. For example, in
both our and Marchal’s analyses, the vegetation class
decreases, whereas all other classes increase.
Differences between our analysis and Marchal’s are
due to incorrectly labeled classes during image proc-
essing and the way our boundary for Tugu was man-
ually drawn versus that of Marchal. For example,
portions of the line class for the 1952 data were
incorrectly classified as bare soil, which changes the
percentage of total bare soil area for that year.
Additionally, slight differences in the way the border
for Tugu was drawn result in different areas of
LULC classes within the boundary. Barring these
differences, we can have a more detailed understand-
ing of LULC change over time by using pixel-based
change detection.

Not only could we determine what changed but
we also can visualize where these changes occurred.
A pixel-based change detection analysis showed
increases and decreases throughout the region of
Tugu, especially increases in  agriculture.
Additionally, we can determine clusters of change
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Boundary Line

Boundary Line
Artifact

Figure 9 Comparison of original map and processed map. Notice the line artifacts indicated by arrows.

Table 3 Marchal's (1983, 223) original analysis of LULC percentage area increases, 1952-1973, compared to the

present analysis

Marchal (1983, 223)

Present analysis

Change (1952-1973)

Change (1952-1973)

1952 1973 1952 1973

LULC % Area % Area % Area Factor % Area % Area % Area Factor
Vegetation 35.30 13.60 -21.70 x0.38 33.28 17.39 -15.89 x0.53
Degraded bush 3.90 7.00 +3.10 x1.80 5.03 11.17 +6.14 x2.22
Agriculture 58.25 65.25 +7.00 x1.11 52.46 56.13 +3.67 x1.07
Bare soil 2.20 10.40 +8.20 x4.70 9.23 13.05 +3.82 x1.41
Water bodies 0.35 0.75 +0.40 x2.00 NA NA NA NA
Orchard — 0.75 +0.75 — — 1.26 +1.26 —
Re-vegetation — 2.75 +2.25 — — 0.99 +0.99 —
Urban — — — — — — — —
Total 100 100 +21.70 100 100 +14.74

Note: Title of Marchal's original table: Comparaisons entre I'évolution des faciés a Tugu et au Centre-Yaténga. LULC = land use,

land cover.

from one class to another by visually inspecting
these patterns and quantifying them. In 1952,
52.50 percent of total area was agriculture and
5.35 percent of that total area became bare soil in
1973 (from agriculture in 1952), the biggest type
of change for the agriculture class (Table 4). This
apparent land degradation appears to have
occurred in scattered areas (Figure 10). Although

not explicitly visualized in the maps that follow,
one other noteworthy type of change was from
vegetation to agriculture, indicating that commu-
nities were converting much of the area to agri-
culture after 1952. This suggests that residents of
Tugu were expanding agriculture by clearing pre-
existing vegetated areas. Agriculture also changed
to orchards and revegetated areas, suggesting that
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Table 4 Change matrix for Tugu, 1952-1973

1973
Class Agriculture (%) Eroded soil (%) Bare soil (%) Vegetation (%) Orchard (%) Re-vegetated (%) Total (%)
1952  Agriculture 38.70 2.81 5.35 4.79 0.60 0.26 52.50
Eroded soil 2.03 0.59 1.48 0.74 0.17 0.02 5.03
Bare soil 1.49 2.94 1.81 2.77 0.13 0.09 9.23
Vegetation 14.00 4.83 4.40 9.09 0.36 0.63 33.30
Total 56.10 11.20 13.10 17.40 1.26 0.99 100.00

Note: Percentages represent percentage of area for all Tugu. The table can be read from left to right. For example, looking at the
1952 rows and going from agriculture to bare soil means 5.35 percent of total area changed from agriculture in 1952 to bare soil in
1973. For agriculture, 38.7 percent of the total area remained the same. Due to the problem with artifacts from boundary lines and

text, changes to orchard (1.26 percent of total area in 1973) are affected by these errors.

1952

1973

)
‘

=4 2
5 Kilometers
|

. Classes

E Agriculture
I c=roded Soil
|:| Bare Soil

- Forest/Orchard \:I Tugu Boundary
E Re-Vegetated

- Agriculture Change to Bare Soil

I:I Vegetation

I:l Agriculture Change to Other

Figure 10 Change detection analysis revealing changes to bare soil from 1952 to 1973.

change was not only going in one direction
toward degradation but toward rehabilitation as
well (Table 4).

Limitations and Lessons Learned

Transforming an archival map using image filtering
techniques can incorporate classification errors. For
example, the image processing steps smoothed over
and generalized original boundaries, leaving behind
artifacts from labels or lines. Additionally, manually
georeferencing one map to the other proved chal-
lenging as they did not align exactly. We performed
several methods, like matching graticules to graticules
on both maps, as well as roads to roads, but there
were still minor differences throughout the image.
Misalignment problems can have consequences for

pixel-based change detection since the maps are com-
pared pixel by pixel. To speculate why misalignment
occurred, errors could be due to the way the original
maps were printed. Given that our results were simi-
lar to Marchal’s in magnitude and direction, we con-
clude that errors resulting from spatial misalignment
are small. This is a judgment call, however, and a
more accurate georeferencing technique might yield
more accurate statistics. Spatial distortion can also be
quantified by calculating the RMSE as discussed in
the Methods section.

The use of a .jpg image created further complica-
tions. Because .jpg files are stored in a lossy format
(i.e., information is permanently lost to compress
the file), this can introduce artifacts (or distortions)
in the file that might influence image processing.
We encourage readers wishing to replicate this pro-
cess to not use the .jpg format and to store the data



in .tiff format instead, because the latter is usu-
ally lossless.

Each iteration of the Focal Statistics filter slightly
modifies the image. We realized that “No Data”
pixels resulted from the first and second pass of
Focal Statistics due to there being more than one
majority class inside a filter. We corrected for this
by using the wedge filter to help fill in “No Data”
pixels. There were still around twenty “No Data”
pixels scattered around class edges that we manually
filled in as the nearest largest class. Because these
remaining “No Data” pixels were so few compared
to the total pixel count, we concluded that any influ-
ence on results was negligible. Fine tuning the
parameters of this image filter in this analysis or,
perhaps, using another filter tool altogether might
be more efficient and yield better results.

Conclusion

This project explored ways to convert scanned archi-
val maps into georeferenced spatial data relying on
the graphical user interface of common GIS soft-
ware. Researchers interested in applying this method
to other data sets might encounter unique challenges
given specific presentations of archival maps. For
example, although this project benefited from the
unique color combination of Marchal’s original clas-
ses, maps with less distinct color schemes might be
less suitable for unsupervised classification algo-
rithms. Newer software packages (e.g., ArcGIS Pro)
might offer a solution given developments in object
detection techniques using deep learning (ESRI
2020). Additionally, the map we relied on was digi-
tally rendered and downloaded, and we therefore
did not have to scan the map manually. Other maps
might exist as physical copies that need to be
scanned using special equipment. Finally, we relied
on the ArcGIS environment, but not everyone
might have a license to use proprietary software.
Open-source tools such as QGIS can offer similar
techniques, such as the use of nearest neighbor fil-
ters to fill in “No Data” pixels and to remove
unwanted artifacts (QGIS.org 2021).

Using the ArcGIS environment in ArcMap v.
10.7.1, we successfully transformed a .jpg file of a
digitally rendered map by Marchal (1983) into spa-
tally referenced rasters. Using a suite of image
processing techniques, we were able to remove
labels, boundary lines, and other noise from the
original map to extract the LULC data of interest.
This method makes possible a deeper understanding
of historical environmental change through quanti-
fying LULC trajectories and identifying where
change occurred. This is significant in the context of
the study of African environmental change because
it allows scholars the possibility to look at environ-
mental dynamics further back in time than is
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possible with satellite data. Other scholars can fol-
low the steps presented herein to convert maps
available not only in the IRD SPHAERA database
(IRD 2014), where there are twenty-eight maps
available for download from Marchal’s work, but
from other archival sources, as well. Northern
Burkina Faso has experienced complex environmen-
tal changes due to climate patterns and human-led
conservation practices. The methods presented here
give scholars and GIS users a novel way to use archi-
val maps to augment their historical and environ-
mental research. l
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environmental change in West Africa, combining ethno-
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Appendix: Python Code Using OpenCV
Library to Reduce Noise in Image

import cv2

img=cv2.imread(’'noisy.png’)
new_img=img
filename = '’

for x in range (100) :
new_img=cv2.fastNlMeansDenoisingC-
olored(img,None,x,10,7,21)
"output/denoised_h_-
value_" + str(x) + ".png"
cv2.imwrite(filename, new_img)

filename =

print("Saved ", filename)

We use a “for” loop to iterate through different
filter strengths to compare different outputs.
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