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Volumetric optoacoustic 

imaging is a beneficial technique 

for diagnosing and analyzing 

biological samples since it 

provides meticulous details in 

anatomy and physiology. 

However, acquiring high 

through-plane resolution 

volumetric images is time-

consuming, requiring a precise 

motorized stage to move 

samples under the optoacoustic 

system along the z-axis. Here, 

we propose deep learning based 

on hybrid recurrent and convolution neural networks to generate sequential cross-

sectional optoacoustic images. A multispectral optoacoustic tomography (MSOT) 

system was utilized to acquire the dataset from breast tumors for training our deep 

learning model. This system can simultaneously acquire the sequential images (cross-

sectional images) of MSOT and ultrasound. Furthermore, it provides a spectral 

unmixing algorithm applied to the MSOT images for extracting the sequential images 

of a specific exogenous contrast agent. This study used ICG-conjugated 

superparamagnetic iron oxide nanoworms particles (NWs-ICG) as the contrast agent. 

Our deep learning model applies to all three modalities (multispectral optoacoustic 

imaging at a specific wavelength, ultrasound, and NWs-ICG optoacoustic imaging). 

The generated 2D sequential images were compared to the ground truth 2D sequential 

images acquired using a small step size. The results of these three modalities can 

achieve excellent image quality where the average of peak-signal-to-noise ratio and 

summation absolute errors between the ground truths and the generated images is over 

75 dB and less than 2,000. Instead of acquiring seven images with a step size of 0.1 

mm, we can receive two images with a step size of 0.6 mm as input images for the 

proposed deep learning model.  The deep learning model can generate or interpolate 

other five images with the step size of 0.1 mm between these two input images meaning 

we can save acquisition time by approximately 71%. 
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1 |  INTRODUCTION 

Multispectral Optoacoustic Tomography (MSOT) is an in vivo 

optical imaging modality for molecular, anatomical, and 

functional imaging Fields [1, 2]. The principle of MSOT is 

based on the optoacoustic effect, i.e., a molecule is excited by 

an ultra-short laser pulse, which can penetrate through tissue 

several centimeters [3, 4], resulting in thermoelastic expansion 

surrounding the molecule that generates a photoacoustic wave 

[5]. The ultrasound traducer is then used to detect this wave as 

an ultrasound signal.  The difference of absorption contrast of 

tissue in single wavelength images is employed to reconstruct 

anatomical images. Using multiple wavelengths to excite the 

tissue, we can obtain multispectral images from intrinsic and 

extrinsic signals. A laser between 680 nm and 980 nm is the 

predominant source for intrinsic signals such as deoxygenated 
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hemoglobin, oxygenated hemoglobin, melanin, myoglobin, 

bilirubin, fat, etc.  Extrinsic signals do not usually occur in cells, 

tissue, or animals. Agents that can absorb in the near-infrared 

(NIR) range such as indocyanine green, fluorescence proteins, 

nanoparticles, etc., can increase the optoacoustic signal 

(extrinsic signal). Thus, they can be distinguished from 

intrinsic tissue background signals by using effective spectral 

unmixing algorithms such as linear regression, guided 

independent comment (ICA), and principal component 

analysis (PCA) [6, 7].  MSOT is widely used for several studies 

such as cancer research [8-12], drug development [13, 14], and 

nanoparticle [15-18].  However, using multiwavelength 

excitation to scan the sample is time-consuming, especially 

cross-sectional scanning for 3D image reconstruction. Imaging 

needs to sweep all the wavelengths with every single scanning 

position. For in vivo experiments, this might lead to image 

degradation from motion artifacts and potential lethality from 

prolonged anesthesia. In recent years, deep learning-based 

approaches have played a vital role in optoacoustic imaging, 

and they have been widely used in several applications such as 

image classification, segmentation [19-23], quantitative 

photoacoustic imaging [24-28], image enhancement [29-33], 

etc. One main advantage of deep learning for those 

applications is that it depends less on hardware modifications. 

In addition, most of those deep learning techniques were 

designed to use a single 2D image as their input and apply 

convolution architectures for feature extraction.  For instance, 

deep learning for automatic segmentation of optoacoustic 

ultrasound (OPUS) images [34] used the U-net architecture [35] 

to perform the image segmentation. U-net is a well-known 

convolution neural network (CNN) architecture for image 

segmentation, particularly biomedical images [36-39]. 

Nevertheless, there are no techniques based on deep learning 

to reduce the acquisition time of cross-sectional scanning for 

3D photoacoustic imaging. Herein, we propose the hybrid 

architecture of convolution neural network (CNN) and 

recurrent neural network (RNN) for generating sequential 

optoacoustic, unmixed optoacoustic of a specific contrast agent, 

and ultrasound images to extend the stack of cross-sectional 

images and reduce acquisition time by approximately 71%. 

This hybrid architecture is called Inception Generator Long 

Sort-Term Memory (I-Gen-LSTM). The Inception Generator 

is a CNN model designed based on the Inception U-net 

architecture. Inception is a convolution layer [40] that 

convolves the input in parallel with different kernel sizes 

extracting more features than a simple convolution layer. RNN 

is a robust and effective approach for sequential problems. It is 

a feed-forward neural network with internal memory and 

performs the same function for every data input. In addition, 

the output of the current input depends upon the previous 

output. However, the original RNN has drawbacks regarding 

exploding and vanishing gradients from backpropagation to 

update weights, particularly long sequential inputs. Long 

Short-Term Memory (LSTM) networks [41] are improved 

RNN networks capable of learning long-term dependencies by 

adding a forget gate, input gate, and output gate. Therefore, we 

leverage Inception Generator and LSTM networks to generate 

sequential images. Our results demonstrate that the I-Gen-

LSTM model is a versatile method that can generate not only 

sequential optoacoustic images but also sequential unmixed 

optoacoustic and ultrasound images.  

2 |  EXPERIMENTAL 

2.1  |  Data acquisit ion  

A commercial multispectral optoacoustic tomography (MSOT) 

system (inVision 512-echo, iThera Medical GmbH, Munich, 

Germany) was used to acquire the data for training the I-Gen-

LSTM model. The MSOT system has a 270-degree ultrasound 

transducer tomographic array, which can acquire signals from 

multiple angles around an object. This tomographic array 

enables the system for imaging complex shapes since it can 

capture 2-dimensional signals in the imaging plane. Figure 1(a) 

shows the detection and illumination geometry in the imaging 

chamber of the MSOT system. In addition, this system 

provides a tunable laser with a range of 660-1,300 nm, which 

is particularly suitable for most biological samples. The 

excitation pulse laser is used to illuminate the sample. The 

sample absorbs this pulse and converts it to heat, which results 

in a transient thermoelastic expansion that generates an 

acoustic wave. The ultrasound transducer is then used to detect 

this acoustic wave, and the back-projection algorithm [42] is 

applied to the detected optoacoustic wave to reconstruct the 

images. For the dataset preparation, transgenic mice [43] with 

breast tumors were intravenously injected with indocyanine 

green (ICG)-conjugated superparamagnetic iron oxide 

nanoworms (NWs-ICG) [44], which accumulate in tumors 

longer than pure ICG through the enhanced permeability and 

retention (EPR) effect [45]. Twenty-four hours after injection, 

the mice were euthanized and the tumors were removed and 

dissected for this study. All procedures performed on animals 

were approved by the University’s Institutional Animal Care 

& Use Committee and were within the guidelines of humane 

care of laboratory animals. To acquire images of the tumors, 4 

mg of agarose powder was dissolved in 40 mL of warm 

deionized water. The breast tumor was put in this dissolved 

agarose solution, allowing approximately 15 minutes for the 

solution to solidify. The hardened agarose with the tumor 

inside shown in Figure 1(b), was grasped by the holder and 

then scanned by the inVision MSOT system with the excitation 

pulse at wavelengths from 800 nm to 1000 nm (a 

comprehensive range of the NWs-ICG study). Since the 

inVision MSOT system can provide corresponding ultrasound 

images, NWs-ICG optoacoustic images obtained through 

linear spectral unmixing algorithm [46], and each single-

wavelength optoacoustic image, these three imaging 

modalities were simultaneously acquired in every scanning 
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position. Figure 1(d1-d4) shows the ultrasound images of the 

breast tumor with different scanning positions, Figure 1(e1-e4) 

shows the corresponding NWs-ICG optoacoustic images 

reconstructed from multispectral optoacoustic imaging with 

the excitation pulse at wavelengths from 800 to 1,000 nm by 

using the multispectral unmixing algorithm; Figure 1(f1-f4) 

shows the corresponding single-wave optoacoustic image at 

800 nm excitation; and Figure 1(g1-g4) shows the 

corresponding overlaid images of these three imaging 

modalities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Ultrasound, NWs-ICG optoacoustic obtained through multispectral 

unmixing, and optoacoustic at 800 nm excitation imaging of an ex vivo breast 

tumor from a mouse intravenously injected with NWs-ICG. (a) The detection 

and illumination geometry in the imaging chamber of the MSOT system. (b) 

The breast tumor is embedded in agarose. (c) NWs-ICG structure. (d1-d4) 

Ultrasound images of the breast tumor with different step sizes. (e1-e4) The 

corresponding NWs-ICG optoacoustic images were obtained through 

multispectral unmixing. (f1-f4) The corresponding single-wavelength (λex = 

800 nm) optoacoustic images. (g1-g4) with an overlay of the ultrasound, the 

NWs-ICG optoacoustic(colormap), and the single-wavelength optoacoustic 

images.  

2.2 | I-Gen-LSTM and discriminator models  

The I-Gen-LSTM model comprises three main neural 

networks depicted in Figure 2(a-c). The first neural network is 

the Inception encoder & decoder network based on Inception 

U-net architecture. The original U-net architect employs 

simple convolution blocks with the skip connection of 

encoders and decoders at the same dimension helping the 

model to circumvent the vanishing and exploding gradients 

problems.  However, the simple convolution blocks might be 

insufficient to extract all crucial information comprehensively. 

Inception architecture is one of the effective CNNs 

architectures since it applies a wide range of kernel sizes to 

extract global and local features. A large and a small kernel 

size are tailored to extract information distributed globally and 

locally, respectively. With this attribute, the encoder & 

decoder network was designed using Inception U-net as its 

backbone as shown in Figure 2(a), for improving the model 

capability. This network takes two 2D images, acquired from 

an arbitrary consecutive position with a step size of 0.6 mm, as 

its inputs (input 1 and input 2, as shown in Figure 2(a)). The 

encoder shown on the left side of Figure 2(a) generates encoder 

outputs (E1n -E5n, where n is the input image number, i.e., 1 

and 2). Inception architecture in the encoder with three 

different kernel sizes (1x1, 3x3, and 5x5) assembled as the 

parallel filters are used to extract features from the tensors 

followed by a rectified linear unit (ReLU) and a 2x2 max 

pooling with the stride of 2 steps for downsampling, 

respectively. Similarly, Inception architecture is also used in 

the decoder blocks. The encoder blocks are used to generate 

decoder outputs (D1n-D5n, where n is the input image number, 

i.e., 1 and 2) as shown in the right side of Figure 2(a) followed 

by a feature map upsampling, a 2x2 up-convolution (halving 

the number of feature channels), and a corresponding 

concatenation from the encoder part.  

The second neural network is the convolutional LSTM 

network (ConvLSTM) [47], a recurrent neural network for 

spatio-temporal prediction. It has a convolutional structure in 

both the input-to-state and state-to-state transitions as shown in 

the bottom right of Figure 2(b). In other words, internal matrix 

multiplications are exchanged with convolution operations. 

Consequently, the data flowing through the ConvLSTM cells 

keeps the input dimension instead of being a 1D vector with 

features. The main equations of ConvLSTM are expressed in 

Equations (1-5) below, where ‘*’ and ‘๐’ represent the 

convolution operator and the Hadamard product (element-wise 

matrix multiplication), respectively. All variables in Equations 

(1-5) were shown in the “ConvLSTM block” in Figure 2(b).  

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 +𝑊ℎ𝑖 ∗ 𝐻𝑡−1๐𝐶𝑡−1 + 𝑏𝑖) (1) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 +𝑊ℎ𝑡 ∗ 𝐻𝑡−1 +𝑊𝑐𝑡๐𝐶𝑡−1 + 𝑏𝑓) (2) 

𝑐𝑡 = 𝑓𝑡๐𝐶𝑡−1 + 𝑖𝑡๐tanh⁡(𝑊𝑥𝑐 ∗ 𝑋𝑡 +𝑊ℎ𝑐 ∗ 𝐻𝑡−1 + 𝑏𝑐) (3) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 +𝑊ℎ𝑜 ∗ 𝐻𝑡−1 +𝑊𝑐𝑜๐𝐶𝑡 + 𝑏𝑐) (4) 
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𝐻𝑡 = 𝑜𝑡๐tanh⁡(𝐶𝑡) (5). 

The ConvLSTM takes the outputs of the Inception encoder 

from both input images (E11-E51 and E12-E52) as its inputs 

to generate five sequential blocks (Recurrent Conv1 to 

Recurrent Conv5) as shown in Figure 2(b). Recurrent Conv 1, 

2, 3, 4, and 5 have dimensions of (5x128x128x512), 

(5x64x64x512), (5x32x32x512), (5x16x16x512), and 

(5x8x8x512), respectively. The first dimension represents the 

number of output images (five sequential output images). 
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Figure 2. I-Gen-LSTM and discriminator architectures. (a) Inception encoder and decoder network were applied to both images (input1 and input2). (b) 

ConvLSTM network for generating the sequential blocks (Recurrent Conv 1-5) fed to the sequential image generator network for reconstructing the sequential 

output images. (c) The sequential image generator network. (d) The discriminator network. 
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Lastly, it is the sequential image generator network inspired by 

U-net architecture. The model takes Recurrent Conv 1-5, two 

input images, encoder outputs (E11-E51 and E12-E52), and 

decoder outputs (D11-D41 and D12-D42) to reconstruct five 

sequential images of different scanning positions as shown in 

Figure 2(c). The left side of Figure 2(c) shows the concatenated 

encoder and decoder outputs generated by the Inception 

encoder &decoder (Figure 2(a)). The right side of Figure 2(c) 

shows Conv2D transpose and Conv2D operations for the 

Recurrent Conv 1-5 generated by the ConvLSTM blocks 

(Figure 2(b)) and the concatenated encoder & decoder outputs. 

All Conv2D transpose, Conv2D blocks utilize ReLU as their 

activation function except the last Conv2D* that applies 

hyperbolic tangent or tanh as its activation function. Indeed, 

the Recurrent Conv blocks regulate the gradual change in the 

sequential output images.  In short, the I-Gen-LSTM model 

takes two images acquired by consecutive positions with 0.6 

mm steps size and generates the five sequential images 

between these two images with gradual change following the 

scanning positions (step sizes of 0.1 – 0.5 mm). The ground 

truth images acquired using a small step size (0.1-0.5 mm) 

were used to determine the loss value from these five generated 

images. The loss functions will be elucidated in section.2.3.  

The discriminator network shown in Figure 2(d) is a simple 

convolution network designed to evaluate the similarity 

between the ground truths and generated images. The model 

comprises eight convolutional layers and two fully connected 

layers. After each convolution block, a batch normalization 

layer is used, followed by an activation function named the 

Leaky ReLU function (α=0.2). The number of 3x3 filter 

kernels increases by a factor of 2 from 64 (the first layer) to 

512 (the eighth layer) kernels. The last two layers are dense 

layers working as a classification block, predicting the 

probability of an image being either real or fake. To train the 

I-Gen-LSTM model, we assemble the models as a generative 

adversarial network (GAN) [48] shown in Figure 3 below.  

 

Figure 3. GAN with the combination of three loss functions (the content 

loss, the neighbor loss, and the adversarial loss functions) for training the 

I-Gen-LSTM model. 

 

 

2.3 | Loss functions 

To optimize the I-Gen-LSTM model, we designed custom-

made loss functions, namely the content loss (VGG19 

loss, ⁡IVGG
𝑆𝑆 ) [49], adversarial loss (Discriminator loss, IGen

SS ), 

and neighbor loss (IN
SS)  as shown in Equation (6). Where Cw1, 

Cw2, and Cw3 are the hyper-parameters set as 0.7, 0.1, and 0.2, 

respectively.  

𝐼𝑆𝑆 = 𝐶𝑤1𝐼𝑉𝐺𝐺
𝑆𝑆 + 𝐶𝑤2𝐼𝐺𝑒𝑛

𝑆𝑆 + 𝐶𝑤3𝐼𝑁
𝑆𝑆 (6) 

The content loss or VGG loss (𝐼𝑉𝐺𝐺
𝑆𝑆 ), which is defined as the 

Euclidean distance between the feature map of the generated 

image⁡(𝐺𝜃𝐺(𝐼
𝐿𝑆)) and the ground truth (𝐼𝑆𝑆), can extract high 

dimensional features helping the model to generate the image 

with perceptually satisfying solutions without excessively 

smooth textures. The  𝐼𝑉𝐺𝐺
𝑆𝑆  loss is based on the ReLU 

activation layers of the pre-train 19-layer VGG network and it 

can be calculated following Equation (7) as shown as 

 ⁡𝐼𝑉𝐺𝐺
𝑆𝑅 =⁡

1

𝑊𝑖,𝑗𝐻𝑖,𝑗
∑ ∑ (⁡⁡Ø𝑖,𝑗(𝐼

𝑆𝑆)𝑥,𝑦 −⁡Ø𝑖,𝑗(𝐺𝜃𝐺(𝐼
𝐿𝑆)𝑥,𝑦)

2𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1   (7) 

where 𝑊𝑖,𝑗 ⁡𝑎𝑛𝑑⁡𝐻𝑖,𝑗 describe the dimensions of the respective 

feature maps within the VGG network. The features map (Ø𝑖,𝑗) 

can be obtained by the j-th convolution before the 

𝑖𝑡ℎ⁡maxpooling layer within the VGG19 network.   

Moreover, the adversarial loss ( 𝐼𝐺𝑒𝑛
𝑆𝑆 ) is also employed to 

distinguish the similarity of the two images. It is defined as the 

probabilities, varying from 0 to 1, which are the result of the 

discriminator model (𝐷𝜃𝐷(𝐺𝜃𝐺(𝐼
𝐿𝑆))) as shown in Equation (8). 

Where 𝐼𝐿𝑆 is the input images, 𝐺𝜃𝐺is the generator model, and 

𝐷𝜃𝐷 is the discriminator model.  

𝐼𝐺𝑒𝑛
𝑆𝑆 = ∑−𝑙𝑜𝑔𝐷𝜃𝐷(𝐺𝜃𝐺(𝐼

𝐿𝑆))

𝑁

𝑛=1

 
(8) 

Apart from using the content and adversarial losses, the 

neighbor loss is also applied to optimize the model. Since the 

I-Gen-LSTM model generates sequential images, the neighbor 

loss is essential to regulate the change of each generated image 

in the sequence. The concept of the neighbor loss function is 

to differentiate between the current generated image and the 

neighbor images in the same sequence as expressed in 

Equation (9) below as 

𝐼𝑁
𝑆𝑆 = ∑(𝑚𝑠𝑒(

𝑁

𝑛=1

𝐼𝑛, 𝐼𝑛−1) + 𝑚𝑠𝑒(𝐼𝑛, 𝐼𝑛+1)) 
(9) 

The custom-made loss function effectively leverages the 
combination of these three loss functions to train the I-Gen-

LSTM model that can generate high-quality sequential images. 
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2.4 | I-Gen-LSTM model for Volumetric Imaging 

To collect the database for training the model, 16 breast tumors 
from mice intravenously injected with NWs-ICG were 
acquired by the MSOT system. The data from these tumors 
were allocated for training (11 tumors), validation (3 tumors), 
and testing (2 tumors) datasets. The training time on Google 
Colaboratory (CoLab) Pro is approximately 40 hours. After 
initializing and importing the model, the I-Gen-LSTM can 
generate five sequential images by taking less than 1 second 
for the five output images on a personal computer (PC) with 
11th Gen Intel core i7-11700k CPU, 16 GB RAM, and NVIDIA 
RTX 3090 graphic card.  

3 | Results and Discussion 

3.1 | Sequential NWs-ICG optoacoustic, ultrasound, and 

optoacoustic (λex = 800 nm) image reconstruction. 

The breast tumor dissected from an NWs-ICG-injected mouse 

was scanned under the MSOT system. Figure 4 shows the 

generated sequential images generated by the I-Gen-LSTM 

model. Two input images of each modality, acquired from 

consecutive stage positions with a step size of 0.6 mm, are used 

as the inputs for the I-Gen-LSTM model.
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Figure 4. Results of sequential image reconstruction generated by the I-Gen-LSTM model. The two input images for each modality simultaneously acquired 

with a step size of 0.6 mm were fed into the I-Gen-LSTM model. The green, blue, and violet boxes show generated images (GEN), ground truth (GT), and the 

absolute error between GEN and GT images (|GT-GEN|) represented as color map images. The red-dashed boxes show the local features fairly change along 

the z-scanning position and the yellow-dashed boxes are the corresponding enlarged images of the red-dashed boxes. The scale bar is 5 mm. (a) NWs-ICG 

optoacoustic sequential image reconstruction result. (b) Ultrasound sequential image reconstruction result. (c) Single-wavelength optoacoustic (λex = 800 nm) 

reconstruction result. 

Here, we demonstrate a z-scanning range from 9.7 mm-10.3 

mm with a step size of 0.1 mm as a representative. The red-

dashed boxes in Figure 4 show local features, which are fairly 

changing along the z-scanning position and are somewhat 

straightforward to observe. The orange-dashed boxes are the 

corresponding enlarged images of the red-dashed boxes. 

Figure 4(a) shows the sequential image reconstruction result of 

NWs-ICG optoacoustic imaging, Figure 4(b) shows the result 

of ultrasound imaging, and Figure 4(c) shows the result of 

single-wavelength optoacoustic (λex = 800 nm) imaging. The 

average Peak-signal-to-noise ratio (PSNR) dB/ the average 

summation of absolute errors (SAE) between the ground truths 

(GT) and generated images (GEN) for this scanning range of 

NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex = 

800 nm) imaging are 87.72 dB/923.66 ,78.83 dB/4,323.19, 

75.60 dB/2,223.40, respectively.  

 

 

 

 

3.2 | Three-dimensional reconstruction of the stack 2D 

NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex 

= 800 nm) images 

Since the MSOT system and our deep learning model provide 

the stack of multiple cross-sectional images for NWs-ICG 

optoacoustic, ultrasound, and optoacoustic (λex = 800 nm) 

images, we can use these images to reconstruct three-

dimensional (3D) images by using Amira (Mercury Computer 

system, Berlin, Germany) software. Figure 5 shows the 3D 

reconstruction results of the ground truth and the generated 

images. Figure 5(a) demonstrates the 3D reconstruction of 

generated images from the I-Gen-LSTM model and Figure 5(b) 

shows the reconstruction of the ground truths acquired by 

mechanical scanning. After finished the experiment, the tumor 

was removed from the agarose and sent to the histopathology 

lab (MSU-IHPL Research facility) to prepare a Hematoxylin-

and-Eosin (H&E) stained breast tumor slide shown in Figure 

5(c). 
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Figure 5. 3D image reconstruction of the breast tumor using cross-sectional NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex = 800 nm) stacked 

images. (a) The 3D reconstruction result of the NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex = 800 nm) images generated by the I-Gen-LSTM 

model with a step size of 0.1 mm. (b) The 3D reconstruction result acquired by mechanical scanning with a step size of 0.1 mm. (c) The photograph of the 

corresponding tumor and its H&E slide image. 

3.3 | Evaluations  

The NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex 

= 800 nm) images from two tumors not used for training the 

model were utilized for the model evaluation. Each tumor was 

scanned with a step size of 0.1 mm. Every two-image (with a 

0.6 mm scanning step in between) was assigned as the input 

for the I-Gen-LSTM model to generate five sequential images 

with a step size of 0.1 mm. Here, the model was evaluated 

using four quantitative metrics: the average PSNR, SAE (GEN, 

GT), SAE (𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇) ,and SAE (𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇).  They were 

applied to the testing dataset acquired from the tumors for all 

scanning positions.  

 

A large PSNR and a small SAE (GEN, GT) imply high-quality 

generated images. Indeed, if the SAE (GEN, GT) can perform 

better than SAE (Input1-GT) and SAE (Input2-GT), it also 

means that the model can effectively generate sequential 

images. All average evaluation metrics can be calculated 

following Equations (10-12).  

Average PSNR = ∑ ∑ 𝑃𝑆𝑁𝑅𝑗(𝐺𝐸𝑁𝑖 ⁡, 𝐺𝑇𝑖)⁡
5
𝑖

𝑁
𝑗

5 × 𝑁
 

(10) 

Average SAE 

(GEN, GT) 

= ∑ ∑ 𝑆𝐴𝐸𝑗(𝐺𝐸𝑁𝑖 ⁡, 𝐺𝑇𝑖)⁡
5
𝑖

𝑁
𝑗

5 × 𝑁
 

(11) 

Average SAE 

(𝐼𝑛𝑝𝑢𝑡𝑘 ,GT) 

= ∑ ∑ 𝑆𝐴𝐸𝑗(𝐼𝑛𝑝𝑢𝑡𝑘⁡, 𝐺𝑇𝑖)⁡
5
𝑖

𝑁
𝑗

5 × 𝑁
 

(12) 
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Where,  

N is the number of scanning positions with a step size of 0.6 

mm, 

𝐺𝐸𝑁𝑖  is the generated image at “i” scanning position in 

between two input images (acquired with a step size of 0.6 

mm),   

𝐺𝑇𝑖 is the corresponding ground truth, 

𝐼𝑛𝑝𝑢𝑡𝑘 images are the two input images (k=1 and 2) acquired 

from arbitrary consecutive positions with a step of 0.6 mm. 

Figure 6 shows the representative result from one of the 

evaluated tumors as the graph of the average PSNR and SAE 

(GEN, GT) vs. scanning positions. Table 1 shows the average 

evaluation metrics of the generated sequential NWs-ICG 

optoacoustic, ultrasound, and optoacoustic (λex= 800 nm) 

images for all testing datasets. Overall, the average PSNR and 

SAE between generated images and ground truths of all 

modalities are greater than 75 dB and less than 2,000, 

respectively.  

 

This indicates that the I-Gen-LSTM model can generate 

sequential images with promising results. To comprehensively 

evaluate the model performance, we also compared SAE (GEN, 

GT) to SAE (𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇)⁡and SAE( 𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇) as the baseline for 

comparison. The average SAE (GEN, GT) of optoacoustic (λ= 

800 nm) and ultrasound imaging performs better than the 

average SAE(𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇)⁡and SAE( 𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇), but the NWs-

ICG optoacoustic imaging does not (the average SAE (GEN, GT) 

is slightly higher than the average of SAE( 𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇)⁡ and 

SAE( 𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇) ) due to the tiny changing features in the 

sequential NWs-ICG optoacoustic imaging and the limited 

number of the training dataset. Although the overall result is 

favorable and encouraging, the deep learning model could be 

improved in future work. We will use a larger dataset with a 

larger image size to train the deep learning model so that the 

convolution/LSTM blocks can efficiently capture more 

sequential features, especially in a tiny changing feature 

modality such as NWs-ICG optoacoustic imaging.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The PSNR and SAE (GEN, GT) evaluation in one of the testing tumors. (a-b) The graph between the PSNR and SAE (GEN, GT) values 

vs. scanning positions for all generated OPUS, NWs-ICG optoacoustic, and optoacoustic (λex = 800 nm) images, respectively. 
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Table. 1 Average quantitative metrics of optoacoustic (λex = 800 nm), NWs-

ICG optoacoustic, and ultrasound images generated by the proposed deep 

learning model. 

Average 

quantitative 

metrics 

Optoacoustic 

(λex = 800 nm) 

NWs-ICG 

optoacoustic 

Ultrasound 

PSNR (dB) 76.53 83.75 80.44 

SAE (GEN, GT) 1,706.12 858.54 1,265.87 

SAE 

(𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇) 

6,812.92 406.59 6,695.71 

SAE 

(𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇) 

5,294.94 284.02 4,902.67 

4 |  CONCLUSION 

This work demonstrates a deep learning technique based on 

recurrent and convolution neural networks for generating 

sequential NWs-ICG optoacoustic (multispectral unmixing), 

ultrasound, and optoacoustic images. It has shown robust and 

promising performance in the accurate reconstruction of the 

sequential images for all modalities, according to the 

quantitative evaluation of model performance using the PSNR 

and SAE for all scanning positions of the generated images 

(reconstructed by the deep learning model) and ground truth 

(acquired by mechanical scanning). The architecture of our 

model is versatile since it can promisingly generate sequential 

cross-sectional images of three modalities from the 

commercial MSOT system. Using our deep learning can 

substantially reduce acquisition time. However, all the training 

data were acquired from ex vivo tissues completely fixed in 

agarose. Model performance with images acquired in vivo may 

be affected by cardiac and respiratory motion. In the future, we 

will explore the possibility of optimizing and applying the 

model to generate sequential images of in vivo samples with 

motion artifacts. 
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