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Color correction results Qualitative comparisons. Input from [Varghese et al. 2014]

Figure 1: A reference colorchart (left image) is commonly used for color correction which is an ill-posed problem. State-of-the-art root-polynomial
regressionmethod reduces𝐶𝐼𝐸 𝑋𝑌𝑍 or linear-𝑅𝐺𝐵 color differences for the transformed reference blocks in themean-sense. It improves significantly
with the increasing regression order as 𝐶𝐼𝐸Δ𝐸 is seen to drop with the increasing order. However, it does not account for spatial variations and
produces serious artifacts as demonstrated here (center image). Proposed method improves color correction while preserving spatial variations,
white-balancing appropriately and not over-damping the luminance as reported by Varghese et al. for their 𝐶𝐼𝐸_Δ𝐸 minimizing method.
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1 INTRODUCTION
We often expect colors captured by cameras to match percep-
tually well with their real-world counterparts. Color correction
methods are devised to fulfill this goal. It is also an essential pre-
processing step in colorimetry and image-basedmaterial acquisition
pipelines for inverse-modeling and/or rendering where accuracy be-
comes paramount. However, color correction of individual images
with mere three color channels is essentially an ill-posed prob-
lem (see Section. 2). Commonly, colorcharts with blocks of known
reflectances are placed in a scene as references. Current state-of-
the-art methods mainly focus on matching the source colors (mean
or median values of imaged blocks) to their target (perceptually de-
fined) counterparts. Some operate in 𝑅𝐺𝐵 or 𝑋𝑌𝑍 color spaces and
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use linear, polynomial or root-polynomial based least-mean square
formulations to estimate correction transformations [Kucuk et al.
2022]. Others rely on minimizing 𝐶𝐼𝐸_𝐿𝐴𝐵 Δ𝐸 color-difference er-
rors in transformed reference blocks through classical optimization
or machine-learning methods. In this work, we show empirically
that predicating the optimality of the desired color-correction trans-
formation on reducing such reference color differences may only
lead to an over-fitted solution even at its best. We then discuss the
importance of spatial variations and propose a metric on local vari-
ations to take into consideration while evaluating the goodness of
color-correction methods. We propose a novel method that is espe-
cially designed to preserve local spatial variations as well, in photos.
We demonstrate that ourmethodmanages to do both: (a) staywithin
good tolerance limits for color matching differences, and (b) retain
local spatial variations. In contrast, existing methods often overlook
spatial variations while overfitting their solution to reduce color
differences for reference blocks alone.

2 COLOR CORRECTION PROBLEM
Ill-posedness. To understand the ill-posedness, we first note that

integrating continuous spectral radiances incident on camera pixels
into three-channel color vector is a linear operation. Mathemati-
cally, it implies that: T[(𝑎·𝑠1 (𝜆)+𝑏 ·𝑠2 (𝜆)] = 𝑎·T[𝑠1 (𝜆)]+𝑏 ·T[𝑠2 (𝜆)],
where T is the transform from the spectral space to, say, linear 𝑅𝐺𝐵
color space, 𝑠1 and 𝑠2 are two arbitrary spectral radiance profiles
within the visible bandwidth, and 𝑎, 𝑏 are arbitrary scalars. However,
R, G and B dimensions for a given camera’s colorspace are repre-
sented as three (𝑥,𝑦) points in CIE’s 𝑥 − 𝑦 chromaticity space and
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Table 1: Error Statistics
Method CIE ΔE_2000 Error 100×Mean |ΔCoV|
(Order) Mean Median Max 𝑥 𝑦 𝑌 (Luma)

Root-Poly (1) 2.36 2.12 6.70 0.10 0.06 0.01
Root-Poly (2) 2.37 1.86 5.55 0.20 0.10 0.12
Root-Poly (3) 1.80 1.09 5.25 2.42 1.40 3.56
Root-Poly (4) 0.06 6E-4 0.68 466 411 169
Our (L-2,C-2) 1.56 1.46 3.81 0.27 0.11 0.13

these (𝑥,𝑦) points vary depending on the camera’s color functions.
Thus, an accurate mapping between two different 𝑅𝐺𝐵 colorspaces
defined by two distinct sets of color functions is essentially a
many-to-many association as each camera in this case exhibits
a different metamerism (See Figure 1 in the supplemental). Now, if
one of these cameras emulates CIE’s color functions, then solving
for the said mapping is essentially the color correction problem.
Even when the reference blocks map to distinct points in the chro-
maticity space, perceptually metameric spectral radiances can map
to different points in the x-y chromaticity space when imaged.

Camera Noise and Colorchart Inaccuracies. The mapping problem
is further complicated by camera noise and material irregularities
(see Fig. 2 in supplemental); especially, by color aberrations in-
troduced by Bayer demosaicing. We found that even pre-filtering
for noise does not remedy these issues. As inverse rendering and
colorimetric problems often use the raw camera recordings, these
aberrations may lead to serious visual artifacts (see Fig. 1).

Non-uniform Illumination. Furthermore, the scene including the
colorchart blocks may not be illuminated uniformly. Thus there is
a non-linearity or even ambiguity added to the problem as a single
given level of luminance could result in different luminance values
in different spatial regions in the photo due to unequal illumination.

3 PROPOSED METRIC AND METHOD
Simulations examining color differences based regression. Several

state-of-the-art color correction methods solely rely on minimizing
color matching differences for a reference set. We use one such
highly effective approach, namely, root polynomial regression (RPR)
[Afifi et al. 2019; Finlayson et al. 2015; Kucuk et al. 2022] in simulated
conditions to empirically establish the shortcomings of this metric.
We simulate perfect imaging conditions for transforming a million
spectral radiance profiles {𝑠𝑖 (𝜆)} using: (a) Canon 650D’s 𝑅𝐺𝐵
spectral response functions (source data), and (b) CIE 𝑋𝑌𝑍 color
matching functions under D50 illumination (ground truth). We
do the same for 24 blocks of Xrite’s colorchart. Details for these
simulations are presented in the supplemental material. Next, using
the least-squares RPR fitting, we estimate the color transformation
matrix and examine mapping errors. Table.1(first column-set) in the
supplemental pdf shows error statistics for different orders of RPR
where both regression and test sets are limited to colorchart blocks
alone. In this case, 𝐶𝐼𝐸_Δ𝐸_2000 statistics fall significantly below
the aspiring Just-Noticeable Difference 𝐽𝑁𝐷 level (Δ𝐸 ≤ 1) as the
regression order increases. However, for themillion {𝑠𝑖 (𝜆)} samples
that are not used for regression, differences between corrected color
values and corresponding ground truth values are comparatively
high. Lastly, we regress over all of {𝑠𝑖 (𝜆)} samples to estimate the

color transformation matrix. Last column in the table from the
supplemental shows that for all the orders of RPR, color differences
statistics remain notably higher than 𝐽𝑁𝐷 .

Proposed spatial metric. To find an accurate solution, we need to
estimate spectral radiances incident on given pixels accurately. We
found that themajor fallout of methods relying onminimizing three-
channel color differences is that spatial anomalies are introduced.
Fig. 1(center) illustrates these visual artifacts. We thus propose to
incorporate a spatial variation metric, namely coefficient of varia-
tion (CoV) in the optimization criteria. We found that augmenting
color differences with CoV differences allows for improvements.

Proposed method. We propose a novel method that: (i) treats luma
and chroma information separately, (ii) uses whole reference block
patches for robust statistics, (iii) estimates a whitepoint centric
initial transformation matrix, and (iv) uses CoV statistics within
reference patches to guide further optimization of the chrominance
transformation matrix. See the supplemental Appx. B for details.

4 EVALUATION AND FUTURE-WORK
We first captured several photos of an X-rite colorchart under
various illumination profiles in a laboratory setup. We then per-
formed color correction using state-of-the-art regression method
as well as our method. Table 1 presents our findings in error sta-
tistics for the photo in Fig. 1. As the order of regression increases
𝐶𝐼𝐸Δ𝐸 errors reduce but mean difference in CoV increases dras-
tically. Visual artifacts due to these increases are dramatic and
shown in Fig. 1 (center). We found our method to be comparable
the second-order root-polynomial regression method in ΔCoV er-
rors while it significantly improves on Δ𝐸 errors. We also took
a photo from [Varghese et al. 2014] and color corrected it using
various methods. Fig. 1 (right) shows similarly white-balanced re-
sults for qualitative inspection. Varghese et al. have reported that
their𝐶𝐼𝐸Δ𝐸 minimization method somehow results in unexplained
darker shades. First-order regression results in overly saturated col-
ors. Second-order regressions improves on color tones but has its
white-point shifted towards a yellowish shade as seen for the ceiling.
Our method avoids over-saturation, estimates overall brightness
correctly and white-balances without any noticeable artifacts.

We found our method to produce promising results. In future,
we plan to examine our method under large varieties of lighting
conditions, color filtering and against public datasets. We trust our
method to significantly benefit future inverse-rendering pipelines.

ACKNOWLEDGMENTS
This work is fully supported by NSF Grant #2007974.

REFERENCES
M. Afifi, B. Price, S. Cohen, and M.S. Brown. 2019. When color constancy goes wrong:

Correcting improperly white-balanced images. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 1535–1544.

G.D. Finlayson, M. Mackiewicz, and A. Hurlbert. 2015. Color correction using root-
polynomial regression. IEEE Trans. on Image Processing 24, 5 (2015), 1460–1470.

A. Kucuk, G.D. Finlayson, R. Mantiuk, and M. Ashraf. 2022. Comparison of regression
methods and neural networks for colour correction. (2022).

D. Varghese, R. Wanat, and R.K. Mantiuk. 2014. Colorimetric calibration of high
dynamic range images with a ColorChecker chart. Proceedings of the HDRi (2014).


	1 Introduction
	2 Color Correction Problem
	3 Proposed Metric and Method
	4 Evaluation and Future-work
	Acknowledgments
	References

