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1| INTRODUCTION

Volumetric optoacoustic
imaging is a beneficial technique
for diagnosing and analyzing
biological samples since it
provides meticulous details in

MSOT system

Model inputs > Model outputs

anatomy and  physiology.
However, acquiring  high
through-plane resolution

volumetric images is time-
consuming, requiring a precise
motorized stage to move !
. Optoacoustic
samples under the optoacoustic N S
system along the z-axis. Here,
we propose deep learning based
on hybrid recurrent and convolution neural networks to generate sequential cross-
sectional optoacoustic images. A multispectral optoacoustic tomography (MSOT)
system was utilized to acquire the dataset from breast tumors for training our deep
learning model. This system can simultaneously acquire the sequential images (cross-
sectional images) of MSOT and ultrasound. Furthermore, it provides a spectral
unmixing algorithm applied to the MSOT images for extracting the sequential images
of a specific exogenous contrast agent. This study used ICG-conjugated
superparamagnetic iron oxide nanoworms particles (NWs-ICG) as the contrast agent.
Our deep learning model applies to all three modalities (multispectral optoacoustic
imaging at a specific wavelength, ultrasound, and NWs-ICG optoacoustic imaging).
The generated 2D sequential images were compared to the ground truth 2D sequential
images acquired using a small step size. The results of these three modalities can
achieve excellent image quality where the average of peak-signal-to-noise ratio and
summation absolute errors between the ground truths and the generated images is over
75 dB and less than 2,000. Instead of acquiring seven images with a step size of 0.1
mm, we can receive two images with a step size of 0.6 mm as input images for the
proposed deep learning model. The deep learning model can generate or interpolate
other five images with the step size of 0.1 mm between these two input images meaning
we can save acquisition time by approximately 71%.
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surrounding the molecule that generates a photoacoustic wave
[5]. The ultrasound traducer is then used to detect this wave as
an ultrasound signal. The difference of absorption contrast of

Multispectral Optoacoustic Tomography (MSOT) is an in vivo
optical imaging modality for molecular, anatomical, and
functional imaging Fields [1, 2]. The principle of MSOT is
based on the optoacoustic effect, i.e., a molecule is excited by
an ultra-short laser pulse, which can penetrate through tissue
several centimeters [3, 4], resulting in thermoelastic expansion

tissue in single wavelength images is employed to reconstruct
anatomical images. Using multiple wavelengths to excite the
tissue, we can obtain multispectral images from intrinsic and
extrinsic signals. A laser between 680 nm and 980 nm is the
predominant source for intrinsic signals such as deoxygenated



hemoglobin, oxygenated hemoglobin, melanin, myoglobin,
bilirubin, fat, etc. Extrinsic signals do notusually occur in cells,
tissue, or animals. Agents that can absorb in the near-infrared
(NIR) range such as indocyanine green, fluorescence proteins,
nanoparticles, etc., can increase the optoacoustic signal
(extrinsic signal). Thus, they can be distinguished from
intrinsic tissue background signals by using effective spectral
unmixing algorithms such as linear regression, guided
independent comment (ICA), and principal component
analysis (PCA) [6, 7]. MSOT is widely used for several studies
such as cancer research [8-12], drug development [13, 14], and
nanoparticle [15-18]. However, using multiwavelength
excitation to scan the sample is time-consuming, especially
cross-sectional scanning for 3D image reconstruction. Imaging
needs to sweep all the wavelengths with every single scanning
position. For in vivo experiments, this might lead to image
degradation from motion artifacts and potential lethality from
prolonged anesthesia. In recent years, deep learning-based
approaches have played a vital role in optoacoustic imaging,
and they have been widely used in several applications such as
image classification, segmentation [19-23], quantitative
photoacoustic imaging [24-28], image enhancement [29-33],
etc. One main advantage of deep learning for those
applications is that it depends less on hardware modifications.
In addition, most of those deep learning techniques were
designed to use a single 2D image as their input and apply
convolution architectures for feature extraction. For instance,
deep learning for automatic segmentation of optoacoustic
ultrasound (OPUS) images [34] used the U-net architecture [35]
to perform the image segmentation. U-net is a well-known
convolution neural network (CNN) architecture for image
segmentation, particularly biomedical images [36-39].

Nevertheless, there are no techniques based on deep learning
to reduce the acquisition time of cross-sectional scanning for
3D photoacoustic imaging. Herein, we propose the hybrid
architecture of convolution neural network (CNN) and
recurrent neural network (RNN) for generating sequential
optoacoustic, unmixed optoacoustic of a specific contrast agent,
and ultrasound images to extend the stack of cross-sectional
images and reduce acquisition time by approximately 71%.
This hybrid architecture is called Inception Generator Long
Sort-Term Memory (I-Gen-LSTM). The Inception Generator
is a CNN model designed based on the Inception U-net
architecture. Inception is a convolution layer [40] that
convolves the input in parallel with different kernel sizes
extracting more features than a simple convolution layer. RNN
is a robust and effective approach for sequential problems. It is
a feed-forward neural network with internal memory and
performs the same function for every data input. In addition,
the output of the current input depends upon the previous
output. However, the original RNN has drawbacks regarding
exploding and vanishing gradients from backpropagation to
update weights, particularly long sequential inputs. Long

Short-Term Memory (LSTM) networks [41] are improved
RNN networks capable of learning long-term dependencies by
adding a forget gate, input gate, and output gate. Therefore, we
leverage Inception Generator and LSTM networks to generate
sequential images. Our results demonstrate that the I-Gen-
LSTM model is a versatile method that can generate not only
sequential optoacoustic images but also sequential unmixed
optoacoustic and ultrasound images.

2 | EXPERIMENTAL
2.1 | Data acquisition

A commercial multispectral optoacoustic tomography (MSOT)
system (inVision 512-echo, iThera Medical GmbH, Munich,
Germany) was used to acquire the data for training the I-Gen-
LSTM model. The MSOT system has a 270-degree ultrasound
transducer tomographic array, which can acquire signals from
multiple angles around an object. This tomographic array
enables the system for imaging complex shapes since it can
capture 2-dimensional signals in the imaging plane. Figure 1(a)
shows the detection and illumination geometry in the imaging
chamber of the MSOT system. In addition, this system
provides a tunable laser with a range of 660-1,300 nm, which
is particularly suitable for most biological samples. The
excitation pulse laser is used to illuminate the sample. The
sample absorbs this pulse and converts it to heat, which results
in a transient thermoelastic expansion that generates an
acoustic wave. The ultrasound transducer is then used to detect
this acoustic wave, and the back-projection algorithm [42] is
applied to the detected optoacoustic wave to reconstruct the
images. For the dataset preparation, transgenic mice [43] with
breast tumors were intravenously injected with indocyanine
green (ICG)-conjugated superparamagnetic iron oxide
nanoworms (NWs-ICG) [44], which accumulate in tumors
longer than pure ICG through the enhanced permeability and
retention (EPR) effect [45]. Twenty-four hours after injection,
the mice were euthanized and the tumors were removed and
dissected for this study. All procedures performed on animals
were approved by the University’s Institutional Animal Care
& Use Committee and were within the guidelines of humane
care of laboratory animals. To acquire images of the tumors, 4
mg of agarose powder was dissolved in 40 mL of warm
deionized water. The breast tumor was put in this dissolved
agarose solution, allowing approximately 15 minutes for the
solution to solidify. The hardened agarose with the tumor
inside shown in Figure 1(b), was grasped by the holder and
then scanned by the inVision MSOT system with the excitation
pulse at wavelengths from 800 nm to 1000 nm (a
comprehensive range of the NWs-ICG study). Since the
inVision MSOT system can provide corresponding ultrasound
images, NWs-ICG optoacoustic images obtained through
linear spectral unmixing algorithm [46], and each single-
wavelength optoacoustic image, these three imaging
modalities were simultaneously acquired in every scanning



position. Figure 1(d1-d4) shows the ultrasound images of the
breast tumor with different scanning positions, Figure 1(el-e4)
shows the corresponding NWs-ICG optoacoustic images
reconstructed from multispectral optoacoustic imaging with
the excitation pulse at wavelengths from 800 to 1,000 nm by
using the multispectral unmixing algorithm; Figure 1(f1-f4)
shows the corresponding single-wave optoacoustic image at
800 nm excitation, and Figure 1(gl-g4) shows the
corresponding overlaid images of these three imaging
modalities.
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Figure 1. Ultrasound, NWs-ICG optoacoustic obtained through multispectral
unmixing, and optoacoustic at 800 nm excitation imaging of an ex vivo breast
tumor from a mouse intravenously injected with NWs-ICG. (a) The detection
and illumination geometry in the imaging chamber of the MSOT system. (b)
The breast tumor is embedded in agarose. (c) NWs-ICG structure. (d1-d4)
Ultrasound images of the breast tumor with different step sizes. (el-e4) The
corresponding NWs-ICG optoacoustic images were obtained through
multispectral unmixing. (f1-f4) The corresponding single-wavelength (Aex =
800 nm) optoacoustic images. (gl-g4) with an overlay of the ultrasound, the
NWs-ICG optoacoustic(colormap), and the single-wavelength optoacoustic
images.

2.2 | I-Gen-LSTM and discriminator models

The I-Gen-LSTM model comprises three main neural
networks depicted in Figure 2(a-c). The first neural network is

the Inception encoder & decoder network based on Inception
U-net architecture. The original U-net architect employs
simple convolution blocks with the skip connection of
encoders and decoders at the same dimension helping the
model to circumvent the vanishing and exploding gradients
problems. However, the simple convolution blocks might be
insufficient to extract all crucial information comprehensively.
Inception architecture is one of the effective CNNs
architectures since it applies a wide range of kernel sizes to
extract global and local features. A large and a small kernel
size are tailored to extract information distributed globally and
locally, respectively. With this attribute, the encoder &
decoder network was designed using Inception U-net as its
backbone as shown in Figure 2(a), for improving the model
capability. This network takes two 2D images, acquired from
an arbitrary consecutive position with a step size of 0.6 mm, as
its inputs (input 1 and input 2, as shown in Figure 2(a)). The
encoder shown on the left side of Figure 2(a) generates encoder
outputs (Eln -E5n, where n is the input image number, i.e., 1
and 2). Inception architecture in the encoder with three
different kernel sizes (1x1, 3x3, and 5x5) assembled as the
parallel filters are used to extract features from the tensors
followed by a rectified linear unit (ReLU) and a 2x2 max
pooling with the stride of 2 steps for downsampling,
respectively. Similarly, Inception architecture is also used in
the decoder blocks. The encoder blocks are used to generate
decoder outputs (D1n-D5n, where n is the input image number,
i.e., 1 and 2) as shown in the right side of Figure 2(a) followed
by a feature map upsampling, a 2x2 up-convolution (halving
the number of feature channels), and a corresponding
concatenation from the encoder part.

The second neural network is the convolutional LSTM
network (ConvLSTM) [47], a recurrent neural network for
spatio-temporal prediction. It has a convolutional structure in
both the input-to-state and state-to-state transitions as shown in
the bottom right of Figure 2(b). In other words, internal matrix
multiplications are exchanged with convolution operations.
Consequently, the data flowing through the ConvLSTM cells
keeps the input dimension instead of being a 1D vector with
features. The main equations of ConvLSTM are expressed in
Equations (1-5) below, where ‘*’ and ‘o’ represent the
convolution operator and the Hadamard product (element-wise

matrix multiplication), respectively. All variables in Equations
(1-5) were shown in the “ConvLSTM block” in Figure 2(b).

ip = oWy *Xe+ Wy *H10C4 + D) (1)
fe = O'(fo * Xp + Wy * He_q + WeoCiq + bf) (2)
¢ = ftoCiq +iotanh(Wye * Xy + Wy xHe_qy + b)) (3)
o = oWy * X+ Who * Hy + Wo0C; + be) “)



H, = o;otanh(C,) (5). 2, 3, 4, and 5 have dimensions of (5x128x128x512),
(5x64x64x512), (5x32x32x512), (5x16x16x512), and
(5x8x8x512), respectively. The first dimension represents the
number of output images (five sequential output images).

The ConvLSTM takes the outputs of the Inception encoder
from both input images (E11-E51 and E12-E52) as its inputs
to generate five sequential blocks (Recurrent Convl to
Recurrent Conv5) as shown in Figure 2(b). Recurrent Conv 1,
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E11-E51 are the encoders from Input 1
E12-ES52 are the encoders from Input 2

D11-D51 are the decoders from Input 1

D12-D52 are the decoders from Input 2
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Figure 2. I-Gen-LSTM and discriminator architectures. (a) Inception encoder and decoder network were applied to both images (inputl and input2). (b)
ConvLSTM network for generating the sequential blocks (Recurrent Conv 1-5) fed to the sequential image generator network for reconstructing the sequential
output images. (c¢) The sequential image generator network. (d) The discriminator network.



Lastly, it is the sequential image generator network inspired by
U-net architecture. The model takes Recurrent Conv 1-5, two
input images, encoder outputs (E11-E51 and E12-E52), and
decoder outputs (D11-D41 and D12-D42) to reconstruct five
sequential images of different scanning positions as shown in
Figure 2(c). The left side of Figure 2(c) shows the concatenated
encoder and decoder outputs generated by the Inception
encoder &decoder (Figure 2(a)). The right side of Figure 2(c)
shows Conv2D transpose and Conv2D operations for the
Recurrent Conv 1-5 generated by the ConvLSTM blocks
(Figure 2(b)) and the concatenated encoder & decoder outputs.
All Conv2D transpose, Conv2D blocks utilize ReLU as their
activation function except the last Conv2D* that applies
hyperbolic tangent or tanh as its activation function. Indeed,
the Recurrent Conv blocks regulate the gradual change in the
sequential output images. In short, the I-Gen-LSTM model
takes two images acquired by consecutive positions with 0.6
mm steps size and generates the five sequential images
between these two images with gradual change following the
scanning positions (step sizes of 0.1 — 0.5 mm). The ground
truth images acquired using a small step size (0.1-0.5 mm)
were used to determine the loss value from these five generated
images. The loss functions will be elucidated in section 2.3.

The discriminator network shown in Figure 2(d) is a simple
convolution network designed to evaluate the similarity
between the ground truths and generated images. The model
comprises eight convolutional layers and two fully connected
layers. After each convolution block, a batch normalization
layer is used, followed by an activation function named the
Leaky ReLU function (0=0.2). The number of 3x3 filter
kernels increases by a factor of 2 from 64 (the first layer) to
512 (the eighth layer) kernels. The last two layers are dense
layers working as a classification block, predicting the
probability of an image being either real or fake. To train the
I-Gen-LSTM model, we assemble the models as a generative
adversarial network (GAN) [48] shown in Figure 3 below.

Input images CGenerated images Ground truth images

| Discriminator
model

Cor:qbined = Content loss and Neighbor loss | & Adversarial loss
oss

Figure 3. GAN with the combination of three loss functions (the content
loss, the neighbor loss, and the adversarial loss functions) for training the
I-Gen-LSTM model.

2.3 | Loss functions

To optimize the I-Gen-LSTM model, we designed custom-
made loss functions, namely the content loss (VGG19
loss, I§eg) [49], adversarial loss (Discriminator loss, I135,),
and neighbor loss (I5°) as shown in Equation (6). Where Cy,
Cy2, and Cy3 are the hyper-parameters set as 0.7, 0.1, and 0.2,
respectively.

155 = Cp1 1556 + Cuwplion + Cusl® (6)

The content loss or VGG loss (Ij5s), which is defined as the
Euclidean distance between the feature map of the generated
image (Go(I*%)) and the ground truth (I5%), can extract high
dimensional features helping the model to generate the image
with perceptually satisfying solutions without excessively
smooth textures. The [jo; loss is based on the ReLU
activation layers of the pre-train 19-layer VGG network and it
can be calculated following Equation (7) as shown as

1 Wi «Hij 2
11%‘26 = Wi Hs, z:xzi yzjl( gi.]'(I‘(;‘(;)x,y - gi,]'(GBG(ILS)X,y) (7)

where W; ; and H; ; describe the dimensions of the respective
feature maps within the VGG network. The features map (@ ;)
can be obtained by the j-th convolution before the
it" maxpooling layer within the VGG19 network.

Moreover, the adversarial loss (I35, ) is also employed to

distinguish the similarity of the two images. It is defined as the
probabilities, varying from 0 to 1, which are the result of the
discriminator model (Dg , (Gg, (I"%))) as shown in Equation (8).
Where 1" is the input images, G, is the generator model, and
Dg,, is the discriminator model.

u (8)
182 = ) ~logDy, (Gg, 1))

n=1

Apart from using the content and adversarial losses, the
neighbor loss is also applied to optimize the model. Since the
I-Gen-LSTM model generates sequential images, the neighbor
loss is essential to regulate the change of each generated image
in the sequence. The concept of the neighbor loss function is
to differentiate between the current generated image and the
neighbor images in the same sequence as expressed in
Equation (9) below as

d ©)
I35 =) (mseCly Ins) + mse(ln, b))
n=1

The custom-made loss function effectively leverages the
combination of these three loss functions to train the I-Gen-
LSTM model that can generate high-quality sequential images.



2.4 | I-Gen-LSTM model for Volumetric Imaging

To collect the database for training the model, 16 breast tumors
from mice intravenously injected with NWs-ICG were
acquired by the MSOT system. The data from these tumors
were allocated for training (11 tumors), validation (3 tumors),
and testing (2 tumors) datasets. The training time on Google
Colaboratory (CoLab) Pro is approximately 40 hours. After
initializing and importing the model, the 1-Gen-LSTM can
generate five sequential images by taking less than 1 second
for the five output images on a personal computer (PC) with
11" Gen Intel core i7-11700k CPU, 16 GB RAM, and NVIDIA
RTX 3090 graphic card.

3 | Results and Discussion

3.1 | Sequential NWs-ICG optoacoustic, ultrasound, and
optoacoustic (Aex = 800 nm) image reconstruction.

The breast tumor dissected from an NWs-ICG-injected mouse
was scanned under the MSOT system. Figure 4 shows the
generated sequential images generated by the I-Gen-LSTM
model. Two input images of each modality, acquired from
consecutive stage positions with a step size of 0.6 mm, are used
as the inputs for the I-Gen-LSTM model.
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Figure 4. Results of sequential image reconstruction generated by the I-Gen-LSTM model. The two input images for each modality simultaneously acquired
with a step size of 0.6 mm were fed into the I-Gen-LSTM model. The green, blue, and violet boxes show generated images (GEN), ground truth (GT), and the
absolute error between GEN and GT images (|GT-GEN)|) represented as color map images. The red-dashed boxes show the local features fairly change along
the z-scanning position and the yellow-dashed boxes are the corresponding enlarged images of the red-dashed boxes. The scale bar is 5 mm. (a) NWs-ICG
optoacoustic sequential image reconstruction result. (b) Ultrasound sequential image reconstruction result. (¢) Single-wavelength optoacoustic (Aex = 800 nm)

reconstruction result.

Here, we demonstrate a z-scanning range from 9.7 mm-10.3
mm with a step size of 0.1 mm as a representative. The red-
dashed boxes in Figure 4 show local features, which are fairly
changing along the z-scanning position and are somewhat
straightforward to observe. The orange-dashed boxes are the
corresponding enlarged images of the red-dashed boxes.
Figure 4(a) shows the sequential image reconstruction result of
NWs-ICG optoacoustic imaging, Figure 4(b) shows the result
of ultrasound imaging, and Figure 4(c) shows the result of
single-wavelength optoacoustic (A = 800 nm) imaging. The
average Peak-signal-to-noise ratio (PSNR) dB/ the average
summation of absolute errors (SAE) between the ground truths
(GT) and generated images (GEN) for this scanning range of
NWs-ICG optoacoustic, ultrasound, and optoacoustic (Aex =
800 nm) imaging are 87.72 dB/923.66 ,78.83 dB/4,323.19,
75.60 dB/2,223.40, respectively.

3.2 | Three-dimensional reconstruction of the stack 2D
NWs-ICG optoacoustic, ultrasound, and optoacoustic (hex
=800 nm) images

Since the MSOT system and our deep learning model provide
the stack of multiple cross-sectional images for NWs-ICG
optoacoustic, ultrasound, and optoacoustic (A = 800 nm)
images, we can use these images to reconstruct three-
dimensional (3D) images by using Amira (Mercury Computer
system, Berlin, Germany) software. Figure 5 shows the 3D
reconstruction results of the ground truth and the generated
images. Figure 5(a) demonstrates the 3D reconstruction of
generated images from the I-Gen-LSTM model and Figure 5(b)
shows the reconstruction of the ground truths acquired by
mechanical scanning. After finished the experiment, the tumor
was removed from the agarose and sent to the histopathology
lab (MSU-IHPL Research facility) to prepare a Hematoxylin-
and-Eosin (H&E) stained breast tumor slide shown in Figure

5(c).
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Figure 5. 3D image reconstruction of the breast tumor using cross-sectional NWs-ICG optoacoustic, ultrasound, and optoacoustic (A = 800 nm) stacked
images. (a) The 3D reconstruction result of the NWs-ICG optoacoustic, ultrasound, and optoacoustic (Ax = 800 nm) images generated by the I-Gen-LSTM
model with a step size of 0.1 mm. (b) The 3D reconstruction result acquired by mechanical scanning with a step size of 0.1 mm. (c) The photograph of the

corresponding tumor and its H&E slide image.

3.3 | Evaluations

The NWs-ICG optoacoustic, ultrasound, and optoacoustic (Aex
= 800 nm) images from two tumors not used for training the
model were utilized for the model evaluation. Each tumor was
scanned with a step size of 0.1 mm. Every two-image (with a
0.6 mm scanning step in between) was assigned as the input
for the I-Gen-LSTM model to generate five sequential images
with a step size of 0.1 mm. Here, the model was evaluated
using four quantitative metrics: the average PSNR, SAE (GEN,
GT), SAE (Input,, GT),and SAE (Input,, GT). They were
applied to the testing dataset acquired from the tumors for all
scanning positions.

A large PSNR and a small SAE (GEN, GT) imply high-quality
generated images. Indeed, if the SAE (GEN, GT) can perform
better than SAE (Inputl-GT) and SAE (Input2-GT), it also
means that the model can effectively generate sequential
images. All average evaluation metrics can be calculated
following Equations (10-12).

Average PSNR = Y) %7 PSNR;(GEN; , GT;) (10)
5XN

Average SAE = XY 37 SAE;(GEN; , GT;) (1D

(GEN, GT) 5x N

Average SAE =
(Input;, ,GT)

T 37 SAE;(Inputy, , GT;) (12)
5XN
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Where,

N is the number of scanning positions with a step size of 0.6
mm,

1134 ”

GEN; is the generated image at scanning position in
between two input images (acquired with a step size of 0.6
mm),

GT; is the corresponding ground truth,

Input, images are the two input images (k=1 and 2) acquired
from arbitrary consecutive positions with a step of 0.6 mm.

Figure 6 shows the representative result from one of the
evaluated tumors as the graph of the average PSNR and SAE
(GEN, GT) vs. scanning positions. Table 1 shows the average
evaluation metrics of the generated sequential NWs-ICG
optoacoustic, ultrasound, and optoacoustic (A= 800 nm)
images for all testing datasets. Overall, the average PSNR and
SAE between generated images and ground truths of all
modalities are greater than 75 dB and less than 2,000,
respectively.

This indicates that the [-Gen-LSTM model can generate
sequential images with promising results. To comprehensively
evaluate the model performance, we also compared SAE (GEN,
GT) to SAE (Input,, GT) and SAE( Input,, GT) as the baseline for
comparison. The average SAE (GEN, GT) of optoacoustic (A=
800 nm) and ultrasound imaging performs better than the
average SAE(Input,, GT) and SAE( Input,, GT), but the NWs-
ICG optoacoustic imaging does not (the average SAE (GEN, GT)
is slightly higher than the average of SAE(Input,, GT) and
SAE( Input,,GT)) due to the tiny changing features in the
sequential NWs-ICG optoacoustic imaging and the limited
number of the training dataset. Although the overall result is
favorable and encouraging, the deep learning model could be
improved in future work. We will use a larger dataset with a
larger image size to train the deep learning model so that the
convolution/LSTM blocks can efficiently capture more
sequential features, especially in a tiny changing feature
modality such as NWs-ICG optoacoustic imaging.
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Figure 6. The PSNR and SAE (GEN, GT) evaluation in one of the testing tumors. (a-b) The graph between the PSNR and SAE (GEN, GT) values
vs. scanning positions for all generated OPUS, NWs-ICG optoacoustic, and optoacoustic (Aex = 800 nm) images, respectively.
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Table. 1 Average quantitative metrics of optoacoustic (A = 800 nm), NWs-
ICG optoacoustic, and ultrasound images generated by the proposed deep
learning model.

Average Optoacoustic NWs-ICG Ultrasound
quantitative (Aex = 800 nm) optoacoustic
metrics
PSNR (dB) 76.53 83.75 80.44
SAE (GEN, GT) 1,706.12 858.54 1,265.87
SAE 6,812.92 406.59 6,695.71
(Input4, GT)
SAE 5,294.94 284.02 4,902.67
(Input,, GT)

4 | CONCLUSION

This work demonstrates a deep learning technique based on
recurrent and convolution neural networks for generating
sequential NWs-ICG optoacoustic (multispectral unmixing),
ultrasound, and optoacoustic images. It has shown robust and
promising performance in the accurate reconstruction of the
sequential images for all modalities, according to the
quantitative evaluation of model performance using the PSNR
and SAE for all scanning positions of the generated images
(reconstructed by the deep learning model) and ground truth
(acquired by mechanical scanning). The architecture of our
model is versatile since it can promisingly generate sequential
cross-sectional images of three modalities from the
commercial MSOT system. Using our deep learning can
substantially reduce acquisition time. However, all the training
data were acquired from ex vivo tissues completely fixed in
agarose. Model performance with images acquired in vivo may
be affected by cardiac and respiratory motion. In the future, we
will explore the possibility of optimizing and applying the
model to generate sequential images of in vivo samples with
motion artifacts.

ACKNOWLEDGMENTS

We thank Amy Porter, Investigative Histopathology Laboratory, Michigan
State University, for providing the H&E slides.

FINANCIAL DISCLOSURE

This work was supported by the National Science Foundation (NSF) (grant
numbers 1808436, 1918074, and 2237142-CAREER), the Department of
Energy (DOE) (grant number 234402), and partially supported by the National
Research Council of Thailand under Grant FRB650025/0258, Grant
NRCT.MHESRI/505/2563-65, Grant RE-KRIS-FF65-14/FF65-38, and Grant
RE-KRIS-FF66-63/FF66-64.

CONFLICT OF INTEREST

The authors declare no conflicts of interest related to this article.

DATA AVAILABILITY STATEMENT

The data supporting this study's findings and the CNN trained in this study are
available from the corresponding author upon reasonable request.

ORCID
Aniwat Juhong https://orcid.org/0000-0002-9115-9767
Bo Li https://orcid.org/0000-0002-4973-1969

Chia-wei Yang https://orcid.org/0000-0002-0950-5510

Cheng-you Yao https://orcid.org/0000-0002-6045-8676
Yifan Liu https://orcid.org/0000-0003-2887-7704
Dalen W. Agnew https://orcid.org/0000-0001-8538-1348
Yu Leo Lei https://orcid.org/0000-0002-9868-9824
Gary Luker https://orcid.org/0000-0001-6832-2581
Harvey Bumpers https://orcid.org/0000-0001-6832-2581
Xuefei Huang https://orcid.org/0000-0001-6165-9261

Wibool Piyawattametha https://orcid.org/0000-0002-2228-8485

Zhen Qiu https://orcid.org/0000-0001-8790-8481
REFERENCES
1. V. Ntziachristos and D. Razansky, "Molecular imaging by means

of multispectral optoacoustic tomography (MSOT)," Chemical
reviews 110, 2783-2794 (2010).

2. L. V. Wang and S. Hu, "Photoacoustic tomography: in vivo
imaging from organelles to organs," science 335, 1458-1462 (2012).
3. A. Buehler, M. Kacprowicz, A. Taruttis, and V. Ntziachristos,

"Real-time handheld multispectral optoacoustic imaging," Optics
letters 38, 1404-1406 (2013).

4. A. Dima and V. Ntziachristos, "In-vivo handheld optoacoustic
tomography of the human thyroid," Photoacoustics 4, 65-69 (2016).

5. A. C. Tam, "Applications of photoacoustic sensing techniques,"
Reviews of Modern Physics 58, 381 (1986).

6. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W.

Koster, and V. Ntziachristos, "Multispectral opto-acoustic
tomography of deep-seated fluorescent proteins in vivo," Nature
photonics 3, 412-417 (2009).

7. S. Tzoumas, N. C. Deliolanis, S. Morscher, and V. Ntziachristos,
"Unmixing molecular agents from absorbing tissue in multispectral
optoacoustic tomography," IEEE transactions on medical imaging
33, 48-60 (2013).

8. G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian,
R. Meier, E. Rummeny, and V. Ntziachristos, "Multispectral
optoacoustic tomography (MSOT) of human breast cancer,"
Clinical Cancer Research 23, 6912-6922 (2017).

9. 1. Quiros-Gonzalez, M. R. Tomaszewski, S. J. Aitken, L. Ansel-
Bollepalli, L.-A. McDuffus, M. Gill, L. Hacker, J. Brunker, and S.
E. Bohndiek, "Optoacoustics delineates murine breast cancer
models displaying angiogenesis and vascular mimicry," British
journal of cancer 118, 1098-1106 (2018).

10. A. Ron, X. L. Dean-Ben, S. Gottschalk, and D. Razansky,
"Volumetric optoacoustic imaging unveils high-resolution patterns



12

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

of acute and cyclic hypoxia in a murine model of breast cancer,"
Cancer research 79, 4767-4775 (2019).

A. Taruttis, G. M. van Dam, and V. Ntziachristos, "Mesoscopic and
macroscopic optoacoustic imaging of cancer," Cancer research 75,
1548-1559 (2015).

M. R. Tomaszewski, M. Gehrung, J. Joseph, 1. Quiros-Gonzalez, J.
A. Disselhorst, and S. E. Bohndiek, "Oxygen-enhanced and
dynamic contrast-enhanced optoacoustic tomography provide
surrogate biomarkers of tumor vascular function, hypoxia, and
necrosis," Cancer research 78, 5980-5991 (2018).

A. P. Regensburger, L. M. Fonteyne, J. Jiingert, A. L. Wagner, T.
Gerhalter, A. M. Nagel, R. Heiss, F. Flenkenthaler, M. Qurashi, and
M. F. Neurath, "Detection of collagens by multispectral
optoacoustic tomography as an imaging biomarker for Duchenne
muscular dystrophy," Nature medicine 25, 1905-1915 (2019).

W. Song, Z. Tang, D. Zhang, N. Burton, W. Driessen, and X. Chen,
"Comprehensive studies of pharmacokinetics and biodistribution
of indocyanine green and liposomal indocyanine green by
multispectral optoacoustic tomography," RSC advances 5, 3807-
3813 (2015).

T. Anani, A. Brannen, P. Panizzi, E. C. Duin, and A. E. David,
"Quantitative, real-time in vivo tracking of magnetic nanoparticles
using multispectral optoacoustic tomography (MSOT) imaging,"
Journal of pharmaceutical and biomedical analysis 178, 112951
(2020).

M. K. Gurka, D. Pender, P. Chuong, B. L. Fouts, A. Sobelov, M.
W. McNally, M. Mezera, S. Y. Woo, and L. R. McNally,
"Identification of pancreatic tumors in vivo with ligand-targeted,
pH responsive mesoporous silica nanoparticles by multispectral
optoacoustic tomography," Journal of controlled release 231, 60-
67 (2016).

D.Li, G. Zhang, W. Xu, J. Wang, Y. Wang, L. Qiu, J. Ding, and X.
Yang, "Investigating the effect of chemical structure of
semiconducting polymer nanoparticle on photothermal therapy and
photoacoustic imaging," Theranostics 7, 4029 (2017).

S. Wang, L. Zhang, J. Zhao, M. He, Y. Huang, and S. Zhao, "A
tumor microenvironment—induced absorption red-shifted polymer
nanoparticle for simultaneously activated photoacoustic imaging
and photothermal therapy," Science Advances 7, eabe3588 (2021).
J. Grohl, M. Schellenberg, K. Dreher, N. Holzwarth, M. D. Tizabi,
A. Seitel, and L. Maier-Hein, "Semantic segmentation of
multispectral photoacoustic images using deep learning," arXiv
preprint arXiv:2105.09624 (2021).

A.Y.Yuan, Y. Gao, L. Peng, L. Zhou, J. Liu, S. Zhu, and W. Song,
"Hybrid deep learning network for vascular segmentation in
photoacoustic imaging," Biomedical Optics Express 11, 6445-6457
(2020).

G. P. Luke, K. Hoffer-Hawlik, A. C. Van Namen, and R. Shang,
"O-Net: a convolutional neural network for quantitative
photoacoustic image segmentation and oximetry," arXiv preprint
arXiv:1911.01935 (2019).

H. Lan, D. Jiang, C. Yang, and F. Gao, "Y-Net: a hybrid deep
learning reconstruction framework for photoacoustic imaging in
vivo," arXiv preprint arXiv:1908.00975 (2019).

J. Zhang, B. Chen, M. Zhou, H. Lan, and F. Gao, "Photoacoustic
image classification and segmentation of breast cancer: a feasibility
study," IEEE Access 7, 5457-5466 (2018).

T. Chen, T. Lu, S. Song, S. Miao, F. Gao, and J. Li, "A deep
learning method based on U-Net for quantitative photoacoustic
imaging," in Photons Plus Ultrasound: Imaging and Sensing 2020,
(International Society for Optics and Photonics, 2020), 112403V.
C. Bench, A. Hauptmann, and B. T. Cox, "Toward accurate
quantitative photoacoustic imaging: learning vascular blood
oxygen saturation in three dimensions," Journal of Biomedical
Optics 25, 085003 (2020).

C. Yang, H. Lan, H. Zhong, and F. Gao, "Quantitative
photoacoustic blood oxygenation imaging using deep residual and

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

recurrent neural network," in 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019), (IEEE, 2019),
741-744.

J. Grohl, T. Kirchner, T. Adler, and L. Maier-Hein, "Estimation of
blood oxygenation with learned spectral decoloring for quantitative
photoacoustic ~ imaging  (LSD-qPAI)," arXiv  preprint
arXiv:1902.05839 (2019).

C. Cai, K. Deng, C. Ma, and J. Luo, "End-to-end deep neural
network for optical inversion in quantitative photoacoustic
imaging," Optics letters 43, 2752-2755 (2018).

D. Allman, A. Reiter, and M. A. L. Bell, "Photoacoustic source
detection and reflection artifact removal enabled by deep learning,"
IEEE transactions on medical imaging 37, 1464-1477 (2018).

N. Davoudi, X. L. Dean-Ben, and D. Razansky, "Deep learning
optoacoustic tomography with sparse data," Nature Machine
Intelligence 1, 453-460 (2019).

A. Hariri, K. Alipour, Y. Mantri, J. P. Schulze, and J. V. Jokerst,
"Deep learning improves contrast in low-fluence photoacoustic
imaging," Biomedical optics express 11, 3360-3373 (2020).

T. Lu, T. Chen, F. Gao, B. Sun, V. Ntziachristos, and J. Li, "LV-
GAN: A deep learning approach for limited-view optoacoustic
imaging based on hybrid datasets," Journal of biophotonics 14,
€202000325 (2021).

K. Sivasubramanian and L. Xing, "Deep learning for image
processing and reconstruction to enhance led-based photoacoustic
imaging," LED-Based Photoacoustic Imaging: From Bench to
Bedside, 203-241 (2020).

B. Lafci, E. MerCep, S. Morscher, X. L. Dean-Ben, and D.
Razansky, "Deep learning for automatic segmentation of hybrid
optoacoustic ultrasound (OPUS) images," IEEE transactions on
ultrasonics, ferroelectrics, and frequency control 68, 688-696
(2020).

O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional
networks for biomedical image segmentation," in International
Conference on Medical image computing and computer-assisted
intervention, (Springer, 2015), 234-241.

M. Aydin, B. Kiraz, F. Eren, Y. Uysalli, B. Morova, S. C. Ozcan,
C. Acilan, and A. Kiraz, "A Deep Learning Model for Automated
Segmentation of Fluorescence Cell images," in Journal of Physics:
Conference Series, (IOP Publishing, 2022), 012003.

K. de Haan, H. Ceylan Koydemir, Y. Rivenson, D. Tseng, E. Van
Dyne, L. Bakic, D. Karinca, K. Liang, M. Ilango, and E.
Gumustekin, "Automated screening of sickle cells using a
smartphone-based microscope and deep learning," NPJ digital
medicine 3, 76 (2020).

N. Ibtehaz and M. S. Rahman, "MultiResUNet: Rethinking the U-
Net architecture for multimodal biomedical image segmentation,"
Neural networks 121, 74-87 (2020).

N. S. Punn and S. Agarwal, "Modality specific U-Net variants for
biomedical image segmentation: a survey," Artificial Intelligence
Review 55, 5845-5889 (2022).

C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna,
"Rethinking the inception architecture for computer vision," in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016), 2818-2826.

S. Hochreiter and J. Schmidhuber, "Long short-term memory,"
Neural computation 9, 1735-1780 (1997).

M. Xu and L. V. Wang, "Universal back-projection algorithm for
photoacoustic computed tomography," Physical Review E 71,
016706 (2005).

N. Stergiou, N. Gaidzik, A.-S. Heimes, S. Dietzen, P. Besenius, J.
Jikel, W. Brenner, M. Schmidt, H. Kunz, and E. Schmitt, "Reduced
Breast Tumor Growth after Immunization with a Tumor-Restricted
MUCI1 Glycopeptide Conjugated to Tetanus ToxoidImmunization
against Tumor-Restricted MUC1 in Breast Cancer," Cancer
Immunology Research 7, 113-122 (2019).



13

44,

45.

46.

47.

48.

49.

C.-W. Yang, K. Liu, C.-Y. Yao, B. Li, A. Juhong, Z. Qiu, and X.
Huang, "Indocyanine Green-Conjugated Superparamagnetic Iron
Oxide Nanoworm for Multimodality Breast Cancer Imaging," ACS
Applied Nano Materials 5, 18912-18920 (2022).
K. Greish, "Enhanced permeability and retention (EPR) effect for
anticancer nanomedicine drug targeting," Cancer nanotechnology:
Methods and protocols, 25-37 (2010).
N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE signal
processing magazine 19, 44-57 (2002).
S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and
W.-c. Woo, "Convolutional LSTM network: A machine learning
approach for precipitation nowcasting," in Advances in neural
information processing systems, 2015), 802-810.

A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath, "Generative adversarial networks: An
overview," IEEE signal processing magazine 35, 53-65 (2018).

K. Simonyan and A. Zisserman, "Very deep convolutional
networks for large-scale image recognition," arXiv preprint
arXiv:1409.1556 (2014).



