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ABSTRACT: Precise control over polymer microstructure can enable molecular tunability of material properties, and stands 
as a grand challenge in polymer chemistry. Stereoblock copolymers are one of the simplest stereosequenced polymers, yet 
the synthesis of stereoblock polyesters from prochiral or racemic monomers outside of “simple” isotactic stereoblocks re-
mains limited. Herein, we report the development of irreversible chain-transfer ring-opening polymerization (ICT-ROP), 
which overcomes fundamental limitations of single catalyst approaches by using transmetallation (e.g., alkoxide-chloride ex-
change) between two catalysts with distinct stereoselectivities as a means to embed temporally-controlled, multicatalysis in 
ROP. Our combined small-molecule model and catalytic polymerization studies lay out a clear molecular basis for ICT-ROP, 
and is exploited to access the first examples of atactic -syndiotactic stereoblock (at-sb-st) polyesters, at-sb-st polyhydroxyal-
kanoates (PHAs). We achieve high levels of control over molecular weight, tacticity, monomer composition, and block struc-
tures in a temporally-controlled manner, and demonstrate stereosequence control leads to polymer tensile properties that 
are independent of thermal properties. 

INTRODUCTION 

     Precise control over polymer microstructure (e.g., com-
position, sequence, tacticity) can enable unparalleled, mo-
lecular tunability of material properties and remains a 
grand challenge in polymer chemistry.1 Stereoblock copoly-
mers, sequence-specific materials composed of blocks with 
differing relative tacticity, are attractive targets, as they can 
display thermal, mechanical, and degradation properties 
which are distinct from physical blends of corresponding 
homopolymers.2 These materials could be sourced from a 
single prochiral or racemic monomer pool with the appro-
priate design of stereospecific catalytic processes. However, 
this represents a significant fundamental challenge, as a 
given catalyst-monomer pair typically exhibits a single se-
lectivity. While considerable advances in accessing different 
stereoblock architectures have been achieved for polyole-
fins and polyacrylates,3 access to stereoblock polyesters via 
ring-opening polymerization (ROP) of a racemic monomer 
remains limited to “simple” isotactic stereoblocks (alternat-
ing runs of isotactic R/S sequences).4  

     Polyhydroxyalkanoates (PHAs), first discovered nearly 
100 years ago,5 are promising biodegradable materials 
which can display comparable properties to traditional pol-
yolefins with appropriate control over their composition 
and microstructure.6 Recently, Chen and coworkers devel-
oped an elegant approach to isotactic-stereoblock-syndio-
tactic (it-sb-st) PHAs via the ROP of designer 8-membered 
diolides using yttrium salen catalysts exhibiting exquisite 
enantiomorphic site-control (Figure 1A).6g The new ste-
reoblock materials displayed improved mechanical and 
thermal properties compared to their corresponding homo-
polymers, but required both rac and meso diastereomers 

(obtained in low overall yields after multi-step synthesis 
and purification). Instead, routes to stereoblock PHAs from 
racemic β-lactones would be highly desirable as they can be 
sourced in one-step via the catalytic carbonylation of epox-
ides,7 yet the generation of stereoblock PHAs from β-lac-
tones remains unknown. Despite the absence of such re-
ports, Coates, Thomas, and coworkers have accessed PHAs 
with high levels of stereo- and sequence-control (i.e., highly 
alternating copolymers) via ROP of β-lactones using a syn-
dioselective yttrium salan catalyst exhibiting chain-end ste-
reocontrol.8 These novel PHAs displayed thermal proper-
ties distinct from their corresponding homopolymers, but 
required the use of enantiopure β-lactones (Figure 1B).  

     Alternatively, straightforward access to stereoblock 
PHAs should be possible by leveraging catalysts with dis-
tinct stereoselectivities in an integrated, multicatalytic ap-
proach.9 While multicatalytic approaches have enabled 
challenging multi-step organic syntheses,10 implementing 
such strategies in ROP would require discrete chain-trans-
fer events. Looking to the synthesis of other stereospecific 
polyesters, intercatalyst polymeryl exchange has emerged 
as a distinct pathway for polymer stereo- and sequence-
control in ROP, including stereoblocks (Figure 1C).4a, 11 Alt-
hough promising, this requires careful management of fast, 
reversible chain-transfer (kex) and matched/mismatched 
rates of propagation (kp and kp’) to control the properties of 
the resulting stereoblocks. Chain-transfer agents (CTAs) 
also induce polymeryl transfer to access block and stereob-
lock polyesters and polycarbonates,12 but face similar crite-
ria.  

     Based on these strategies, we envisioned a modified ap-
proach to access stereoblock PHAs from a single racemic 
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monomer feed (β-lactones) through a one-time, irreversible 
polymeryl exchange event (e.g., transmetallation) between 
catalysts with distinct stereoselectivities via alkoxide-hal-
ide exchange (Figure 1D). Unlike degenerate chain-transfer 
between active and dormant states in coordination chain-
transfer polymerization,13 irreversible polymeryl exchange 
with an inactive nucleophile (e.g., Cl–; kM–Cl << kM–OR) would 
enable the temporally-controlled synthesis of stereoblock 
PHAs. Such a mechanistically-distinct polymerization 
method might enable access to unknown polyester stereob-
lock architectures, such as atactic-stereoblock-syndiotactic 
(at-sb-st) copolymers. Generally,  at-sb-st copolymers have 

been challenging to access across all polymer classes,14 re-
quiring either 1) isolated macroinitiators for each step15 or 
2) fractionation to remove atactic or syndiotactic homopol-
ymers.16 Herein, we report the development of irreversible 
chain-transfer ring-opening polymerization (ICT-ROP). ICT-
ROP provides access to at-sb-st PHAs for the first time, and 
lays the groundwork to access stereo- and sequence-spe-
cific polymers using rationally-designed, multicatalytic ap-
proaches. 

RESULTS & DISCUSSION 

      In order to realize the envisioned cooperative, multi-cat-
alyst ICT-ROP, two key criteria must be met: (i) facile, irre-
versible polymeryl (i.e., alkoxide) transfer and (ii) inactivity 
of the transferred group (i.e., non-alkoxide) towards ROP. 
With respect to (i), it is well established that transmetalla-
tion between organozinc reagents and metal halides,17 in-
cluding with group III,18 is a key elementary step in a diverse 
range of catalyzed reactions, where the driving force for ex-
change often follows differences in electronegativity.19 With 
respect to (ii), metal halides are typically poor initiators for 
ROP of lactones, and could serve as the inactive (dormant) 
state in ICT-ROP.  Although zinc alkoxides can react with 
metal halides to generate heterobimetallic species,20 quan-
titative, irreversible alkoxide for chloride exchange is with-
out precedent. With this in mind, we sought to demonstrate 
the feasibility of these two criteria with two privileged cat-
alyst platforms, zinc beta-diketiminates (BDI)21 and yttrium 
aminobisphenolate (OONN’),22 which can access atactic and 
syndiotactic poly-3-hydroxybutyrate (P3HB), respectively. 

     The reaction of 0.5 equiv of Zn Dipp/Bn-substituted beta-
diketiminate alkoxide dimer, [Zn(BDI-1)(OiPr)]2 (1a-Zn-
OiPr; generated in situ from 1a-Zn-N(SiMe3)2 and iPrOH,21b 
with one equiv yttrium aminobisphenolate chloride, 
Y(OONN’)(Cl)(THF) (2-Y-Cl),23 was monitored by 1H NMR 
spectroscopy in d8-THF (Figure 2A). Over the course of 3 h 
at RT, 1a-Zn-OiPr and 2-Y-Cl quantitatively and irreversi-
bly formed the anticipated products of alkoxide-chloride ex-
change, Zn(BDI-1)(Cl)(THF) (1a-Zn-Cl) and 
Y(OONN’)(OiPr)(THF) (2-Y-OiPr) (Figure 2A & 2B). Unam-
biguous assignment of the products was established 
through independent syntheses of 1a-Zn-Cl (Figure 2C, 
81% yield) and 2-Y-OiPr (Figure S20).22b The irreversible 
nature of the alkoxide-chloride exchange reaction was fur-
ther confirmed by 1H NMR spectroscopy, where solutions of 
1a-Zn-Cl and 2-Y-OiPr remained unchanged at RT after 24 
h (Figure S22). Experimental observations were in good 
agreement with thermochemical predictions obtained from 
density functional theory (DFT) calculations performed at 
the M06-L level of theory (Supporting Information, Section 
4),24 with exchange between the hypothetical monomer, 
1a′-Zn-OiPr, and 2-Y-Cl favored by 10 kcal/mol (Table S2). 
Possible chain-transfer processes were probed by 2-dimen-
sional 1H NMR exchange spectroscopy (EXSY) experiments, 
which revealed negligible rates of exchange between 2-Y-
OiPr and 2-Y-Cl or 2-Y-OiPr and 1a-Zn-OiPr at RT on the 
NMR time-scale (Figure S25–S28).  

     Consistent with the limited reactivity of halide,25 beta-
diketiminate,26 and aminobisphenolate23 ligands as initia-
tors for the ROP of lactones, both 1a-Zn-Cl and 2-Y-Cl, were 

 
Figure 1. Prior work and mechanistic features driving stereoselectiv-
ity to: (A) stereoblock PHA copolymers,6g (B) highly-alternating PHA 
copolymers,8 and (C) stereoblock polylactide.4a,11 (D) This work: access 
to stereoblock PHA copolymers from rac-β-lactones enable by Irre-
versible Chain-Transfer Ring-Opening Polymerization (ICT-ROP). 
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inactive for ROP of rac-β-butyrolactone (rac-BBL) at RT 
(Scheme 1; Table S12, entries 1 and 2).  Under the same con-
ditions, 1a-Zn-OiPr and 2-Y-OiPr generated atactic- 
(Scheme 1; at-P3HB, Pr = 0.51) and syndiotactic-P3HB 
(Scheme 1; st-P3HB, Pr = 0.86) with narrow molecular 
weight dispersities (Table S12, entries 3 and 6). Addition of 
200 equiv rac-BBL to a freshly mixed solution (< 1 min) of 
1a-Zn-OiPr and 2-Y-Cl produced st-P3HB (Scheme 1; Table 
1, entry 1,) with equivalent characteristics as using 2-Y-
OiPr (Table S12 entry 6) or 2-Y-OiPr mixed with 1a-Zn-Cl 
(Table 1, entry 2). In sum, our experiments support rapid, 
irreversible transmetallation between a zinc alkoxide, 1a-
Zn-OiPr, and yttrium chloride, 2-Y-Cl, and the resulting yt-
trium alkoxide is a competent catalyst for the stereospecific 
ROP of rac-BBL. 

     With both criteria clearly met, we pursued the one-pot 
synthesis of at-sb-st-P3HB via ICT-ROP (Figure 3A). In the 
presence of 200 equiv rac-BBL and one equiv isopropanol, 
1a-Zn-N(SiMe3)2 reached 47% conversion after 25 min at 
60 °C to form narrow dispersity at-P3HB (Mn = 14.7 kg/mol, 
Ð = 1.08, Pr = 0.51; Figure 3B, point 1 and 2). Consistent with 
the slow reactivity of 1a-Zn-OiPr with rac-BBL at RT, negli-
gible monomer conversion was observed upon cooling to 

RT and holding for 35 min (Figure 3B, point 3). ROP com-
menced rapidly upon addition of 2-Y-Cl to generate at-sb-
st-P3HB, reaching 96% conversion in ~90 min (Figure 3B, 
point 4; at:st = 48:52). 

     Formation of the desired at-sb-st-P3HB was unambigu-
ously confirmed by key spectroscopic, chromatographic, 
and calorimetric techniques. Stereochemical analysis by in-
verse-gated 13C NMR revealed excellent agreement between 
experimental (Pr,exp, 0.71) and theoretical (Pr,theo, 0.70) tac-
ticity values for the at-sb-st-P3HB stereoblock copolymer 
(Supporting Information, Section 5). Size-exclusion chro-
matography (SEC) revealed a narrow, monomodal molecu-
lar weight distribution in good agreement with the pre-
dicted molecular weight for a living ROP with a single initi-
ation site (Mn = 32.4 kg/mol, Ð = 1.13). This was in line with 
rapid, quantitative, and irreversible chain-transfer between 
the zinc alkoxide propagating chain and 2-Y-Cl with mini-
mal termination events. 2D 1H NMR diffusion ordered 

 
Figure 2. (A) Irreversible alkoxide-chloride exchange between 1a-Zn-OiPr and 2-Y-Cl. (B) Conversion versus time of (A) monitored by 1H NMR 
spectroscopy. (C) Thermal ellipsoid plot (50% probability) of 1a-Zn-Cl.  

 
Figure 3. (A) at-sb-st-P3HB generated from ICT-ROP of rac-BBL with 
1a-Zn-OiPr + 2-Y-Cl. (B) Conversion of rac-BBL versus time of (A): (1) 
1a-Zn-OiPr, 0%, RT; (2) 48%, 60 °C; (3) 48%, RT; (4) +2-Y-Cl, 98%, RT. 
(C) 13C NMR of the P3HB carbonyl region for at-, at-sb-st-, and st-P3HB 
generated from 1a-Zn-OiPr, 1a-Zn-OiPr + 2-Y-Cl (ICT-ROP), and 2-Y-
OiPr, respectively. (D) SEC traces from points (3) and (4) from panel 3B. 
(E) Thermal properties of st-P3HB (Pr = 0.64), st-P3HB (Pr = 0.88), and 
at-sb-st-P3HB (Pr = 0.71).  

 
Scheme 1. Homopolymerization controls detailing the reactivity of 
rac-BBL with (i) 1a-Zn-OiPr, (ii) 2-Y-OiPr, (iii) 2-Y-Cl or 2-Zn-Cl, and 
(iv) 1a-Zn-OiPr + 2-Y-Cl. 
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spectroscopy (DOSY) revealed a single diffusion coefficient 
associated with the copolymer (Figure S36). Finally, differ-
ential scanning calorimetry (DSC) revealed distinct thermal 
properties associated with the novel sequence-specific pol-
ymer microstructure (Figure 3E and Table 1, entry 3). De-
spite being composed of 50% atactic microstructure, at-sb-
st-P3HB (Pr = 0.71) displayed similar melting (Tm) and crys-
tallization (Tc) temperatures to that of the corresponding st-
P3HB homopolymer, but with lower enthalpies of fusion 
(ΔHm, 28 vs 42 J/g) and a more pronounced glass transition 
temperature (Tg). In contrast, thermal analysis of an inde-
pendently prepared st-P3HB homopolymer with more com-
parable rac and meso diad content (Pr = 0.64) was com-
pletely amorphous (Figure 3E). The disparate thermal be-
havior of these two samples underscores the dramatic im-
pact of stereosequence control in the resulting polymer 
properties.  

     Access to at-sb-st-P3HB with a range of at:st composi-
tions and molecular weights were readily achieved by 
simply adjusting the timing of 2-Y-Cl addition and ratio of 
rac-BBL to initiator (i.e., 1a-Zn-OiPr), respectively. Addition 
of 2-Y-Cl to 1a-Zn-OiPr/rac-BBL solutions at 74, 48, and 
27% conversion (35, 25, and 10 min, respectively) gener-
ated increasingly st-rich, at-sb-st-P3HB (at:st = 74:26, 
48:52, and 27:73), where Pr,exp was in excellent agreement 
with Pr,theo (Table 1, entries 4–5). DSC thermal analysis of 
these samples revealed Tm largely insensitive to st-content 
(Table 1, entries 4–5, 155–161 °C), with a positive linear 

correlation between ΔHm and st-content (Figure S49 R2 = 
1.00). Polarized light microscopy (PLM) studies performed 
under isothermal or constant cooling crystallization condi-
tions revealed spherulitic morphologies,27 where decreased 
st-content led to smaller spherulite size and higher nuclea-
tion density (Figure S89 and S90). Maintaining the time of 
addition of 2-Y-Cl at ~50% conversion while adjusting the 
ratio of rac-BBL to initiator from 100:1 to 400:1 generated 
at-sb-st-P3HB with molecular weights from 14.1–52.4 
kg/mol (Table 1, entries 6–7). 

     Motivated by the high-level tunability of at-sb-st-P3HB 
achieved through ICT-ROP with the 1a-Zn-OiPr/2-Y-Cl sys-
tem, we targeted three additional proof-of-concept studies 
to explore whether we could leverage other catalysts, mon-
omers, and chain-transfer agents. One potential concern is 
the compatibility of sterically-demanding catalyst partners, 
as efficient chain-transfer lies at the heart of ICT-ROP. Grat-
ifyingly, employing the more sterically-demanding and 
higher activity N-dibenzhydrylphenyl/N-benzyl variant, 
Zn(BDI-2)[N(SiMe3)2] (1b-Zn-N(SiMe3)2),21b in place of 1a-
Zn-N(SiMe3)2, generated at-sb-st-P3HB with excellent con-
trol over composition and molecular weight (Table 1, entry 
8 and Figure S59–S63). Small alterations in side-chain iden-
tity can lead to pronounced effects on PHA thermal proper-
ties28 (R = Me, P3HB: Pr = 0.94, Tm = 178 °C;29 R = Et, P3HV: 
Pr = 0.94, Tm = 79 °C).8 at-sb-st-P3HV (at:st = 52:48) was syn-
thesized via ICT-ROP with 1a-Zn-OiPr/2-Y-Cl, which led to 
a ~100 °C decrease in Tm in comparison to at-sb-st-P3HB 

Table 1. Synthesis of atactic-syndiotactic stereoblock PHA copolymers via ICT-ROP of β-lactones.a 

 

Entry R 
X 

(equiv) 
Conv. 
(%)b 

[at]:[st]c 

 1-Zn-N(SiMe3)2  
+ R′OH  

+ 2-Y-Cl 

Mn,exp 
(kg/mol)d 

Ð 
(Mw/Mn)d 

Mn,exp 
(kg/mol)d 

Ð 
(Mw/Mn)d 

Prc 
Tg 

(°C)e 

Tm 
(°C)e 

ΔHm 
(J/g)e 

1f Me 200 81 0:100 -- -- 30.1 1.16 0.86 -- 160 42 

2g Me 200 67 0:100 -- -- 29.2 1.18 0.87 -- 160 42 

3 Me 200 96 48:52 14.8 1.08 32.4 1.13 0.71 –2 162 28 

4 Me 200 93 27:73 9.9 1.05 31.4 1.13 0.77 2 161 40 

5 Me 200 90 74:26 22.9 1.06 29.9 1.10 0.61 –3 155 15 

6 Me 100 91 49:51 6.4 1.07 14.1 1.18 0.70 –3 152 15 

7 Me 400 90 51:49 31.1 1.04 52.4 1.10 0.68 6 164 33 

8h Me 200 96 52:48 17.0 1.05 36.9 1.11 0.69 2 162 30 

9 Et 200 92 54:46 14.2 1.06 26.8 1.06 0.65 -- 84 24 

10i Me 200 93 52:48 15.9 1.07 30.5 1.14 0.67 -- 139 16 

11f Me 800 94 0:100 -- -- 109.0 1.28 0.87 -- 159 41 

12h Me 800 92 74:26 70.9 1.08 94.2 1.08 0.59 1 156 13 

13h,i Me 800 93 70:30 73.9 1.08 92.5 1.09 0.61 1 148 14 
a – Unless otherwise noted, reaction conditions are: C2H4Cl2 = 1,2-dichloroethane, [β-lactone] = 2.4 M; [β-lactone]:[1a-Zn-N(SiMe3)2]:[2-Y-
Cl]:[R′OH] = X equiv:1:1:1, R′OH = iPrOH. Reaction times not optimized and see supporting information for reaction times at specific conversions 
(including 2-Y-Cl addition points). b – Determined by 1H NMR. c – Determined by inverse-gated 13C NMR. d – Determined by size-exclusion chroma-
tography (SEC), CHCl3 mobile phase. e – Determined by differential scanning calorimetry (DSC). f – 1a-Zn-N(SiMe3)2, iPrOH, and 2-Y-Cl, followed by 
adding BBL. Generation of st-P3HB homopolymer. g – 1a-Zn-Cl, iPrOH, and 2-Y-N(SiMe3)2, followed by adding BBL. Generation of st-P3HB homo-
polymer. h –1b-Zn-N(SiMe3)2 in place of 1a-Zn-N(SiMe3)2, RT instead of 60 °C. i – R′OH = HO(CH2)6OH; formation of st-sb-at-sb-st-P3HB (ABA 
copolymer structure).  
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(Tm = 80 °C vs 162 °C; Table 1, entry 9 vs 3 and Figure S64–
S69). Multifunctional chain-transfer agents can generate 
distinct copolymer sequences and/or topologies, which can 
directly impact polymer properties. Thermoplastic elasto-
mers containing ABA structures (A = hard block, B= soft 
block) are used in a broad range of applications, and can be 
readily accessed using bifunctional (telechelic) initiators.30 
Using the bifunctional chain-transfer agent, 1,6-hexanediol, 
in place of iPrOH generated the novel ABA triblock, st-sb-at-
sb-st-P3HB (Table 1, entry 10 and Figure S70–S75). While 
st-sb-at-sb-st-P3HB displayed similar thermal properties to 
the corresponding homopolymer fragments (Table S12, en-
tries 22-23 and Figure S85), PLM studies following isother-
mal crystallization support formation of much smaller 
spherulitic domains and signs of  microphase separation 
(Figure S90).30b, 31 

     Tensile testing with dog-bone specimen of high molecu-

lar-weight st-, at-sb-st-, and st-sb-at-sb-st-P3HB (≥ 90 

kg/mol; at:st = 0:100, 74:26, 68:72, respectively; Table 1, 

entries 11–13, see Supporting Information for synthetic de-

tails) revealed stereosequence-dependent mechanical prop-

erties (Figure 4). While st-P3HB was strong but brittle (ulti-

mate tensile-strength, UTS: 21.8 ± 3.5 MPa; elongation-to-
break, ε: 10.4 ± 1%), at-sb-st- (AB) and st-sb-at-sb-st-P3HB 

(ABA) were weaker with dramatically enhanced ductility 

(UTS: 3.3 ± 0.4 and 3.2 ± 0.2 MPa and ε: 383 ± 49% and 

556 ± 70%, respectively). The improved ductility qualita-

tively follows expectations based on the decreasing spheru-

lite domain size observed by PLM,32 where the ~200% in-

crease in ductility moving from AB to ABA architectures 

underscores the impact of stereosequence control. Alterna-

tively, decomposition (Td: 246–256 °C) and melting temper-

atures (Tm: 148–159 °C) were insensitive and independent of 

tacticity (Pr, at:st content; Table 1, entries 11–13) or stereob-

lock architecture (Figures S77-S79, S81-S83, and S85-S87). 

This stands in stark contrast to the behavior of PHA homo-

polymers,6e, f, l, 29, 33 where both thermal and mechanical 

properties are highly correlated with tacticity. This suggests 

distinct opportunities to independently tune critical polymer 

properties solely by stereosequence control, and further 

connections between structure/morphology and stereoblock 

copolymer properties are underway.  

CONCLUSION 

      We described the successful development of irreversible 

chain-transfer ring opening polymerization (ICT-ROP), 

which we leveraged to access the first examples of atactic-

syndiotactic stereoblock polyesters, at-sb-st PHAs. ICT-

ROP overcomes fundamental limitations of the one-cata-

lyst/one-monomer paradigm by using transmetallation (e.g., 

alkoxide-chloride exchange) between catalysts with distinct 

stereoselectivities as a means to embed temporally-con-

trolled, multicatalysis in ROP. Our small molecule model 

studies unambiguously established the irreversible nature of 

alkoxide-chloride exchange small-molecule, which along 

with our catalytic polymerization studies laid out a clear mo-

lecular basis for ICT-ROP. The highly controlled nature of 

ICT-ROP allowed for the synthesis of at-sb-st PHAs with 

excellent control over molecular weight, tacticity, monomer 

composition, and block structures, where stereosequence 

control directly impact polymer properties. We envision 

ICT-ROP as a powerful method to access other distinct, ste-

reo- and sequence-specific block structures and topologies, 

and further studies are currently underway. 
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